
On PDG-Based Noninterference and its Modular Proof

Daniel Wasserrab Denis Lohner Gregor Snelting∗

Universiẗat Karlsruhe (TH)

{wasserra,lohner,snelting}@ipd.info.uni-karlsruhe.de

Abstract
We present the first machine-checked correctness proof for
information flow control (IFC) based on program depen-
dence graphs (PDGs). IFC based on slicing and PDGs is
flow-sensitive, context-sensitive, and object-sensitive; thus
offering more precision than traditional approaches. While
the method has been implemented and successfully applied
to realistic Java programs, only a manual proof of a funda-
mental correctness property was available so far.

The new proof is based on a new correctness proof for
intraprocedural PDGs and program slices. Both proofs are
formalized in Isabelle/HOL. They rely on abstract structures
and properties instead of concrete syntax and definitions.
Carrying the correctness proof over to any given language or
dependence definition reduces to just showing that it fulfills
the necessary preconditions, thus eliminating the need to
develop another full proof.

We instantiate the framework with both a simple while
language and Java bytecode, as well as with three different
control dependence definitions. Thus we obtain6 IFC cor-
rectness proofs for the price of1 1

2 .

Categories and Subject DescriptorsF.3.2 [Logics and
Meaning of Programs]: Semantics of Programming Langua-
ges—Program analysis; D.4.6 [Operating Systems]: Secu-
rity and Protection—Information flow controls, verification

General Terms Languages, Security, Verification

Keywords Program Slicing, Program Dependence Graph,
Noninterference, Correctness Proof, Modularity

1. Introduction
“Quis custodiet ipsos custodes? Who will guard the guards?”
When Juvenal posed this question about 100 A.D., he did

∗ This work was supported by DFG grant Sn11/10-1.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’09 June 15, 2009, Dublin, Ireland.
Copyright c© 2009 ACM. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in Proc. PLAS’09.

not yet know about language-based security and informa-
tion flow control (IFC). Today, correctness of IFC algorithms
is a topic of burning pressure. It must be demonstrated that
fulfillment of an algorithm’s specific criterion implies secu-
rity, where the latter is usually expressed as some form of
noninterference. But most IFC algorithms come with a man-
ual proof only, and some are published without any proof.
As manual proofs for such complex algorithms are notori-
ously error-prone, machine-checked correctness proofs have
gained popularity. The seminal Volpano/Smith security type
system [31], e.g., originally had a manual correctness proof;
recently, two different machine checked proofs for (varia-
tions of) the Volpano/Smith system were published, demon-
strating in detail that the original proof was correct [34, 6].

Volpano/Smith and its successors opened the door for
language-based IFC and security type systems. But most
type systems are not flow-sensitive, context-sensitive, let
alone object sensitive. This can lead to a loss of precision
and false alarms. Another problem of some IFC proposals is
scalability with respect to realistic languages and programs:
not all methods can handle e.g. full Java and 10kLoC, and
some require excessive program annotations.

We thus argued that IFC must better exploit modern pro-
gram analysis, and proposed to build language-based IFC
on top of program dependence graphs (PDGs) and slicing.
While not on everybody’s radar, PDGs and slicers have, af-
ter 25 years of research, become a sophisticated instrument
exploiting all the achievements of modern program analy-
sis, and can be applied to realistic languages and programs;
commercial implementations of slicers for C are available.

Our PDG-based approach to IFC has been described in
[32, 33, 14, 12, 15]. In particular, we developed a precise
PDG for full Java bytecode [16, 13]. The forthcoming jour-
nal article [15] explains in detail how PDG-based IFC works,
why it scales, why it is precise, why it is correct, and how
it handles declassification; in addition [13] describes imple-
mentation, GUI, and case studies.

This work is however based on a fundamental assump-
tion: it relies on correctness of PDGs and slicing, and builds
on a theorem connecting PDGs and noninterference which
was proved only manually in [33], and only for Goguen/Me-
seguer style noninterference. In fact, no machine-checked
proof of slicing correctness was available so far, let alone
proofs for PDG-based noninterference.

In the current paper, we provide the first machine-checked
correctness proof for PDG-based static intraprocedural pro-
gram slicing of single-threaded programs. We then provide a
machine-checked proof that our slicing-based IFC criterion
– first introduced in [33] and elaborated in [15] – implies
low-deterministic security. Both proofs are formalized in
Isabelle/HOL [25]. A remarkable feature of the proofs is
the separation of language-dependent parts from language-
independent parts, where the latter only deals with funda-
mental properties of CFGs, PDGs, and slices. This sepa-
ration allows to instantiate the basic proof with different
languages and their semantics, considerably simplifying the
correctness proof for yet another language. We first instanti-
ated the framework with a simple while language, and then
instantiated it with the Jinja [19] definition of Java bytecode.
Next, we parameterized the framework with respect to the
exact definition of control dependences, since various defi-
nitions have appeared in the literature.

Thus we had to provide one complex correctness proof
for the framework, and then provide several proofs that the
specific languages and definitions stick to the required prop-
erties and thus can be plugged in. For the while language and
the dependence definitions, this was straightforward, but for
Jinja bytecode, the required “auxiliary proofs” are about half
as long as the main proof. Hence we eventually obtained6
correctness proofs for, roughly, the effort for1 1

2 traditional
machine-checked proofs.

The main technical contributions of our work are:

• an augmentation of our existing framework for dynamic
slicing (see [40]) with the first formalization of static
intraprocedural slicing in a proof assistant;

• a correctness proof for static intraprocedural slicing
(where correctness is much stronger than for dynamic
slicing), which is independent of a specific language, and
independent of a concrete control dependence definition;

• instantiations of the framework with a simple While as
well as with a quite sophisticated object-oriented byte
code language;

• instantiations of the framework with three different defi-
nitions of control dependence;

• the first proof that slicing-based IFC guarantees low-
deterministic security.

Thus we provide a reliable basis for the verification of slicing
and its applications, e.g. for applications in software security.

Overview of the paper.We will first recapitulate non-
interference, slicing and control dependence in PDGs. We
describe in detail the slicing framework formalized in Isa-
belle (available online, see [39]), and explain the machine-
checked correctness proof for static intraprocedural slicing.
Based on this result, we formalize low-deterministic secu-
rity in Isabelle and prove that it is guaranteed by our PDG-
based IFC criterion. We proceed to describe the instantiation
of the framework with 2 language definitions and, indepen-
dently, 3 control dependence definitions, obtaining 6 proofs

altogether. Discussion of related and future work shows that
the extension of our result to interprocedural slicing and the
precise interprocedural algorithm from [15] (which includes
declassification) will not only require major additional proof
efforts, but perhaps also an extension of the traditional no-
tion of noninterference.

2. Slicing Correctness and Noninterference
2.1 Slicing

Given a certain point in a program, a slice collects all state-
ments that can influence this point. Slicing proved to be use-
ful for many applications, e.g. debugging [35], testing [7],
reducing communicating automata specifications [22], and
software security algorithms [15, 33]. Today, commercial
slicing tools such as Codesurfer [2] are routinely used for
some of these tasks.

Most slicing tools are based on the PDG or its interpro-
cedural extension, the system dependence graph [17]. PDG
nodes correspond to the program statements, and connect
them withdata dependencesandcontrol dependences. The
static intraprocedural backward sliceof a given program
point (i.e. a specific PDG node, called the slicing criterion)
is defined as the set of all nodes on which the point is transi-
tively data or control dependent.1 This set is a conservative
approximation of all statements that can influence the slicing
criterion. Note that for realistic languages, PDG generation
and precise slicing is absolutely nontrivial. Hundreds of pa-
pers on slicing have been published in the last two decades,
for an overview, see Krinke [21].

2.2 Noninterference

Language-based IFC analyses the program source to dis-
cover security leaks, and usually aims to establish noninter-
ference. Informally, noninterference demands that variation
in secret variables will not result in variations of public out-
put, thus guaranteeing confidentiality. The most fundamental
noninterference definition islow-deterministic security:

Let H,L be the secret (high) and public (low) confiden-
tiality levels. For a program statementc, [[c[] denotes the state
transformation induced by executingc. Two statess, s′ are
low-equivalent (writtens ≈L s′) if they coincide on vari-
ables with confidentiality levelL. Low-deterministic secu-
rity then demands that∀s, s′. s ≈L s′ =⇒ [[c]]s ∼=L [[c]]s′.
Note that this definition only talks about the initial and final
program states; low-deterministic security cannot express
security-relevant properties of intermediate states. More
elaborate definitions of noninterference exist, such as possi-
bilistic noninterference or probabilistic noninterference.

Our correctness theorem can informally be stated as fol-
low: If the backward slice of all low variables does not con-
tain high variables, then the low-deterministic security prop-
erty is satisfied and hence the program is secure. In fact, it

1 Also for dependence relations that do not constitute a PDG, e.g. because
they are not binary, the backward slice is computed this way.

is enough to require that backward slices offinal low vari-
ables do not containinitial high values, ignoring intermedi-
ate states and variables.

The converse of the theorem does not hold, because all
implementations of noninterference based on program anal-
ysis, including our own, are conservative approximations;
that is, they can generate false alarms. The more precise an
analysis is, the less false alarms it will generate. To illustrate
precision, consider the program

procedure swap (var x, y: integer) {
integer temp = x; x = y; y = temp; }

swap (L1, L2);
swap (H1, H2);

It swaps twoL values as well as twoH values using the
same auxiliary method. The program is perfectly secure in
the sense of noninterference, but a context-insensitive anal-
ysis will generate a false alarm, as it does not distinguish
the two calling contexts and thus believes that aH value is
assigned (i.e. leaked) to anL variable. Furthermore, some
systems require an annotation fortemp with either H or
L, which generates another false alarm. Exploiting modern
program analysis will avoid such problems, as modern anal-
ysis and slicing is flow-sensitive, context-sensitive, andob-
ject sensitive. Still, 100% precision is impossible due to de-
cidability problems.

2.3 Outline of correctness proof

Despite its popularity, few correctness results for slicing ex-
ist, e.g. Reps and Yang [28] or Amtoft [1]. Both proofs
are based on specific programming languages; hence, algo-
rithms using slicing can only be verified for those languages
– a needless restriction as slicing itself is independent of
the underlying language. Furthermore, existing proofs only
consider one specific definition of control dependence. As
more recent, different control dependence definitions as in
[27] infer different slices, replacing the standard definition
demands a new proof, which is nontrivial.

In order to abstract away from specific languages and
control dependences, we present a formalization of static
intraprocedural slicing in a highly modularized framework.
The full proof is available online [39]. Following Amtoft [1],
correctness is stated as a weak simulation property between
nodes and states in the original and sliced control flow graph.
The proof is based on an abstract control flow graph repre-
sentation with certain structural and well-formedness condi-
tions, but not restricted to a specific language. The proof is
also independent of a specific control dependence definition,
but requires it to have one particular property.

Adapting the proof to another language just requires to
show that the control flow graph of this language can be em-
bedded into the abstract one by fulfilling all necessary con-
ditions. Likewise, changing the control dependence defini-
tion reduces to showing that the one property required holds.
Hence future verifications of algorithms basing on this cor-
rectness proof immediately gain a high level of robustness.

3. Dependences in PDGs
3.1 Data Dependence

The data dependence definition is based onDef and Use
sets for every node. All variables defined (e.g. assigned) in
a statement are in the Def set of the respective node, those
which are used (e.g. in a calculation) in its Use set. A node
n′ is data dependent on a noden, if there is a variableV in
the Def set ofn which is also in the Use set ofn′ and there
is a CFGpath(sequence of edges) fromn to n′ such that the
variable is not defined in any other node on this path.

3.2 Control Dependence

Control dependence captures the effect that nodes can in-
fluence whether the control flow reaches other nodes. The
definition of Ferrante et al. [9] – one of the first formal defi-
nitions – is most widespread and is viewed as a standard.

Nevertheless, this is an area of active research, see Ran-
ganath et al. [27] fo a recent overview. Each control depen-
dence definition serves a different purpose, so the choice of
the control dependence affects the semantics of the slice. In
this paper we focus on three different kinds of control de-
pendences: (i)standard control dependenceas it has been
in use for years, (ii)weak control dependenceas defined by
Podgurski and Clarke [26], and (iii) weak order dependence
as defined by Amtoft [1]. The first two are binary relations,
so we get program dependence graphs with them, for the
third one, a ternary relation, this does not hold. We chose
these three definitions to illustrate the flexibility of our mod-
ularized proof as they differ in many details. In§5.2we show
in more detail how these as well as other possible control de-
pendence definitions can be “plugged” into our framework.

We now look more closely at each of these three depen-
dence relations, state their definitions informally and illus-
trate them using the CFG in Fig.1 whereE denotes the entry
andX the exit node. Note that the subgraph built of nodes2

to 5 does not describe the control flow of a structured pro-
gram; however, it still is a valid CFG in our framework.

Standard Control Dependence.Usually, a noden′ is re-
garded as control dependent on noden if selecting an outgo-
ing edge ofn in the CFG affects whethern′ is reached; e.g.
all nodes in the branches of an if-statement are dependent
on the node representing the if-predicate. To define standard
control dependence (SCD) we first need to statepostdomina-
tion using a unique reachable exit node. A noden′ postdom-
inates noden if every path fromn to the exit node contains
n′. In the table in Fig.1 we list the postdominators for every
noden, i.e. the set of all nodesn′ which postdominaten.

Ferrante et al. [9] stated that a noden′ is control depen-
dent on a noden (written n −→scd n′), if n′ postdominates
all nodes on a path in the CFG betweenn andn′ but notn.
However, we regard an equivalent definition (see the lemma
in §5.2) from Wolfe [41] as more suitable, where a noden′

is control dependent on a noden, if n has at least two suc-

postdominators strong postdominators
E {E} {E}
1 {1,9} {1}
2 {2,5,9} {2,5,9}
3 {3,5,9} {3,5,9}
4 {4,5,9} {4,5,9}
5 {5,9} {5,9}
6 {6,8,9} {6}
7 {6,7,8,9} {6,7}
8 {8,9} {8,9}
9 {9} {9}

Figure 1. Example CFG and postdominators

cessors, one postdominated byn′, while the other one is not.
Thus, the example in Fig.1 implies the following SCDs:

E −→scd1, E −→scd9, 1 −→scd2, 1 −→scd5, 1 −→scd6,
1 −→scd8, 2 −→scd3, 2 −→scd4, 3 −→scd4, 6 −→scd7

Weak Control Dependence.Nonterminating loops prevent
nodes after the loop from being executed, a fact that cannot
be covered with SCD. To capture this effect, control depen-
dence edges between those nodes and the loop predicate are
often desired; this is the concept of weak control dependence
(WCD). It uses the notion ofstrong postdomination, where
no loops2 on any path between a node and its postdominator
are allowed. Otherwise, there would be an infinite path al-
ways running through the loop but never reaching the post-
dominator. Therefore, we define thatn′ strongly postdomi-
natesn if n′ postdominatesn and there is no loop on any
path betweenn andn′.

WCD itself is then defined analogously to standard con-
trol dependence, just replacing postdomination with strong
postdomination. We writen −→wcd n′ if n′ is weak control
dependent onn. In Fig. 1 the following holds:E −→wcd 1,

1 −→wcd 2, 1 −→wcd 5, 1 −→wcd 6, 1 −→wcd 9, 2 −→wcd 3,
2 −→wcd 4, 3 −→wcd 4, 6 −→wcd 7, 6 −→wcd 8, 6 −→wcd 9

Note that8 and9 now depend on other nodes than before
and that due to the loop at node6, both nodes immediately
after this loop (i.e.8 and9) are now dependent on6. As an
example where this and the previous definition of control
dependence behave differently, regard the set of all nodes
from which 8 is transitively control dependent, i.e. the set

2 Statically, we must assume that any loop may be nonterminating.

closed under the respective control dependence. For SCD,
this set is{E, 1, 8}, for WCD however we get{E, 1, 6, 8}.

Weak Order Dependence.The advantage of weak order
dependence (WOD) is that there is no need for a unique
reachable end node, as is the case in e.g. reactive systems.
Unlike the former two, WOD is not a binary relation, but
a set of triples of nodes. Intuitively, two nodes are weak
order dependent on another node, if the latter node controls
the order in which the other two nodes are executed (which
includes that one of these nodes may never be executed).
However, the definition is a bit more complicated: we say
that two nodesn1 andn2 are weak order dependent on node
n (all three nodes distinct), writtenn −→wod n1,n2, if (i) n
can reachn1 in the CFG without visitingn2, (ii) n can reach
n2 without visiting n1 and (iii) there exists an immediate
successorm of n, such that either (a)m can reachn1 and
all paths fromm to n2 containn1 or (b) m can reachn2 and
all paths fromm to n1 containn2.

Since there are many WOD triples for the example CFG
in Fig. 1, we present them as a set of node pairs which are
weak order dependent on the node preceding this set, leaving
out all tuples where the two components are swapped or
where one component is the exit node:

1: {(2, 6), (2, 7), (2, 8), (2, 9), (3, 6), (3, 7), (3, 8), (3, 9),
(4, 6), (4, 7), (4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9),
(6, 9), (7, 9), (8, 9)}, 3: {(4, 5), (4, 9)},

2: {(3, 4), (3, 5), (3, 9), (4, 5), (4, 9)}, 6: {(7, 8), (7, 9)}

While the number of node triples that are weak order de-
pendent in this example is huge compared to the cardinality
of the former two dependence relations, sets closed under
WOD3 may be smaller. E.g. the smallest set which contains
8 and is closed under WOD consists only of the element8,
because its WOD predecessor (1 or 6) may only be in this set
if the other matching WOD successor of1 (2, 3, 4, 5, or 9) or
6 (7) was in it.

4. The Framework
To provide a framework which allows us to formalize and
prove properties of slicing regardless of the actual program-
ming language, we need a structure which includes an effec-
tual representation of the program and comprises all infor-
mation essential for slicing: the control flow graph. Thus, our
starting point for the formalization is the definition of an ab-
stract CFG (i.e. without considering features specific for cer-
tain languages). By doing so we ensure that our framework
is as generic as possible since all proofs in it hold for every
language whose CFG conforms to this abstract CFG. The
framework is entirely formalized in the proof assistant Isa-
belle/HOL [25], including all lemmas and theorems, i.e. ev-
ery proof is machine-checked. Definitions and lemmas taken
from Isabelle are writtensmall and slanted.

3 A set is closed under WOD if for any two nodes in this set that are weak
order dependent on a noden, n is also in the set.

4.1 Notation

Typesinclude the basic types of truth values, natural num-
bers and integers, which are calledbool, nat, andint respec-
tively. The space of total functions is denoted by⇒. Type
variables are written′a, ′b, etc. t::τ means that the HOL
(Higher Order Logic) termt has HOL typeτ .

Sets(type ′a set) follow the usual mathematical conven-
tion. Functioncard returns the cardinality of a finite set.Lists
(type ′a list) come with the empty list[], the infix constructor
·, the infix@ that concatenates two lists, and the conversion
functionset from lists to sets. Variable names ending in “s”
usually stand for lists. Ifi < |xs| thenxs[i] denotes thei -th
element ofxs. The functionmap, which applies a function to
every element in a list, is also available.

[[P1; . . . ; Pn]] =⇒ Q abbreviatesP1 =⇒ (. . . =⇒ (Pn =⇒

Q). . .) and is often displayed as inference rule.

4.2 Locales in Isabelle

Locales in Isabelle [3] provide the means to modularize
proofs. Within a locale, one can introduce (fix) definitions
and functions by stating their signature which may also con-
tain type variables. To impose certain constraints on these
definitions one has toassumethat the respective statement
holds. When defining new functions or proving lemmas
within the locale one can then use these fixed definitions
and the assumed constraints. One or multiple locales can
also be extended by a new locale with additional definitions
and constraints. All the definitions and lemmas proved in the
base locales are available in the extended locale.

As a short example, consider this definition of semi-
groups where we define an operator⊙, whose signature de-
pends on the type variable′a, and state that this operator is
associative by the fact namedassoc. Defining a new locale
semi-commwhich extendssemi and requires a commutative
operator is also straightforward:

localesemi= fixesprod :: ′a⇒ ′a ⇒ ′a — written⊙
assumesassoc: (x ⊙ y) ⊙ z= x ⊙ (y ⊙ z)

localesemi-comm= semi+ assumescomm: x ⊙ y = y ⊙ x

4.3 The Abstract Control Flow Graph

Fig. 2 depicts the definition of a CFG as a locale, on which
we will take a closer look in the following. The abstract
CFG consists of nodes of type′nodeand edges of type′edge,
with an edgea being in the set of CFG edges if it fulfills
some propertyvalid-edge a, a parameter of the instantiating
language. A noden is in the node set of a CFG if it fulfills
the propertyvalid-node n, which is not assumed but defined
in the locale, stating thatn is the source or target node of
a valid-edge: valid-node n≡ ∃ a. valid-edge a∧ (n = src a∨

n = trg a). Functionssrc, trg andkind determine the source
node, target node and edge kind of an edge, respectively.
Edges carry semantic information, the edge kind states the
action taken when traversing this edge. We have two edge
kinds of type′state edge-kind, both parameterized with a state

localeCFG=
fixesvalid-edge:: ′edge⇒ bool
fixessrc :: ′edge⇒ ′node
fixestrg :: ′edge⇒ ′node
fixeskind :: ′edge⇒ ′state edge-kind
fixesEntry :: ′node — written (-Entry-)
assumesEntry-target: valid-edge a=⇒ trg a 6= (-Entry-)
and no-multi-edges: [[valid-edge a; valid-edge a′;

src a= src a′; trg a = trg a′]] =⇒ a = a′

localeCFGExit= CFG+
fixesExit :: ′node — written (-Exit-)
assumesExit-source: valid-edge a=⇒ src a 6= (-Exit-)
and Entry-Exit-edge: ∃ a. valid-edge a∧ src a= (-Entry-) ∧
trg a = (-Exit-) ∧ kind a= (λs. False)√

Figure 2. Locale defining the structure of the abstract CFG

type variable′state: updating the current state with a function
f :: ′state ⇒ ′state, written ⇑f, or assuring that a predicate
Q:: ′state⇒ bool in the current state is fulfilled, written(Q)√.
To traverse edges in a states, we define functiontransferto
update the state accordingly to the edge kind, and function
pred to check that the respective edge kind predicate holds:

transfer⇑f s = f s, transfer(Q)√ s = s
pred⇑f s = True, pred (Q)√ s = Q s

We assume an(-Entry-) node, which may not have in-
coming edges. Also we do not allow multi-edges, i.e. if the
source and target nodes of two valid edges coincide, so do
the two edges.

Edges can also be combined to paths:n −as→∗ n′ denotes
that noden can reachn′ via edgesas:: ′edge list. These paths
are inductively defined using these rules:

valid-node n

n −[]→∗ n
n′′−as→∗ n′ valid-edge a src a= n trg a= n′′

n −a·as→∗ n′

We definesrcs, trgs andkinds as mappings of the respec-
tive functions to edge lists using standard functionmap. We
also lift transferandpred to lists of edge kinds.

If a unique end node is required, we assume its exis-
tence in localeCFGExit, call it (-Exit-) and allow only in-
coming edges. We also assume a special edge from(-Entry-)
to (-Exit-) of kind (λs. False)√, a predicate that can never be
fulfilled. It is needed for control dependences based on post-
domination to behave correctly.

After having defined the structural properties of the CFG,
we furthermore need: (i) some well-formedness properties
for its edges, (ii) theDef andUse sets for the valid nodes,
which collect the defined and used variables in this node,
respectively, and (iii) a functionstate-val s V returning the
value currently stored in variableV in states. Variables (or
more generally said: locations) are of type′var, values of
type ′val. The formalization as locales is shown in Fig.3,
in words:

localeCFG-wf = CFG+
fixesDef :: ′node⇒ ′var set
fixesUse:: ′node⇒ ′var set
fixesstate-val:: ′state⇒ ′var ⇒ ′val
assumesEntry-empty: Def (-Entry-) = {} ∧ Use(-Entry-) = {}
and no-Def-equal: [[valid-edge a; V /∈ Def (src a)]]
=⇒ state-val(transfer(kind a) s) V = state-val s V

and transfer-only-Use: [[valid-edge a;
∀V ∈ Use(src a). state-val s V= state-val s′ V]]
=⇒ ∀V ∈ Def (src a). state-val(transfer(kind a) s) V =

state-val(transfer(kind a) s′) V
and Uses-pred-equal: [[valid-edge a; pred(kind a) s;
∀V ∈ Use(src a). state-val s V= state-val s′ V]]
=⇒ pred(kind a) s′

localeCFGExit-wf = CFGExit+ CFG-wf +
assumesExit-empty: Def (-Exit-) = {} ∧ Use(-Exit-) = {}

Figure 3. Well-formedness properties of the abstract CFG

• Def andUse sets of(-Entry-) (and(-Exit-), if defined) are
empty,

• traversing an edge leaves all variables which are not de-
fined in the source node of this edge unchanged,

• if two states agree on all variables in theUse set of the
source node of an edge, then after traversing this edge
the two states agree on all variables in theDef set of this
node; i.e. different values in the variables not in theUse
set cannot influence the values of the variables in theDef
set after the semantic action,

• if two states agree on all variables in theUse set of the
source node of a predicate edge and this predicate is valid
in one state, it is also valid in the other one.

If we also have an operational semantics of the language
– where〈c,s〉 ⇒ 〈c′,s′〉 means that evaluating statementc in
states results in a final statementc′ and final states′ – and
a mapping from a noden to its corresponding statementc
via n identifies c, we have another well-formedness property
(calledsemantically well-formed):

n identifies c 〈c,s〉 ⇒ 〈c′,s′〉

∃ n′ as. n −as→∗ n′∧ transfers(kinds as) s = s′∧

preds(kinds as) s ∧ n′ identifies c′

This property states that if the complete evaluation of state-
mentc in states results in a states′and noden corresponds to
statementc, then there is a path in the CFG beginning atn to
a noden′ that corresponds to the final statementc′, on which,
takings as initial state, all predicates in predicate edges hold
and the traversal of the path edge kinds also yields states′.

5. Static Intraprocedural Slicing is Correct
We base our work on the proof by Amtoft [1], who defines
the correctness of static intraprocedural slicing as aweak
simulation propertyof the observable behavior of the origi-
nal and the sliced program, regarding the CFG as a labeled
transition system (for details see§5.1):

Correctness Property:
If an observable move is possible in the original graph, then
an observable move is also possible in the sliced graph, if
the respective initial nodes and states and also the resulting
nodes and states of both moves are weakly similar.

This correctness property for static slicing is stronger than
the one given in [40] for dynamic slicing, as it does not de-
pend on specific input such as program runs or input states.
To prove this correctness property, Amtoft defines for every
node in a CFG its set of observable nodes in a given back-
ward slice. The actual slicing is done by rewriting a given
code map to return no-op statements whenever the respec-
tive node is not in the backward slice. So the “sliced graph”
is just the original graph (as no nodes or edges are removed),
but the effects of traversing nodes not in the backward slice
are eliminated.

Even though Amtoft restricts his work to a While lan-
guage and proves the correctness of slicing just for weak
order dependence, this work is ideal to be included in our
framework as (i) his code map conforms to applying the
functionskind andtransferto the corresponding CFG edges
in our framework and (ii) the characteristics of weak or-
der dependence are just needed in exactly one lemma where
Amtoft proves that the observable set for any node is at most
a singleton; if one can show this property for another con-
trol dependence, the whole proof still holds for this new
control dependence. Thus we go beyond Amtoft’s work as
we are able to eliminate the concrete language as well as
the concrete control dependence definition; the next section
rephrases the formalization of the correctness proof focusing
on the latter abstraction.

5.1 The Correctness Proof

To state correctness for static slicing we need: (i) a formal-
ization of a statically sliced graph, (ii) the notion of observ-
able moves in the original and sliced graph and (iii) a weak
simulation between start and end points of these moves.

The statically sliced graph. A static (backward) slice for
a nodenc (the slicing node) determines which nodes are
in the sliced graph. Basically, every node that potentially
influences control or data flow tonc is in the backward slice
of nc, so the slice is defined in terms of data and control
dependence. Data dependence is defined as stated in§3.1:

n influences V in n′≡ ∃ a′ as′. V ∈ Def n ∧ V ∈ Use n′∧
n −a′·as′→∗ n′∧ (∀ n′′∈set (srcs as′). V /∈ Def n′′)

To abstract from a concrete control dependence definition
in the slice, we use a locale namedBackwardSlice (see
Fig. 4) to fix a function from a node to a set of nodes called
backward-slicewith properties that guarantee that the result-
ing node sets are indeed backward slices of the parameter
node. Hence we formulate three assumptions: (i) every node
is in its ownbackward-slice, (ii) if a noden′ is in backward-slice
nc and this node is data dependent on noden, thenn must

localeBackwardSlice= CFG-wf +
fixesbackward-slice:: ′node⇒ ′node set
assumesrefl: valid-node nc =⇒ nc ∈ backward-slice nc
and dd-closed: [[n′∈ backward-slice nc; n influences V in n′]]
=⇒ n ∈ backward-slice nc

and obs-singleton: valid-node n
=⇒ card(obs n(backward-slice nc)) ≤ 1

Figure 4. Locale abstracting from a specific backward slice

also be inbackward-slice nc (i.e. backward-slice nc is closed
under data dependence), and (iii) the set of observable nodes
in backward-slice nc is for every valid node at most a single-
ton. Only this last assumptionobs-singletonis influenced by
the control dependence used in the slice.

The observable set of noden in setS contains all nodes
n′ in S that can be reached via a CFG path fromn such that
no other node on this path is inS:

n −as→∗ n′ ∀ nx∈set (srcs as). nx /∈ S n′∈ S

n′∈ obs n S

So every node being itself in setS has the singleton observ-
able set only containing itself. Using this definition, we can
say that all nodes having the same set of observable nodes in
setbackward-slice nc – being at most a singleton by assump-
tion from localeBackwardSlice– can be regarded as ”equal”
from the point of view of the slicing.

Now, we define the sliced graph fornc using itsbackward-
slice. Instead of really eliminating nodes not inbackward-slice
nc from the original graph, we just eliminate all effects of the
edges leaving those nodes. To this end we define a function
slice-kind, parameterized with the slicing nodenc, which,
analogously tokind, maps edges to the effect this edge has on
the state, i.e. itsedge-kind. The rules are simple: if the source
node of the considered edge is inbackward-slice nc, slice-kind
nc behaves just likekind. Otherwise,slice-kind nc returns the
respective no-op for this edge,⇑id for update,(λs. True)√

or (λs. False)√ for predicate edges. The rules defining this
operation guarantee that only one predicate edge leaving a
node is set to(λs. True)√, all others are set to(λs. False)√;
thus we make sure not to introduce nondeterminism.

Moves in the graphs. Moves in the original and sliced
graph are relations between (node,state) tuples. A move tra-
verses edgea whose source noden either is inbackward-slice
nc (writtennc,f ⊢ (n,s) −a→ (n′,s′)) or is not (calledτ -move,
writtennc,f ⊢ (n,s) −a→τ (n′,s′)), reachinga’s target noden′

and states′ = transfer(f s). The parameterf is replaced with
kind if we traverse the original, withslice-kind nc if we tra-
verse the sliced graph ofnc. An observable move then con-
sists of arbitrary manyτ -moves (=as⇒τ is the reflexive tran-
sitive closure of−a→τ), followed by a−a→ move:

nc,f ⊢ (n,s) =as⇒τ (n′,s′) nc,f ⊢ (n′,s′) −a→ (n′′,s′′)

nc,f ⊢ (n,s) =as@ [a]⇒ (n′′,s′′)

The weak simulation. We define two (node,state) tuples to
be weakly similar (i.e. in relationWS nc), if both nodes are
valid, the observable sets of both nodes inbackward-slice nc
are equal, and the values of all relevant variables are equal
in both states:

valid-node n valid-node n′

obs n(backward-slice nc) = obs n′ (backward-slice nc)
∀V ∈ rv nc n. state-val s V= state-val s′ V

((n,s),(n′,s′)) ∈ WS nc

Relevant variablesrv nc n are those variables that are used in
some node inbackward-slice nc, reachable fromn via a CFG
path, and not redefined on this path. Simply put, only the
values of the relevant variables of a node can influence other
nodes in the slice. Thus, at some noden, states that have
equal values in the relevant variables ofn are observably
equivalent for the slice; combined with the equal observable
sets two (node,state) configuration tuples are in the weak
simulation if they are not distinguishable by the slice.

Using this weak simulation, we can prove the theorem of
the correctness of static intraprocedural slicing by showing
that the correctness property holds forWS nc:

THEOREM 1. Correctness of Static Intraprocedural Slicing:

((n1,s1),(n2,s2)) ∈ WS nc

nc,kind ⊢ (n1,s1) =as⇒ (n1
′,s1

′)

∃ n2
′ s2

′ as′. ((n1
′,s1

′),(n2
′,s2

′)) ∈ WS nc ∧

nc,slice-kind nc ⊢ (n2,s2) =as′⇒ (n2
′,s2

′)

Proof. The proof uses two lemmas: if(n1,s1) and(n2,s2) are
weakly similar and(n1,s1) makes (i) arbitraryτ -moves in
the original graph, the resulting tuple(n1

′,s1
′) is still weakly

similar to(n2,s2), and (ii) a−a→ move in the original graph
to (n1

′,s1
′), (n2,s2) can make an observable move in the

sliced graph, resulting in the tuple(n1
′,(transfer(slice-kind

nc a) s2)) which is weakly similar to(n1
′,s1

′). ⊓⊔

With this correctness property, we can infer another the-
orem, which is very similar to the correctness property of
dynamic slicing as stated in [40]:

THEOREM 2. Correctness of Slicing with Paths:

n −as→∗ n′ preds(kinds as) s

∃ as′. n −as′→∗ n′∧ preds(slice-kinds n′ as′) s ∧

(∀V ∈ Use n′. state-val(transfers(slice-kinds n′ as′) s) V =

state-val(transfers(kinds as) s) V) ∧

slice-edges n′ as= slice-edges n′ as′

Take a pathas from n to slicing noden′ s.t. all predicates on
this path are fulfilled usings as initial state. Then there is
a pathas′ in the sliced graph whose predicates are fulfilled
using initial states, and the values of the variables used inn′

are the same, no matter if we traverseas in the original oras′

in the sliced graph starting in initial states. slice-edges n′ as
filters from listas all edges whose source node is not in the
backward slice. Hence,slice-edges nc as= slice-edges nc as′

localePDG= CFGExit-wf +
fixescontrol-dependence:: ′node⇒ ′node⇒ bool

— written - controls -
assumesExit-not-cdep: n controls n′ =⇒ n′ 6= (-Exit-)
and control-dependence-path:
n controls n′ =⇒ ∃ as. n −as→∗ n′∧ as 6= []

Figure 5. Locale describing a PDG

states that pathsas andas′ visit the same nodes in the back-
ward slice ofnc in the same order; thus,as′ in the sliced
graph matchesas in the original graph.

For semantically well-formed CFGs, we can lift this the-
orem from graphs to the semantics. Instead of a path in the
original graph, we assume a semantic evaluation〈c,s〉 ⇒

〈c′,s′〉 and identify the nodesn andn′ with c andc′, respec-
tively. The conclusion is pretty much the same as before:

THEOREM 3. Correctness of Slicing Semantically:

n identifies c 〈c,s〉 ⇒ 〈c′,s′〉

∃ n′ as. n −as→∗ n′∧ preds(slice-kinds n′ as) s ∧ n′ identifies c′

(∀V ∈ Use n′. state-val(transfers(slice-kinds n′ as′) s) V =

state-val s′ V)

5.2 Applying Control Dependences

The correctness proof in the previous section was parame-
trized by a function from nodes to node sets calledbackward-
sliceand certain constraints. In this section we show how one
can use the three different control dependences presented in
§3.2to formalize the respective backward slice and that each
of these slices is a valid parameter of theBackwardSlicelo-
cale, i.e it fulfills the assumptions made in the locale. Show-
ing the correctness property for any further control depen-
dences is analogously done by proving these assumptions,
so no insight of the concrete correctness proof formalization
is needed.

Program Dependence Graph.For binary control depen-
dences, the backward slice is defined using a program de-
pendence graph. Thus, we use a locale defining a PDG (see
Fig.5) as “middle layer” between backward slice and control
dependence definition. We extend the CFG well-formedness
locale stipulating(-Exit-), fix a binary control dependence
relation and assume that(-Exit-) is not control dependent on
anything and that there exists a nonempty CFG path between
control dependent nodes. Then we define the PDG’s control
and data flow edges via:

If n controls n′ thenn −→cd n′

If n influences V in n′ thenn −V→dd n′

PDG paths are the reflexive transitive closure of PDG edges
and denotedn −→d∗ n′. The backward slice of nodenc is
then defined straightforward via

PDG-BS nc ≡ if valid-node nc then {n′ | n′−→d∗ nc} else ∅

localePostdomination= CFGExit +
assumesEntry-path: valid-node n=⇒ ∃ as. (-Entry-) −as→∗ n
and Exit-path: valid-node n=⇒ ∃ as. n −as→∗ (-Exit-)

localeStrongPostdomination= Postdomination+
assumessuccessor-set-finite: valid-node n
=⇒ finite {n′. ∃ a′. valid-edge a′ ∧ sourcenode a′ = n ∧

targetnode a′ = n′}

Figure 6. Locale with the constraints for postdomination
and strong postdomination

Standard Control DependenceStandard control depen-
dence (SCD) bases on the notion of postdomination. As
postdomination requires as further constraints that every
node is reachable from(-Entry-) and can reach(-Exit-) via
CFG paths, we define a new localePostdomination, extend-
ing localeCFGExit (as we need an(-Exit-) node) with these
assumptions, see Fig.6. Then, postdomination is defined as:

n′ postdominates n≡ valid-node n∧ valid-node n′∧
(∀ as. n −as→∗ (-Exit-) −→ n′∈ set (srcs as))

We define standard control dependence as in§3.2 and
prove that this definition is equivalent to the widely used
definition from [9]:

scd n n′≡ ∃ a a′ as. n′ /∈ set(srcs(a·as)) ∧ n −a·as→∗ n′∧

src a= n ∧ n′ postdominates(trg a) ∧ valid-edge a′∧
src a′ = n ∧ ¬ n′ postdominates(trg a′)

LEMMA 1. SCD Definition Variant (Ferrante et al.):

scd n n′ = (∃ as. n −as→∗ n′∧ n 6= n′∧¬ n′ postdominates n∧
n′ /∈ set (srcs as) ∧ (∀ n′′∈set (trgs as). n′ postdominates n′′))

To verify that the correctness proof holds for this control
dependence, we have to show the following theorem:

THEOREM 4. Correctness Proof for SCD:
The standard control dependencescd is a valid control
dependence for localePDG. Using scd the resulting slice
PDG-BS is a valid backward slice for localeBackwardSlice.

To prove this theorem, we had to verify thatscd fulfills
all assumptions in localePDG concerningcontrol-dependence
and then that the PDG backward slice definitionPDG-BS
meets all the constraints imposed onbackward-slicein locale
BackwardSlice, in particular that the set of observable nodes
in PDG-BS nc is at most a singleton for every valid node.

Weak Control Dependence.Weak control dependence
(WCD) is termination sensitive, thus we need a stronger
postdomination notion, namely strong postdomination.
Strong postdomination also has a further requirement, no
edge may have infinitely many target nodes, hence we use
a localeStrongPostdominationextending localePostdomination
as depicted in Fig.6. As an infinite path (e.g. through a non-
terminating loop) exists if there is a finite path longer than
k for any fixedk, reachingn′ on any path longer than a cer-
tain k means that there is no loop between the two nodes.
Therefore, we define strong postdomination via:

n′ strongly-postdominates n≡ n′ postdominates n∧
(∃ k ≥ 1. ∀ as nx. n −as→∗ nx ∧ length as≥ k

−→ n′∈ set(srcs as))

Then the definition of WCD and the correctness proof
work analogously to standard control dependence:

wcd n n′≡ ∃ a a′ as. n′ /∈ set (srcs a·as) ∧ n −a·as→∗ n′∧

src a= n ∧ n′ strongly-postdominates(trg a) ∧ valid-edge a′∧
src a′ = n ∧ ¬ n′ strongly-postdominates(trg a′)

THEOREM 5. Correctness Proof for WCD:
The weak control dependencewcd is a valid control depen-
dence for localePDG. Usingwcd the resulting slicePDG-BS
is a valid backward slice for localeBackwardSlice.

Weak Order Dependence.The definition of weak order
dependence (WOD) neither needs a notion of an exit node
nor any further assumptions on the CFG. Thus, we can
include its definition in theCFG locale:
wod n n1 n2 ≡ n1 6= n2 ∧

(∃ as1. n −as1→∗ n1 ∧ n2 /∈ set (srcs as1)) ∧
(∃ as2. n −as2→∗ n2 ∧ n1 /∈ set (srcs as2)) ∧
(∃ a. valid-edge a∧ n = src a∧

((∃ as1 ′. trg a−as1 ′→∗ n1 ∧

(∀ as′. (trg a−as′→∗ n2) −→ n1 ∈ set(srcs as′))) ∨
((∃ as2 ′. trg a−as2 ′→∗ n2 ∧

(∀ as′. (trg a−as′→∗ n1) −→ n2 ∈ set(srcs as′)))))

As weak order dependence is not a binary relation, we
cannot use thePDG locale to provide a backward slice.
Hence, we have to define its backward slice from the scratch:

valid-node nc
nc ∈ WOD-BS nc

n′ influences V in n′′ n′′∈ WOD-BS nc

n′∈ WOD-BS nc

wod n′ n1 n2 n1 ∈ WOD-BS nc n2 ∈ WOD-BS nc

n′∈ WOD-BS nc

To apply the correctness proof to weak order dependence,
we need to instantiate localeBackwardSlice, thus the proof
has to verify thatWOD-BS meets its assumptions:

THEOREM 6. Correctness Proof for WOD:
The setWOD-BS is a valid backward slice for localeBack-
wardSlice.

The main part of this proof is again to show that the set
of observable nodes inWOD-BS nc is at most a singleton.

6. Low-Deterministic Security with Slicing
The correctness results from the previous section are needed
in proving that low-deterministic security and slicing com-
ply. Low-deterministic security, a special case of a nonin-
terference definition using partial equivalence relations(per)
[30], partitions variables in two security levels,H for secret
and L for public data. Basically, a program that is nonin-
terferent w.r.t. low-deterministic security has to fulfillone
basic property: executing the program in two different initial
states that may differ in the values of theirH-variables yields

localeLowDeterministicGraph= BackwardSlice+
fixesH :: ′var set fixesL :: ′var set
fixesHigh :: ′node — written (-High-)
fixesLow :: ′node — written (-Low-)
assumesHighLowDistinct: H ∩ L = {}
and HighLowUNIV: H ∪ L = UNIV
and Entry-edge-Exit-or-High: [[valid-edge a; src a= (-Entry-)]]

=⇒ trg a = (-Exit-) ∨ trg a = (-High-)
and High-target-Entry-edge: ∃ a. valid-edge a∧

src a= (-Entry-) ∧ trg a = (-High-) ∧ kind a= (λs. True)√

and Entry-predecessor-of-High:
[[valid-edge a; trg a = (-High-)]] =⇒ src a= (-Entry-)

and Exit-edge-Entry-or-Low: [[valid-edge a; trg a = (-Exit-)]]
=⇒ src a= (-Entry-) ∨ src a= (-Low-)

and Low-source-Exit-edge: ∃ a. valid-edge a∧
src a= (-Low-) ∧ trg a = (-Exit-) ∧ kind a= (λs. True)√

and Exit-successor-of-Low:
[[valid-edge a; src a= (-Low-)]] =⇒ trg a = (-Exit-)

and DefHigh: Def (-High-) = H
and UseHigh: Use(-High-) = H
and UseLow: Use(-Low-) = L
and Low-neq-Exit:(-Low-) 6= (-Exit-)

Figure 7. Locale fixing the assumptions needed for low-
deterministic security using slicing

two final states that again only differ in the values of theirH-
variables; thus the values of theH-variables did not influence
those of theL -variables. We will now show how slicing can
guarentee that a program is low-deterministic secure4.

Assumptions. Every per-based approach implies certain
assumptions: (i) allH-variables are defined at the beginning
of the program, (ii) allL -variables observed (or used in our
terms) at the end and (iii) every variable is eitherH or L.
Thus, we have to extend the prerequisites of our framework
accordingly. To this end, we define a new localeLowDeter-
ministicGraph(see Fig.7) which extends the localeBackward-
Slice containing the correctness results.

First, we fix two variable setsH and L. Rules High-
LowDistinct and HighLowUNIV guarantee that these sets
partition the set of all variables. Second, we introduce
two nodes,(-High-) and (-Low-). (-High-) is the node di-
rectly after(-Entry-), reached via a no-op edge, but before
any other node in the graph. RulesEntry-edge-Exit-or-High,
Entry-predecessor-of-Highand High-target-Entry-edgemake
sure this holds. Analogously, rulesExit-edge-Entry-or-Low,
Exit-successor-of-Low and Low-source-Exit-edge guarantee
that (-Low-) is the node directly before(-Exit-). Remember
that (-Entry-) and (-Exit-) may neither define nor use vari-
ables. Yet, requiring(-High-) to define allH- and(-Low-) to
use allL -variables (viaDefHigh andUseLow), we can still
fulfill the per assumptions mentioned before.UseHigh and
Low-neq-Exit are additional conditions necessary below.

4 This extension of the framework is available online:http://pp.
info.uni-karlsruhe.de/ ˜ lohner/Slicing/LDS/

http://pp.info.uni-karlsruhe.de/~lohner/Slicing/LDS/
http://pp.info.uni-karlsruhe.de/~lohner/Slicing/LDS/

Low equivalence. States that are equal in public values,
i.e. those inL -variables, are non-distinguishable for an ex-
ternal observer.Low equivalencegroups those states in an
equivalence class using the relation≈L:

s ≈L s′≡ ∀V∈L . state-val s V= state-val s′ V

We can easily prove that if(-High-) is not in the backward
slice of nc, the relevant variables of(-Entry-) in the sliced
graph have equal values for two low-equivalent states:

LEMMA 2.
s ≈L s′ (-High-) /∈ backward-slice nc

∀V∈rv nc (-Entry-). state-val s V= state-val s′ V

Another lemma regards the values of the variables used in
(-Low-) after traversing paths in the sliced graph. Assume we
have two pathsasandas′ betweenn and(-Low-). Both paths
fulfill all their predicates in the sliced graph of(-Low-) with
initial statess ands′, respectively. These two states agree on
the values of all relevant variables ofn in this sliced graph.
Then the final states after traversingas andas′ agree in the
values of the used variables in(-Low-):
LEMMA 3.

n −as→∗ (-Low-) preds(slice-kinds(-Low-) as) s

n −as′→∗ (-Low-) preds(slice-kinds(-Low-) as′) s

∀V∈rv (-Low-) n. state-val s V= state-val s′ V

∀V ∈ Use(-Low-). state-val(transfers(slice-kinds(-Low-) as) s) V =

state-val(transfers(slice-kinds(-Low-) as′) s′) V

Low-deterministic security. Assume we have a program
and two low equivalent initial statess ≈L s′. Executing the
program results in two final states that are not low equiva-
lent. Yet, a different value in aL -variable in the final states
can only occur due to a different value in aH-variable in
the initial states. Hence, we know that at least one initialH-
variable influenced a resultL -variable. As(-Low-) uses all
L -variables and(-High-) defines allH-variables, there is a
path in the PDG between those nodes due to this interfer-
ence. Thus, the backward slice of(-Low-) contains(-High-).

A low-deterministic secure program executed in low
equivalent initial states results yields low equivalent final
states. The final state of executing a program with an ini-
tial states is transfers(kinds as) s, if as is the path between
(-Entry-) and(-Exit-) in the CFG andpreds(kinds as) s holds.
Following the argumentation in the last paragraph, assuring
that the backward slice of(-Low-) does not contain(-High-)
should suffice in proving low-deterministic security of a pro-
gram. Hence, this correctness theorem is stated as follows:

THEOREM 7 (Low-Deterministic Security with Paths).
s ≈L s′ (-High-) /∈ backward-slice(-Low-)
(-Entry-) −as→∗ (-Exit-) preds(kinds as) s

(-Entry-) −as′→∗ (-Exit-) preds(kinds as′) s′

transfers(kinds as) s ≈L transfers(kinds as′) s′

Proof. The trick to prove this theorem is to argue in
the sliced graph of(-Low-). First, we split the(-Entry-)–
(-Exit-) paths into paths from(-Entry-) to (-Low-) and the
no-op edges between(-Low-) and (-Exit-). We now apply the
correctness results for slicing from the previous section to

the trimmed paths. So the values of all variables that are
used in(-Low-) are equal, regardless if we traversed the
original or the sliced graph; this holds for both trimmed
paths. Using lemmas2 and 3 we know that these values
also agree in the states after traversing both paths in the
sliced graph. Thus, the values of(-Low-)’s used variables
also agree in the final states after traversing the paths in the
original graph. Since traversing the edges between(-Low-)
and (-Exit-) has no influence on the states, we know that
the same holds for the final states after executing the whole
program. With the fact that the variables used in(-Low-) are
exactly theL-variables we obtain the conclusion.⊓⊔

Low-deterministic security is usually defined via the se-
mantics of a program. We assume that our CFG is semanti-
cally well-formed. Letn be the immediate successor node of
(-High-); since(-Entry-) and(-High-) are mere auxiliary nodes
without a corresponding statement, this is the node that starts
the program.final c is a property that checks if statementc is
fully evaluated. We assume that the node corresponding to
a final statement is the immediate predecessor of(-Low-).
Then, we can lift low-deterministic correctness as follows:

THEOREM 8 (Low-Deterministic Security Semantically).
s1 ≈L s2 (-High-) /∈ backward-slice(-Low-) final c′

n identifies c 〈c,s1〉 ⇒ 〈c′,s1
′〉 〈c,s2〉 ⇒ 〈c′,s2

′〉

s1
′≈L s2

′

Proof. This theorem is basically a corollary of theorem7
and the semantically well-formedness definition.⊓⊔

CFG Lifting. A CFG constructed for a language would not
naturally fulfill the properties assumed in Fig.7. However,
some small adjustments can be sufficient to tackle this prob-
lem. Assume we have a CFG that defines with the help of
a control dependence definition a PDG. We relabel(-Entry-)
as(-High-), (-Exit-) as(-Low-) and remove the edge between
these nodes. Moreover we add a new entry and exit node, add
no-op edges between those two, between the new entry and
the old one and between the old exit and the new one. The
Def andUse sets are only redefined for(-High-) and(-Low-)
so that they fulfill the properties needed. This adjusted CFG
together with a partitioning of the variables inH andL then
fulfills the assumptions of localeLowDeterministicGraph.

7. Instantiation with Languages
Exploiting the above results, proving slicing correct for any
language just boils down to formalizing a CFG for this
language and proving that this formalization fulfills all the
needed properties. Thus the correctness proof of static slic-
ing for an instantiated language requires no insight into the
slicing definitions or proof details; anyone familiar with for-
malizing languages can reprove it for a wide variety of lan-
guages (imperative and object-oriented).

In the following we show how to instantiate the frame-
work with two different programming languages, a simple
While language (without procedures) and Jinja VM byte

(instrs-of P C M)[pc] ∈ {LOAD idx, STORE idx, PUSH val, POP, IA DD, CMPEQ}

f = (λs. exec-instr(instrs-of P C M)[pc] P s(length cs) (stkLength P C M pc)) valid-callstack(P,C0,Main) ((C, M , pc)·cs)

(P,C0,Main) ⊢ (- (C, M , pc)·cs -) −⇑f→ (- (C, M , Suc pc)·cs -)

Figure 8. Example of Jinja CFG edges for simple instructions

code. Whereas static slicing with weak order dependence is
correct for both languages (as we do not need additional as-
sumptions), for the correctness of slicing using standard and
weak control dependence the respective conditions (as de-
scribed in§5.2) are shown to be valid.

While. This simple While language features integer and
boolean variables, conditionals and while loops. We already
showed in [40] how this language can be embedded in the
framework to perform dynamic slicing. Note that the locales
describing the abstract trace CFG there and the abstract CFG
here are the same. This holds as for languages without pro-
cedures these CFGs coincide since the question of method
inlining does not show up. Hence, we can refer to the details
of the implementation in [40] and deduce that all the results
shown in this paper hold for While.

By the construction rules of the CFG we can prove that
every node is reachable from the entry node and can reach
the unique exit node, and that every node has a finite number
of successors (due to the fact that without recursive proce-
dures the number of nodes in the graph is finite). Thus we
can guarantee the correctness of static slicing for standard
and weak control dependence.

Jinja byte code. Jinja [19] models a large subset of the Java
language, including operational semantics for the source
code and the virtual machine byte code, both with type
safety proofs, a compiler from the former to the latter and a
byte code verifier (BCV), both verified. Jinja is fully object-
oriented and features exception throwing and catching. Slic-
ing such languages is far from trivial. Though the framework
is for intraprocedural slicing, it can still be instantiated with a
large subset of Jinja, as non-recursive methods can be sliced
by inlining method calls; for programs without method calls
the intraprocedural slice is well-defined anyway.

Proving slicing correct with the framework requires in-
stantiations of the localesCFG-wf and (if SCD or WCD shall
be used)CFGExit-wf, Postdominationand StrongPostdomina-
tion, which all extend theCFG locale. Hence, the first step
to prove slicing correct is to formalize an appropriate con-
trol flow graph for Jinja byte code.

The Jinja byte code language is, to put it simply, a goto-
language using a stack machine with a program counter
identifying the current statement in an instruction list. A
program consists of a list of class declarations, each with
its method declarations where the method bodies are the
aforementioned instruction lists. We identify program points
with call stacks (lists of triples consisting of class name,
method name and program counter), as we use method in-
lining. Program execution starts at the first instruction ofa

given method, then proceeds as determined by the current
instruction’s control flow. The edges are drawn accordingly,
taking exception handler delegation and dynamic dispatch
into account. Fig.8 shows a slightly simplified version of an
edge formalization, where the functionexec-instrmodels the
state change andvalid-callstackensures some required well-
formedness properties of the current program point. As you
can see, this is the rule for non-branching instructions. Yet,
some instructions can only be modeled with multiple edges
(according to§4.3 edges model either a predicate or an up-
date but not both), first predicate ones to determine the tar-
get program point, each followed by one edge updating the
state accordingly; hence we need additional CFG nodes in
between. A typical example for such a situation is method
invocation, where first the dispatch target is determined be-
fore the appropriate state change is made.

Next, the localeCFG-wf has to be instantiated. The prob-
lem here is that Jinja byte code uses a stack machine, thus
keeping track of the variables is a bit tricky. For example, a
program could LOAD a value onto the stack, then do some
stack-involving computation where this variable is not used,
and thereafter STORE the value again; then the STORE must
be data dependent on the corresponding LOAD, which means
the same variable must be in the LOAD’s Def set and in the
STORE’s Useset. Therefore, we say every stack position cor-
responds to a variable (counted from bottom up); also the
local variables are identified through their index positions.
Additionally, to distinguish variables of different methods,
stack and local variables are labeled with the appropriate call
depth available from the CFG node. The heap is treated as
a whole and thus instructions are regarded either to define
or use the complete heap or to not define and use it at all.
This is a conservative approximation, but the properties of
CFG-wf are not violated. One could gain precision here by
using points-to analysis.

The tricky part is to determine the index position of the
stack variables that are defined or used in a given node.
However, fixing theDef and Use set is no problem, if the
index of the stack’s top element is known. Jinja’s BCV,
which guarantees the stack length to be the same at any
program point, no matter how one gets there, provides this
index. The state is then defined as a pair of a mapping from
the set of variables to appropriate values and a heap.

Using these formalizations we are finally able to instan-
tiate theCFG-wf locale and to show that the assumed prop-
erties (see Fig.3) hold. Except forEntry-empty(we simply
define theDef andUse set of the entry node to be empty),
these properties are shown by case analysis. Having the lo-
cale instantiated, we have done all to show slicing correct for
Jinja byte code using weak order dependence.

We also proved our formalization of the Jinja byte code
CFG to be semantically equivalent to Jinja’sexec function,
which defines the operational semantics of Jinja byte code.
Furthermore, we have explicitly proven state conformance
as stated by Jinja’s BCV to be invariant under thetransfer
function from§4.3for the CFG.

We can also use standard and weak control dependence,
as we instantiated the localesPostdominationandStrongPost-
domination; we omit the details.

The instantiation of the framework with Jinja byte code
took about one fourth to one third of the total effort needed
to formalize the correctness results. This means, using the
framework to adapt the proof to another language can save
about 70% of the work compared to starting from scratch.

8. Related Work
8.1 Correctness of Slicing

Reps and Yang [28] were the first to prove static intrapro-
cedural slicing correct for a simple While language with-
out procedures, using CFGs and PDGs. Some generalized
frameworks for proving the correctness of slicing already
exist. The approach of Gouranton and Le Métayer [11] is
also language independent, but based on natural semantics
instead of graph structures. It only covers dynamic slicing,
the more challenging correctness proof of static slicing isnot
mentioned. In [38], Ward and Zedan model slicing as a pro-
gram transformation, i.e. an operation on a program which
generates a semantically equivalent program. As the defini-
tion of slicing in both works is quite distinct from the graph-
based approach used in many program analyses, we think
that our work, using the well-known notions of CFGs and
PDGs, is more intuitive. Both works rely on pen-and-paper
proofs whereas our framework is fully machine-checked.

8.2 Noninterference using Proof Assistants
Formalization of Goguen/Meseguer. In his work on non-
interference, Rushby [29] focuses on security policies whose
interference relation is intransitive. He formalizes the core
of the Goguen/Meseguer to provide an “unwinding lemma”,
using notation that differs considerably from the original.

Von Oheimb [37] uses Isabelle/HOL to extend this work
with nondeterminism. Furthermore, he adds a concept for
confidentiality similar to IFC, callednonleakage. If a pro-
gram is nonleaking, data from the initial states should not be
leaked, whereas Goguen/Meseguer noninterference says that
the occurrence of certain events should not be observable.
The combination of both,noninfluence, is also formalized.

Verification of Information Flow Type Systems. Several
authors proved the correctness of IFC type systems in a
proof assistant; mostly, noninterference is defined as low-
deterministic security.

Kammüller developed a framework for using the byte
code verifier of a Java-like language to show non-interference
[18]. This approach is related to ours, as he uses the module

concept of Coq to abstract from a specific language syntax.
His framework is restricted to byte code languages, whereas
ours can handle source as well as byte code languages. Due
to Coq, his proofs are executable as programs, i.e. they can
actually run their non-interference check. The underlyingin-
formation flow type system is not given explicitly, but seems
inspired by the work of Barthe et al. [5].

The IFC type system of Banerjee and Naumann [4] covers
the sequential core of Java. They prove their system to be
sound using simulation and indistinguishability of states.
This work (omitting access control) is formalized in two
different proof assistants: in PVS by Naumann [24] and in
Isabelle/HOL by Strecker [36].

Barthe and Nieto [6] formalize an information flow type
system for a concurrent while language as defined from
Boudol and Castellani [8], which is an extension of the Vol-
pano/Smith system [31] . Using Isabelle/HOL, they define
a bisimulation (which allows stuttering) over the semantic
rules to show noninterference. Furthermore, they also ver-
ify noninterference for scheduling programs. The sequential
subset of the Volpano/Smith system was also formalized in
Isabelle/HOL by Snelting and Wasserrab [34], together with
a proof that it preserves low-deterministic security.

9. Conclusion and Future Work
We presented a machine-checked correctness proof for static
intraprocedural slicing, and a machine-checked correctness
proof for a slicing-based IFC algorithm. The modular proof
structure allows to plug in other language or dependence
definitions easily.

However, the underlying framework does not yet handle
methods and interprocedural slicing. In order to extend our
proof to the context-sensitive, object-sensitive interprocedu-
ral IFC with declassification as described in [15], more work
will be needed. Threads and concurrency will pose an even
greater challenge. While we have devised, implemented and
evaluated sophisticated slicing algorithms for concurrent
programs [20, 10], and extended Jinja with threads [23],
we have not yet extended our IFC to Java programs with
threads. A machine-checked correctness proof for this will
probably require several years of work.

Let us finally point out a limitation of standard nonin-
terference, which has to be overcome. As mentioned above,
low-deterministic security, as well as related noninterference
definitions, treat a program as a black box and cannot ex-
press security-related properties for interior statements or in-
termediate states. Such properties could be annotations (as
required in some type-based IFC systems), or interior secu-
rity levels or dependences (as in [15]). Future definitions of
noninterference must maintain the overall security proper-
ties, but must allow to argue about interior details of pro-
grams; otherwise the correctness proofs will not be able to
handle the high degree of precision in modern program anal-
ysis and IFC.

References
[1] Torben Amtoft. Slicing for modern program structures: a

theory for eliminating irrelevant loops.Information Processig
Letters, 106(2):45–51, 2008.

[2] Paul Anderson, Thomas Reps, and Tim Teitelbaum. Design
and implementation of a fine-grained software inspection
tool. IEEE TSE, 29(8):721–733, 2003.

[3] Clemens Ballarin. Locales and locale expressions in
Isabelle/Isar. In Stefano Berardi, Mario Coppo, and Ferruccio
Damiani, editors,TYPES 2003, volume 3085 ofLNCS, pages
34–50. Springer, 2004.

[4] Anindya Banerjee and David A. Naumann. Secure informa-
tion flow and pointer confinement in a Java-like language. In
Proc. of CSFW 2002, pages 239 – 253. IEEE, 2002.

[5] Gilles Barthe, Amitabh Basu, and Tamara Rezk. Security
types preserving compilation. InVMCAI 2004, volume 2937
of LNCS, pages 2–15. Springer, 2004.

[6] Gilles Barthe and Leonor Prensa Nieto. Secure information
flow for a concurrent language with scheduling.Journal of
Computer Security, 15(6):647–689, 2007.

[7] Samuel Bates and Susan Horwitz. Incremental program
testing using program dependence graphs. InProc. of POPL
1993, pages 384–396. ACM, 1993.

[8] Gérard Boudol and Ilaria Castellani. Noninterference
for concurrent programs and thread systems.Theoretical
Computer Science, 281(1-2):109–130, 2002.

[9] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The
program dependence graph and its use in optimization.ACM
TOPLAS, 9(3):319–349, 1987.

[10] Dennis Giffhorn and Christian Hammer. Precise slicing
of concurrent programs - an evaluation of static slicing
algorithms for concurrent programs.Journal of Automated
Software Engineering, 2009.

[11] Valerie Gouranton and Daniel Le Ḿetayer. Dynamic slicing:
a generic analysis based on a natural semantics format.
Journal of Logic and Computation, 9(6):835–871, 1999.

[12] Christian Hammer, Jens Krinke, and Gregor Snelting.
Information flow control for Java based on path conditions
in dependence graphs. InProc. of ISSSE 2006, pages 87–96.
IEEE, March 2006.

[13] Christian Hammer.Information Flow Control for Java. PhD
thesis, Universiẗat Karlsruhe (TH), 2009. Submitted.

[14] Christian Hammer, R̈udiger Schaade, and Gregor Snelting.
Static path conditions for java. InProc. of PLAS 2008, pages
55–66. ACM, 2008.

[15] Christian Hammer and Gregor Snelting. Flow-sensitive,
context-sensitive, and object-sensitive information flow
control based on program dependence graphs. Technical
Report 2008-16, Universität Karlsruhe (TH), November
2008. http://digbib.ubka.uni-karlsruhe.de/
volltexte/documents/574047 .

[16] Christian Hammer and Gregor Snelting. An improved slicer
for Java. InProc. of PASTE 2004, pages 17–22. ACM, June
2004.

[17] Susan Horwitz, Thomas Reps, and David Binkley. Interpro-
cedural slicing using dependence graphs.ACM TOPLAS,
12(1):26–60, 1990.

[18] Florian Kamm̈uller. Formalizing non-interference for a
simple bytecode language in Coq.Formal Aspects of
Computing, 20(3):259–275, 2008.

[19] Gerwin Klein and Tobias Nipkow. A Machine-Checked
Model for a Java-Like Language, Virtual Machine and
Compiler.ACM TOPLAS, 28(4):619–695, 2006.

[20] Jens Krinke. Context-sensitive slicing of concurrent pro-
grams. InProc. of ESEC/FSE 2003, pages 178–187. ACM,
September 2003.

[21] Jens Krinke. Program slicing.HandBook of Software
Engineering and Knowledge Engineering, Vol. 3: Recent
Advances, pages 307–332, 2004.

[22] Sébastien Labb́e and Jean-Pierre Gallois. Slicing commu-
nicating automata specifications: polynomial algorithms for
model reduction.Formal Aspects of Computing, 20(6):563–
595, 2008.

[23] Andreas Lochbihler. Type safe nondeterminism - a formal
semantics of Java threads. InProc. of FOOL 2008, 2008.

[24] David A. Naumann. Machine-checked correctness of
a secure information flow analyzer (preliminary report).
Technical Report SIT Report CS-2004-10, Stevens Institute
of Technology, March 2004.

[25] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order Logic,
volume 2283 ofLNCS. Springer, 2002.

[26] Andy Podgurski and Lori A. Clarke. A formal model
of program dependences and its implications for software
testing, debugging, and maintenance.IEEE TSE, 16(9):965–
979, 1990.

[27] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya
Banerjee, John Hatcliff, and Matthew B. Dwyer. A new
foundation for control dependence and slicing for modern
program structures.ACM TOPLAS, 29(5):27, 2007.

[28] Thomas W. Reps and Wuu Yang. The semantics of program
slicing and program integration. In Josep Dı́az and Fernando
Orejas, editors,TAPSOFT 1989, Vol.2, volume 352 ofLNCS,
pages 360–374. Springer, 1989.

[29] John Rushby. Noninterference, transitivity, and channel-
control security policies. Technical report, dec 1992.

[30] Andrei Sabelfeld and David Sands. A per model of secure
information flow in sequential programs.Higher Order
Symbolic Computation, 14(1):59–91, 2001.

[31] Geoffrey Smith and Dennis Volpano. Secure information
flow in a multi-threaded imperative language. InProc. of
POPL 1998, pages 355–364. ACM, 1998.

http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/574047
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/574047

[32] Gregor Snelting. Combining slicing and constraint solving
for validation of measurement software. InSAS 1996, volume
1145 ofLNCS, pages 332–348. Springer, 1996.

[33] Gregor Snelting, Torsten Robschink, and Jens Krinke.
Efficient Path Conditions in Dependence Graphs for Software
Safety Analysis.ACM TOSEM, 15(4):410–457, 2006.

[34] Gregor Snelting and Daniel Wasserrab. A correctness proof
for the Volpano/Smith security typing system. In Gerwin
Klein, Tobias Nipkow, and Lawrence Paulson, editors,
The Archive of Formal Proofs. September 2008. Formal
proof development,http://afp.sf.net/entries/
VolpanoSmith.shtml .

[35] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin
slicing. InProc. of PLDI 2007, pages 112–122. ACM, 2007.

[36] Martin Strecker. Formal analysis of an information flow type
system for MicroJava (extended version). Technical report,
Technische Universität München, July 2003.

[37] David von Oheimb. Information flow control revisited: Non-
influence = Noninterference + Nonleakage. In P. Samarati,
P. Ryan, D. Gollmann, and R. Molva, editors,ESORICS 2004,
volume 3193 ofLNCS, pages 225–243. Springer, 2004.

[38] Martin Ward and Hussein Zedan. Slicing as a program
transformation.ACM TOPLAS, 29(2):7, 2007.

[39] Daniel Wasserrab. Towards certified slicing. In Gerwin
Klein, Tobias Nipkow, and Lawrence Paulson, editors,
The Archive of Formal Proofs. September 2008. Formal
proof development,http://afp.sf.net/entries/
Slicing.shtml .

[40] Daniel Wasserrab and Andreas Lochbihler. Formalizing
a framework for dynamic slicing of program dependence
graphs in Isabelle/HOL. In Outmane Ait Mohamed, César
Muñoz, and Sofìene Tahar, editors,TPHOLS 2008, volume
5170 ofLNCS, pages 294–309. Springer, 2008.

[41] Michael Joseph Wolfe.High Performance Compilers for
Parallel Computing. Addison-Wesley, 1995.

http://afp.sf.net/entries/VolpanoSmith.shtml
http://afp.sf.net/entries/VolpanoSmith.shtml
http://afp.sf.net/entries/Slicing.shtml
http://afp.sf.net/entries/Slicing.shtml

	Introduction
	Slicing Correctness and Noninterference
	Slicing
	Noninterference
	Outline of correctness proof

	Dependences in PDGs
	Data Dependence
	Control Dependence

	The Framework
	Notation
	Locales in Isabelle
	The Abstract Control Flow Graph

	Static Intraprocedural Slicing is Correct
	The Correctness Proof
	Applying Control Dependences

	Low-Deterministic Security with Slicing
	Instantiation with Languages
	Related Work
	Correctness of Slicing
	Noninterference using Proof Assistants

	Conclusion and Future Work

