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Abstract

We present the first machine-checked correctness proof fo
information flow control (IFC) based on program depen-

dence graphs (PDGs). IFC based on slicing and PDGs is

flow-sensitive, context-sensitive, and object-sensittheis
offering more precision than traditional approaches. While

the method has been implemented and successfully applieo|Jal proof only,

to realistic Java programs, only a manual proof of a funda-
mental correctness property was available so far.
The new proof is based on a new correctness proof fo

intraprocedural PDGs and program slices. Both proofs are

formalized in Isabelle/HOL. They rely on abstract struetur
and properties instead of concrete syntax and definitions

Carrying the correctness proof over to any given language or

dependence definition reduces to just showing that it fsilfill

the necessary preconditions, thus eliminating the need to

develop another full proof.

We instantiate the framework with both a simple while
language and Java bytecode, as well as with three differen
control dependence definitions. Thus we ob#&iC cor-
rectness proofs for the price tb%.

Categories and Subject Descriptorsd=.3.2 |Logics and
Meaning of Programjs Semantics of Programming Langua-
ges—Program analysis; D.4.@perating SystenfisSecu-
rity and Protection—Information flow controls, verification

General Terms Languages, Security, Verification

Keywords Program Slicing, Program Dependence Graph,
Noninterference, Correctness Proof, Modularity

1. Introduction

not yet know about language-based security and informa-
(tion flow control (IFC). Today, correctness of IFC algorithm

is a topic of burning pressure. It must be demonstrated that
fulfillment of an algorithm’s specific criterion implies aec

rity, where the latter is usually expressed as some form of
noninterference. But most IFC algorithms come with a man-
and some are published without any proof.

As manual proofs for such complex algorithms are notori-

ously error-prone, machine-checked correctness proots ha

r gained popularity. The seminal Volpano/Smith securityetyp

system B1], e.g., originally had a manual correctness proof;

recently, two different machine checked proofs for (varia-

tions of) the Volpano/Smith system were published, demon-
strating in detail that the original proof was correg4[6].

Volpano/Smith and its successors opened the door for
language-based IFC and security type systems. But most
type systems are not flow-sensitive, context-sensitive, le
alone object sensitive. This can lead to a loss of precision
{and false alarms. Another problem of some IFC proposals is
scalability with respect to realistic languages and progra
not all methods can handle e.g. full Java and 10kLoC, and
some require excessive program annotations.

We thus argued that IFC must better exploit modern pro-
gram analysis, and proposed to build language-based IFC
on top of program dependence graphs (PDGs) and slicing.
While not on everybody'’s radar, PDGs and slicers have, af-
ter 25 years of research, become a sophisticated instrument
exploiting all the achievements of modern program analy-
sis, and can be applied to realistic languages and programs;
commercial implementations of slicers for C are available.

Our PDG-based approach to IFC has been described in
[32 33, 14, 12, 15]. In particular, we developed a precise

“Quis custodiet ipsos custodes? Who will guard the guards?” PDG for full Java bytecodelp, 13]. The forthcoming jour-
When Juvenal posed this question about 100 A.D., he did nal article [L5] explains in detail how PDG-based IFC works,
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why it scales, why it is precise, why it is correct, and how
it handles declassification; in additiohd] describes imple-
mentation, GUI, and case studies.

This work is however based on a fundamental assump-
tion: it relies on correctness of PDGs and slicing, and Isuild
on a theorem connecting PDGs and noninterference which
was proved only manually irBB], and only for Goguen/Me-
seguer style noninterference. In fact, no machine-checked
proof of slicing correctness was available so far, let alone
proofs for PDG-based noninterference.



In the current paper, we provide the first machine-checked altogether. Discussion of related and future work shows tha

correctness proof for PDG-based static intraprocedural pr

the extension of our result to interprocedural slicing drel t

gram slicing of single-threaded programs. We then provide a precise interprocedural algorithm frorh] (which includes

machine-checked proof that our slicing-based IFC criterio
— first introduced in 33] and elaborated inlf5 — implies

low-deterministic security. Both proofs are formalized in
Isabelle/HOL R5]. A remarkable feature of the proofs is

declassification) will not only require major additionabpf
efforts, but perhaps also an extension of the traditional no
tion of noninterference.

the separation of language-dependent parts from language2. Slicing Correctness and Noninterference
independent parts, where the latter only deals with funda- 1  gjicing

mental properties of CFGs, PDGs, and slices. This sepa-

ration allows to instantiate the basic proof with different
languages and their semantics, considerably simplifylieg t
correctness proof for yet another language. We first inistant

ated the framework with a simple while language, and then

instantiated it with the Jinjalf] definition of Java bytecode.

Next, we parameterized the framework with respect to the
exact definition of control dependences, since various defi-S

nitions have appeared in the literature.

Thus we had to provide one complex correctness proof
for the framework, and then provide several proofs that the

specific languages and definitions stick to the required-prop
erties and thus can be plugged in. For the while language an
the dependence definitions, this was straightforward, diut f
Jinja bytecode, the required “auxiliary proofs” are abaalf h
as long as the main proof. Hence we eventually obtathed
correctness proofs for, roughly, the effort fb% traditional
machine-checked proofs.

The main technical contributions of our work are:

e an augmentation of our existing framework for dynamic
slicing (see 40Q)) with the first formalization of static
intraprocedural slicing in a proof assistant;

e a correctness proof for static intraprocedural slicing

Given a certain point in a program, a slice collects all state
ments that can influence this point. Slicing proved to be use-
ful for many applications, e.g. debuggingq, testing [7],
reducing communicating automata specificatia2d,[and
software security algorithmslb, 33]. Today, commercial
slicing tools such as Codesurfé[are routinely used for
ome of these tasks.

Most slicing tools are based on the PDG or its interpro-
cedural extension, the system dependence graffhPDG
nodes correspond to the program statements, and connect
them withdata dependencemndcontrol dependencedhe

Gstatic intraprocedural backward slicef a given program

point (i.e. a specific PDG node, called the slicing criteyion

is defined as the set of all nodes on which the point is transi-
tively data or control dependehfThis set is a conservative
approximation of all statements that can influence therglici
criterion. Note that for realistic languages, PDG generati
and precise slicing is absolutely nontrivial. Hundreds &f p
pers on slicing have been published in the last two decades,
for an overview, see Krinke2fl].

2.2 Noninterference
Language-based IFC analyses the program source to dis-

(where correctness is much stronger than for dynamic cover security leaks, and usually aims to establish noninte
slicing), which is independent of a specific language, and ference. Informally, noninterference demands that viariat
independent of a concrete control dependence definition; iy secret variables will not result in variations of publiato

e instantiations of the framework with a simple While as
well as with a quite sophisticated object-oriented byte
code language;

e instantiations of the framework with three different defi-
nitions of control dependence;

e the first proof that slicing-based IFC guarantees low-
deterministic security.

Thus we provide a reliable basis for the verification of sligi
and its applications, e.g. for applications in softwareus&e
Overview of the papeWe will first recapitulate non-
interference, slicing and control dependence in PDGs.
describe in detail the slicing framework formalized in Isa-
belle (available online, se&9]), and explain the machine-
checked correctness proof for static intraproceduraingjic
Based on this result, we formalize low-deterministic secu-
rity in Isabelle and prove that it is guaranteed by our PDG-
based IFC criterion. We proceed to describe the instaotiati
of the framework with 2 language definitions and, indepen-
dently, 3 control dependence definitions, obtaining 6 moof

We

put, thus guaranteeing confidentiality. The most fundaaient
noninterference definition isw-deterministic security

Let H, L be the secret (high) and public (low) confiden-
tiality levels. For a program statemen{c| denotes the state
transformation induced by executimg Two statess, s’ are
low-equivalent (writtens ~ s’) if they coincide on vari-
ables with confidentiality leveL. Low-deterministic secu-
rity then demands thats, s’. s~ s = [c]s =L []s'.
Note that this definition only talks about the initial and fina
program states; low-deterministic security cannot expres
security-relevant properties of intermediate states. eMor
elaborate definitions of noninterference exist, such asipos
bilistic noninterference or probabilistic noninterfecen

Our correctness theorem can informally be stated as fol-
low: If the backward slice of all low variables does not con-
tain high variables, then the low-deterministic securityp
erty is satisfied and hence the program is secure. In fact, it

1 Also for dependence relations that do not constitute a PD5 because
they are not binary, the backward slice is computed this way.



is enough to require that backward slicesfiofl low vari- 3. Dependences in PDGs
ables do not contaimitial high values, ignoring intermedi-
ate states and variables. o
The converse of the theorem does not hold, because allThe data dependence definition is basedDai and Use
implementations of noninterference based on program anal-Sets for every node. All variables defined (e.g. assigned) in
ysis, including our own, are conservative approximations; a statement are in the Def set of the respective node, those
that is, they can generate false alarms. The more precise anwhich are used (e.g. in a calculation) in its Use set. A node
analysis is, the less false alarms it will generate. Tofitate n'is data dependent on a nodgif there is a variable/ in

3.1 Data Dependence

precision, consider the program the Def set ofh which is also in the Use set aof and there
procedure swap (var x, y: integer) { is a CFGpath (sequence of edges) fromto n’ such that the
integer temp = x; x = vy; y = temp; } variable is not defined in any other node on this path.

swap (L1, L2);

swap (H1, H2); 3.2 Control Dependence

It swaps twoL values as well as twél values using the  conirol dependence captures the effect that nodes can in-

same auxiliary method. The program is perfectly secure in f,ence whether the control flow reaches other nodes. The
the sense of noninterference, but a context-insensitiaé an definition of Ferrante et al9] — one of the first formal defi-

ysis will generate a false alarm, as it does not distinguish nitions — is most widespread and is viewed as a standard.
the two calling contexts and thus believes thaf aalue is Nevertheless, this is an area of active research, see Ran-
assigned (i.e. leaked) to @ variable. Furthermore, Some  ganath et al.27] fo a recent overview. Each control depen-
systems require an annotation femp with either /7 or dence definition serves a different purpose, so the choice of
L, which generates another false alarm. Exploiting modem e control dependence affects the semantics of the stice. |
program analysis will avoid such problems, as modern anal- his paper we focus on three different kinds of control de-
ysis and slicing is flow-sensitive, context-sensitive, abel pendences: (istandard control dependenas it has been
je_ct sc_a_nsitive. Still, 100% precision is impossible due¢e d  ; se for years, (iweak control dependenes defined by
cidability problems. Podgurski and Clarke2f], and (iii) weak order dependence
2.3 Outline of correctness proof as defined by Amtoft]]. The first two are binary relations,
so we get program dependence graphs with them, for the
third one, a ternary relation, this does not hold. We chose
these three definitions to illustrate the flexibility of ouoda
ularized proof as they differ in many details.9%.2we show
in more detail how these as well as other possible control de-
pendence definitions can be “plugged” into our framework.
We now look more closely at each of these three depen-
dence relations, state their definitions informally andst|
trate them using the CFG in FijwhereE denotes the entry
andX the exit node. Note that the subgraph built of nogles
to 5 does not describe the control flow of a structured pro-
gram; however, it still is a valid CFG in our framework.

Despite its popularity, few correctness results for sticéx-

ist, e.g. Reps and Yan@®§@| or Amtoft [1]. Both proofs

are based on specific programming languages; hence, algo
rithms using slicing can only be verified for those languages
— a needless restriction as slicing itself is independent of
the underlying language. Furthermore, existing proofy onl
consider one specific definition of control dependence. As
more recent, different control dependence definitions as in
[27] infer different slices, replacing the standard definition
demands a new proof, which is nontrivial.

In order to abstract away from specific languages and
control dependences, we present a formalization of static
intraprocedural slicing in a highly modularized framework
The full proof is available online39]. Following Amtoft [1],
correctness is stated as a weak simulation property betwee
nodes and states in the original and sliced control flow graph
The proof is based on an abstract control flow graph repre-

gentatlon with cert{am structural apq well-formednesgcon __control dependence (SCD) we first need to domina-
tions, but not restricted to a specific language. The proof is _; . . ; Spenket
tion using a unique reachable exit node. A nadpostdom-

also independent of a specific control dependence defipition . . . .
U . inates noden if every path fromn to the exit node contains
but requires it to have one particular property. , N . .
. . . n’. In the table in Figl we list the postdominators for every
Adapting the proof to another language just requires to . . .
. noden, i.e. the set of all nodes which postdominate.
show that the control flow graph of this language can be em-

. -~ Ferrante et al.g] stated that a node’ is control depen-
bedded into the abstract one by fulfilling all necessary con- yent on a noder (written n —qn’), if n’ postdominates

ditions. Likewise, changing the control dependence defini- | nodes on a path in the CFG betweeandn’ but notn.

tion reduces to showing that the one property required holds However, we regard an equivalent definition (see the lemma
Hence future verifications of algorithms basing on this cor- in §5.2) from Wolfe [41] as more suitable, where a node
rectness proof immediately gain a high level of robustness. is control dependent on a nodegif n has at least two suc-

Standard Control Dependence.Usually, a node?’ is re-
rgarded as control dependent on nadeselecting an outgo-

ing edge ofn in the CFG affects whether is reached; e.g.

all nodes in the branches of an if-statement are dependent
on the node representing the if-predicate. To define standar



closed under the respective control dependence. For SCD,
this set is{E, 1, 8}, for WCD however we ge{E, 1, 6, 8}.

Weak Order Dependence.The advantage of weak order
dependence (WOD) is that there is no need for a unique
reachable end node, as is the case in e.g. reactive systems.
Unlike the former two, WOD is not a binary relation, but

a set of triples of nodes. Intuitively, two nodes are weak
order dependent on another node, if the latter node controls

OCrOn®
= G

the order in which the other two nodes are executed (which
@ includes that one of these nodes may never be executed).
postdominators strong postdominators However, the definition is a bit more Complicated: we say
E {E} {E} that two nodesn and.nz_are wea}k order dependeqt on node
1 {1,9} {1} n (all three podes dlstlnqt), Wl'ltt.Ef.'l'—>WOd.{71,n2, if (i) n
9 {2,5,9} {2,5,9} can r_eachn in _the CFG Wlth_gut visiting,, (i) n can reaph
3 {359} {359} ny without visiting n; and (|||)_ there exists an immediate
4 {4,5,9} {4,5,9} successom of n, such that_ either (ajn can reachn; and
5 {59} {59} all paths fromm to n. containn, or (b) m can reach, and
6 {6,8,9} {6} all pgths fromm to n, containns,. .
7 {6,7,8,9} {6,7} ~ Since there are many WOD triples for the e>.<amplt.e CFG
8 {8,9} {8,9} in Fig. 1, we present them as a set of node pairs which are
9 {9} {9} weak order dependent on the node preceding this set, leaving
out all tuples where the two components are swapped or
Figure 1. Example CFG and postdominators where one component is the exit node:
1:{(2,6), (2,7), (2,8), (2,9), (3,6), (3, 7), (3, 8), (3,9),
cessors, one postdominatedrdywhile the other one is not. (4, 6), (4,7), (4,8), 4,9), (5,6), (5,7), (5,8), (5,9),
Thus, the example in Fid. implies the following SCDs: (6,9), (7,9), (8,9)}, 3:{(4,5), (4,9)},
E —scql, E —5cd9: 1 —scd2, 1 —scad, 1 — 5046, 2 {(31 4)1 (3, 5)1 (31 9)1 (41 5)1 (41 9)}1 6: {(71 8)1 (77 9)}
I —sca8, 2 —scd3, 2 —scd4 3 —scd4 6 —scd7 While the number of node triples that are weak order de-

Weak Control Dependence.Nonterminating loops prevent ~ Pendent in this example is huge compared to the cardinality
nodes after the loop from being executed, a fact that cannotOf the former two dependence relations, sets closed under
be covered with SCD. To capture this effect, control depen- WOD® may be smaller. E.g. the smallest set which contains
dence edges between those nodes and the loop predicate afe@nd is closed under WOD consists only of the elengent
often desired; this is the concept of weak control depenglenc because its WOD predecessob( 6) may only be in this set
(WCD). It uses the notion aftrong postdominatignwhere  if the other matching WOD successoriof2, 3, 4, 5, or9) or

no loopg on any path between a node and its postdominator 6 (7) was in it.

are allowed. Otherwise, there would be an infinite path al-

ways running through the loop but never reaching the post-4. The Framework

dominator. Therefore, we define thaltstrongly postdomi-  To provide a framework which allows us to formalize and
natesn if n’ postdominates and there is no loop on any  prove properties of slicing regardless of the actual progra
path betweem andn’. ming language, we need a structure which includes an effec-

WCD itself is then defined analogously to standard con- 5| representation of the program and comprises all infor-
ggls %%ﬁiﬂizgﬁe’\)\%swﬁ%acmg pgf&dgﬂ;ns\lo;k V(‘:’g?l t%rlon mation essential for slicing: the control flow graph. Thus; o
. —wed . . . . . ..
dependent on. In Fig. 1 the following holdS:E — ey 1, starting pom_t for t_he formallz_at|oln is the deﬁmuon_qf ama
stract CFG (i.e. without considering features specific & ¢
I —wed2 1 —owed 5 1 —wea 6,1 —wed 9,2 —wed 3, tain languages). By doing so we ensure that our framework
2 —wedh 3 —wed 4 6 —wed 7.6 —wed 8, 6 —wea 9 . guages). By going ¢ na
is as generic as possible since all proofs in it hold for every
Note thats and9 now depend on other nodes than before |5nq,age whose CFG conforms to this abstract CFG. The
and that due to the loop at nodgboth nodes immediately 3 mework is entirely formalized in the proof assistant Isa
after this loop (i.e8 and9) are now dependent an Asan  qje/HOL 25|, including all lemmas and theorems, i.e. ev-

example where this and the previous definition of control g o0t is machine-checked. Definitions and lemmas taken
dependence behave differently, regard the set of all nodest,g, |sabelle are writtesmall and slanted

from which 8 is transitively control dependent, i.e. the set

3 A set is closed under WOD if for any two nodes in this set thatveeak
2 Statically, we must assume that any loop may be nonterminating. order dependent on a nodenis also in the set.




localeCFG =
fixesvalid-edge: ‘edge=- bool
fixessrc:: ‘edge= 'node
fixestrg :: ‘'edge= 'node
fixeskind :: ‘'edge= ‘state edge-kind
fixesEntry :: ‘node — written (-Entry-)
assume<Entry-target valid-edge a=> trg a # (-Entry-)
and no-multi-edges|valid-edge avalid-edge &

4.1 Notation

Typesinclude the basic types of truth values, natural num-
bers and integers, which are calleabl nat andint respec-
tively. The space of total functions is denoted by Type
variables are writtera, ‘b, etc. t::7 means that the HOL
(Higher Order Logi¢ termt has HOL typer.

Sets(type ‘a se) follow the usual mathematical conven-
tion. Functioncardreturns the cardinality of a finite sefists srca=srcatrga=trga] —a=a’
(type ‘a list) come with the empty lisf, the infix constructor  |gcale CEGExit= CFG +
-, the infix @ that concatenates two lists, and the conversion fixesExit :: 'node — written (-Exit-)
function setfrom lists to sets. Variable names ending in “s”  assumes£xit-source valid-edge a=> src a# (-Exit-)
usually stand for lists. If < |xs| thenxs;; denotes the-th and Entry-Exit-edge3 a. valid-edge aA src a= (-Entry-) A
element ofxs. The functionmap which applies a function to trg a = (-Exit-) A kind a= (As. False),,
every element in a list, is also available.

[Pi;...; P,] = Q abbreviate?, — (... = (P, =
Q)...) and is often displayed as inference rule.

Figure 2. Locale defining the structure of the abstract CFG

type variabl€state updating the current state with a function
f::'state = ’state written f}f, or assuring that a predicate
Locales in Isabelled provide the means to modularize Q::'state= bool in the current state is fulfilled, writtefQ) ...
proofs. Within a locale, one can introdudi) definitions ~ TO traverse edges in a stajewe define functiontransferto

and functions by stating their signature which may also con- Update the state accordingly to the edge kind, and function
tain type variables. To impose certain constraints on thesePredto check that the respective edge kind predicate holds:
definitions one has tassumehat the respective statement
holds. When defining new functions or proving lemmas
within the locale one can then use these fixed definitions
and the assumed constraints. One or multiple locales can
also be extended by a new locale with additional definitions
and constraints. All the definitions and lemmas proved in the

4.2 Locales in Isabelle

transferff s
predfifs

fs,
True,

transfer(Q),,s = s
pred(Q)y s = Qs

We assume ar-Entry-) node, which may not have in-
coming edges. Also we do not allow multi-edges, i.e. if the
source and target nodes of two valid edges coincide, so do

base locales are available in the extended locale.

As a short example, consider this definition of semi-
groups where we define an operatgrwhose signature de-
pends on the type variable, and state that this operator is
associative by the fact namedsoc Defining a new locale
semi-commwhich extendsemiand requires a commutative
operator is also straightforward:

localesemi= fixesprod:: a= ‘a= ‘a —written®
assumesassoc (XOYy) ©z=x0 (y© 2

localesemi-comm= semi+ assumeLommx®Oy=Yy® X

4.3 The Abstract Control Flow Graph

Fig. 2 depicts the definition of a CFG as a locale, on which
we will take a closer look in the following. The abstract
CFG consists of nodes of tygeodeand edges of typ&dge
with an edgea being in the set of CFG edges if it fulfills
some propertyalid-edge aa parameter of the instantiating
language. A node is in the node set of a CFG if it fulfills
the propertyvalid-node n which is not assumed but defined
in the locale, stating that is the source or target node of
a valid-edge valid-node n= 3 a. valid-edge an (n = src aV

n = trg a). Functionssrg trg andkind determine the source

the two edges.

Edges can also be combined to paths:as—x n’ denotes
that noden can reach’ via edgesas:’edge list These paths
are inductively defined using these rules:

valid-node n
n—[—=n

n" —as—xn' valid-edge a srcan trga=n"

n—aas—xn

We definesrcs trgs and kinds as mappings of the respec-
tive functions to edge lists using standard functioan We
also lift transferandpredto lists of edge kinds.

If a uniqgue end node is required, we assume its exis-
tence in localeCFGExit call it (-Exit-) and allow only in-
coming edges. We also assume a special edge (fréntry-)
to (-Exit-) of kind (s. Falsg ,, a predicate that can never be
fulfilled. It is needed for control dependences based on post
domination to behave correctly.

After having defined the structural properties of the CFG,
we furthermore need: (i) some well-formedness properties
for its edges, (ii) theDef and Use sets for the valid nodes,
which collect the defined and used variables in this node,
respectively, and (iii) a functiostate-val s Vreturning the

node, target node and edge kind of an edge, respectivelyvalue currently stored in variabl in states. Variables (or
Edges carry semantic information, the edge kind states themore generally said: locations) are of typear, values of
action taken when traversing this edge. We have two edgetype ‘val. The formalization as locales is shown in Fg&).

kinds of type’state edge-kindooth parameterized with a state

in words:



locale CFG-wf = CFG +

fixesDef :: 'node=- var set
fixesUse:: 'node= 'var set
fixesstate-val:: ‘state= 'var = ‘val

assumegEntry-empty Def (-Entry-) = {} A Use(-Entry-) = {}

and no-Def-equal [valid-edge aV ¢ Def (src )]
= state-val(transfer(kind a) s) V = state-val s V
and transfer-only-Use[valid-edge a
V'V € Use(src a). state-val s /= state-val $V]
= V'V € Def (src a). state-val(transfer(kind a) s)
state-val(transfer(kind a) s’)
and Uses-pred-equalvalid-edge apred (kind @) s;
V'V € Use(src a). state-val s /= state-val $V]
= pred (kind @ s’

\%
\%

Correctness Property:

If an observable move is possible in the original graph, then
an observable move is also possible in the sliced graph, if
the respective initial nodes and states and also the negulti
nodes and states of both moves are weakly similar.

This correctness property for static slicing is stronganth
the one given in40Q] for dynamic slicing, as it does not de-
pend on specific input such as program runs or input states.
To prove this correctness property, Amtoft defines for every
node in a CFG its set of observable nodes in a given back-
ward slice. The actual slicing is done by rewriting a given
code map to return no-op statements whenever the respec-

tive node is not in the backward slice. So the “sliced graph”
is just the original graph (as no nodes or edges are removed),
but the effects of traversing nodes not in the backward slice
Figure 3. Well-formedness properties of the abstract CFG &€ eliminated. _ _ _

Even though Amtoft restricts his work to a While lan-
guage and proves the correctness of slicing just for weak
order dependence, this work is ideal to be included in our
framework as (i) his code map conforms to applying the
functionskind and transferto the corresponding CFG edges

i t tat Il variables in thee set of th in our framework and (ii) the characteristics of weak or-

1 wo sta (le a%ree 03 a \:ﬁ”a ?ts mt ese Oth' € d der dependence are just needed in exactly one lemma where
Source node ot an edge, then after traversing this e geAmtoftproves that the observable set for any node is at most
the two states agree on all variables in thef set of this

; . . 8 . a singleton; if one can show this property for another con-
node; i.e. different values in the variables not in thse 9 broperty

i tinfl th I fth bles i trol dependence, the whole proof still holds for this new
setcannotin uence_ N \{a ues ot the variables | control dependence. Thus we go beyond Amtoft's work as
set after the semantic action,

i 1 tat | variables in thee set of th we are able to eliminate the concrete language as well as
It two states agree on all variables In thise Set of the the concrete control dependence definition; the next sectio

source r:o;je _(:f_a plred|cszc§ e dt?]e ar:rc]i this predicate is Va“drephrases the formalization of the correctness proof fogus
in one state, it is also valid in the other one. on the latter abstraction.

locale CFGEXxit-wf = CFGEXxit+ CFG-wf +
assumesExit-empty Def (-Exit-) = {} A Use(-Exit-) = {}

e Def andUsesets of(-Entry-) (and(-Exit-), if defined) are
empty,

e traversing an edge leaves all variables which are not de-
fined in the source node of this edge unchanged,

If we also have an operational semantics of the language
— where(c,s) = (c¢’,s') means that evaluating statemerit
states results in a final statemet and final states’ — and To state correctness for static slicing we need: (i) a formal
a mapping from a node to its corresponding statemeat ization of a statically sliced graph, (ii) the notion of obse
via n identifies ¢ we have another well-formedness property able moves in the original and sliced graph and (iii) a weak
(calledsemantically well-formed simulation between start and end points of these moves.

5.1 The Correctness Proof

nidentifies ¢ (c,s) = (c's)) The statically sliced graph. A static (backward) slice for
In"as n —as—x n’ A transfers(kinds ag s = s'A a noden. (the slicing node) determines which nodes are

preds(kinds ag s A n' identifies ¢ in the sliced graph. Basically, every node that potentially

This property states that if the complete evaluation okstat  Influences control or data flow te. is in the backward slice
mentcin statesresults in a state’and noden correspondsto ~ Of Ne, SO the slice is defined in terms of data and control
statement, then there is a path in the CFG beginning &b dependence. Data dependence is defined as ste§8dlin

a noden’ that corresponds to the final statemenon which, ninfluences Vinh=3a as. V € DefnA V € Userd A
takings as initial state, all predicates in predicate edges hold n—a-as—x*n’' A (Vn"eset(srcs ay. vV ¢ Defn'’’)

and the traversal of the path edge kinds also yields state ¢ apstract from a concrete control dependence definition
. C in the slice, we use a locale nam&hckwardSlice (see

5. Static Intraprocedural Slicing is Correct Fig. 4) to fix a function from a node to a set of nodes called
We base our work on the proof by Amtoft][ who defines backward-slicewith properties that guarantee that the result-
the correctness of static intraprocedural slicing aseak ing node sets are indeed backward slices of the parameter
simulation propertyof the observable behavior of the origi- node. Hence we formulate three assumptions: (i) every node
nal and the sliced program, regarding the CFG as a labeledis in its ownbackward-slice(ii) if a noden’ is in backward-slice
transition system (for details s€B.1): n. and this node is data dependent on nadthenn must




localeBackwardSlice= /CFG-Wf /+ The weak simulation. We define two (node,state) tuples to
fixesbackward-slice: ‘node=- node set _ be weakly similar (i.e. in relatioms n.), if both nodes are
assumesefl: valid-node n = n. € backward-slice p valid, the observable sets of both nodeséekward-slice p

and dd-closed [’ € backward-slice g, n influences V in f are equal, and the values of all relevant variables are equal
— n € backward-slice n in both states:

and obs-singletonvalid-node n

A . !
= card(obs n(backward-slice p)) < 1 valid-noden  valid-node'n
obs n(backward-slice p) = obs ri (backward-slice p)
Figure 4. Locale abstracting from a specific backward slice V'V € vn. n. state-val s V= state-val §V

((n,9),(n',s)) e WS n.

also be inbackward-slice p (i.e. backward-slice p is closed Relevant variabless n. n are those variables that are used in

under data dependence), and (jii) the set of observablesnode SOme node ibackward-slice , reachable frorm via a CFG

in backward-slice pis for every valid node at most a single- Path, and not redefined on this path. Simply put, only the
ton. Only this last assumptiosbs-singletoris influenced by ~ values of the relevant variables of a node can influence other

the control dependence used in the slice. nodes in the slice. Thus, at some nagestates that have

The observable set of nodein setS contains all nodes  €qual values in the relevant variables mfire observably

n’in S that can be reached via a CFG path frorsuch that ~ €quivalent for the slice; combined with the equal observabl
no other node on this path is & sets two (node,state) configuration tuples are in the weak

simulation if they are not distinguishable by the slice.
i Using this weak simulation, we can prove the theorem of
neobsnSs the correctness of static intraprocedural slicing by shgwi

So every node being itself in ssthas the singleton observ-  that the correctness property holds 6 n.:

able set only contalnlrjg itself. Using this definition, weca . THEOREM 1. Correctness of Static Intraprocedural Slicing:
say that all nodes having the same set of observable nodes in

/

n—as—xn' V nxeset(srcs ag. nx ¢ S nes

setbackward-slice p— being at most a singleton by assump- ((n1,81),(n2,52)) € WS ne
tion from localeBackwardSlice- can be regarded as "equal” ne.kind = (n,s1) =as= (m’,s1)
from the point of view of the slicing. Iny's'as. ((m',s17),(n2’,s2")) € WS n. A
Now, we define the sliced graph for using itsbackward- ne,slice-kind n. = (n2,s2) =as= (n2',s2")

slice Instead of really eliminating nodes notbackward-slice Proof. The proof uses two lemmas:(ifi,,s:) and (n,s,) are

n. from the _original graph, Wejust_eliminate all e_ffects of thg weakly similar and(n,,s;) makes (i) arbitraryr-moves in
e(?iges. leaving those_ nodes_. To this (?n_d we define a functiony, o original graph, the resulting tuple, ’,s. ) is still weakly
slice-kind parameterlzed with the slicing noga, which, similar to (ns,s.), and (ii) a—a— move in the original graph
analogously t&ind, maps edges to the effect this edge has on (ni',s."), (nz,s;) can make an observable move in the

the state, i.e. itsdge-kindThe rglgs are simple: if the SOUrce  gjiced graph, resulting in the tuplen, ’,(transfer(slice-kind
node of the pons_ldered edge |sf1ackv'vard-_shce n, slice-kind n. a) s2)) which is weakly similar tan, s, "). O

n. behaves just lik&ind. Otherwise slice-kind n. returns the

respective no-op for this edgejd for update,(\s. True),, With this correctness property, we can infer another the-
or (As. Falsg,, for predicate edges. The rules defining this orem, which is very similar to the correctness property of
operation guarantee that only one predicate edge leaving adynamic slicing as stated id{):

node is set tqAs. True), a_II others are set to)‘s'_ F_als@ﬁ THEOREM 2. Correctness of Slicing with Paths:
thus we make sure not to introduce nondeterminism.

n—as—x*n' preds(kinds ag s

Moves in the graphs. Moves in the original and sliced Jad. n—as—= n' A preds(slice-kinds fias) s A

graph are relations between (node,state) tuples. A move tra (VV € Use . state-val(transfers(slice-kinds fias) s) V =

verses edga whose source nodeeither is inbackward-slice state-val(transfers(kinds a3 s) V) A

n. (writtenn,,f + (n,s) —a— (n’,s)) or is not (called--move, slice-edges has— slice-edges has

writtenn..f - (n,s) —a— - (n',s’)), reachinga’s target noden’

and states’ = transfer(f s). The parametef is replaced with  Take a pattasfrom n to slicing noden’ s.t. all predicates on

kind if we traverse the original, witlslice-kind n. if we tra- this path are fulfilled using as initial state. Then there is

verse the sliced graph of. An observable move then con- 3 pathas in the sliced graph whose predicates are fulfilled

sists of arbitrary many-moves Eas= is the reflexive tran-  ysing initial states, and the values of the variables usedin

sitive closure of-a—), followed by a-a— move: are the same, no matter if we traveesén the original oras

in the sliced graph starting in initial stateslice-edges has
filters from listasall edges whose source node is not in the

ne.f = (n,s) =as@ [a= (n",s") backward slice. Henceslice-edges nas= slice-edges nas

1 Jr

ne,f (n,s) =as=, (n',s) ne,f(n',s) —a— (n",s")




localePDG = CFGEXit-wf + locale Postdominatior= CFGEXit +
fixescontrol-dependence 'node=- 'node=- bool assumesEntry-path valid-node n—- 3 as (-Entry-) —as—x n
— written - controls - and Exit-path: valid-node n—- 3 as n —as—x (-EXxit-)
assumesExit-not-cdepn controls f = n’ # (-Exit-)
and control-dependence-path
n controls i=>3as n —as—* N’ A as# ||

locale StrongPostdominatios Postdominationt
assumessuccessor-set-finitevalid-node n
= finite {n’. 3a&. valid-edge & A sourcenode ‘a= n A
targetnode a= n'}

Figure 5. Locale describing a PDG
Figure 6. Locale with the constraints for postdomination
states that pathasandas visit the same nodes in the back- and strong postdomination

ward slice ofn. in the same order; thugs in the sliced

graph matcheasin the original graph. Standard Control DependenceStandard control depen-
For semantically well-formed CFGs, we can lift this the- dence (SCD) bases on the notion of postdomination. As

orem from graphs to the semantics. Instead of a path in thepostd(_)mlnanon requires as further constraints that_ every

original graph, we assume a semantic evaluatios) = node is reachable f_ror(}Entry-) and can reacl-Exit-) via

(¢’,s) and identify the nodes andn’ with ¢ and¢’, respec- CFG paths, we define a new locabestdominationextend-

tively. The conclusion is pretty much the same as before: ~ INg localeCFGEXxit (as we need at+Exit-) node) with these
assumptions, see Fif. Then, postdomination is defined as:

THEOREM 3. Correctness of Slicing Semantically:
g y n’ postdominates e valid-node nA valid-node A

n identifies ¢ {(c,s) = (c',s') (Vas n —as—x (-Exit-) — n’ € set(srcs a3)
an’as n —as—x* n' A preds(slice-kinds has) s A n’ identifies ¢ We define standard control dependence a§3i2 and
(V V € Use f. state-val(transfers(slice-kinds nas) s) V = prove that this definition is equivalent to the widely used
state-val §V) definition from P]:

scdnri=3Jad as n’' ¢ sef(srcs(a-as)) A n—aas—xn' A
src a= n A n’ postdominatestrg a) A valid-edge an

5.2 Applying Control Dependences srcd = n A - n’ postdominatestrg &)
T_he correctnes§ proof in the previous section was parame-| tyiva 1. SCD Definition Variant (Ferrante et al.):
trized by a function from nodes to node sets cabbadkward-
sliceand certain constraints. In this section we show how one S¢d n A= (3as n —as—+ n’ A n# n’ A= n’ postdominates n
can use the three different control dependences presented i ' & set(srcs ag A (V n"eset(trgs ag. n’ postdominates'f))
§3.2to formalize the respective backward slice and that each
of these slices is a valid parameter of BackwardSlicelo-
cale, i.e it fulfills the assumptions made in the locale. Show
ing the correctness property for any further control depen- THEOREM4. Correctness Proof for SCD:
dences is analogously done by proving these assumptionsThe standard control dependensed is a valid control
so no insight of the concrete correctness proof formabrati  dependence for localeDG Using scd the resulting slice
is needed. PDG-BSis a valid backward slice for localackwardSlice

To verify that the correctness proof holds for this control
dependence, we have to show the following theorem:

Program Dependence Graph.For binary control depen- To prove this theorem, we had to verify thatd fulfills
dences, the backward slice is defined using a program de-all assumptions in localeDG concerningcontrol-dependence
pendence graph. Thus, we use a locale defining a PDG (seand then that the PDG backward slice definitienG-BS
Fig.5) as “middle layer” between backward slice and control meets all the constraints imposed lmatkward-slicén locale
dependence definition. We extend the CFG well-formedness BackwardSlicein particular that the set of observable nodes
locale stipulating(-Exit-), fix a binary control dependence in PDG-BS n is at most a singleton for every valid node.
relation and assume th&Exit-) is not control dependent on
anything and that there exists a nonempty CFG path between?/eak Control Dependence.Weak control dependence

control dependent nodes. Then we define the PDG’s controI(WCD) IS telrm|nat|o.n sensitive, thus we need a s_tror}ger
and data flow edges via: postdomination notion, namely strong postdomination.

, Strong postdomination also has a further requirement, no
If n controls ri thenn — .4 n o
If ninfluences V in Athenn —V .’ edge may have infinitely many tgrget nodes, hence we use
dd a localeStrongPostdominatioextending localé’ostdomination

PDG paths are the reflexive transitive closure of PDG edgesas depicted in Figs. As an infinite path (e.g. through a non-
and denotedh — 4+ n’. The backward slice of node. is terminating loop) exists if there is a finite path longer than
then defined straightforward via k for any fixedk, reachingn’ on any path longer than a cer-
tain k means that there is no loop between the two nodes.

PDG-BS n. = if valid-node n then {n’| n’ —4x* n.} else ) S .
Therefore, we define strong postdomination via:



n’ strongly-postdominates & n’ postdominates m
(3k > 1.Vas nx n —as—x nx A length as> k
— n’ € sel(srcs a3)

Then the definition of WCD and the correctness proof
work analogously to standard control dependence:

wednri=3ad as n' ¢ set(srcs aas) A n —a-as—x n' A
src a= n A n’ strongly-postdominate@rg a) A valid-edge an
src d = n A — n’ strongly-postdominate@rg &)

THEOREM5. Correctness Proof for WCD:

The weak control dependenaeed is a valid control depen-
dence for locale®DG. Usingwcd the resulting slice°DG-BS
is a valid backward slice for localBackwardSlice

Weak Order Dependence.The definition of weak order
dependence (WOD) neither needs a notion of an exit node
nor any further assumptions on the CFG. Thus, we can
include its definition in thecFG locale:
wodnnm Ny =Ny # N2 A
(Fasi. n —asi—x N1 A ny ¢ set(srcs as)) A
(Fas. n —as,—* n2 A Ny ¢ set(srcs as)) A
(F a valid-edge a\ n = src an
((3as ' trga—as '—=ni A
(Vas. (trg a—as—x* ny) — ny € set(srcs ad)) v
(Fas’ trga—as’'—x na A
(Vas. (trg a—as—x* n) — ne € setsrcs a$))))
As weak order dependence is not a binary relation, we
cannot use the’DG locale to provide a backward slice.
Hence, we have to define its backward slice from the scratch:

valid-node n n’influences Vin A n" € WOD-BS n.
n. € WOD-BS n. n’ € WOD-BS n.
wodrinin, n, € WOD-BSn n,c WOD-BSn.

n’ € WOD-BS n.

To apply the correctness proof to weak order dependence,

we need to instantiate loca®ackwardSlice thus the proof
has to verify thaWOD-BS meets its assumptions:

THEOREM 6. Correctness Proof for WOD:
The setWOD-BS is a valid backward slice for localBack-
wardSlice

The main part of this proof is again to show that the set
of observable nodes iIWOD-BS n. is at most a singleton.

6. Low-Deterministic Security with Slicing

The correctness results from the previous section are deede
in proving that low-deterministic security and slicing com
ply. Low-deterministic security, a special case of a nonin-
terference definition using partial equivalence relatiqes)
[30], partitions variables in two security leveld,for secret
and L for public data. Basically, a program that is nonin-
terferent w.r.t. low-deterministic security has to fulfilhe
basic property: executing the program in two differentahit
states that may differ in the values of theivariables yields

locale LowDeterministicGraph= BackwardSlicet
fixesH :: 'varset fixesL :: ‘var set
fixesHigh :: ‘node — written (-High-)
fixesLow:: 'node — written (-Low-)
assumedHighLowDistinct H N L = {}
and HighLowUNIV: H U L = UNIV
and Entry-edge-Exit-or-High[valid-edge asrc a= (-Entry-)]
= trg a= (-Exit-) v trg a = (-High-)
and High-target-Entry-edged a. valid-edge aA
src a= (-Entry-) A trg a = (-High-) A kind a= (As. True) ,
and Entry-predecessor-of-High
[valid-edge atrg a = (-High-)] = src a= (-Entry-)
and Exit-edge-Entry-or-Low[valid-edge atrg a = (-Exit-)]
— src a= (-Entry-) v src a= (-Low-)
and Low-source-Exit-edged a. valid-edge aA
src a= (-Low-) A trg a = (-Exit-) A kind a= (As. True),,
and Exit-successor-of-Low
[valid-edge asrc a= (-Low-)] = trg a = (-Exit-)
and DefHigh Def (-High-) = H
and UseHigh Use(-High-) = H
and UseLow Use(-Low-) = L
and Low-neq-Exit(-Low-) # (-

jé Exit-)

Figure 7. Locale fixing the assumptions needed for low-
deterministic security using slicing

two final states that again only differ in the values of their
variables; thus the values of thevariables did not influence
those of the. -variables. We will now show how slicing can
guarentee that a program is low-deterministic seture

Assumptions. Every per-based approach implies certain
assumptions: (i) alH-variables are defined at the beginning
of the program, (ii) allL-variables observed (or used in our
terms) at the end and (iii) every variable is eithteror L.
Thus, we have to extend the prerequisites of our framework
accordingly. To this end, we define a new locatevDeter-
ministicGraph(see Fig7) which extends the localBackward-
Slice containing the correctness results.

First, we fix two variable set$d and L. Rules High-
LowDistinct and HighLowUNIV guarantee that these sets
partition the set of all variables. Second, we introduce
two nodes,(-High-) and (-Low-). (-High-) is the node di-
rectly after(-Entry-), reached via a no-op edge, but before
any other node in the graph. Ruleatry-edge-Exit-or-High
Entry-predecessor-of-Highand High-target-Entry-edgemake
sure this holds. Analogously, rulexit-edge-Entry-or-Low
Exit-successor-of-Lowand Low-source-Exit-edge guarantee
that (-Low-) is the node directly beforéExit-). Remember
that (-Entry-) and (-Exit-) may neither define nor use vari-
ables. Yet, requiring-High-) to define allH- and (-Low-) to
use allL-variables (viaDefHigh and UseLow), we can still
fulfill the per assumptions mentioned befotgseHigh and
Low-neg-Exitare additional conditions necessary below.

4This extension of the framework is available onliretp://pp.
info.uni-karlsruhe.de/ ~ lohner/Slicing/LDS/


http://pp.info.uni-karlsruhe.de/~lohner/Slicing/LDS/
http://pp.info.uni-karlsruhe.de/~lohner/Slicing/LDS/

Low equivalence. States that are equal in public values, the trimmed paths. So the values of all variables that are
i.e. those inL-variables, are non-distinguishable for an ex- used in(-Low-) are equal, regardless if we traversed the
ternal observerLow equivalenceroups those states in an original or the sliced graph; this holds for both trimmed
equivalence class using the relation: paths. Using lemma2 and 3 we know that these values
s~y s'=VVcL. state-val s V= state-val §V also agree in the states after traversing both paths in the
sliced graph. Thus, the values ¢fLow-)’'s used variables
also agree in the final states after traversing the paths @ th
original graph. Since traversing the edges betwédiow-)
, , ) and (-Exit-) has no influence on the states, we know that
s~ s (High-) ¢ backward-slice p the same holds for the final states after executing the whole
Y Vervn. (-Entry-). state-val s V= state-val 5V program. With the fact that the variables usedihow-) are
Another lemma regards the values of the variables used inexactly theL-variables we obtain the conclusion.

(-Low-) after traversing paths in the sliced graph. Assume we | . geterministic security is usually defined via the se-
have two pathesandas betweem and(-Low-). Both paths - yanics of a program. We assume that our CFG is semanti-
fulfill all their predicates in the sliced graph ofL.ow-) with cally well-formed. Letn be the immediate successor node of
initial statess ands’, respectlyely. These two states agree on (_piun - since(-Entry) and(-High-) are mere auxiliary nodes
the vaIues'of all relevant varlables_ oiin this sliced graph. without a corresponding statement, this is the node thassta
Then the final states after traversiagandas agree in the o programfinal cis a property that checks if statemeris

We can easily prove that {fHigh-) is not in the backward
slice of n., the relevant variables dfentry-) in the sliced
graph have equal values for two low-equivalent states:

LEMMA 2.

values of the used variables (irL.ow-): fully evaluated. We assume that the node corresponding to
LEMMA 3. o a final statement is the immediate predecessaf-lafw-).
n —as—x (-Low-) preds(slice-kinds(-Low-) as) s

Then, we can lift low-deterministic correctness as follows

THEOREM8 (Low-Deterministic Security Semantically).
S1 R~ S (-High-) ¢ backward-slicg -Low-) final ¢
nidentifiesc  (c,s1) = (¢’,s1") (€,52) = (c;s2")

n —as—x (-Low-) preds(slice-kinds(-Low-) as) s
V Verv (-Low-) n. state-val s V= state-val §V

V'V € Use(-Low-). state-val(transfers(slice-kinds(-Low-) as) s) V =
state-val(transfers(slice-kinds(-Low-) as) s') V

si'~p sy’

Low-deterministic security. Assume we have a program

and two low equivalent initial states~,, s'. Executing the

program results in two final states that are not low equiva-

lent. Yet, a different value in a-variable in the final states ~ CFG Lifting. A CFG constructed for a language would not

can only occur due to a different value inHavariable in naturally fulfill the properties assumed in Fig. However,

the initial states. Hence, we know that at least one inktial some small adjustments can be sufficient to tackle this prob-

variable influenced a result-variable. As(-Low-) uses all ~ lem. Assume we have a CFG that defines with the help of

L-variables and-High-) defines allH-variables, there is a  a control dependence definition a PDG. We reldk@htry-)

path in the PDG between those nodes due to this interfer-as(-High-), (-Exit-) as(-Low-) and remove the edge between

ence. Thus, the backward slice(efow-) contains(-High-). these nodes. Moreover we add a new entry and exit node, add
A low-deterministic secure program executed in low no-op edges between those two, between the new entry and

equivalent initial states results yields low equivalentfin  the old one and between the old exit and the new one. The

states. The final state of executing a program with an ini- Def and Usesets are only redefined forHigh-) and (-Low-)

tial states is transfers(kinds ag s, if asis the path between  so that they fulfill the properties needed. This adjusted CFG

(-Entry) and(-Exit-) in the CFG angbreds(kinds ag s holds. together with a partitioning of the variablesfhandL then

Following the argumentation in the last paragraph, asgurin fulfills the assumptions of localeowDeterministicGraph

that the backward slice gfLow-) does not contair-High-)

should suffice in proving low-deterministic security of @pr 7. Instantiation with Languages

gram. Hence, this correctness theorem is stated as follows:gxpoiting the above results, proving slicing correct faya

Proof. This theorem is basically a corollary of theorém
and the semantically well-formedness definitian.

THEOREM 7 (Low-Deterministic Security with Paths). language just boils down to formalizing a CFG for this
s~r s (-High-) ¢ backward-slice-Low-) language and proving that this formalization fulfills aleth
(-Entry) —as—« (-Exit)  preds(kindsag s needed properties. Thus the correctness proof of static sli

(-Entry) —as—x (-Exit:) _preds(kinds as) s ing for an instantiated language requires no insight inéo th
transfers(kinds a§ s ~y, transfers(kinds as) s' slicing definitions or proof details; anyone familiar withrf
Proof. The trick to prove this theorem is to argue in malizing languages can reprove it for a wide variety of lan-
the sliced graph of(-Low-). First, we split the(-Entry-)— guages (imperative and object-oriented).
(-Exit-) paths into paths froni-Entry-) to (-Low-) and the In the following we show how to instantiate the frame-

no-op edges betweérn ow-) and (-Exit-). We now apply the  work with two different programming languages, a simple
correctness results for slicing from the previous section t While language (without procedures) and Jinja VM byte



(instrs-of P C Mpg € {LOAD idx, STORE idx, PUSH val, POP, IADD, CMPEQ}
f = (As. exec-instr(instrs-of P C M ,q P s(length cg (stkLength P C M p) valid-callstack(P,C0,Main) ((C, M, pc)-cs)

(P,C0,Main) + (- (C, M, pc)-cs ) —tf— (- (C, M, Suc pg-cs -

Figure 8. Example of Jinja CFG edges for simple instructions

code. Whereas static slicing with weak order dependence isgiven method, then proceeds as determined by the current
correct for both languages (as we do not need additional as-instruction’s control flow. The edges are drawn accordingly
sumptions), for the correctness of slicing using standadd a taking exception handler delegation and dynamic dispatch
weak control dependence the respective conditions (as de-into account. Fig8 shows a slightly simplified version of an
scribed in§5.2) are shown to be valid. edge formalization, where the functierec-instrmodels the

state change anwhlid-callstackensures some required well-
While.  This simple While language features integer and formedness properties of the current program point. As you
boolean variables, conditionals and while loops. We alyead ¢an see, this is the rule for non-branching instructions, Ye
showed in 0] how this language can be embedded in the some instructions can only be modeled with multiple edges
framework to perform dynamic slicing. Note that the locales (according to54.3 edges model either a predicate or an up-
describing the abstract trace CFG there and the abstract CFGyate put not both), first predicate ones to determine the tar-
here are the same. This holds as for languages without pro-get program point, each followed by one edge updating the
cedures these CFGs coincide since the question of methodtate accordingly; hence we need additional CFG nodes in
inlining does not show up. Hence, we can refer to the details petween. A typical example for such a situation is method
of the implementation in40] and deduce that all the results  jnyocation, where first the dispatch target is determined be
shown in this paper hold for While. fore the appropriate state change is made.

By the construction rules of the CFG we can prove that  Next, the localecFG-wf has to be instantiated. The prob-
every node is reachable from the entry node and can reachem nere is that Jinja byte code uses a stack machine, thus
the unique exit node, and that every node has a finite numberkeeping track of the variables is a bit tricky. For example, a
of successors (due to the fact that without recursive proce-program could IDAD a value onto the stack, then do some
dures the number of nodes in the graph is finite). Thus we gtack-involving computation where this variable is notdjse
can guarantee the correctness of static slicing for standar 5ng thereafter 8oRE the value again; then therBRE must
and weak control dependence. be data dependent on the correspondingi, which means
the same variable must be in th®AD’s Def set and in the
STORE'S Useset. Therefore, we say every stack position cor-
responds to a variable (counted from bottom up); also the
local variables are identified through their index posision
Additionally, to distinguish variables of different mettg
stack and local variables are labeled with the appropraite ¢
depth available from the CFG node. The heap is treated as
a whole and thus instructions are regarded either to define
or use the complete heap or to not define and use it at all.
This is a conservative approximation, but the properties of
CFG-wf are not violated. One could gain precision here by
using points-to analysis.

The tricky part is to determine the index position of the
stack variables that are defined or used in a given node.
However, fixing theDef and Use set is no problem, if the
index of the stack’s top element is known. Jinja’s BCV,
which guarantees the stack length to be the same at any
program point, no matter how one gets there, provides this
index. The state is then defined as a pair of a mapping from
the set of variables to appropriate values and a heap.

Jinja byte code. Jinja[19] models a large subset of the Java
language, including operational semantics for the source
code and the virtual machine byte code, both with type
safety proofs, a compiler from the former to the latter and a
byte code verifier (BCV), both verified. Jinja is fully object
oriented and features exception throwing and catching- Sli
ing such languages is far from trivial. Though the framework
is for intraprocedural slicing, it can still be instantidtgith a
large subset of Jinja, as non-recursive methods can belslice
by inlining method calls; for programs without method calls
the intraprocedural slice is well-defined anyway.

Proving slicing correct with the framework requires in-
stantiations of the localesFG-wfand (if SCD or WCD shall
be used)CFGEXxit-wf, Postdominationand StrongPostdomina-
tion, which all extend theCFG locale. Hence, the first step
to prove slicing correct is to formalize an appropriate con-
trol flow graph for Jinja byte code.

The Jinja byte code language is, to put it simply, a goto-
language using a stack machine with a program counter

identifying the current statement in an instruction list. A Using these formalizations we are finally able to instan-

program consists Of. a list of class declarat|ons,.each with tiate theCFG-wf locale and to show that the assumed prop-
its method declarations where the method bodies are the . . .
erties (see Fig3) hold. Except forEntry-empty(we simply

aforementioned instruction lists. We identify programmisi define theDef and Use set of the entry node to be empty),

with call stacks (lists of triples consisting of class name, . . .

! these properties are shown by case analysis. Having the lo-
method name and program counter), as we use method in- . . -
o . L . cale instantiated, we have done all to show slicing coriarct f
lining. Program execution starts at the first instructioraof

Jinja byte code using weak order dependence.



We also proved our formalization of the Jinja byte code
CFG to be semantically equivalent to Jinjaeecfunction,

which defines the operational semantics of Jinja byte code.

Furthermore, we have explicitly proven state conformance
as stated by Jinja’'s BCV to be invariant under traisfer
function from§4.3for the CFG.

concept of Coqg to abstract from a specific language syntax.
His framework is restricted to byte code languages, whereas
ours can handle source as well as byte code languages. Due
to Coq, his proofs are executable as programs, i.e. they can
actually run their non-interference check. The underlyimg
formation flow type system is not given explicitly, but seems

We can also use standard and weak control dependenceinspired by the work of Barthe et ab|[

as we instantiated the local®sstdominatiorand StrongPost-
domination we omit the detalils.

The instantiation of the framework with Jinja byte code
took about one fourth to one third of the total effort needed

The IFC type system of Banerjee and Naumafjicpvers
the sequential core of Java. They prove their system to be
sound using simulation and indistinguishability of states
This work (omitting access control) is formalized in two

to formalize the correctness results. This means, using thedifferent proof assistants: in PVS by Naumar24][and in
framework to adapt the proof to another language can savelsabelle/HOL by Streckei3p].

about 70% of the work compared to starting from scratch.

8. Related Work
8.1 Correctness of Slicing

Reps and Yang28] were the first to prove static intrapro-
cedural slicing correct for a simple While language with-

Barthe and Nieto§] formalize an information flow type
system for a concurrent while language as defined from
Boudol and CastellanB], which is an extension of the Vol-
pano/Smith system3fl] . Using Isabelle/HOL, they define
a bisimulation (which allows stuttering) over the semantic
rules to show noninterference. Furthermore, they also ver-
ify noninterference for scheduling programs. The seqaénti

out procedures, using CFGs and PDGs. Some generalizedj «et of the Volpano/Smith system was also formalized in

frameworks for proving the correctness of slicing already
exist. The approach of Gouranton and Letslyer [L1] is

Isabelle/HOL by Snelting and Wasserr&d], together with
a proof that it preserves low-deterministic security.

also language independent, but based on natural semantics

instead of graph structures. It only covers dynamic slicing
the more challenging correctness proof of static slicimgpis
mentioned. In 38], Ward and Zedan model slicing as a pro-
gram transformation, i.e. an operation on a program which

generates a semantically equivalent program. As the defini-

tion of slicing in both works is quite distinct from the graph

9. Conclusion and Future Work

We presented a machine-checked correctness proof far stati
intraprocedural slicing, and a machine-checked corrsstne
proof for a slicing-based IFC algorithm. The modular proof
structure allows to plug in other language or dependence

based approach used in many program analyses, we thinkjefinitions easily.

that our work, using the well-known notions of CFGs and
PDGs, is more intuitive. Both works rely on pen-and-paper
proofs whereas our framework is fully machine-checked.

8.2 Noninterference using Proof Assistants
Formalization of Goguen/Meseguer. In his work on non-
interference, Rushbyp] focuses on security policies whose
interference relation is intransitive. He formalizes tloeec
of the Goguen/Meseguer to provide an “unwinding lemma”,
using notation that differs considerably from the original
Von Oheimb B7] uses Isabelle/HOL to extend this work
with nondeterminism. Furthermore, he adds a concept for
confidentiality similar to IFC, calleshonleakagelf a pro-
gram is nonleaking, data from the initial states should ot b
leaked, whereas Goguen/Meseguer noninterference says th

the occurrence of certain events should not be observable

The combination of botmoninfluenceis also formalized.

Verification of Information Flow Type Systems. Several

However, the underlying framework does not yet handle
methods and interprocedural slicing. In order to extend our
proof to the context-sensitive, object-sensitive integadu-
ral IFC with declassification as described irb], more work
will be needed. Threads and concurrency will pose an even
greater challenge. While we have devised, implemented and
evaluated sophisticated slicing algorithms for concurren
programs 20, 10], and extended Jinja with thread23,
we have not yet extended our IFC to Java programs with
threads. A machine-checked correctness proof for this will
probably require several years of work.

Let us finally point out a limitation of standard nonin-
terference, which has to be overcome. As mentioned above,
low-deterministic security, as well as related noninteafiee

RHefinitions, treat a program as a black box and cannot ex-
press security-related properties for interior statesenin-

termediate states. Such properties could be annotatigns (a
required in some type-based IFC systems), or interior secu-

authors proved the correctness of IFC type systems in arity levels or dependences (as itf]). Future definitions of

proof assistant; mostly, noninterference is defined as low-
deterministic security.

Kammilller developed a framework for using the byte
code verifier of a Java-like language to show non-interfegen

noninterference must maintain the overall security proper
ties, but must allow to argue about interior details of pro-
grams; otherwise the correctness proofs will not be able to
handle the high degree of precision in modern program anal-

[18]. This approach is related to ours, as he uses the moduleysis and IFC.
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