
A Memory Model for X10

Andreas Zwinkau
Karlsruhe Institute of Technology

zwinkau@kit.edu

Abstract
A programming language used for concurrent shared-memory pro-
grams must specify its memory model for programmers to reason
about the behavior of a program. Java and C++ have plugged this
hole in their specifications, but not X10. This paper proposes a mem-
ory model for X10. Additionally, this serves as a case study of how
the design goals of a language map to requirements for its memory
model.

Categories and Subject Descriptors B.3.2 [Design Styles]: Shared
Memory; D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.3.0 [Programming Languages]: Standards; D.3.1 [Pro-
gramming Languages]: Formal Definitions and Theory; D.3.3
[Language Constructs and Features]: Concurrent Programming
Structures, Frameworks

Keywords X10 Programming Language, Memory Model, Memory
Consistency, Sequential Consistency, Concurrency

1. Introduction
A memory model specifies what values parallel execution threads
can observe in shared data in what order. This is important for the
programmer, who reasons about the behavior of a program, and for
the compiler, which must map it to the target hardware’s memory
model. Every implementation implicitly defines a model, but it
becomes confusing if the programmer has a different model in mind,
usually a simpler one.

The X10 specification [9] does not contain a memory model.
This is especially perilous, since the compilation targets are Java
and C++, which have different memory models [4, 8]. An X10
program’s behavior should be the same, no matter which compiler
backend is used. Thus, we must specify the behavior for the source
language X10.

1.1 Overview
The contributions of this paper are

1. a memory model proposal for the X10 programming language

2. a case study how X10 design decisions influence the memory
model compared to Java and C++

First in section 2, we collect our assumptions in a requirements
analysis. Section 3 specifies the memory model. We discuss differ-
ences to Java and C++ in section 4 and also the issues with volatile,
fences, constructors. The section also shows how threads map to ac-
tivities, and why a global address space does not affect the memory
model.

For an overview over memory models of programming lan-
guages, the popular short version is: “Sequential consistency (SC)
for data race free programs”. The formal version is:

A program whose sequentially consistent executions have no
data races must have only sequentially consistent executions.

To understand this, let us look into what SC and data race mean.

1.2 What is Sequential Consistency?
Memory models in general are about the order of memory actions,
which are read, write, compare-and-swap, etc. Naturally, program
code defines an order within a single thread. A compiler and a
programmer can understand and work with this sequence. However,
if two (or more) threads run in parallel, then many interleavings
become possible and programs may become indeterministic. SC is
originally defined by Lamport in 1971 [5]. Since terminology has
changed a little since then, a modern definition is:

Within each thread memory accesses follow program
order and all threads immediately observe every access.

This implies a global total order of actions for a given execution.
For memory models we define the term synchronization oper-

ations, which explicitly synchronize global memory state for the
thread that executes it. The simple SC memory model declares every
memory access a synchronization operation. The problem is that this
prohibits a lot of optimizations, which we want to allow compilers
and CPUs to do. Thus, Java and C++ define a limited set of syn-
chronization operations provided by locks, monitors, semaphores,
atomics, and other special constructs. A library cannot provide such
constructs [1], so they belong to the language specification.

With weaker memory models, one thread may observe a dif-
ferent order of actions than another thread. Obviously, this means
additional complexity for a programmer, who tries to understand an
execution in a debugger.

1.3 What is a Data Race?
If two memory actions are not synchronization operations, access
the same data, and at least one writes, then they conflict. There may
be a happens-before relation between the two actions, which means
the first action is visible to (due to synchronization operations) and
ordered before (due to program and execution order) the second. If
two actions conflict and have no happens-before relation, then we
have a data race.

Be careful not to confuse a data race with a race condition,
which means that timing or ordering of events affects a program’s
behavior. Some only consider it a race condition, if the behavior



Let flag be false initially
flag = true flag = true

Figure 1. An example of a data race without a race condition.
Two threads set the same flag to true. There is a data race, because
those actions conflict and there is no happens-before relation. There
is no race condition, because the outcome is deterministic. We do
not care about the order in this case as the behavior is identical.

Assume at least 2 elements in queue
x = queue.pop() y = queue.pop()

Figure 2. An example of a race condition without a data race.
Two threads try to take an element from a properly synchronized
queue. Since pop is synchronized, there is no data race. There is
a race condition, because it is not deterministic which thread gets
which element.

is faulty/incorrect. We use a weaker definition here for brevity and
simplicity. It does not matter for the memory model. Although data
race and race condition often occur together, these are orthogonal
concepts. Race conditions are the reason why we have so many
different executions with parallel and concurrent programs. Figure 1
and figure 2 show examples of one, but not the other.

2. Requirements Analysis
Before we present the actual memory model, we analyze the
requirements and derive design decisions.

The X10 compiler targets Java (called managed) and C++ (called
native), and there is also an inofficial assembly backend [3]. This
means whatever memory model we design, it must be possible to
map it to the Java memory model (JMM) [8], the C++ memory
model (CMM) [4], and hardware memory models.

Another aspect is that X10 targets High-Performance Computing
(HPC), so performance is important.

2.1 Data Races are Undefined Behavior
Programmers strive for data race free code, so CMM considers data
races as undefined behavior. “There are no benign data races” in
C++ [4]. In contrast, Java must define the semantics of data races,
otherwise a data race could be exploited to, e.g., circumvent the
security manager. Via data races the current JMM fails [7] to prevent
an execution from reading values “out of thin air”, which were never
written according to the program. Must X10 care about the semantics
of data races and Thin Air Reads? No, because X10 provides no
isolation mechanism within the language, which would have to be
secure even with data races. Neither does X10 need to use a memory
model framework [10], which supports this complexity.

If X10 defines semantics for data races, then the compiler must
maintain this semantics in C++ and must not generate code with
undefined behavior. Thus, the compiler must litter the code with
additional synchronizing operations like memory fences, which
degrades performance. This is not acceptable for HPC programs,
thus X10 cannot provide a semantics for data races. While undefined
behavior is a source of agony, the advantage is a simplified memory
model.

2.2 Termination can be Assumed
With a similar argument, an X10 compiler can assume that all loops
terminate. C++ [4, §1.10.27] allows to remove empty loops even if
they might not terminate. Thus, the compiler can remove an empty
loop in X10, if it is compiled directly to a C++ loop. Therefore,
X10 must use an equivalently weak semantics or the compiler must

def foo(y:int,n:int):void {
var x:int = 0;
while (x < y) { x += n; }

}

Figure 3. We store the local variables x, y, n in registers, so there
is no memory access within the loop. During the execution there is
no “action” (see below) with respect to the memory model, so we
consider the loop empty. Additionally, x is not used after the loop,
so we do not care about its value. We cannot guarantee termination,
since n might be zero. Still, the compiler can remove the loop.

ensure not to generate empty loops by inserting dummy statements.
Since the upside of stronger semantics is not clear, we assume that
empty loops can be removed and thus assume termination. We see
an example in figure 3. This is the behavior of the current X10
version 2.5.

3. X10 Memory Model
This sections provides a complete memory model for X10. The
structure of this section mostly matches the Java memory model [8]
§7, with the necessary parts from §5 and §9 merged in. Where it
made sense, we copied the text verbatim for better comparison, so a
lot of credit goes to the authors of the JMM. However, we changed
many details in the adaption to X10.

In X10, an activity is the concept to model a thread of execution.
A place is a shared memory domain. Activities within the same place
use the same heap. Activities in different places cannot communicate
via shared memory. Instead, the programmers must use the at
construct to transfer an activity to another place, which implicitly
copies context data.

3.1 Actions and Executions
An action a is described by a tuple 〈t, k, v, u〉, comprising:

t the activity performing the action.

k the kind of action.
Most kinds are synchronization operations: activity creation
(within the spawning activity), start and end of an activity, global
termination of finish block, lock, unlock, library and external
actions.
Two kinds are not: read and write.

v the variable or lock involved in the action. Variables and locks
on different places cannot overlap.

u an arbitrary unique identifier for the action.

As a notation for the variable or lock v of an action a, we use
the notation a.v in the following.

An execution E is described by a tuple 〈P,A,
po−→,

so−→,W, V 〉,
comprising:

P a program.

A a set of actions.
po−→ program order, which for each activity t is a total order over all

actions performed by t ∈ A.
so−→ synchronization order, which is a total order over all synchro-

nization actions in A. For a0
so−→ a1, we say a1 is subsequent

to a0.

W a write-seen function, which for each read r ∈ A, gives W (r),
the write action seen by r in E.



V a value-written function, which for each write w ∈ A, gives
V (w), the value written by w in E.

An external action is an action that may be observable outside
of an execution, and may have a result based on an environment
external to the execution. An external action tuple contains an
additional component, which contains the results of the external
action as perceived by the activity performing the action. This may
be information about the success or failure of the action, and any
values read by the action. Parameters to the external action (e.g.,
which bytes are written to which socket) are not part of the external
action tuple, since it does not concern the memory model.

A library action is an action from the standard library, which
provides additional synchronization mechanisms as shown in sec-
tion 3.5.

3.2 Synchronizes-with and happens-before
Two additional relations are uniquely determined from an execution.
Since we never reason about multiple executions at the same time,
we do not annotate E with those relations explicitly.
sw−−→ synchronizes-with, a partial order over synchronization actions

determined by synchronization order according to the rules
below. We call the source of synchronizes-with release and
the target acquire.

The total synchronization order of an execution determines a
partial order synchronizes-with according to the following rules:

1. An unlock action on lock l synchronizes-with all subsequent
lock actions on l.

2. An action that creates an activity synchronizes-with the start
action of the created activity.

3. The write of the default value to each variable synchronizes-with
the first action in every activity (Conceptually, every object is
created at the start of the program). The default value of non-
static val fields is their initialization value.

4. The end action of an activity synchronizes-with the end of the
surrounding finish block.

5. The last action of an atomic or when block synchronizes-
with the first action of subsequent atomic blocks and when
conditions.

6. Further actions as specified in parts of the standard library in
section 3.5.

A set of synchronizes-with relations is sufficient if it is the mini-
mal set such that you can take the transitive closure of those relations
with program order relations, and determine all the happens-before
relations in the execution. This set is unique.

hb−→ happens-before, a partial order over actions is the transitive
closure of synchronizes-with and program order.

3.3 Well-formed executions
We only consider well-formed executions. An execution
E = 〈P,A,

po−→,
so−→,W, V 〉 is well-formed if the following condi-

tions are true:

1. Each read of a variable x sees a write to x. For all reads r ∈ A,
we have W (r) ∈ A and W (r).v = r.v.

2. Synchronization order is consistent with program order and
mutual exclusion. Having synchronization order consistent with
program order implies that the happens-before order is a valid
partial order: reflexive, transitive, and antisymmetric. Having

synchronization order consistent with mutual exclusion mean
that on each lock, the lock and unlock actions are correctly
nested.

3. The execution obeys intra-activity consistency. For each activity
t, the actions performed by t in A are the same as that activity
t would generate in program order in isolation, with each write
w writing the value V (w), given that each read r sees/returns
the value V (W (r)). The memory model determines the values
seen by each read. The program order must reflect the program
order in which the actions would be performed according to the
intra-activity semantics of P , as specified by the parts of the
X10 specification that do not deal with the memory model.

4. The execution obeys happens-before consistency. Consider all
reads r ∈ A. It is not the case that r hb−→ W (r). Additionally,
there must be no write w such that w.v = r.v and W (r)

hb−→
w

hb−→ r.

3.4 Termination
Like C++ [4, §1.10.27], any X10 activity will eventually “terminate,
make a call to a library IO function, access or modify an atomic
object, or perform a synchronization operation”. This means in
contrast to Java, we do not need to consider infinite executions. No
“hang” action is necessary.

3.5 Constructs in the Standard Library
3.5.1 Atomics
The X10 runtime comes with atomic boolean, double, float, integer,
long, and reference types in x10.util.concurrent. All method
invocations of these constructs synchronize-with subsequent invoca-
tions on the same object.

3.5.2 Clock
For x10.lang.Clock the synchronizing methods are advance, ad-
vanceAll, drop, resume, resumeAll. All its method invocations
synchronize-with subsequent invocations on the same clock ob-
ject. In the case of advanceAll and resumeAll this affects all clocks
the activity is registered at.

3.5.3 Condition
All method invocations of x10.util.concurrent.Condition
synchronize-with subsequent invocations on the same object.

3.5.4 Lock
The x10.util.concurrent.Lock class provides (surprise!) a lock.
All its method invocations synchronize-with subsequent invocations
on the same object if the operation is successful. Other synchro-
nization primitives Monitor, SimpleIntLatch, SimpleLatch, IntLatch,
Latch inherit from Lock, so they need no special treatment.

For clarification, the behavior of the trylock method is equivalent
in Java, C++, and X10. The method acts like lock() if a lock is not
taken already and returns a boolean whether it has taken the lock.
C++ explicitly gives trylock the freedom for “spurious failure” [2],
which means it might fail to lock even if nobody else held it at the
time. Java also provides this implicitly. The JavaDoc for Lock says

Unsuccessful locking and unlocking operations, and
reentrant locking/unlocking operations, do not require any
memory synchronization effects.

If trylock should be synchronizing even if it fails, it requires a
slower tryLock implementation with an additional fence instruction.
There is a motivating example in figure 4, which C++ uses to
motivate spurious failure.



x = 42 while(l.tryLock())
l.lock() l.unlock()

assert(x == 42)

Figure 4. Undesirable use of trylock from [2]. The second thread
waits for someone else to take the lock2. The assert may fail, because
there is no happens-before relation with the assignment according
to JMM or CMM.

If the tryLock() succeeds in taking the lock, it would synchronize-
with any previous locking operation. Via Lock semantics we know
there cannot be a previous locking operation as we enter the loop.
Thus, if we enter the loop, there is no synchronize-with relation
between the threads.

If (or when) the trylock fails it has no synchronization effects.
Thus, there is no synchronize-with relation to the first thread.
We assume that tryLock() failing is an "unsuccessful locking
operation".

Therefore, in either case there is no happens-before relation
between assignment and assert. Hence, we have a data race and the
value of x might or might not be 42. A compiler is free to move the
assignment into the critical section, because nobody outside of the
critical section can observe the assignment.

Even while there is nothing explicit about Javas tryLock being
"spurious", this example demonstrates spurious behavior in Java.
The JavaDoc of tryLock() says:

Acquires the lock if it is available and returns immedi-
ately with the value true.

This is not wrong, but misleading in our example since the observed
behavior looks like a spurious failure. There is no happens-before
relation between assignment and assert, even if tryLock() correctly
observed the lock as taken.

4. Discussion
4.1 Differences between X10 and Java
Compared to Java, X10 lacks three “features”, which simplify the
memory model (and complexity of the language in general).

1. There is no Thread or Activity object in X103, so one cannot
interrupt or join an activity. There is only the finish block, which
waits for the (global) termination of all activities within.

2. X10 has no (user-defined) finalizers for objects. This also
simplifies the model. See the JMM [8, §16] for the details.
In general, finalizers are avoided, because execution is non-
deterministic.

3. X10 does not provide reflection in a modifying way. The issues
of modifying final fields in Java at any time do not exist.
Corresponding to Javas final fields are val fields in X10.

4.2 Differences between X10 and C++
The CMM distinguishes between acquire and release synchroniza-
tion, because this is relevant to support “relaxed” operations. How-
ever, such mechanisms are not provided by the X10 standard library
nor supported by the compiler in any way. For high performance
applications it might become worthwhile to provide this at some
point, e.g., to implement non-blocking data structures. Then we
must adapt the memory model.

2 Advice for programmer: Convert x into an AtomicInteger, remove the
lock, and spin on x directly.
3 They exist hidden in the runtime, but not accessible to the programmer.

C++ has bitfields, where the compiler can compact fields to a
certain amount of bits. This affects the memory model, since writes
to bitfields are usually also writes to neighboring bitfields and might
introduce data races. X10 has no such feature, which also simplifies
the memory model.

4.3 Volatile Fields
X10 has no keyword volatile, but an annotation @Volatile. Useful
documentation is missing. The C++ backend inserts the volatile
keyword and the Java backend ignores it in version 2.3 and 2.4.
The intended semantics seems to be that of C++, but not from Java.
Namely, the C standard [4, §7.1.5.1/8]:

volatile is a hint to the implementation to avoid
aggressive optimization involving the object because the
value of the object might be changed by means undetectable
by an implementation.

The C++ semantics makes no guarantee about optimization by
the hardware. Thus, @Volatile has no influence on the memory
model. The Java backend of the X10 compiler cannot implement
this semantics since Java provides no equivalent structure.

In version 2.5 the Java backend also inserts the volatile keyword,
which has different semantics than in C++ and would have impli-
cations for the memory model. Java-volatile does make guarantees,
like all reads and writes to such variables being atomic. The JMM
specifically declares volatile accesses as synchronizing. Java-volatile
fields seem to be unnecessary in X10, since the programmer could
use constructs like AtomicReference instead. These also provide
additional features, like a weakCompareAndSet method, but require
slightly more code. The compiler should be able generate equivalent
code. To implement Java-volatile behavior in the C++ backend, the
X10 compiler would have to insert std::atomic implicitly, which
might degrade performance unnecessarily.

Since neither Java nor C++ semantics for @Volatile are desir-
able, it should be removed from X10.

4.4 Fences
The x10.util.concurrent.Fence utility class provides four kind
of barriers: load-load-barrier, load-store-barrier, store-load-barrier,
and store-store-barrier. X10’s C++ backend only implements them
for the PowerPC architecture. For the Java backend the implementa-
tion is broken. For these reasons we exclude them from the memory
model.

Figure 5 shows the current Java implementation. The underlying
idea comes naturally by looking at a table from the JMM Cook-
book [6]. For example: If a volatile load is followed by a volatile
store, the compiler must insert a LoadStore barrier. In the implemen-
tation of loadStoreBarrier, you can see a volatile load from v1
followed by a volatile store to v2.

The issue is that the JMM defines a synchronizes-with relation
for concurrent volatile accesses to the same variable. If the JVM
can guarantee that a volatile variable is never accessed concurrently,
then a compiler can remove the barrier. This seems feasible for
figure 5. Additionally, this implementation probably adds a lot
of overhead due to the actual memory accesses. The only correct
solution would be that Java itself provides such barriers, but that is
not the case. Currently, the pragmatic solution is to ignore Fences
and use atomics instead.

4.5 StoreStore Barrier After Constructor
Our proposed X10 memory model, and also JMM and CMM, specify
no relation between references and the referenced location. This
includes for example the this-pointer of an object and its fields. If
you assign to a field and share the object reference with another
activity, reading the field might not yield the assigned value. This



static volatile int v1;
static volatile int v2;
static int d1;
static int d2;
public static void loadStoreBarrier() {
v2 = v1;

}
public static void storeLoadBarrier() {
v2 = d1;
d2 = v1;

}
public static void loadLoadBarrier() {
d1 = v1;
d2 = v2;

}
public static void storeStoreBarrier() {
v1 = d1;
v2 = d2;

}

Figure 5. Broken implementation of fences for Java.

is counterintuitive, if the assignment is within the constructor to an
immutable val field. Even if the object sharing is synchronized, the
field accesses are not.

In Java, the final field semantics cover this even with a data race.
In C++, this is undefined behavior. The implementation advice from
the JMM authors [8, journal version] is a store-store-barrier at the
end of a constructor. This is NOP on x86, which probably explains
why nobody is hurt in practice. On ARMv8 the barrier is necessary,
for example.

4.6 Global Address Space and the Memory Model
X10 models an asynchronous partitioned global address space
(APGAS), but the memory model does not address this explicitly. It
is not necessary, because an activity can only access its own part of
the address space [9, sec. 2.4]:

With remote reference, an activity can access objects at
a remote place (remote objects) when the activity has moved
to the remote place.

Moving an activity requires at and is already covered by pro-
gram order. The implicit deep copy of context before and after at
does not concern the memory model, apart from the normal read
operations, which might or might not be properly synchronized.

It is possible to introduce arbitrary additional features using
native code within the runtime, but also in user code. This extensi-
bility is desirable and nobody wants to restrict that. In this case the
documentation must include information about the synchronization.
One example would be Rail.asyncCopy, which in version 2.5.4
specifies with respect to synchronization:

The activity created to do the copying will be registered
with the dynamically enclosing finish.

This implies the only way to synchronize is finish at the
sending place. Thus, synchronization with the receiving place
requires an additional at.

4.7 Threads and Activities
The JMM talks about threads, while we have activities in X10. For
the memory model this does not matter much, since both just model
parallel execution. Figure 6 shows an example of activity creation.

finish {
async {
atomic { r = x; }

}
atomic { x = 42; }

}

activity creation

x = 42

start of activity

r = x

end of activity

global termination

Figure 6. An example execution of an activity life cycle as written
in the code on the left. Each box is an action. The thick arrows are
synchronize-with edges and the dotted arrows show program order.
The figure demonstrates the difference between “activity creation”
and “start of activity” actions.

The JMM explicitly mentions the problem of thread inlining [8,
fig. 12], which puts code of one thread into another one and removes
parallelism. This must be forbidden in Java, because it introduces an
additional happens-before relation and a compiler might optimize
the program in an undesirable way. X10 uses lightweight activities,
so the programmer is encouraged to create more of them than
a Java programmer would create threads. Consequently, activity-
inlining would be even more desirable than thread-inlining. The
Java example relies on a data race and is thus undefined in X10. So,
activity-inlining should be possible in X10.

5. Conclusions
We presented a possible memory model for X10 together with a
rationale for its design. While we started with the JMM, due to X10’s
roots in Java, the outcome is closer to the CMM. One essential
assumption of this proposal is the use case of high performance
computing. If X10 is changing towards Java cloud computing and
orchestration4, then Java interop might get priority over performance.
In this case, a semantics for data races might become necessary and
we must adapt the memory model towards Java.

During the specification process, we uncovered minor issues in
the X10 standard library. The @Volatile annotation has unclear
semantics and might be unnecessary. The Fence utility class is
broken and you should not use it. We have reported these issues as
3547, 3548, and 3549 in the X10 bugtracker5.

A possible critique of the style of the JMM and this work is the
distance to language semantics. Before inclusion in the language
specification it would be worthwhile to express the memory model
closer to the feature descriptions and language semantics.

Acknowledgments
This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Center
“Invasive Computing” (SFB/TR 89). Thanks to Joachim Breitner,
Manuel Mohr, Martin Hecker, Martin Mohr, Sebastian Buchwald,
and the anonymous reviewers for valuable feedback and discussion.

4 rumors via personal communication
5 https://xtenlang.atlassian.net/projects/XTENLANG

https://xtenlang.atlassian.net/projects/XTENLANG


References
[1] H.-J. Boehm. Threads cannot be implemented as a library.

SIGPLAN Not., 40(6):261–268, June 2005. ISSN 0362-1340.
doi:10.1145/1064978.1065042.

[2] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. SIGPLAN Not., 43(6):68–78, June 2008. ISSN 0362-
1340. doi:10.1145/1379022.1375591.

[3] M. Braun, S. Buchwald, M. Mohr, and A. Zwinkau. An X10 compiler
for invasive architectures. Technical Report 9, Karlsruhe Institute of
Technology, 2012.

[4] ISO/IEC 14882:2014(E). Programming Language C++. Standard,
International Organization for Standardization, Geneva, CH, Nov. 2014.

[5] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comput., 28(9):690–691,
Sept. 1979. ISSN 0018-9340. doi:10.1109/TC.1979.1675439.

[6] D. Lea. The JSR-133 cookbook for compiler writers. URL http:
//g.oswego.edu/dl/jmm/cookbook.html.

[7] A. Lochbihler. Making the Java memory model safe. ACM Transactions
on Programming Languages and Systems, 35(4):12:1–12:65, 2014.
doi:10.1145/2518191.

[8] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model.
In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’05, pages 378–
391, New York, NY, USA, 2005. ACM. ISBN 1-58113-830-X.
doi:10.1145/1040305.1040336.

[9] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove. X10
language specification. Technical report, IBM, February 2014.

[10] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A
theory of memory models. In Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
PPoPP ’07, pages 161–172, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-602-8. doi:10.1145/1229428.1229469.

http://g.oswego.edu/dl/jmm/cookbook.html
http://g.oswego.edu/dl/jmm/cookbook.html

	Introduction
	Overview
	What is Sequential Consistency?
	What is a Data Race?

	Requirements Analysis
	Data Races are Undefined Behavior
	Termination can be Assumed

	X10 Memory Model
	Actions and Executions
	Synchronizes-with and happens-before
	Well-formed executions
	Termination
	Constructs in the Standard Library
	Atomics
	Clock
	Condition
	Lock


	Discussion
	Differences between X10 and Java
	Differences between X10 and C++
	Volatile Fields
	Fences
	StoreStore Barrier After Constructor
	Global Address Space and the Memory Model
	Threads and Activities

	Conclusions

