
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Implementation and
Evaluation of Link Time
Optimization with libFirm

Bachelorarbeit von

Mark Weinreuter

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr.-Ing. Jörg Henkel
Betreuender Mitarbeiter: Dipl.-Inform. Manuel Mohr

Bearbeitungszeit: 3. August 2016 – 14. November 2016

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

Traditionell werden Programme dateiweise kompiliert und zum Schluss zu einer
ausführbaren Datei gelinkt. Optimierungen werden während des Kompilierens
angewandt, allerdings nur dateiintern. Mit Hilfe von LTO erhält der Compiler
eine ganzheitliche Sicht über alle involvierten Dateien. Dies erlaubt dateiüber-
greifende Optimierungen, wie das Inlinen von Funktionen oder das Entfernen von
unbenutztem Code über Dateigrenzen hinweg. In dieser Arbeit wird libFirm
und dessen C-Frontend cparser um LTO erweitert. Durch diese Erweiterung
wird eine Laufzeitverbesserung von durchschnittlich 2.3% im Vergleich zur Vari-
ante ohne LTO anhand der Benchmarks der SPEC CPU2000 gemessen. Für den
vortex-Benchmark wird sogar eine Verbesserung um bis zu 25% gemessen.

Traditionally, source files are compiled separately. As a last step these object files
are linked into an executable. Optimizations are applied during compilation but
only on a single file at a time. With LTO the compiler has a holistic view of all
involved files. This allows for optimizations across files, such as inlining or removal
of unused code across file boundaries. In this thesis libFirm and its C frontend
cparser are extended with LTO functionality. By using LTO an averaged runtime
improvement of 2.3% in comparison with the non LTO variant on basis of the
SPEC CPU2000 is observed. For the vortex benchmark a speedup of up to 25%
is achieved.

Contents

1 Introduction 7
1.1 Motivation . 7

2 Fundamentals and related work 11
2.1 Traditional compilation process . 11
2.2 LTO support in other compilers . 11
2.3 libFirm . 13
2.4 IR-files . 15

2.4.1 IR-file markup . 15
2.4.2 Entities in IR-files . 16
2.4.3 Types in IR-files . 17
2.4.4 Functions as IRGs . 19

3 Design and implementation 21
3.1 Focus . 21
3.2 Required adaptions . 23

3.2.1 Multiple input files . 23
3.2.2 Compilation pipeline . 23
3.2.3 Private entities . 24
3.2.4 Entity types . 24
3.2.5 Entities . 25
3.2.6 Common problems . 27
3.2.7 Removal of unused entities 28

4 Evaluation 29
4.1 Benchmarking tools . 29

4.1.1 SPEC CPU2000 . 29
4.1.2 Benchmarking tool: temci 30
4.1.3 GNU time . 30
4.1.4 Inlining . 30
4.1.5 Benchmarking setup . 31

5

Contents

4.2 Compile times measurements . 32
4.2.1 Load-store optimization . 32

4.3 Memory usage . 35
4.4 Remaining functions . 37
4.5 Node count . 37
4.6 Run time measurements . 40
4.7 Observations and conclusions . 43

4.7.1 The vortex benchmark . 43

5 Conclusions and future work 47
5.1 Linker plugin . 47
5.2 Definition vs. declaration . 47

6

1 Introduction

Historically, compilers were vastly constrained in their optimizing capabilities by
the available memory. E.g. in early versions of GCC there were only per statement
optimizations since GCC processed one statement at a time and had no possibility
of accessing anything but the current statement. With the advancement of better
and cheaper hardware compilers gradually moved on to optimizing on a per func-
tion basis and finally were able to perform optimizations on a whole translation
unit. Modern compilers have vast resources at their disposal and a wide range of
optimizations to perform. They are able to achieve significant improvements on a
per file basis.
However, programs written in common programming languages such as C or C++
usually consist of multiple translation units. The disadvantage of separately com-
piling parts of the program is that the compiler is unable to perform optimizations
that require information about entities contained in other compilation units. If a
compiler were to have access to all units at once it could potentially perform more
optimizations, remove unused functions, and generally improve performance. This
is achieved via link time optimization (LTO). As the name suggests, optimizations
are run at link time. Usage information provided by the linker is used to perform
cross module optimizations.

1.1 Motivation

Consider the example source code in listing 1, taken from [1]. It exemplifies nicely
what benefits can be gained from using LTO.

There are four functions foo1 to foo4 defined in two different source files a.c
and main.c. Function foo3 is declared static and is therefore only visible to its
containing file. The function foo2 is externally visible but never used. Compiling
this example with and without LTO produces vastly different results:

7

1.1. MOTIVATION

a.h

extern int foo1(void);
extern void foo2(void);
extern void foo4(void);

main.c

include <stdio.h>
include "a.h"

void foo4(void) {
printf("Hi\n");

}

int main() {
return foo1();

}

a.c

include "a.h"

static int i = 0;

void foo2(void) {
i = -1;

}

static int foo3() {
foo4();
return 10;

}

int foo1(void) {
int data = 0;

if (i < 0)
data = foo3();

data = data + 42;
return data;

}

Listing 1: A simple example of three source files where compiling with LTO
achieves more optimized results than compiling without it.

1. Without LTO: Compiling the input files separately will allow the compiler
at best to inline and remove foo3. Although foo2 is never used it cannot
be removed, since the optimizer has no knowledge if this function is used
in other files. This means that the value of i could change and thus foo1
cannot be simplified.

2. With LTO: Compiling these files with LTO allows for a range of optimiza-
tions. All compilation units are known and since there is no call to foo2 it is
removed. This in turn guarantees that the value of the variable i is never
changed. Which makes it impossible for foo3 to be called, since the condition
i < 0 in foo1 is never true.
Therefore foo3 can be removed. This triggers the removal of foo4 because the
only function call to foo4 is in foo3. This greatly simplifies foo1. Functions
foo2, foo3, foo4 can be removed and the simplified version of foo1 is inlined
into main and removed. These optimizations are only possible because the
optimizer has detailed usage information from all involved compilation units.

8

1.1. MOTIVATION

.text
-- Begin main

.p2align 4,,15

.globl main

.type main, @function
main:

.p2align 4,,10
movl $42, %eax
ret
.size main, .-main

-- End main

Listing 2: Resulting assembly code when compiling the example code in listing 1
with LTO.

The resulting assembly code can be seen in listing 2. All functions have been
completely removed and main simply returns 42.

Compiling with LTO opens up new possibilities for optimizations as the example
in listing 1 shows. The optimizer is no longer restricted by its limited knowledge of
the compilation units involved. Instead it has detailed usage information which
enables it to remove unused entities or inline functions across modules. The benefit
of LTO is that there is no need to develop new compiler optimizations. The existing
optimizations can be used as before. They merely operate on a larger code base.

9

2 Fundamentals and related work

In this chapter basic concepts of a usual compilation workflow are revisited. This
allows for a better comparison of the differences in compiling with and without
LTO. Furthermore, in order to extend a compiler with LTO support the underlying
compiler fundamentals need to be considered.

2.1 Traditional compilation process

Suppose we are given a project that consists of multiple source files. In figure 2.1
the traditional compilation process is shown. Each file is compiled separately into
assembly code and then assembled into an object code file. Once all files are
compiled they are linked into an executable. The advantage of this approach is
that each file is a self contained unit and compilation of multiple files can be done
in parallel.

2.2 LTO support in other compilers

In order not to interrupt the traditional, well established compilation process,
one of the main objectives when adding LTO support was the requirement to be
compatible with existing toolchains. E.g. compiling source files to object files and
giving these to the linker to create an executable should still be possible in exactly
the same way as before. The only alteration to activate LTO is the -flto flag,
which tells the compiler and linker to produce and expect LTO-compatible output.

The process of compiling with LTO is illustrated in figure 2.2. The compiler
generates special object files which contain its intermediate representation of the

11

2.2. LTO SUPPORT IN OTHER COMPILERS

Figure 2.1: Traditional compilation flow. Each source file is compiled into an
object file. These are then linked into an executable.

program. In order to deal with these object files the linker is usually extended
via a plugin. It interfaces with the compiler to provide it with information about
the files to be linked. The linker is aware of all involved files, can resolve the used
symbols, which in turn allows for the whole code base to be optimized. Finally,
the result of the optimization steps are linked into an executable.

Two options exist how to generate these special object files. The first option
is to output regular object code alongside the compiler’s native representation.
This is known as fat LTO because such files contain both sets of information,
which usually doubles the compilation time and file size. The advantage of this
format is that it works with LTO compatible tools and those unaware of LTO
yet. Alternatively, slim object files can be used, which only contain the compiler’s
intermediate representation. These rely on the linker and other tools to be able to
handle object files which contain intermediate language.

As an example, LLVM [2] has its intermediate language: LLVM bitcode. LTO
support is tightly integrated into LLVM’s linker. It can deal with regular object
files, LLVM bitcode or a mix thereof. The LLVM tools are accessed via libLTO
to provide the linker access to the optimizer without having to deal with LLVM
internals.

12

2.3. LIBFIRM

Figure 2.2: LTO implementation using a linker plugin. The compiler generates
object files, which contain the compiler’s intermediate representation
of the source code. The linker detects this and interfaces with the
compiler to optimize and link these files as a whole.

2.3 libFirm

Extending a compiler to support LTO requires knowledge of its underlying in-
frastructure. In this thesis libFirm [3], which is a C library implementation of
firm [4] providing a low level graph based intermediate representation of computer
programs, is extended. It is developed at the Institute for Program Structures and
Data Organisation (IPD) at Karlsruhe Institute of Technology (KIT). LibFirm
itself provides only a library with which a compiler can be built. In order to use it
a frontend is required. Currently, there is a frontend for Java, X10 [5], and C code.
For the purposes of this thesis the C frontend cparser is relevant.

The main feature of firm is that it is completely graph based. This means that
firm doesn’t use instruction lists to hold the compiled source code as other com-
pilers do. Instead, the code is represented in the form of data flow and control
flow graphs. This graph representation is in SSA form [6] upon which optimization
transforms can be applied to allow the generation of optimized machine code. An

13

2.3. LIBFIRM

example of a graph representation for a simple function can be seen in figure 2.3.
The graph consists of nodes which represent the content of the add function. These
nodes are connected and form a hierarchy. However, there is no total order, e.g.
the operands of the Add node are not ordered. A more detailed explanation of the
various nodes and their dependencies are beyond the scope of this thesis, but can
be found in [7].

int add(int x, int y)
{

return x + y;
}

Figure 2.3: The add function on the left is represented as a firm graph on the
right.

The cparser frontend is deeply tied to libFirm and controls the compilation
flow responsible for calling upon libFirm internals. It follows the traditional
compilation pipeline of reading C files, parsing the source code and construction
of the abstract syntax tree (AST). The AST is transformed into an intermediate
representation. This representation is constructed by libFirm which holds the
information of the provided source code in form of an intermediate representation

14

2.4. IR-FILES

program (IRP). An IRP is the central structure which essentially consists of three
parts:

• A list of IRGs: Each function in the original source code is transformed
into an intermediate representation graph (IRG). An IRG is a directed graph
which represents the underlying code as nodes and connecting edges.

• A typegraph: Each function or variable has a type. Such a type denotes
the size, alignment and additional attributes of every function or variable
with this type. There are primitive types which represent numbers but also
more complex compound types. For example struct types are compounded
of other types including other compound types. The types in total make up
the typegraph.

• The symbol table: Every function or variable is called an entity. These
entities are recorded in a symbol table. Entities have a type and furthermore
specify information about their visibility within the source code and other
attributes such as volatility and linkage.

2.4 IR-files

A central part of this LTO implementation is the usage of source files in an
intermediate representation format (IR-files). When a C source file is parsed by
the cparser frontend and passed to the libFirm backend it is converted into
an intermediate representation program (IRP). This IRP can be exported as an
IR-file. This file is an exact, textual representation of the IRP. Hence, it can be
imported by cparser to populate the IRP from a file instead of generating it from
a C source file. Since these IR-files are essential, their basic structure and relevant
parts are outlined in listing 3.

2.4.1 IR-file markup

Every IR-file consists of multiple sections. Most relevant for this implementation is
the typegraph section. It contains information about the entities and types within
the represented IRP. The format of the typegraph section is described in the form

15

2.4. IR-FILES

include <stdio.h>

static int foo = 21;

void bar(){
printf("Value:

%d\n", foo *
2);

↪→

↪→

}

int main(){
bar();
return 0;

}

typegraph {
...
entity 107 "foo" "foo" local ... initializer

IR_INITIALIZER_CONST 112↪→

method 109 "bar" "bar" external [constant] 108
22 ...↪→

method 111 "main" "main" external [constant]
110 22 ...↪→

}
irg 111 140 {

Anchor 141 [142 144 143 146 147 149 148]
...

}
constirg 31 {

Const 112 "Is" 15
...

}

Listing 3: A C code example on the left and an excerpt of the corresponding
IR-file.

of a grammar as can be seen in grammar 2.3. This grammar uses the entity and
type definitions from grammar 2.1 and grammar 2.2.

2.4.2 Entities in IR-files

In listing 3 a simple C code example alongside the basic structure of an IR-file
is displayed. There are three entities contained in the source code: the variable
foo and the functions bar and main. Within the typegraph section of the IR-file
there is a definition for each entity as outlined in listing 4. Every line describes an

entity 107 "foo" "foo" local [] 50 22 volatility_non_volatile initializer
IR_INITIALIZER_CONST 112↪→

method 109 "bar" "bar" external [constant] 108 22 volatility_non_volatile 0
method 111 "main" "main" external [constant] 110 22 volatility_non_volatile

0↪→

Listing 4: An extract of the entity definitions in the IR-file.

entity and is constructed according to the rules in grammar 2.1. First the entity

16

2.4. IR-FILES

〈entity-def 〉 ::= 〈entity-type〉 〈numid〉 〈identname〉 〈identlname〉 〈visibility〉
‘[’ 〈linkage-opts〉 ‘]’ 〈numtype〉 〈numowner〉 〈volatility〉
〈attributes〉

〈entity-type〉 ::= ‘entity’ | ‘method’ | ‘alias’ | ‘label’ | ‘compound_member’
| ‘parameter’ | ‘unknown’

〈visibility〉 ::= ‘external’ | ‘external_private’ | ‘external_protected’
| ‘local’ | ‘private’ |

〈volatility〉 ::= ‘volatility_non_volatile’ | ‘volatility_is_volatile’

〈linkage-opts〉 ::= 〈linkage-opt〉 〈linkage-opts〉 | ε

〈linkage-opt〉 ::= ‘constant’ | ‘weak’ | ‘garbage_collect’ | ‘merge’
| ‘hidden_user’

〈attributes〉 ::= 〈attribute〉 〈attributes〉 | ε

Grammar 2.1: Simplified entity grammar. The identifiers and numbers have been
given a name to better illustrate their semantic meaning.

kind is specified, followed by a unique numerical identifier, the name, linker name,
visibility, linkage options, volatility, type id and owner id. Optionally, as in the
case of the variable foo, an initializer is specified. Since foo is declared static its
visibility results to local. Whereas the other two methods have external visibility
and are reported as such in the IR-file.

2.4.3 Types in IR-files

Furthermore, the typegraph-section also contains the information about the types
of these entities. In accordance with grammar 2.2, a type has a unique identifier,
specifies which kind of entity it represents and holds information about its size and

17

2.4. IR-FILES

〈type-def 〉 ::= ‘type’ 〈numid〉 〈opcode〉 〈numsize〉 〈numalign〉 〈layout〉
〈numflags〉 〈attributes〉

〈opcode〉 ::= ‘struct’ | ‘union’ | ‘class’ | ‘segment’ | ‘method’ | ‘array’
| ‘pointer’ | ‘primitive’ | ‘code’ | ‘unknown’

〈layout〉 ::= ‘layout_fixed’ | ‘layout_undefined’

〈attributes〉 ::= 〈attribute〉 〈attributes〉 | ε

Grammar 2.2: Simplified type grammar. Type attributes are dependent on the
types opcode and the available attributes have not been reported.

〈typegraph-def 〉 ::= ‘typegraph{’ 〈tg-content〉 ‘}’

〈tg-content〉 ::= 〈type-def 〉 〈tg-content〉 | 〈entity-def 〉 〈tg-content〉 | 〈empty〉

Grammar 2.3: The resulting typegraph grammar, which uses the previously defined
entity-def in grammar 2.1 and type-def in grammar 2.2.

type 50 primitive 4 4 layout_fixed 4 "Is"
type 108 method 4 1 layout_fixed 4 0 0 0 0 0
type 110 method 4 1 layout_fixed 4 0 0 0 1 0 50

Listing 5: Type definitions for a signed integer and two method types.

alignment. Additionally, depending on the entity kind, further information such as
the amount of parameters, return values and their types are reported.

For example, the method main in listing 4 has the type 110, which corresponds to
the third type definition in listing 5. This entry describes a method type. The last
four numbers 0 1 0 50 specify that a function with this type has zero parameters,
one return value, and doesn’t have variadic arguments. The type of the return
value is denoted as 50. This matches the type definition in the first line which
describes a primitive type for a signed integer. The definition for the main method
within the IR-file precisely represents the function declared in the C source code.

18

2.4. IR-FILES

irg 111 140 {
Anchor 141 [142 144 143 146 147 149 148 145]
Block 142 [155]
Block 144 []
End 143 []
Start 146
Proj 147 146 "P" 1
Proj 149 146 "M" 0
Proj 148 146 "T" 2
NoMem 145
Address 151 109
Call 152 144 149 151 108 op_pin_state_pinned nothrow []
Proj 153 152 "M" 0
Const 154 "Is" 0
Return 155 144 153 [154]
}

Listing 6: Textual representation of the IRG of the main function

2.4.4 Functions as IRGs

However, only the function declaration is specified in the typegraph-section. Actual
code contained within the main function is encapsulated into an IRG. Every function
that is defined in the input source file has been converted into an IRG and is
represented as such in the IR-file. In listing 6 the IRG of the main function is
shown. The IRG references the method entity it belongs to, followed by the nodes
that make up this IRG. In this example the id 111 refers to the main function
which matches the entity definition in listing 4.

19

3 Design and implementation

As outlined in section 2.2 the optimal solution to enable LTO support would be a
linker plugin. LibFirm already has an intermediate format, which can be used for
LTO. The linker would thus need to detect IR-files and interface with libFirm to
compile and optimize the intermediate code. However, creating a linker plugin is a
time consuming task and beyond the scope of this thesis. Therefore a simpler but
more invasive solution is presented here.

The cparser frontend can generate and read IR-files. This is the base of this
LTO implementation. Multiple IR-files are read by cparser. These are merged
within libFirm without being passed to the linker. This effectively means that
linking is performed on IR-files by the LTO extension instead of object files as is
done by the linker. This has the disadvantage that the traditional build process
has to be altered. Source files are no longer compiled to object files and linked.
Instead, as figure 3.1 illustrates, each source file needs to be compiled to an IR-file.
These IR-files are passed to cparser, which in turn constructs a single object file.
Finally, this object file is linked into an executable.
The LTO implementation in this thesis provides the core LTO functionality upon
which a linker plugin can be built.

3.1 Focus

As previously described, this LTO implementation relies on IR-files as its input
format and extends cparser’s ability of dealing with these IR-files. Previously,
only the following options were available for processing IR-files:

• Compiling a source file to an IR-file: A single C source file can easily
be compiled into an IR-file with the following command:
cparser a.c --export-ir -o a.ir

21

3.1. FOCUS

Figure 3.1: Compilation flow of the LTO implementation in this thesis. Each
source file is compiled into an IR-file. These IR-files are merged,
compiled into a single object file and linked into an executable.

• Compiling an IR-file: An IR-file can be treated as any other source file, it
can for example be compiled into object code:
cparser a.ir -c -o a.o

These options operate on a single input file. However, LTO requires information
about all input files at once to be able to perform cross module optimizations.
Consequently, these options have been added:

• Inputting multiple IR-files: Multiple IR-files can be given to cparser
which consecutively reads each file and extends the IRP. Since there is only
a single IRP all the previously available cparser compile options are still
accessible. For instance multiple IR-files can be compiled into an executable
named test:
cparser a.ir b.ir -o test

22

3.2. REQUIRED ADAPTIONS

• Merging IR-files: With the ability to read multiple IR-files there is of
course the possibility to export the merged IRP to an IR-file once more. This
allows the generation of a single IR output file:
cparser a.ir b.ir --export-ir -o merged.ir

• Export optimized IR-files: Platform independent optimizations can also
be performed on IR-files. Using this option one can merge and optimize
IR-files, exporting an IR-file again:
cparser a.ir b.ir -03 --export-ir optimized.ir

The focus of this LTO implementation is therefore to extend the usage of IR-files in
so far as to make it an independent input format with the added ability to perform
cross module optimizations.

3.2 Required adaptions

3.2.1 Multiple input files

In order to handle multiple compilation units the cparser frontend has to be
modified. Every C source file passed to cparser is converted into an IRP. If
more than one file were to be loaded, an IRP would be constructed anew for every
file. This is currently not supported and there are safeguards to prevent inputting
multiple source files. LibFirm is designed to process a single compilation unit
and has only one IRP at a time. It would therefore be tedious and unforeseeably
complex to alter libFirm to construct multiple IRPs. However, IR-files are already
in an intermediate format and can be directly integrated into the existing IRP.
Consequently, the chosen way of loading more than one input file is to first compile
each source file into an IR-file separately. Once all files are translated into IR-files
they are passed to the cparser frontend, integrated into the same IRP and then
compiled into a single executable.

3.2.2 Compilation pipeline

When a C source file is passed to cparser for compilation a set of steps is executed
to generate the final executable. First the input file is read and preprocessed, the

23

3.2. REQUIRED ADAPTIONS

content is parsed and an abstract syntax tree (AST) is generated. The AST is
translated into the intermediate representation and the IRP is constructed. From
here on the IRP is optimized and assembly code is generated. Finally, the assembler
produces object code from the assembly code. The steps of this process depend on
the specified input files and the desired output format. If an IR-file is given, it will
be read and an IRP is directly generated without prior parsing or AST generation.
Similarly, the code generation steps are not executed if the --export-ir flag is set
to indicate that an IR-file is the desired output format.
To be able to input multiple IR-files, cparser is modified to put the optimization
and code generation steps on hold until all files are read and the IRP contains the
information from all files. After that the compilation is resumed and the remaining
steps depending on the specified flags are executed.

3.2.3 Private entities

One of the first things to consider when combining compilation units are private
entities. In C a file scope function or variable marked with static is visible only
within its containing file as defined in the C standard [8, section §6.2.2]. Therefore
it is possible that an entity by the same name marked as static exists in two
compilation units. If these two units were integrated into the same IRP a conflict
would arise since entity names must be unique. To prevent this from happening all
static entities get renamed by default. Renaming takes place during the processing
of the input IR-file. In this phase entities are referenced by a unique file id and
thus renaming can be easily and safely accomplished.
To ensure unique names a global counter value is used. The name of each entity is
prefixed by a unique value, e.g r.<counter value>.<name>. Since the counter is
incremented with each private entity and a dot is not permitted in variable names
but allowed for assembly names the name is guaranteed to be unique.

3.2.4 Entity types

Each entity has a type. This type denotes the size, alignment and additional
attributes of every entity with this type. Types are not unique, meaning there
can be multiple types with the same properties. E.g. two source files include the
same header file which has a struct definition. When these two files are parsed and
exported into an IR-file both have a type entry for this struct. Usually each file
is read separately, compiled and the duplicate types therefore required. However,

24

3.2. REQUIRED ADAPTIONS

with LTO both files are combined and a single definition will be sufficient.
Dealing with this issue, two possibilities exist. Either allow duplicate type definitions
or compare types and merge these with the same properties. A type for a primitive,
such as an integer, is as the name suggests easy to construct and compare. A
compound struct type is more complex and potentially nested. It can contain other
nested types. Comparing two struct types therefore requires comparison of all
types within this type. Since libFirm internally does not rely on unique types
but rather operates on their identifying attributes, it is not necessary for correct
operation to merge all types. Hence, the chosen approach is to allow duplicate
types.

3.2.5 Entities

Dealing with entities proves to be more difficult. Entities have unique names and
there can be multiple declarations across various files and exactly one definition.
Take the code in listing 7 for example. Both files have either a declaration or

int bar();

int main(){
return bar(42);

}

int bar(int i);

int bar(int i){
return i;

}

Listing 7: Two source files: decl.c on the left and def.c on the right which both
specify a function bar

a definition of the function bar. However, in the first file there is a declaration
which specifies no parameters meaning the function can have an unspecified number
of arguments. This is allowed behavior as defined in the C standard [8, section
§6.5.2.2] and merely results in a warning that the function bar is not a prototype,
but is accepted by the compiler. The definition specifies the correct amount of
parameters. This results in different function type definitions if these two files are
exported as IR-files. An excerpt of the generated IR-files can be seen in listing 8

The left excerpt corresponds to the function declaration. Here bar is defined to
have no arguments and a return value. In the right excerpt the function type
specifies a return value and one parameter. Compiling these two files separately
and then linking them poses no problems. The conflict arises at link time and the
linker doesn’t check function types. When compiling with LTO things are different.

25

3.2. REQUIRED ADAPTIONS

type 45 method 4 1 layout_fixed 4 0
0 0 1 0 46↪→

method 47 "bar" "bar" external
[constant] 45 22
volatility_non_volatile 0

↪→

↪→

type 45 method 4 1 layout_fixed 4 0
0 1 1 0 46 46↪→

method 47 "bar" "bar" external
[constant] 45 22
volatility_non_volatile 0

↪→

↪→

Listing 8: Two IR-files which both have a declaration or definition of the function
bar

Here part of the linking process is done in the compiler. If the incorrect definition
were used, libFirm would raise an exception since the method invocation with
one argument would not correspond to the amount of parameter specified in the
function type.

The example above illustrates why it is important to distinguish between the
declaration and definition of functions. The desired behavior during the merge is to
keep the correct definition and ignore any incorrect declarations. However, when an
IR-file is read it is not apparent if the given entity is a definition or a declaration.
This information is not part of the IR-file. In contrast, the LTO implementation of
LLVM for example has builtin functionality to check if an entity is a declaration or
a definition. Extending the IR format to provide this information would simplify
the merging process, but is beyond the scope of this implementation. To circumvent
this issue some simple heuristics have to be used.

• Dealing with normal entities, such as global variables there will be exactly
one entity with an initializer. This entity will be treated as the definition
during a merge and its type and initializer is kept in the resulting entity.

• Functions pose a bigger problem. Additionally to non prototype function
declarations, a compilation unit might contain an implicitly declared func-
tion as can be seen in listing 9. During compilation, the compiler issues
the warning: „implicit declaration of function ’foo’“, but the code
can be successfully compiled and linked. If the compiler detects an implicit
declaration a simple placeholder is included in the IR-file. This substitute
specifies no parameters and an integer return type. It most likely doesn’t
match the actual type of the function definition.
Merging is achieved by comparing parameters and return types, giving prece-
dence to types that do not represent a placeholder type.

26

3.2. REQUIRED ADAPTIONS

main.c

int main(){
return foo();

}

foo.c

int foo(){
return 42;

}

Listing 9: The function foo is used but not declared in the file main.c. The
compiler issues a warning during compilation but both files can be
successfully compiled and linked.

utils.h

extern void *safe_malloc(
long bytes);

okmalloc.c

char *safe_malloc(unsigned size);
{ /* ... */ }

Listing 10: Definition of safe_malloc and an incorrect declaration thereof.

Finally, entities could specify different visibilities, volatilities and linkage options.
Linkage options are simply accumulated, whereas in the case of volatility and
visibility the more restrictive one is chosen where possible. E.g. if an entity is
once specified as volatile and as non volatile in another definition it is treated as
volatile.

3.2.6 Common problems

Since this LTO implementation links all involved compilation units within libFirm
some unexpected errors occur that usually arise in the linker. These problems are
caused due to two things:

• Contradictory method definitions and declarations: For example the
method safe_malloc is defined to expect an unsigned value. However, a
declaration in a separate header file specifies long values as can be seen in
listing 10.
Compiling and linking these files in the traditional manner doesn’t raise any
errors. This is due to the fact that each source file is separately compiled
into an object file and when the linker is invoked there are no more type
checks. However, the LTO variant merges the files beforehand and libFirm
has a verifier which checks that correct parameter types are specified and
thus aborts with the following message:

27

3.2. REQUIRED ADAPTIONS

Verify warning: Proj Iu[67331:21](safe_malloc[67318]):
expected mode Is but found Iu.

• Mismatching declarations: The function bc_expand_increment is de-
clared returning a non void value while being defined as returning void. This
causes libFirm to raise a similar error, terminating the compilation process:
Verify warning: Return X[1..1](bc_expand_increment[1..3]):
number of inputs does not match method type (0 inputs,
1 declared)

Problems like these usually do not surface since the code runs just fine and these
mistakes are at worst simple coding errors. Only due to libFirm’s verifier and the
merging behavior of LTO do these issues show up. To resolve these problems the
source code of the involved function declarations are adjusted.

3.2.7 Removal of unused entities

During a regular linking phase the linker resolves the symbols of all involved entities.
The linker therefore has complete knowledge which entities are used and whether
they are referenced outside of their containing file. A linker plugin can communicate
this information to the compiler which can remove unused entities or change their
visibility where possible. Since this LTO implementation is directly integrated into
libFirm this detailed information is not readily available.

To simulate this behavior a simplifying assumption is made: All compilation units
have been merged into a single IRP, which means there is no compilation unit left
to externally reference any of these entities. Thus visibilities can be adjusted to the
effect that all entities now have file local visibility. An exception has to be made
for the main function, since it will be called externally.
This is a rather crude assumption. If the compile target were a library, visibility
adjustment would not be possible since the library functions will be referenced
externally. A solution to this problem would be to allow specifying which methods
to adjust and those to be kept. However, due to the additional implementation
overhead a simpler solution is chosen. The main function is never adjusted and
other functions are only altered if the compile target is not a library.

28

4 Evaluation

In this chapter we analyse the benefits and drawbacks of this LTO implementation.
Compiling with LTO means the compiler has to process more data and hold it
in memory. An obvious initial assumption is that the compile time and memory
usage will increase. Yet, the additional information can, e.g. be used to inline
more methods and to enable further improvements. Inlining more functions can
potentially increase the code size and thus in turn the amount of nodes in its IR
graph and the overall memory requirements. However, the additional possibilities
for optimization should have a positive effect on the runtime of the compiled
binary.

4.1 Benchmarking tools

4.1.1 SPEC CPU2000

The programs used in this evaluation are taken from the Standard Performance
Evaluation Corporation (SPEC) CPU 2000 [9]. This suite contains a range of
standardized programs in order to produce comparable benchmarking results.
Benchmarks in different programming languages are available, but only those
written in the C programming language are considered here.
The compile issues described in section 3.2.6 arise with the gcc and twolf bench-
marks. The two affected files are modified to correct the function declarations
which resolves the problem.

29

4.1. BENCHMARKING TOOLS

4.1.2 Benchmarking tool: temci

Another useful benchmarking tool is temci [10]. It is developed with the intention
to produce reliable results and provides a statistical analysis of these findings.
Futhermore, temci has builtin support to work with the SPEC suite and thus the
combination of these two tools is used to produce reproducible and comparable
results. Additionally, temci provides randomization support [11], to scramble the
assembly code every time the program is compiled to randomize the order in which
functions are placed in the resulting executable. This minimizes possible caching
effects to ensure statistically relevant results. Unfortunately, this option requires
recompilation of each benchmark for each run and is disabled to avoid the additional
time overhead.

4.1.3 GNU time

Interesting compile metrics are the time required to build each benchmark and
amount of main memory (RAM) used during compilation. The GNU time [12]
program can report on both of these properties. By simply running the compile
command through GNU time, it records among other things the elapsed wall clock
time and the maximum resident set size (RSS). This RSS denotes the amount of
main memory (RAM) that is currently held by a process excluding swapped out
memory or unloaded parts. As long as no swapping occurs the RSS is a valid
indicator for the amount of memory used.

4.1.4 Inlining

The optimizer has a wide range of optimizations but the inline optimization is
expected to gain the most. Without LTO only functions within the same file can
be inlined since it is impossible to know if a function is called from another file.
With LTO enabled the compiler has the required information and can inline across
files. When a function call is inlined, the call is removed and the function content
is inserted instead. If all function calls are removed the function can be discarded
as well. This effectively results in fewer functions but possibly larger code size.
Since libFirm is graph based the size change can be measured as an increase in
node count. A function call can only be inlined if the amount of nodes of the

30

4.1. BENCHMARKING TOOLS

containing function plus the node count of the function to be inlined is less than
the current inlining limit. To adjust this limit the -finline-max-size flag with
the desired limit is passed to cparser. Since this has a significant influence on the
optimization performance the benchmarks are conducted for various inline limits:
375, 750, 1500, 3000, 6000. The default value is 750.

4.1.5 Benchmarking setup

The benchmarks are conducted on a desktop computer with an Intel Core i7-2600
3.4GHz CPU and 16GB RAM, running a Ubuntu 16.04 with a 4.4.0-45-generic
kernel. All of the SPEC benchmarks are compiled for each of the specified inlining
limits, once for the LTO variant and once for the non LTO version. All these
executables are then run using temci to handle the SPEC benchmarking process.
Every benchmark is conducted 20 times. We perform the following measurements:

• Compile time: The compile time for every benchmark is reported to distin-
guish the time overhead when compiling with LTO.

• Peak memory usage: Insightful observations about the compile process
might be gained by comparing the memory requirements to examine how
much more memory LTO uses and if this could cause issues.

• Amount of methods: To observe the behavior of the inliner and the
removal of functions, the amount of methods and in the resulting executable
is registered. The results of the different inline limits can then be compared
to ideally find an optimal limit.

• Nodes count: To determine if inlining has an effect on the resulting code
size, the final amount of nodes is recorded. Furthermore, due to the potentially
high node count when compiling with LTO previously unobserved problems
might occur.

• Run time measurements: The changes induced by LTO are expected to
have a positive effect on the run time. To determine a possible improvement
the execution time of each benchmark is measured and compared.

The results of all the above listed measurements are displayed in this chapter. The
absolute values are shown next to the relative differences. This allows to gain

31

4.2. COMPILE TIMES MEASUREMENTS

an understanding of the actual values and simultaneously see if and how big the
changes are. With the exception of the runtime measurements all relative values
show a slowdown factor of the LTO implementation. Since it is expected to take
up more memory and compile longer the quotient of the LTO variant divided by
the non LTO version is shown: valueLT O

valuenon−LT O
.

For example if the reported relative value for the compilation time of a benchmark
was 2×, this signifies that the LTO version took twice as long to compile.

4.2 Compile times measurements

The compile time measurements with and without LTO can be found in table 4.2.
The table shows the absolute values for the compile duration. Alongside these the
slowdown factor for the LTO version is displayed.
The quantity of source files and their size directly influences the compilation time.
Therefore benchmarks, such as art, mcf, or equake which consist only of a few
files, can be compiled within milliseconds. Compilation times for these benchmarks
are difficult to compare and benchmarks that took less than one second are marked
accordingly. For reference, the cc1 benchmark is by far the biggest and thus takes
the longest time to compile. Comparing the results, it is apparent that compiling
with LTO requires decisively more time across all benchmarks. Additionally higher
inline limits result in an increased compilation time. Only with the highest inline
setting some of the SPEC projects show less of a slowdown than lower limits.
A significantly higher compilation time for the LTO benchmarks were to be expected.
Since the LTO variant operates on the combined contents of all compilation units,
analysis and optimization of the source code take up more time. By increasing
the inline limit the compiler has a greater reach and can inline functions which
previously exceeded the limit.

4.2.1 Load-store optimization

Passing the –time flag to cparser produces an overview of the time each opti-
mization takes up. The optimization that stood out the most is the load-store
optimization. Some optimizations depend on the amount of functions within the
IRP. The load-store optimization has, at the time of writing, a quadratic worst case
complexity in the number of IRGs. The reason for this is that every load or store
operation that is removed invalidates the information about the use of entities. By

32

4.2. COMPILE TIMES MEASUREMENTS

SPEC Limit 375 Limit 750 Limit 1500 Limit 3000 Limit 6000
ammp 1.0× 0.9× 1.0× 1.0× 1.1×
art – – – – 1.0×
bzip2 1.0× 2.0× 1.0× 1.0× 1.0×
crafty 1.1× 1.1× 1.2× 1.5× 1.8×
equake – – – – –
gzip 1.0× 0.7× 1.0× 1.0× 1.2×
mcf 1.0× 1.0× 1.0× 1.0× 1.5×
mesa 1.0× 1.0× 1.1× 1.2× 1.6×
parser 1.3× 1.1× 1.2× 1.1× 0.8×
perlbmk 1.4× 1.5× 1.8× 1.7× 1.6×
twolf 1.1× 1.0× 1.0× 0.8× 0.8×
vortex 1.0× 1.3× 1.7× 2.5× 4.3×
vpr 1.2× 1.0× 1.3× 1.4× 1.3×

Table 4.1: Relative compilation slowdown of the LTO variant in comparison to
the non LTO version. In contrast to the compile time measurements
in table 4.2 the load-store optimization is disabled.

33

SPEC Limit 375 Limit 750 Limit 1500 Limit 3000 Limit 6000
Base LTO Rel Base LTO Rel Base LTO Rel Base LTO Rel Base LTO Rel

ammp 6 5 0.8× 6 6 1.0× 6 7 1.2× 7 9 1.3× 8 11 1.4×
art <1 <1 – <1 <1 – <1 <1 – <1 <1 – 1 1 1.0×
bzip2 1 1 1.0× 1 1 1.0× 2 1 0.5× 3 2 0.7× 5 4 0.8×
cc1 60 289 4.8× 74 413 5.6× 107 633 5.9× 185 1041 5.6× 552 2107 3.8×
crafty 9 8 0.9× 9 9 1.0× 9 11 1.2× 9 16 1.8× 11 23 2.1×
equake <1 <1 – <1 <1 – <1 <1 – <1 <1 – <1 <1 –
gap 22 57 2.6× 27 84 3.1× 36 130 3.6× 59 181 3.1× 137 378 2.8×
gzip 3 1 0.3× 2 2 1.0× 3 3 1.0× 3 4 1.3× 4 6 1.5×
mcf <1 <1 – <1 <1 – 1 1 1.0× 1 1 1.0× 2 2 1.0×
mesa 21 42 2.0× 25 51 2.0× 28 63 2.2× 33 82 2.5× 37 133 3.6×
parser 8 8 1.0× 8 11 1.4× 12 16 1.3× 21 28 1.3× 90 78 0.9×
perlbmk 24 74 3.1× 30 105 3.5× 45 165 3.7× 89 280 3.1× 194 474 2.4×
twolf 13 11 0.8× 15 13 0.9× 19 22 1.2× 31 63 2.0× 64 176 2.8×
vortex 21 46 2.2× 22 71 3.2× 25 114 4.6× 30 218 7.3× 45 416 9.2×
vpr 6 7 1.2× 6 8 1.3× 7 11 1.6× 9 13 1.4× 11 20 1.8×

Table 4.2: The absolute compile times in seconds for the SPEC benchmarks in the LTO and non LTO version. The third
sub column shows the relative slowdown factor of the LTO version. A value of „–“ represents compilation times
that took only few milliseconds and are not representative.

4.3. MEMORY USAGE

removing a store operation a variable might become readonly and thus needs to be
treated differently. This vastly increases the compile time of programs with a large
amount of functions. The compile time measurements might thus be influenced by
the incorrect behavior of this optimization. In order to investigate the effect this
optimization has, it is disabled by specifying the -fno-opt-load-store flag. The
benchmarks are compiled once more for the different inline limits.
In table 4.1 the relative compilation slowdown with LTO for different inline limits
is shown. The slowdown values are reported with the load-store optimization
disabled. The results for gcc and gap are not reported here, since disabling the
load-store optimization causes an error for these two benchmarks which, at the
time of writing, had not been resolved.
These values clearly show that the load-store optimization has an influence on the
compilation time. Compiling with LTO still requires more time, but the additional
compilation time might be reduced if such bottlenecks as the load-store optimization
are removed.

4.3 Memory usage

The traditional approach of compiling source files separately has the obvious
advantage that it only needs to have the source code of a single file in memory.
Holding all compilation units at once and performing optimizations thereon puts a
noticeable strain on the available memory. In table 4.3 the maximum allocated
amount of RAM is reported for both the LTO and non LTO version. The third
sub column shows the relative increase in memory usage. A first conclusion that
can be drawn from these measurements is that the inline limit has an immense
impact on the required memory. Doubling the limit, leads to an additional demand
in RAM. For every replaced function call the callees content is inserted, effectively
duplicating the original code for every call. With higher limits there are fewer
functions to be inlined, thus a reduction in the relative memory usage is visible for
some of the SPEC projects.
Since cc1 is the largest benchmark in regard to code size, it requires the greatest
amount of resources. The contrast between compiling with and without LTO
manifests starkly when comparing the RAM usage for its 6000 inline limit. The
absolute difference of required memory is roughly 7.5 GB. A further observation is
that the memory requirements for the smaller benchmarks such as art, equake,
bzip2 with only one or few files is actually less than the non LTO variant. This is
due to the fact that by enabling LTO unused functions can be removed even if they
are not file private. Unexpected behavior is reported for the vortex benchmark.
It has by far the greatest relative increase in RAM usage. For the 3000 inline limit
the LTO variant requires up to 34 times more memory than the non LTO version.

35

SPEC Limit 375 Limit 750 Limit 1500 Limit 3000 Limit 6000
Base LTO Rel Base LTO Rel Base LTO Rel Base LTO Rel Base LTO Rel

ammp 22 76 3.5× 22 80 3.6× 22 89 4.0× 25 103 4.1× 48 130 2.7×
art 13 11 0.8× 15 11 0.7× 17 15 0.9× 27 25 0.9× 40 38 0.9×
bzip2 27 22 0.8× 32 26 0.8× 41 33 0.8× 61 51 0.8× 83 85 1.0×
cc1 74 1117 15.1× 97 1542 15.9× 133 2348 17.7× 226 3760 16.6× 582 8064 13.9×
crafty 46 115 2.5× 46 126 2.7× 46 151 3.3× 46 200 4.3× 76 271 3.6×
equake 24 22 0.9× 24 22 0.9× 24 22 0.9× 31 28 0.9× 37 34 0.9×
gap 30 403 13.4× 52 602 11.6× 98 947 9.7× 196 1170 6.0× 366 2086 5.7×
gzip 11 22 2.0× 14 29 2.1× 20 43 2.1× 37 65 1.8× 41 107 2.6×
mcf 10 11 1.1× 12 15 1.2× 20 23 1.1× 34 37 1.1× 62 66 1.1×
mesa 42 329 7.8× 43 387 9.0× 51 455 8.9× 58 548 9.4× 94 869 9.2×
parser 22 98 4.5× 27 127 4.7× 43 176 4.1× 73 290 4.0× 208 550 2.6×
perlbmk 92 511 5.6× 150 744 5.0× 277 1145 4.1× 558 1877 3.4× 974 3097 3.2×
twolf 37 106 2.9× 37 114 3.1× 37 129 3.5× 37 156 4.2× 51 219 4.3×
vortex 34 471 13.9× 36 712 19.8× 38 1075 28.3× 54 1857 34.4× 126 3036 24.1×
vpr 19 91 4.8× 20 104 5.2× 26 119 4.6× 46 135 2.9× 72 198 2.8×

Table 4.3: Peak memory usage in megabytes (MB) when compiling with and without LTO. The third sub column value shows
the factor by which the memory usage has changed for the LTO version relative to the non LTO variant.

4.4. REMAINING FUNCTIONS

Such a huge demand indicates that the LTO variant is able to perform a great deal
more optimizations than its non LTO counterpart.

4.4 Remaining functions

To determine how many methods have been inlined the amount of functions
remaining after optimization are calculated. Without LTO every translation is
compiled separately and linked later on. The recorded amount of functions is
therefore the sum total of all remaining functions as reported by libFirm for each
compilation unit. Table 4.4 shows the quantity of remaining functions. The relative
difference is once more displayed in the third sub column.
Unsurprisingly, the LTO variant outperforms the non LTO version significantly.
With increased inline limits the inliner becomes more aggressive and can inline
even more functions. Since LTO has information about all methods within the
source code it can inline functions across file boundaries. The non LTO version
is, however, limited to functions within the same file and changing the inline limit
hardly changes the amount of functions inlined. By pushing the limit up to 6000 the
small benchmarks art and equake even get reduced to a single function. Reducing
so many functions is not necessarily an improvement. By inlining function contents
the code layout in memory is affected, which can have both, negative and positive
effects on caching behavior during execution. Therefore these measurements are
foremost an indicator how well the inliner is able to perform. These results clearly
show that the LTO extension is able to provide the inliner with more information
and indicate that the LTO extension is operating correctly. Inlining inserts code
instead of function calls, this code has to be optimized at every occurrence.

4.5 Node count

The actual code size in libFirm is measured in the amount of nodes that make up
the program. Since LTO is able to inline more methods the node count is expected
to differ from the non LTO version. Table 4.5 illustrates the absolute node counts
and the relative change in the amount of nodes. The node counts are measured
after the optimizations are run and before the code generation.
Most of the benchmarks have a higher node count with increasing limit. This
corresponds with the assumptions that more functions can be inlined and thus the
program contains more nodes. The smaller benchmarks show results similar to the
memory usage measurements. The LTO variant contains fewer nodes than its non
LTO counterpart. This supports the assumption, that some unused functions have
been removed, which the LTO version is able to do, due to its holistic view of all

37

SPEC Limit 375 Limit 750 Limit 1500 Limit 3000 Limit 6000
Base LTO Rel Base LTO Rel Base LTO Rel Base LTO Rel Base LTO Rel

ammp 179 152 85% 179 133 74% 179 118 66% 179 90 50% 179 74 41%
art 26 21 81% 26 13 50% 26 12 46% 26 10 38% 26 1 4%
bzip2 74 37 50% 74 28 38% 74 22 30% 74 17 23% 74 11 15%
cc1 2051 1831 89% 1972 1728 88% 1900 1660 87% 1835 1559 85% 1805 1489 82%
crafty 109 98 90% 109 95 87% 109 85 78% 109 75 69% 109 70 64%
equake 27 18 67% 27 16 59% 27 12 44% 27 3 11% 27 1 4%
gap 853 826 97% 852 795 93% 852 778 91% 852 760 89% 852 752 88%
gzip 77 38 49% 69 30 43% 66 25 38% 62 20 32% 62 11 18%
mcf 26 15 58% 26 9 35% 26 7 27% 26 3 12% 26 3 12%
mesa 1069 693 65% 1043 623 60% 1017 543 53% 1002 512 51% 990 480 48%
parser 323 207 64% 323 176 54% 323 150 46% 323 132 41% 323 119 37%
perlbmk 1039 908 87% 1016 885 87% 995 842 85% 982 819 83% 982 832 85%
twolf 190 144 76% 190 135 71% 190 98 52% 190 67 35% 190 52 27%
vortex 923 528 57% 923 507 55% 923 463 50% 923 443 48% 923 418 45%
vpr 212 168 79% 177 117 66% 156 86 55% 141 61 43% 130 52 40%

Table 4.4: The amount of functions remaining after optimization for both the LTO and non LTO version. The third sub
column shows the percentage of the remaining methods in the LTO version in comparison to the non LTO
version.

SPEC Limit 375 Limit 750 Limit 1500 Limit 3000 Limit 6000
Base LTO Rel Base LTO Rel Base LTO Rel Base LTO Rel Base LTO Rel

ammp 107 107 1.0× 114 114 1.0× 128 124 1.0× 138 143 1.0× 155 165 1.1×
art 11 10 0.9× 12 10 0.8× 15 11 0.7× 18 12 0.7× 25 14 0.6×
bzip2 35 27 0.8× 44 34 0.8× 58 42 0.7× 90 51 0.6× 120 53 0.4×
cc1 1622 1740 1.1× 2066 2419 1.2× 2894 3705 1.3× 4458 5955 1.3× 7390 10666 1.4×
crafty 149 151 1.0× 158 169 1.1× 165 201 1.2× 171 264 1.5× 186 348 1.9×
equake 16 12 0.8× 17 12 0.8× 17 12 0.7× 19 12 0.6× 24 11 0.5×
gap 522 621 1.2× 679 955 1.4× 900 1513 1.7× 1304 1894 1.5× 2021 3326 1.6×
gzip 33 25 0.8× 38 34 0.9× 46 51 1.1× 53 70 1.3× 59 85 1.4×
mcf 8 7 0.9× 9 7 0.8× 10 8 0.8× 13 11 0.8× 19 17 0.9×
mesa 443 466 1.1× 490 559 1.1× 542 665 1.2× 614 811 1.3× 674 1272 1.9×
parser 153 146 1.0× 202 196 1.0× 299 277 0.9× 456 467 1.0× 763 867 1.1×
perlbmk 665 779 1.2× 891 1190 1.3× 1311 1889 1.4× 2196 3145 1.4× 3450 4897 1.4×
twolf 167 156 0.9× 179 169 0.9× 197 192 1.0× 234 234 1.0× 295 324 1.1×
vortex 597 715 1.2× 722 1091 1.5× 815 1662 2.0× 922 2900 3.1× 1094 4750 4.3×
vpr 134 139 1.0× 145 165 1.1× 155 190 1.2× 176 212 1.2× 225 274 1.2×

Table 4.5: The node count in thousands for every SPEC benchmark for the LTO as well as the non LTO version. The third
sub column once more shows the relative increase in nodes for the LTO variant.

4.6. RUN TIME MEASUREMENTS

compilation units. The relative increase in memory is at a maximum for vortex
as table 4.3 shows. This fits the node count measurements since the quantity of
nodes is also the highest for every inline limit.

4.6 Run time measurements

Usually a program is compiled only once. The resulting executable, however, can
be run as often as required. Therefore it is a small price to pay if the compilation
process is expensive, but the compiled executable runs faster. To investigate if
the LTO extension is able to improve the runtime, the execution time of each
benchmark is recorded. To determine the relative run time speedup, the runtime
of every non LTO program is divided by the execution time of the corresponding
LTO binary. Table 4.6 shows the averaged runtimes of all SPEC benchmarks and
resulting speedup factors. These results are generated by temci. Temci reports the
absolute and speedup values alongside the standard deviation. For statistically
significant results, temci requires the standard deviation to be less than one percent.
This was the case for all benchmarks except ammp. Here the standard deviation
exceeded this limit for all but the 1500 inline limit. The results for this benchmark
might not be reliable and should be run more often. However, the results don’t
seem to be out of the ordinary and aren’t run more often due to time constraints.
The speedups and slowdowns show mixed results. The LTO version does not
always produce better results. For crafty there is up to a 5.2% slowdown. The
greatest improvement is registered for vortex. A maximum speedup of 25.3% is
achieved for the 1500 limit. An improvement of this magnitude is unexpected.
Most benchmarks show a similar pattern when the inline limit is changed. The
first limit shows longer runtimes. Within the next or second next limit a minimum
runtime is reached. Increasing the limit further causes an increase in the resulting
runtimes. This trend is visualized in figure 4.1. In the upper half the geometric
means of the absolute runtime for all SPEC benchmarks in the LTO and non LTO
version are plotted. In the lower half the relative speedup factor measured by the
quotient of the geometric mean of the non LTO over the LTO variant is displayed.
According to this graph the greatest speedup can be found for an inline limit of
1500. Here the LTO version achieves a speed up of 2.6% percent.
One might now conclude that an inline limit of 1500 produces the best results
for the limits used. However, this it not necessarily the case. If the absolute
runtimes are considered it is apparent that the 1500 limit has the highest speedup
in comparison with the non LTO version, but the absolute runtimes for this limit
are actually higher. As can bee seen in the upper half of figure 4.1, the minimum
absolute runtime is at the 3000 limit. For this inline limit the speedup is only 2.3%
but the absolute runtime for the LTO as well as the non LTO version is the lowest.

40

4.6. RUN TIME MEASUREMENTS

41.8

42.0

42.2

42.4

42.6

42.8

43.0

43.2

43.4

R
un

ti
m

e
[s

]

0 1000 2000 3000 4000 5000 6000
Inline limit

1.014

1.016

1.018

1.020

1.022

1.024

1.026

1.028

Sp
ee

du
p

Figure 4.1: The upper plot shows the geometric means of the absolute runtimes
over all benchmarks for the LTO and non LTO variant. In the lower
the relative runtime speedup, the quotient of the non LTO over the
LTO variant, is shown.

41

SPEC Limit 375 Limit 750 Limit 1500 Limit 3000 Limit 6000
Base LTO Rel Base LTO Rel Base LTO Rel Base LTO Rel Base LTO Rel

ammp 93.6 96.7 0.97 95.1 96.4 0.99 93.1 95.0 0.98 93.8 95.9 0.98 94.5 96.2 0.98
art 28.4 28.9 0.98 28.3 29.3 0.97 29.3 29.5 0.99 29.4 29.4 1.00 28.0 28.2 0.99
bzip2 52.0 49.5 1.05 50.7 48.4 1.05 50.6 47.3 1.07 50.1 48.4 1.04 50.2 47.6 1.05
cc1 23.5 23.9 0.98 23.9 23.7 1.01 23.8 24.0 0.99 24.0 24.3 0.99 24.5 24.5 1.00
crafty 28.9 29.8 0.97 28.8 29.7 0.97 28.7 29.6 0.97 28.8 29.9 0.96 28.9 30.5 0.95
equake 30.9 30.6 1.01 30.9 30.6 1.01 29.4 28.9 1.02 29.0 28.7 1.01 29.0 28.8 1.01
gap 28.7 28.2 1.02 28.7 27.8 1.03 28.8 27.7 1.04 28.7 27.7 1.04 30.3 27.9 1.09
gzip 62.8 63.4 0.99 62.2 61.3 1.01 62.6 60.3 1.04 62.2 60.8 1.02 62.2 60.4 1.03
mcf 22.6 22.5 1.00 22.6 23.0 0.98 22.6 22.6 1.00 22.7 22.6 1.00 22.7 22.6 1.00
mesa 55.8 55.3 1.01 55.6 54.6 1.02 54.6 54.7 1.00 54.5 54.1 1.01 54.7 54.1 1.01
parser 61.6 58.9 1.05 60.7 58.3 1.04 60.4 58.1 1.04 60.1 58.1 1.03 60.1 58.4 1.03
perlbmk 56.9 56.8 1.00 56.8 57.3 0.99 59.1 58.4 1.01 56.8 58.6 0.97 57.8 59.0 0.98
twolf 67.6 65.3 1.04 67.7 65.4 1.04 67.3 63.2 1.06 67.4 62.4 1.08 67.6 62.5 1.08
vortex 43.4 36.3 1.20 43.5 35.3 1.23 43.6 34.8 1.25 43.7 35.2 1.24 43.7 36.6 1.19
vpr 50.3 50.7 0.99 47.8 49.4 0.97 48.1 50.4 0.95 47.7 47.6 1.00 46.9 46.9 1.00
mean 43.2 42.5 1.02 43.0 42.2 1.02 42.9 41.8 1.03 42.8 41.8 1.02 42.9 41.9 1.03

Table 4.6: Averaged execution times of all SPEC benchmarks for different inline limits in seconds. Furthermore the relative
run time speedup of the LTO version compared to the non LTO version is shown in the third sub column. Values
greater than one indicate that the LTO variant is faster. For easier comparison each speedup is highlighted in
green and a slowdown is colored in red. Measurements that show a speedup and also have the shortest execution
time are marked in bold green.

4.7. OBSERVATIONS AND CONCLUSIONS

For this reason some of the values in table 4.6 have been printed in bold. These
measurements show a speedup while simultaneously being the fastest in terms of
absolute runtime.

4.7 Observations and conclusions

Big projects, such as the SPEC benchmarks are usually split in multiple files.
Functions that logically belong together are placed in the same file. Because of
this, functions in the same module are more likely to be called by other methods
from the same file. This scenario is optimal for a non LTO compiler since it is
able to inline those functions; each file is a self contained unit. However, if there
are function calls across file boundaries, a non LTO compiler cannot inline these
functions.

This helps to explain why most benchmarks show little or no improvements. There
is not much room for improvement since existing optimizations already perform
well. However, small benchmarks such as ammp or crafty consistently achieve worse
results when compiled with LTO. Inlining functions can have positive or negative
effects depending on the caching behavior of the resulting executable. Inlining
more functions is no guarantee that the program runs faster. Quite the contrary
is true for the smaller SPEC benchmarks. If by chance the cache layout becomes
beneficial a slight improvement is registered or vice versa. A conclusion that could
be drawn from these results is that LTO is not beneficial for small projects.

4.7.1 The vortex benchmark

The vortex benchmark is by far the greatest anomaly with a 25% speedup. Simple
caching effects or other small improvements are not capable of producing such
a change. Therefore vortex is examined closer to determine what causes this
difference in runtime performance. Vortex is a database application and one of the
larger benchmarks. An initial assumption is that the code is split in an unfortunate
way, which prevents a non LTO compiler from doing critical optimizations.

Inspection with the perf [13] command line tool indicates that a performance
hotspot is the function ChkGetChunk in the mem00.c file. Since vortex performs a
lot of memory operations it includes its own memory management code. The cor-
responding source files are: mem00.c which provides low level memory operations,

43

4.7. OBSERVATIONS AND CONCLUSIONS

mem01.c and mem10.c which provide higher level features. The ChkGetChunk func-
tion is exclusively called from functions defined in mem10.c. An example function is
shown in figure 4.2. These functions are all similar, they call ChkGetChunk to load
a chunk of memory and cast it to the desired primitive value, e.g. MemGetShort to
retrieve a short value. These memory management functions are excessively called
throughout vortex.

boolean MemGetShort (numtype Chunk, indextype Index,
ft F,lt Z,zz *Status, shorttype *ShortValue)
{
char *Base = 0;
indextype Inset = 0;
addrtype Ptr = 0;
if (ChkGetChunk (Chunk, Index, sizeof(shorttype), McStat))

if (*Status != Set_EndOfSet) {
Base = (char *)Chunk_Addr(Chunk);
Inset = (indextype)(Index * sizeof(shorttype));
Ptr = (addrtype)(Base + Inset);
*ShortValue = *(((short *)(Chunk_Addr(Chunk))) + Index);
if (*(short *)Ptr != *ShortValue)

*Status = Err_BadStackMath;
}

TRACK(TrackBak,"MemGetShort\n");
return(STAT);
}

Figure 4.2: An example function from vortex which calls ChkGetChunk.

This strengthens the previous assumption that some functions are repeatedly called
across file boundaries which cannot be inlined. In order to test if this has an impact
on the runtime performance the following steps are executed:

• mem00.c and mem10.c files are compiled into IR-files and linked via the LTO
extended cparser into a single object file: mem.o

• vortex is recompiled but the mem00.o and mem10.o files are replaced by the
newly generated object file mem.o.

• The benchmark is run again with the modified executable.

44

4.7. OBSERVATIONS AND CONCLUSIONS

Limit Base Modified LTO Rel
375 43.4 38.7 36.3 1.07
750 43.5 39.4 35.3 1.11
1500 43.6 39.2 34.8 1.12
3000 43.7 39.6 35.2 1.12
6000 43.7 39.9 36.6 1.09

Table 4.7: Absolute runtime in seconds of vortex for the non LTO version, the
modified non LTO variant and the LTO version. The last column shows
the runtime speedup of LTO in comparison to the modified non LTO
version.

In table 4.7 the runtimes of the modified vortex benchmark in comparison to the
LTO version are displayed. The results show a definite improvement. The LTO
variant is still faster by up to 12%, but the difference is halved in comparison to the
previous value of 25%. We strongly suspect that the difference could possibly be
minimized further if more files were combined, but this requires detailed knowledge
of the vortex benchmark and was therefore skipped due to time constraints.

45

5 Conclusions and future work

The implemented LTO solution for libFirm is able to produce visible results. An
overall speedup of 2.3% is achieved when compiling the SPEC benchmarks with
LTO. For the vortex benchmark a speedup of up to 25% is reached. While this is
an exception it proves that there are real world programs which hugely benefit from
compiling with LTO. The drawback of LTO is that it takes up more memory and
time during compilation. This should pose no problem since modern computers
have vast resources and LTO only needs to be activated for the final build.
Nevertheless, due to the limited time there are still some issues which need to be
addressed to improve the LTO support for libFirm.

5.1 Linker plugin

The current LTO implementation relies on compiling source code to IR-files. These
IR-files are directly merged within libFirm and only a single object file is created
and linked into an executable. This interrupts the customary build process and is
therefore not an optimal solution.
More desirable is a linker plugin. Such a plugin extends the linker to recognize
IR-files and takes care of interfacing with libFirm to compile and optimize the
intermediate code. This setup doesn’t require changes to the toolchain and can be
easily integrated into the existing build process.

5.2 Definition vs. declaration

One difficulty during the implementation of the LTO functionality was to distinguish
between type definitions and declarations. From the IR-file alone it is not apparent
if a type denotes a declaration or a definition. It would be helpful if libFirm

47

5.2. DEFINITION VS. DECLARATION

provided a way to query this information. The current implementation relies on
simple heuristics to determine which might prove insufficient.

48

Bibliography

[1] LLVM Website, “LLVM link time optimization: Design and implementation.”
http://llvm.org/docs/LinkTimeOptimization.html.

[2] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation,” in Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed and Runtime Optimiza-
tion, CGO ’04, (Washington, DC, USA), pp. 75–, IEEE Computer Society,
2004.

[3] G. Lindenmaier, “libFIRM – a library for compiler optimization research
implementing FIRM,” Tech. Rep. 2002-5, Sept. 2002.

[4] M. Braun, S. Buchwald, and A. Zwinkau, “Firm—a graph-based intermediate
representation,” Tech. Rep. 35, Karlsruhe Institute of Technology, 2011.

[5] M. Braun, S. Buchwald, M. Mohr, and A. Zwinkau, “An X10 Compiler for
Invasive Architectures,” Tech. Rep. 9, Karlsruhe Institute of Technology, 2012.

[6] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value numbers and
redundant computations,” in Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’88, pp. 12–27,
ACM, 1988.

[7] “Firm - Website.” http://pp.ipd.kit.edu/firm/.

[8] ISO/IEC Committee, “ISO/IEC 9899:201x Programming languages
— C.” http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf,
Apr. 2011.

[9] Standard Performance Evaluation Corporation, “SPEC CPU2000.” https:
//www.spec.org/cpu2000/.

49

http://llvm.org/docs/LinkTimeOptimization.html
http://pp.ipd.kit.edu/firm/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://www.spec.org/cpu2000/
https://www.spec.org/cpu2000/

Bibliography

[10] J. Bechberger, “Besser benchmarken.” http://pp.ipd.kit.edu/
publication.php?id=bechberger16bachelorarbeit, Apr. 2016.

[11] J. Bechberger, “temci documentation.” http://temci.readthedocs.org/en/
latest/.

[12] Free Software Foundation (FSF), “time - GNU Project - Free Software Foun-
dation (FSF).” https://www.gnu.org/software/time/.

[13] Perf developers, “Perf Wiki.” https://perf.wiki.kernel.org/index.php/
Main_Page.

50

http://pp.ipd.kit.edu/publication.php?id=bechberger16bachelorarbeit
http://pp.ipd.kit.edu/publication.php?id=bechberger16bachelorarbeit
http://temci.readthedocs.org/en/latest/
http://temci.readthedocs.org/en/latest/
https://www.gnu.org/software/time/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

Erklärung

Hiermit erkläre ich, Mark Weinreuter, dass ich die vorliegende Bachelorarbeit selbst-
ständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis
beachtet habe.

Ort, Datum Unterschrift

51

	Introduction
	Motivation

	Fundamentals and related work
	Traditional compilation process
	LTO support in other compilers
	libFirm
	IR-files
	IR-file markup
	Entities in IR-files
	Types in IR-files
	Functions as IRGs

	Design and implementation
	Focus
	Required adaptions
	Multiple input files
	Compilation pipeline
	Private entities
	Entity types
	Entities
	Common problems
	Removal of unused entities

	Evaluation
	Benchmarking tools
	SPEC CPU2000
	Benchmarking tool: temci
	GNU time
	Inlining
	Benchmarking setup

	Compile times measurements
	Load-store optimization

	Memory usage
	Remaining functions
	Node count
	Run time measurements
	Observations and conclusions
	The vortex benchmark

	Conclusions and future work
	Linker plugin
	Definition vs. declaration

