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Zusammenfassung
Die meisten modernen Compiler benutzen Static Single Assignment (SSA) Form als
Zwischenrepräsentation (intermediate representation, IR). Daher sind effiziente SSA-
Aufbau-Algorithmen mit möglichst kompakter Ausgabe essentiell für die Performance
von Compilern und für die Qualität des generierten Codes.

Braun et al. [1] veröffentlichten kürzlich einen einfachen SSA-Aufbau-Algorithmus,
dessen Laufzeit sich ähnlich verhält wie die des Algorithmus von Cytron et al. [2],
welcher sich als Standard etabliert hat. In seiner einfachen Form garantiert der Algo-
rithmus von Braun et al. jedoch nur dann minimale IR-Größe, wenn das Eingabepro-
gramm reduziblen Kontrollfluss aufweist. Braun et al. geben daher eine Erweiterung
ihres Algorithmus’ an, welche auch für irreduziblen Kontrollfluss ein minimales
Ergebnis liefert.

In dieser Masterarbeit beweisen wir mittels des Theorembeweisers Isabelle/HOL [3],
dass diese Erweiterung korrekt ist. Außerdem zeigen wir, dass die von der Min-
imierungserweiterung hergestellte Grapheigenschaft genügt, um SSA-Minimalität
nach Cytron et al. zu folgern. Wir liefern eine Analyse der Laufzeitkomplexität dieser
Erweiterung in Abhängigkeit der φ-Funktionen, die zum Minimierungszeitpunkt
vorhanden sind.

Des Weiteren evaluieren wir die Laufzeit und die Notwendigkeit von SSA-Minimierung
anhand einer C-Implementierung dieser Erweiterung. Wir stellen fest, dass der SSA-
Aufbau nach Braun et al. in Realwelt-Situationen selten überschüssige φ-Funktionen
generiert. Die zusätzliche Dauer der SSA-Minimierung ist in unseren Experimenten
zwar vernachlässigbar gering, jedoch bietet die SSA-Minimierung in den meisten
Fällen keine signifikante Verbesserung in der Compiler-Ausgabe. Wir schließen
daraus, dass die Situationen, in denen dieser Minimierungsschritt die Performance
des generierten Codes messbar verbessert hat, sehr selten sind. Diese Instanzen finden
sich ironischerweise nur bei Code, der manuell für Performance optimiert wurde.
Nichtsdestotrotz bleibt der SSA-Aufbau-Algorithmus von Braun et al. sogar ohne den
Minimierungsschritt ein guter Kompromiss zwischen Implementierungskomplexität,
Größe der resultierenden SSA-Form und Laufzeit.



Abstract
Most modern compilers use Static Single Assignment (SSA) form as intermediate
representation. Having an efficient algorithm that outputs the most concise SSA
representation of the input program is thus important for compiler performance and
the quality of the generated code. Recently, Braun et al. [1] have presented a simple
SSA construction algorithm that achieves similar performance to the previous de
facto standard algorithm by Cytron et al. [2]. However, given an input program
with irreducible control flow, the simple version of Braun et al.’s algorithm generates
suboptimal output in terms of the size of the generated SSA form. Braun et al.
also provide an extension to their algorithm which ensures minimal output even for
irreducible control flow.

This thesis concerns itself exclusively with that extension. Using the theorem prover
Isabelle/HOL [3], we formally prove the correctness of this extension. We then prove
that the property established by this algorithm is at least as good a criterion for
minimality as the minimality guaranteed by Cytron et al.’s algorithm. We give a
complexity analysis in terms of the relevant part of the SSA representation and
further evaluate the performance of the algorithm via an implementation in C. We
observe that Braun et al.’s algorithm rarely produces suboptimal SSA form given
real-world programs as input. In our experiments, the additional minimization step
only took an insignificant amount of time during compilation, but the improvement
to the performance of compiler output was negligible in most cases. We conclude
that while the cases in which minimization measurably benefits the performance
of generated code are rare, they tend to coincide with code which was, ironically,
hand-tuned for performance. Nevertheless, Braun et al.’s SSA construction algorithm
remains a good choice of algorithm, even without minimization.
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1. Introduction

Most modern compilers use an intermediate representation based on Static Single
Assignment Form (SSA form). As such it’s important to ensure that the algorithms
used for SSA construction produce high-quality SSA form and are efficient. The
classical algorithm used for SSA construction is the algorithm by Cytron et al. [2],
which constructs minimal SSA form with reasonable performance. This algorithm
is based on dominance analysis. If the output is to be “pruned”, i.e. free of SSA
values with no usage site, it requires an additional liveness analysis. Recently,
Braun et al. [1] have presented a simpler algorithm with similar performance that
does not require additional analyses for constructing SSA form. The only caveat
of this algorithm is that it only guarantees minimality when program control flow
is reducible. This property is usually associated with a program being free of
gotos, however irreducibility can also occur via other means. For instance, certain
language constructs (e.g. interleaved switch-case statements and loops) and certain
optimizations such as jump threading can induce irreducibility. Even in cases in
which control flow remains reducible at all time, certain optimizations (e.g. global
value numbering) can modify the SSA graph in ways that give rise to non-minimal
constructions [1]. The original paper by Braun et al. also provides an extension to
the algorithm which (re-)establishes minimality even in such cases, at the cost of
having to perform an additional step after SSA construction.

This extension, which we call Braun et al.’s “peeling algorithm” (due to it recursively
“peeling off” nodes from strongly connected components (SCCs) to find successively
nested SCCs), can be implemented as an independent compiler pass and can be run at
any time between SSA construction and destruction. As a standalone algorithm, it es-
tablishes the property of being free of sets of φ-functions which, collectively, refer only
to one outside value. Using the Isabelle graph framework used in Buchwald et al. [4],
we formally prove that this algorithm really does establish this property. We then
prove that given Conventional SSA form [5], this property implies that the resulting
graph is minimal (as defined by Cytron et al. [2]). This in turn means that freedom
of such sets of φ-functions can be seen as a definition of minimality on SSA graphs.
Being independent of the algorithm used in SSA construction and whether the graph
is in conventional SSA form, this constitutes a more general criterion for minimality
than that used by Cytron et al. The fact that this type of minimality (together with
prunedness and CFG reducibility) guarantees the minimal number of φ-functions in
any SSA translation of a program [6] gives this additional weight.
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We also turn our attention to the practical considerations of the peeling algorithm.
We perform an analysis of the asymptotic runtime complexity, proving a worst-
case bound of O(|V |2 + |V ||E|) (in terms of the graph induced by φ-functions
alone) and present a concrete example of worst-case instances for the algorithm.
We’ve written an implementation of the peeling algorithm in C as a standalone
optimization pass in the Firm compiler back end and provide an analysis of its
performance both in the worst case and under common work loads. We conclude from
our experiments that the execution of the peeling algorithm does not significantly
contribute to compilation time, and that realistic input programs rarely exhibit the
kinds of control flow structures that lead to suboptimal SSA form in Braun et al.’s
construction algorithm. Braun et al.’s original SSA construction algorithm thus
provides an excellent compromise between ease of implementation and size of the
output SSA, even without implementing the peeling algorithm.

The rest of this thesis is structured as follows: Section 2 contains an explanation
of the prerequisites to understanding this thesis, and an introduction to the syntax
used by Isabelle. Section 3 presents the formalization of SSA form we use and
explains in detail the proofs conducted in the formal part of this thesis. Section 4
explains the details of the algorithm and conducts an asymptotic runtime complexity
analysis. This is followed by a description of the C implementation and a preliminary
performance analysis given a worst-case graph instance. Section 5 evaluates the
peeling algorithm by running it on a variety of benchmark programs and real-world
programs. We then attempt to draw conclusions as to the necessity of this algorithm;
how often Braun et al.’s algorithm actually produces suboptimal SSA form given
real-world input, and how big of a performance deficit this produces in compiler
output. Section 6 discusses the recent advancements in the field of theorem prover
assisted compiler construction, and gives an overview of the academic context in
which this thesis exists. Finally, Section 7 summarizes the results of our work, points
to possible future work and the open questions remaining, and concludes our work.
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2. Background

This section introduces the necessary concepts for understanding the rest of the
thesis. We cover the details of control flow reducibility, SSA form, cytron-minimality,
the different kinds of φ-functions, and the necessary basics for understanding the
Isabelle syntax used in this thesis.

2.1. (Ir-)Reducible Control Flow

As this work concerns itself with minimization of SSA control flow graphs (CFGs) in
the case of irreducible control flow, a discussion of what reducibility is and which
mechanisms may violate it is needed. To give a formal definition of reducibility, we
first need the notion of dominance.

Definition. (Dominance) A CFG node v dominates another node w iff every path
in the CFG from the program’s entry point to w includes v. We say v is a dominator
of w.

For instance, the program’s entry point dominates every node in the CFG. Dominance
is reflexive, i.e. every node dominates itself. We can now articulate a formal definition
of reducibility [7]:

Definition. (Reducible CFG) A CFG is reducible iff its edges can be partitioned
into two sets E1 and E2 such that (the graph induced by) E1 is acyclic and for every
edge (v, w) ∈ E2, w dominates v.

Irreducibility is often associated with the goto statement, as this statement allows
for the construction of arbitrary control flow. However, any mechanism which may
introduce a second entry point into a control flow cycle implies the potential for
irreducibility. For instance, a language that allows unstructured interleaving of
control flow structures implicitly allows for irreducibility. Figure 2.1 shows the
perhaps most famous example of this, Duff’s Device.
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2.1. (IR-)REDUCIBLE CONTROL FLOW

1 . . .
2 i n t l o o p s = ( i t e r a t i o n s +4) /5 ;
3 switch ( i t e r a t i o n s % 5) {
4 case 0 : do { doS tu f f ( ) ;
5 case 4 : doS tu f f ( ) ;
6 case 3 : doS tu f f ( ) ;
7 case 2 : doS tu f f ( ) ;
8 case 1 : doS tu f f ( ) ;
9 } whi le (−− l o o p s > 0) ;

10 }
11 . . .

case 4: doStuff();

switch (iterations % 5) {

case 0: do { doStuff();

case 3: doStuff();

case 2: doStuff();

case 1: doStuff();

} while (--loops > 0);

Figure 2.1.: Duff’s Device and its representation as a CFG. Note the multiple entry
points into the loop.
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2.2. SSA FORM

if (x == 0)

x = 0 x = argv[1]

if (x == 0)

x = 0 x = argv[1]

Figure 2.2.: The control flow optimizations made by jump threading may introduce
irreducible control flow.

Another way irreducibility might appear during compilation is during optimization.
Such optimizations may duplicate, delete, or rewire control flow to improve the
performance of the generated code, and in doing so, generate irreducible control
flow. Figure 2.2 shows one example of a situation where this arises due to jump
threading.

2.2. SSA Form

Static single assignment (SSA) form is a property of intermediate representations (IR)
requiring that each variable be statically assigned only once. Thus, after transforming
a control flow graph (CFG) into SSA form, each variable has been transformed into
a set of immutable values. Situations in which the existence of multiple paths in the
CFG leads to multiple definitions reaching a certain point are abstracted over via a
special type of value called φ-functions. Such φ-functions have other SSA values as
parameters and formally multiplex (i.e. select) between them at run time depending
on the CFG edge taken to reach them. During compilation however, they can be
seen as opaque values used for satisfying the requirements of SSA form.

SSA form is used by most modern compilers1 as its explicit representation of def-use
relationships makes data-flow analysis much easier. Additionally, there are a number
of IR optimizations that benefit from the CFG being in SSA form, e.g. code motion,
common subexpression elimination and constant propagation. Next we want to
introduce the conventional property [5]. To do this, we first need to define φ webs.

1For a non-exhaustive list, see https://en.wikipedia.org/wiki/Static_single_assignment_
form#Compilers_using_SSA_form.
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2.2. SSA FORM

Definition. (φ web) The set of φ-functions which are transitively connected form a
φ web (or φ net).

Definition. (Conventional SSA form (CSSA)) An SSA CFG is in CSSA form iff
all values in a φ web and all values directly connected to it via usage edges are
interference-free, i.e. a loop-free path from any definition to its usage site does not
contain another definition in this set.

Intuitively, this definition conincides with the concept that all SSA values explicitly
reference the values that might define their runtime value based only on the structure
of the CFG.

2.2.1. Cytron-Minimality

The classical algorithm for constructing SSA form [2] implies a criterion for minimality
on certain SSA graphs, which we want to reason about. To this end, a certain
amount of understanding of Cytron et al.’s algorithm is necessary. We thus introduce
the necessary concepts in this section, starting with so-called iterated dominance
frontiers.

Definition. The dominance frontier DF (n) of a node n is the set of nodes which
have a predecessor dominated by n, but which are not dominated by n themselves.

In a similar vein, the iterated dominance frontier of a node is the union of DF (n)
with all dominance frontiers of nodes in DF (n), and so on.

Definition. (Necessary φ-function) A φ-function f for a variable V is necessary iff
f is contained in a basic block Z and there are basic blocks X and Y containing
definitions of V and nonnull control flow paths X +−→ Z and Y +−→ Z such that these
paths share nothing but Z.

Definition. (Cytron-minimality) A program is in cytron-minimal SSA form if it is
in SSA form and if all φ-functions are necessary.

Stated more succintly, a CFG is in cytron-minimal SSA form if all φ-functions are
placed at the iterated dominance frontiers of definitions.

This definition of minimality still allows for dead φ-functions to exist (i.e. φ-functions
with no usage site or which are transitively only used by other φ-functions). The
property of being free of dead φ-functions is called prunedness.
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2.3. ISABELLE

It’s interesting to note that pruned cytron-minimal SSA CFGs are “truly” minimal, in
the sense that among all valid translations of the original program, such SSA represen-
tations have the smallest number of φ-functions (as proven by Ullrich and Lohner [6]
in the associated material to the CC paper by Buchwald et al. [4]).

Buchwald et al. [4] pointed out that modifying Cytron et al.’s condition for necessary
φ-functions to require a corresponding usage site yields a sufficent condition for
placing φ-functions, even in pruned SSA graphs. This is what we call the convergence
property, and is defined as follows:

Definition. (Convergence property) Let Z be a basic block containing no definition
for a variable V . Let Z further fulfill the requirements for bearing a necessary
φ-function for V . If there is a basic block M with a usage site for V and a path
Z

+−→M containing no other definitions of V , then Z bears a φ-function.

2.2.2. Trivial, Unnecessary and Redundant φ-Functions

We call φ-functions which are not necessary by the above definition unnecessary
φ-functions. Unfortunately this term alone doesn’t allow us to articulate the intuitive
reason why a φ-function might not be strictly needed. We thus differentiate between
unnecessary, trivial and redundant φ-functions:
A φ-function which uses at most one other value other than itself can be removed
from the CFG without changing program semantics by redirecting all users to instead
refer to its argument. We call such φ-functions trivial.

If, however, there is a set of φ-functions which only use at most one value v not in
this set, the complete set can be removed from the CFG by redirecting all references
to any of the φ-functions in this set to v. We call such φ-functions redundant. Note
that for φ-functions, trivial implies redundant, and redundant implies unnecessary,
but redundant does not imply trivial.

2.3. Isabelle

The main proofs of this thesis are written in and verified by the interactive theorem
prover Isabelle and more specifically, Isabelle/HOL, Isabelle’s default object logic [3].
In presenting these proofs, we make extensive use of syntax specific to Isabelle and
Isabelle/HOL. Hence, in this section, we introduce a minimum of syntax necessary
for understanding these excerpts.
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2.3. ISABELLE

Logical implication is denoted by =⇒, while [[A; B]] denotes the conjunction of
logical statements A and B. Isabelle allows a user to open contexts with a given
set of assumptions and assumed types. This mechanism, called locales, is used
extensively. A locale’s type parameters are written with a leading apostrophe (e.g.
′node is the node type in the graph framework we use). Function types are written as
′argumentType ⇒ ′resultType. The type of a set of elements of type ′a is designated
by ′a set. Similarly, a list of elements of type ′a is denoted by ′a list. Tuple types
use the mathematical notation ( ′a × ′b), with the functions fst and snd being used
for extracting the first and second elements from a tuple, respectively. Relations are
represented as sets of tuples; their transitive respectively reflexive-transitive closures
are expressed using the postfix operators + and ∗. The empty list is written as [],
list concatenation is done using the @ operator. Additionally, lists can be pulled
apart into the first element and the rest (or their head and tail, to use common
terminology) using the functions hd and tail. The functions last and butlast provide
access to the last and second-to-last element respectively. The map function applies
a given function to every element of a given list and returns the resulting list. The
backtick infix operator ‘ is similar, but operates on sets.
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3. Formalization and Proof

This section reviews the formal framework used to formalize the notions of graphs,
CFGs, SSA form, etc. necessary for formal verification using Isabelle. It then goes on
to present a proof that the property established by Braun et al.’s algorithm extension
suffices for minimality.

Definitions are kept in Isabelle syntax, though they are edited for clarity (e.g. locale
definitions are shortened and coalesced). The unabridged version of the formalization
and proof can be found in Appendix A.1 and in the archive of formal proofs [8].

3.1. Framework

This work builds upon the formal Isabelle framework from Ullrich and Lohner [6].
This framework, ultimately based on an abstract graph framework by Nordhoff and
Lammich [9], uses Isabelle locales to formalize the notions of CFGs and the properties
required by SSA form.

All functions operate on a graph of type ′g with node type ′node. αn and αe provide
a list of nodes and the edge set, respectively. The locale further demands that these
functions interact correctly, e.g. that the edge endpoints are all nodes in αn g, or
that the list of graph nodes consists of distinct entries.
locale graph =
fixes αe :: ′g ⇒ ( ′node × ′node) set
and αn :: ′g ⇒ ′node list
and inEdges :: ′g ⇒ ′node ⇒ ′node list
assumes αn-correct:
αn g ⊇ fst ‘ αe g ∪ snd ‘ αe g
assumes αn-distinct:
distinct (αn g)
assumes inEdges-correct:
set (inEdges g n) = {f. (f,n) ∈ αe g}
begin
definition predecessors g n ≡ map fst (inEdges g n)
end

17



3.1. FRAMEWORK

This graph locale is the basis for the locale specifying a well-formed CFG: Here,
Entry is a designated node functioning as root, i.e. there exists a path from Entry to
every node. A well-formed CFG is required to follow the definite-assignment rule, i.e.
every path from the entry node to a reference to a variable includes an assignment
to that variable. The locale further postulates the existence of a path predicate
g ` n−ns→m which holds iff there is a path ns in the CFG g from n to m (with ns
including the endpoints of the path).
locale CFG-wf = graph +
fixes
Entry :: ′g ⇒ ′node and
defs :: ′g ⇒ ′node ⇒ ′var set and
uses :: ′g ⇒ ′node ⇒ ′var set

assumes Entry-in-graph: Entry g ∈ set (αn g)
assumes Entry-unreachable: inEdges g (Entry g) = []
assumes Entry-reaches:
n ∈ set (αn g) =⇒ ∃ns. g ` Entry g−ns→n

assumes def-ass-uses:
g `Entry g−ns→m =⇒ ∀ v ∈ uses g m. ∃n ∈ set ns. v ∈ defs g n

assumes defs-uses-disjoint: n ∈ set (αn g) =⇒ defs g n ∩ uses g n = {}
assumes defs-finite: finite (defs g n)
assumes uses-in-αn: v ∈ uses g n =⇒ n ∈ set (αn g)
assumes uses-finite: finite (uses g n)

The final locale introduces the concepts necessary to work with well-formed SSA
CFGs. The φ-functions in a graph are represented via a partial function phis mapping
tuples of (node, ssa-value) to the φ-function’s list of arguments. The terms allDefs
and allUses denote the set of variables defined (resp. referred to) in a CFG node
by regular assignments or φ definitions. Note that our notion of a well-formed SSA
CFG includes the conventional SSA property. This ensures there are no interfering
definitions on a path between a φ-function and its arguments. Furthermore, the
CFG-SSA-wf locale assumes, in the form of the allDefs-var-disjoint property, that if
two SSA values reside in the same CFG node, they must be associated to different
variables in the original program. When analyzing the structure of the SSA CFG for
a fixed variable, this property allows us to not bother distinguishing between SSA
values and the CFG nodes that harbour them.
locale CFG-SSA-wf = CFG-wf +
fixes
phis :: ′g ⇒ ′node × ′val ⇀ ′val list

assumes phis-finite: finite (dom (phis g))
assumes phis-in-αn: phis g (n,v) = Some vs =⇒ n ∈ set (αn g)
assumes phis-wf :
phis g (n,v) = Some args =⇒ length (predecessors g n) = length args

assumes simpleDefs-phiDefs-disjoint:
n ∈ set (αn g) =⇒ defs g n ∩ phiDefs g n = {}

18



3.2. REDUNDANT SETS CONTAIN REDUNDANT SCCS

assumes allDefs-disjoint:
[[n ∈ set (αn g); m ∈ set (αn g); n 6= m]] =⇒ allDefs g n ∩ allDefs g m = {}

assumes allUses-def-ass:
g ` Entry g−ns→m =⇒∀ v ∈ allUses g n. ∃n ∈ set ns. v ∈ allDefs g n

assumes Entry-no-phis: phis g (Entry g,v) = None
assumes conventional:

[[g ` n−ns→m; n /∈ set (tl ns); v ∈ allDefs g n; v ∈ allUses g m; x ∈ set (tl ns);
v ′ ∈ allDefs g x]] =⇒ var g v ′ 6= var g v

assumes phis-same-var : phis g (n,v) = Some vs =⇒ v ′ ∈ set vs =⇒ var g v ′ = var g v
assumes allDefs-var-disjoint:

[[n ∈ set (αn g); v ∈ allDefs g n; v ′ ∈ allDefs g n; v 6= v ′]] =⇒ var g v ′ 6= var g v

3.2. Redundant Sets Contain Redundant SCCs

Having established a formal framework which allows us to reason about SSA CFGs and
their properties, we can move on to the proof proper. For proving that Braun et al.’s
algorithm extension ensures minimality, we need to prove the following proposition:

Proposition. An SSA CFG which is free of sets of redundant φ-functions forming
strongly connected components (SCC) in an induced φ graph, is cytron-minimal.

We do so by first formally verifying the proof of lemma 1 from Braun et al.’s paper,
which has the consequence that a graph free of redundant SCCs is free of redundant
sets of any kind. We then prove that being free of redundant sets yields cytron-
minimality. While the term “strongly connected component” usually means an
inclusion-maximal set of nodes with reachability between elements, we use the term
exclusively within the context of induced φ graphs. For our purposes, the “φ graph
induced by P” shall refer to the graph induced by φ argument edges within a set of
CFG nodes P (i.e. a φ web restricted to P ). Formally:
definition induced-phi-graph g P ≡ {(ϕ,ϕ ′). phiArg g ϕ ϕ ′} ∩ P × P

Here, the binary predicate phiArg g ϕ v holds if ϕ is a φ-function which has v as an
argument. We can now formally define the terms “redundant set” and “redundant
SCC” needed for a formal verification of lemma 1 as well as the lemma statement
itself.
definition redundant-set g P ≡ P 6= {} ∧ P ⊆ dom (phi g) ∧ (∃ v ′ ∈ allVars g. ∀ϕ ∈ P.
∀ϕ ′. phiArg g ϕ ϕ ′ −→ ϕ ′ ∈ P ∪ {v ′})
definition redundant-scc g P scc ≡ redundant-set g scc ∧ is-scc (induced-phi-graph g P)
scc
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3.2. REDUNDANT SETS CONTAIN REDUNDANT SCCS

lemma 1 :
assumes redundant-set g P
shows ∃ scc ⊆ P. redundant-scc g P scc

The formalization of this lemma follows the proof sketch given by Braun et al. [1]
and thus employs condensation graphs, i.e. graphs obtained by contracting all SCCs.
We define the edges of this graph by mapping the endpoints of the original edges to
their SCCs, and ignoring those edges in the same SCC:

definition condensation-nodes g P ≡ scc-of (induced-phi-graph g P) ‘ P
definition condensation-edges g P ≡ ((λ(x,y). (scc-of (induced-phi-graph g P) x, scc-of
(induced-phi-graph g P) y)) ‘ (induced-phi-graph g P)) − Id

Being a condensation of a graph, paths in the condensation imply paths in the original
graph:

lemma path-in-condensation-impl-path:
assumes (a, b) ∈ (condensation-edges g P)+ and (ϕa ∈ a) and (ϕb ∈ b)
shows (ϕa, ϕb) ∈ (induced-phi-graph g P)∗

Next, we note that the edge sets of these condensation graphs are finite, since edges are
restricted to tuples of φ-functions, of which there are only finitely many. Furthermore,
condensation graphs are acyclic, as a cycle in the condensation graph would imply a closed
path across multiple SCCs, a contradiction against the maximality of SCCs within their
graph. Formally:

lemma finite (condensation-edges g P)
lemma acyclic (condensation-edges g P)

Being finite and acyclic, the condensation graph of a set P must have a leaf, i.e. a node
with no outgoing edges. Such a leaf in the condensation graph corresponds to an SCC L in
P with no outgoing edges to other nodes of P\L.

lemma Ex-condensation-leaf :
assumes P 6= {}
shows ∃L. L ∈ (condensation-nodes g P) ∧ (∀ scc.(L, scc) /∈ condensation-edges g P)

With this, we can finally prove lemma 1:

Proof. Given a redundant set P, consider its condensation graph P ′ and a leaf l of P ′.
Since P is a redundant set, all edges from nodes inside P to nodes outside P lead to the
same SSA value. Because l is a leaf, nodes in l have no neighbours in P \ l. This leaves only
the single possible neighbour outside of P as possible neighbor, meaning l is a redundant
SCC.
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3.3. NON-REDUNDANCY IMPLIES CYTRON-MINIMALITY

3.3. Non-redundancy Implies Cytron-Minimality

Lemma 1 gives us that eliminating all redundant SCCs eliminates all redundant sets. We
go on to prove that this suffices for cytron-minimality, independent of whether control flow
is reducible. Given that there are no redundant sets in a graph, the assumption that the
graph may be non-cytron-minimal leads to a contradiction. However, before we can do this
we need to establish additional terminology and prove a certain path extension lemma.

For an unnecessary φ-function ϕ, we define the reachable-set of ϕ as the set of unnecessary
φ-functions that are connected to ϕ via a chain of unnecessary φ-functions. We further
define the true arguments of a φ-function to be the set of SSA values “just outside”
the reachable set, i.e. the first non-unnecessary-φ SSA values reachable via a chain of φ
arguments. This definition gives us a simpler way to characterize redundant φ-functions: A
set of φ-functions with less than two true arguments is redundant.

inductive-set reachable :: ′g ⇒ ′val ⇒ ′val set
where unnecessaryPhi g ϕ =⇒ ϕ ∈ reachable g ϕ
| [[ ϕ ′ ∈ reachable g ϕ; phiArg g ϕ ′ ϕ ′′; unnecessaryPhi g ϕ ′′ ]] =⇒ ϕ ′′ ∈ reachable g ϕ

definition trueArgs g ϕ ≡
{ϕ ′. ϕ ′ /∈ reachable g ϕ} ∩ {ϕ ′. ∃ϕ ′′ ∈ reachable g ϕ. phiArg g ϕ ′′ ϕ ′}

Note that since φ argument edges do not occur between SSA values corresponding to
different variables in the original program, all φ-functions in the same reachable-set belong to
the same variable. We know that there must be a simple path (i.e. a path without repeated
nodes) in the CFG from a φ-function’s argument to the φ itself, and the conventional
property guarantees that there are no interfering definitions on this path. We can use this
to gradually construct paths from a definition to a φ-function impacted by it. However, this
alone doesn’t suffice for the path extensions we have to do, as we need the guarantee that
this path doesn’t intersect a given second path independent from the first. For this reason
we prove the following lemma. The functions var, oldDefs and defNode are defined within
the formal framework to obtain the variable to an SSA value, the variable assignments in a
node of the original CFG, and the unique CFG node which a given SSA value occupies,
respectively.

lemma phiArg-disjoint-paths-extend:
assumes var g r = V and var g s = V
and V ∈ oldDefs g m and V ∈ oldDefs g n
and g ` m−ms→defNode g r and g ` n−ns→defNode g s
and set ms ∩ set ns = {}
and phiArg g ϕr r
obtains ms ′
where g ` m−ms@ms ′→defNode g ϕr

and set (butlast (ms@ms ′)) ∩ set ns = {}
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Figure 3.1.: Configuration for the path extension lemma. Note that some paths
may be null and some nodes may be aliased.
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Proof. Assume there were assignments to a variable V in CFG nodes n and m in the
original CFG. Assume further that r and s are SSA values pertaining to the same variable,
and that there are independent paths g ` m−ms→defNode g r and g ` n−ns→defNode g s.
Let ϕr be a φ-function with r as argument.

If r = ϕr, the path doesn’t need to be extended and the lemma is trivially true. Next, take
a simple path from r to ϕr (guaranteed to exist due to r being an argument of ϕr) and
call it rs. If rs shares no nodes with ns, then the tail of rs is the path extension we were
looking for. Assume now that ns and rs intersect. Then there are three cases that need
to be considered for the first point of intersection along rs, called i (see Figure 3.1 for an
illustration):

• If i = ϕr, then ϕr was on ns to begin with, and again the tail of rs suffices as path
extension.

• If i = n, n constitutes a definition on the path from a φ argument to its φ-function,
a contradiction to conventional.

• If ϕr 6= i 6= n, then i is at the convergence point of n and r.

In the third case, one might think that i being the convergence point of two assignments
allows us to deduce the existence of a φ-function in i. However, ϕr might be dead, i.e.
there might not be a usage site necessitating such a φ-function, so this alone does not
suffice to deduce the existence of one. Instead, we know by the conventional SSA property
that there is no definition pertaining to V (other than r and ϕr) on rs, rs being a path
from a φ argument to the φ itself. Next, remember that the convergence property gives us
that “SSA values that are used after convergence points are φ-functions and located at the
last convergence point”. Indeed, this configuration satisfies the prerequisites for applying
the convergence property:

• i is a convergence point of two definitions of V .

• The SSA value r is used by ϕr, and there is a path between the two.

• This path rs is free from definitions for V .

• r does not correspond to an assignment in the CFG node i.

Applying the convergence property leaves us with the conclusion that r must therefore
be a φ-function located at i. If the SSA graph is to be well-formed (in that r may only
have one defining CFG node), then i must have been in ms, a contradiction to our initial
assumption that ms and ns share no CFG nodes.
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Figure 3.2.: Configuration in the minimality proof. The cloud represents the
reachable-set of ϕ.

Now that we have all the necessary machinery for the proof proper, we prove it in this
form (Given this theorem, the form we need is a simple corollary.):

theorem no-redundant-set-implies-minimality:
assumes ¬(∃P. redundant-set g P)
shows cytronMinimal g

Proof. We employ a proof by contradiction: Assume there are no redundant sets, but that
the graph is not cytron-minimal. Then there must be a φ-function ϕ which is not placed
at the first convergence point of two variable assignments in the original program. Edge
cases notwithstanding, the idea is to take two definitions that impact ϕ and construct
non-crossing paths into its reachable-set, making the φ at that location necessary as per
Cytron et al.’s definition, a contradiction to the definition of the reachable-set. Figure 3.2
bears an illustration of the CFG configuration constructed in the proof.

Now, because there are no redundant sets, ϕ has at least two true arguments; were this not
the case, its reachable-set would be redundant. There must thus be at least two φ-functions
ϕr and ϕs in ϕ’s reachable-set along with distinct non-unnecessary SSA values r and s
such that r and s are arguments of ϕr and ϕs, respectively. Note that ϕr and ϕs might
not be distinct. The distinctness of r and s implies that there must be distinct definitions
m and n with g ` m−ms→r and g ` n−ns→s such that set ns ∩set ms ={} holds.
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Using our path extension lemma, we can extend these paths to (almost) independent paths
leading to ϕr and ϕs. We then have:

g ` m−ms@rs→ϕr

g ` n−ns@ss→ϕs

set (butlast (ns@ss)) ∩ set (butlast (ms@rs)) = {}

To see why we can find path extensions that fulfill the last property, consider the situation
when only one of the two paths has been extended yet (WLOG assume that ms was
extended to ms@rs). In that case, we have:

set (butlast (ms@rs)) ∩ set ns = {}

However, to perform the second extension, we need to prove that set (ms@rs)) ∩ set ns =
{}. The only way that this could be false is if ϕr ,being the last element of ms@rs, is also
on the path ns. If this is the case, ϕr is at the convergence point for the definitions m and
n (due to the conventional SSA property preventing interference), and is thus a necessary
φ-function, contradicting with ϕr ∈ (reachable g ϕ). Given this, we can obtain the above
statement using a second path extension.

To complete the argument, we note that once we’ve extended our paths in an intersection-
free way into the reachable-set of ϕ, we know that the convergence point will also lie within
this set. This is given to us by the conventional SSA property, which ensures that there
are no further definitions on a path from a φ-function argument to the corresponding φ,
combined with the fact that we now have φ-argument-chains reaching from ϕ to outside
its reachable-set (and eventually to m and n themselves).1

As for this convergence point ϕz, it fulfills the definition of being necessary according to
Cytron et al., yet we have proven it to lie within the reachable-set of ϕ, which consists
only of unnecessary φ-functions, a contradiction.

Thus our initial assumption that a graph can be free of redundant sets without being
cytron-minimal must have been false.

Given this theorem, the lemma we need is but a simple corollary:

corollary no-redundant-SCCs-implies-minimality:
assumes ¬(∃P scc. redundant-scc g P scc)
shows cytronMinimal g

Proof. Assume there are no redundant SCCs. Then by lemma 1, there are no redundant
sets in g. Applying the above theorem yields that g is cytron-minimal.

1The formal version of this argument is a rather technical nested induction which can be found in
the associated material.
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Thus an algorithm which eliminates all redundant SCCs in a CSSA CFG establishes cytron-
minimality, which is what we set out to prove. Consider that while cytron-minimality
implicitly requires the SSA form to be conventional SSA form, we proved lemma 1 without
using using the conventional property at all. This property thus implies a definition of
minimality on arbitrary SSA graphs, which implies cytron-minimality on conventional SSA
form (as has already been notes by Braun et al.[1]).
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4. Design and Implementation

Now that we’ve proven that the property of being free of redundant SCCs suffices
for minimality, we turn our attention to the algorithm for establishing this property.
In the following, we give an overview of the functional principles of this algorithm,
give a bound for its algorithmic complexity, and detail the implementation of this
algorithm created as part of this work.

4.1. Braun et al.’s Peeling Algorithm

At a cursory glance, the problem of identifying all redundant SCCs might look like
it could be solved using a single invocation of an SCC-finding algorithm. However, a
redundant SCC may not be maximal, but might instead only be a maximal SCC on
a subset of nodes. An example of a φ graph exhibiting this behaviour can be seen in
Figure 4.1.

4.1.1. Description of the Algorithm

The algorithm proposed by Braun et al. for ensuring minimality works by recursively
“peeling off” nodes which are guaranteed not to be in a redundant set. If a redundant
SCC is found, all usage sites referring to nodes within this SCC are modified to
instead use the true argument of the SCC. Since the removal of an SCC of redundant
φ-functions can render other sets of φ-functions redundant, the algorithm processes
the SCCs in reverse topological order to ensure that any redundant SCCs the current
working set might have refered to have already been removed. “Processing an SCC”
consists of checking whether all φ-functions within it reference at most one common
value outside the SCC (i.e. checking whether it is redundant). A representation of
this algorithm in pseudocode can be seen in Figure 4.2.

Each recursive call can safely reduce the size of the working set, as those φ-functions
which have an argument outside the current SCC are guaranteed not to be included
in any redundant SCC contained therein:
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Figure 4.1.: An example from Braun et al. [1] illustrating the need for examining
nested SCCs. Edges point from usage site to referenced value.

Proof. Suppose that such a node ϕ were part of a redundant SCC P ′ ⊂ P . Since P ′
is redundant, the sole value referred to by nodes within P ′ outside of itself must be
the value ϕ is referring to. However, since P itself is strongly connected and P ′ is
contained in P , there must be some node in P ′ which has an argument in P \ P ′.
This argument constitutes a second argument outside of P ′ different from the first, a
contradiction that P ′ is redundant. Thus ϕ cannot be an element of a redundant
SCC contained in P .

This allows us to start with SCCs induced by all nodes (i.e. actual, maximal SCCs)
and to gradually “peel off” nodes to reduce the problem to a smaller instance.

A natural choice for the algorithm used to compute the φ SCCs is Tarjan’s Al-
gorithm [10], as it not only computes the SCCs efficiently (in O(|V | + |E|)), but
additionally produces them in reverse topological ordering, which elides the need for
a separate sorting step.
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1 def remove_redundant_phis ( p h i s ) :
2 s c c s = compute_phi_SCCs ( induced_subgraph ( ph i s ) )
3 f o r s c c i n t o p o l o g i c a l _ s o r t e d ( s c c s ) :
4 p ro c e s s_s c c ( s c c )
5

6 def p ro c e s s_s c c ( s c c )
7 i n n e r = set ( )
8 outer_ops = set ( )
9 f o r ph i i n s c c :

10 i s _ i n n e r = True
11 f o r operand i n ph i . get_operands ( ) :
12 i f operand not in s c c :
13 outer_ops . add ( operand )
14 i s _ i n n e r = Fa l s e
15 i f i s _ i n n e r :
16 i n n e r . add ( ph i )
17

18 i f len ( oute r_ops ) == 1 :
19 # d e f i n i t e a s s i gnment g i v e s us t ha t t h e r e i s a t l e a s t one ou t e r op .
20 r ep l ace_scc_by_va lue ( scc , oute r_ops . pop ( ) )
21 e l s e
22 # l e n ( oute r_ops ) must be >= 2 , thus s c c i s n ’ t redundant .
23 remove_redundant_phis ( i n n e r )

Figure 4.2.: Braun et al.’s algorithm for removing redundant phis

4.1.2. Algorithmic Complexity

The next step towards a complete understanding of this algorithm is an analysis
of its runtime complexity. In this section we thus present a worst-case scenario for
the algorithm and analyze its asymptotic behaviour to obtain a lower bound on
the asymptotic complexity of the algorithm. We then motivate why no other graph
can achieve a running time asymptotically worse than these graphs, completing the
analysis.

First, it is worth noting that the act of replacing a redundant SCC by another value
takes linear time in the order of usage sites of nodes within the SCC. However, since
redundant SCCs are removed in reverse topological order, every edge in the graph is
modified at most once, so we have an upper bound of O(|E|) for this overhead. This
overhead is unavoidable and in a certain sense work “outside” of the algorithm. As
such, it does not figure in our complexity analysis. Since the algorithm handles φ
graphs and only comes into contact with the underlying SSA graph when removing
SCCs, the complexity analysis reasons exclusively in terms of φ graphs, and V and
E denote the φ-functions and φ arguments, not the CFG nodes and edges.
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Figure 4.3.: A schema for φ graphs with arbitrarily deeply nested SCCs.
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Figure 4.3 shows the type of graph we’ll examine. These graphs can have an arbitrary
number of nested SCCs, each only two nodes smaller than the previous. A graph
with n such nesting steps has 2n nodes, each of which has a well-defined nesting
level (i.e. the nesting level of the innermost SCC the node still belongs to). A node
with nesting level l in such a graph may only have edges to nodes in nesting levels
greater or equal to l− 1. This leads to an upper bound on the number of edges in an
n-nesting-level graph of 4 ∑n+1

i=2 i = 2n2 + 8n+ 2. Stepping through an execution of
the algorithm on such a graph, the first iteration of Tarjan’s algorithm will find the
maximal SCC, and the inner phase of the algorithm will then evaluate every edge
within this SCC once. Since this SCC is not redundant, the two nodes referring to
nodes outside of this SCC are removed from the working set. The remainder of the
working set is now identical to an execution of the algorithm on an instance one step
smaller. The work performed during such an execution with n steps of nested SCCs
can thus be summarized by the following recurrence relation:

T (n) = T (n− 1) +O(|V (n)|+ |E(n)|) + |E(n)| =
n∑

i=1
(O(|V (i)|+ |E(i)|) + |E(i)|)

Evaluating this sum yields a runtime of O(|V |2 + |V ||E|). This gives us a lower
bound on the complexity of this algorithm.

In fact, such a graph represents a true worst-case scenario for this algorithm: Consider
the task of constructing a graph with n nodes to maximize execution time of this
algorithm. Clearly, it is not beneficial to construct redundant sets, as no further
time is spent on these. Furthermore, for a working set at a given recursion level to
allow continued recursion, there must be at least two nodes that will be removed
from the working set in the next iteration: Every step of recursion removes nodes
pointing outside their SCC from the working set, so nodes within a working set only
ever point to nodes that were still in the working set in the previous recursion level.
This means that the two nodes referred to by SCC nodes in the next iteration to
trigger more recursive steps will have to “come from” the working set of this iteration.
Ultimately, this means a graph with n nodes can cause a maximum recursion depth
of n

2 .

Remember that Tarjan’s algorithm only performs depth-first search within working
sets, and the rest of the work per working set is bounded by the number of edges
within that working set. Hence the amount of work done at a given level of recursion
is only dependent on the combined size of the different working sets. Attempting
to construct an execution with a high branching factor in its recursive calls is thus
pointless, since every recursive call effectively reduces the working set size by at least
two. Simply nesting SCCs in a linear fashion allows for the most recursive calls for a
given number of nodes and thus for the most amount of work per node.
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Thus the graph schema from Figure 4.3 truly is a worst-case scenario for the algorithm,
and our complexity bound of O(|V |2 + |V ||E|) is the asymptotic complexity of this
algorithm.

4.2. Implementation

As part of this thesis, we’ve implemented Braun et al.’s peeling algorithm in
libFirm [11]. The algorithm is implemented as a pass to be run during SSA opti-
mization. The implementation can be found in Appendix A.2 and on Github1. Since
the efficiency of data structures is instrumental in ensuring that the implementation
performs as well as the theoretical asymptotic bounds allow for, we list and motivate
our choice of data structures.

We use a hashmap to map redundant φ-functions to the SSA values they should
be replaced by, to defer modifications to the graph until the algorithm is done.
SCCs store their set of nodes within an iterable hashset, since they provide efficient
insertion, deletion, iteration and element tests. These operations are possible in
amortized O(1), and are usually available in average O(1). The list of SCCs yet
to be evaluated is stored in a doubly linked list, and we use another temporary
doubly linked list for the SCCs found within one execution of Tarjan’s algorithm.
At the end of one such execution, the new batch of SCCs are spliced to the front of
the yet-to-be-evaluated-list, and every iteration only pops SCCs off from the front
of this list. This mode of operation naturally meshes with the reverse topological
ordering in which SCCs need to be processed. These operations can be done in O(1).
Fortunately libFirm provides implementations of all these data structures, so the
entirety of the code that needed to be written encompasses around 400 lines of C.

One caveat not mentioned so far is that the φ graph must first be constructed.
Thus, if the CFG is orders of magnitude bigger than the φ web, the execution time
of the first iteration may be much greater than what one would expect given the
number of φ-functions. An implementation that is only used immediately after SSA
construction could benefit from this by having the SSA construction pass also make
note of all φ-functions per variable, thus amortizing the construction costs for the
φ graph. Since we want to compare the efficacy of the peeling algorithm when run
at different points in the optimization pipeline, our implementation doesn’t benefit
from this. Instead, the φ graph is never explicitly constructed; A first iteration of the
algorithm is performed by walking the whole CFG, starting an execution of Tarjan’s
algorithm from every φ-function not yet handled. The remainder of the working set
after this first iteration then includes only the φ-functions which would otherwise be
present at this stage.

1https://github.com/TehMillhouse/libfirm/tree/SSA_arbitrary_control_flow
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Figure 4.4.: Execution time of our implementation on a constructed worst-case
example. The dotted line shows the trajectory of our complexity bound
fitted to the first two-thirds of the data range.
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Figure 4.5.: Detailed crop of Figure 4.4.
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To shed some light on the size at which φ graphs become untractable for this
implementation, we have tested the algorithm on a version of the worst-case graph
from Figure 4.3. Note that since these graphs were constructed programmatically
by directly calling Firm node constructors, they don’t correspond to the internal
representation of any C program. However, this only really affects the first iteration
of the algorithm, since the first iteration has to traverse all nodes in the IR to
construct the initial working set. In any case, this “missing overhead” can be avoided
in an implementation of the peeling algorithm by coupling the minimization step
and the SSA construction, and having the SSA construction algorithm explicitly
construct the φ graph.2 Figures 4.4 and 4.5 show the results of this informal test. In
our experiments, which we more rigorously evaluate in Section 5, we have found no
function with more than seven hundred φ-functions in total. Since our implementation
still completes in under a second on a worst-case instance with a similar number
of φ-functions in a single φ net, we argue that the practical performance of both
Braun et al.’s peeling algorithm, and specifically our implementation of it, are by all
means adequate.

2We have not taken this approach as we want to evaluate the algorithm both when executed right
after SSA construction and during SSA optimization
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5. Evaluation

The phenomenon of irreducibility in CFGs is often associated with the goto state-
ment. However, even languages lacking a direct equivalent to goto may have
interactions of language constructs allowing for irreducible control flow to occur,
Duff’s Device being the most famous example of such an interaction. Still, it
has been noted that irreducible control flow is a rather rare occurrance, even in
machine-generated code [12, 13]. It’s thus a valid question to ask whether these rare
occurrances introduce enough redundant φ-functions to warrant adding additional
complexity in the form of Braun et al.’s peeling algorithm to an SSA-based compiler.
To answer this question, we’ve evaluated the peeling algorithm as applied to a collec-
tion of real-world programs. Our input programs are taken from the SPEC CPU2000
and CPU2006 benchmark suites. Several real-world C projects are taken from the
libFirm test suite (i.e. the Apache web server v2.2.21, vim v7.2 and lua v5.1.4).
In addition to this, we’ve included spass v2.1 and the reference implementation
of the python language (cpython, v3.7 alpha @ 321fd5). We would have loved to
include the Linux kernel into our evaluation, as its large codebase of low-level systems
programming code makes it one of the “worst offenders” when it comes to the sheer
number of gotos. Unfortunately, writing a compiler that can compile the Linux
kernel is a herculean task, and currently only gcc is capable of doing so.

All measurements (including the measurements of figures 4.4 and 4.5) were performed
on the same machine. This machine is running a standard Ubuntu 16.04.1 LTS
(kernel version 4.4.0) and is equipped with 16GB of memory and an Intel i7-2600
processor clocked at 3.4GHz. Since trivial φ-functions can also be eliminated using a
much simpler, more efficient algorithm, we have specifically excluded them from our
numbers by removing them before executing the peeling algorithm. All standard
deviations given assume an underlying normal distribution.

5.1. Occurrance of Redundant φ-Functions

We start out by measuring the time spent during compilation (without linking) and
during execution of the peeling algorithm, as well as the number of redundant φ-
functions found. This is done in two kinds of configurations: A baseline configuration,
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with all non-essential optimizations turned off1 and an optimized configuration with
all conventional optimizations turned on. This is done to gauge multiple things:

• How often does irreducible control flow occur at source level?

• Do redundant φ-functions occur in real-world situations as a result of SSA
optimizations modifying the IR?

• How many of the redundant φ-functions found at source level are “accidentally”
optimized away as side-effect of other optimizations?

• How well does the peeling algorithm perform on real-world programs, and how
does the time spent minimizing compare to the total compilation time?

Unfortunately, due to multiple preexisting bugs in the compiler we used, not all
programs can be compiled with all optimizations turned off. In this case, we instead
turn off a common set of optimizations to get as close as possible to our original
goal2. Such datapoints are marked with an asterisk (*) after the benchmark name.

Tables 5.1, 5.2 and 5.3 show our results in the fully optimized case. We concede
that redundant φ-functions seem to be rather rare, with SPEC CPU2000 exhibiting
none and only two benchmarks from SPEC CPU2006 exhibiting any redundant φ-
functions. We note that minimization takes less than 0.05% of total compilation time
in most cases, the only exception being the SPEC CPU2006 version of bzip2, where
the peeling algorithm manages to remove almost a fifth of φ-functions. The single
benchmark with the highest number of redundant φ-functions in this configuration
is vim, with as many as 362 redundant φ-functions in a single function.

Tables 5.4, 5.5 and 5.6 show the same benchmarks compiled with only essential
optimizations and our minimization pass. In general, there tend to be more redundant
φ-functions in an unoptimized SSA graph, suggesting that at least some of the
redundant φ-functions present at source level can be found and removed by other
means. We observe the greatest increase in redundant φ-functions in cpython. This
increase stems from a single function, _PyEval_EvalFrameDefault, which contains
the core language interpreter loop. We have manually determined that libFirm’s
“combo” pass removes all redundant φ-functions in this function. Since less time is
spent on other optimizations, the peeling algorithm takes more time percentually than
with all optimizations turned on. However, even in this configuration the time spent
minimizing the SSA graph is well below 0.5% of total compilation time. We note
the sharp decrease in redundant φ-functions in vim when turning off optimizations.

1libFirm requires a certain number of basic optimizations to be turned on to generate machine
code.

2This set consists of loop strength reduction, jump threading, global common subexpression
elimination, and the combined dataflow analysis phase based on the work of Click [14].
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5.1. OCCURRANCE OF REDUNDANT φ-FUNCTIONS

benchmark time peeling st. dev. total time st. dev. % of total time φs removed

vortex 47.09 ms 0.30 % 115.30 s 0.26 % 0.041 % 0/1583
bzip2 2.86 ms 1.33 % 9.42 s 0.72 % 0.030 % 0/324
vpr 11.95 ms 0.81 % 33.57 s 0.45 % 0.036 % 0/978
crafty 17.30 ms 1.62 % 60.66 s 1.25 % 0.029 % 0/1111
gcc 153.70 ms 0.21 % 484.40 s 0.25 % 0.032 % 0/9119
gzip 4.42 ms 0.70 % 12.19 s 0.75 % 0.036 % 0/472
perlbmk 63.40 ms 0.30 % 201.30 s 0.29 % 0.031 % 0/3858
mesa 50.24 ms 0.24 % 135.10 s 0.30 % 0.037 % 0/3409
ammp 13.71 ms 0.44 % 29.24 s 0.58 % 0.047 % 0/1058
gap 62.11 ms 0.27 % 164.80 s 0.16 % 0.038 % 0/6570
mcf 1.54 ms 1.75 % 3.31 s 1.51 % 0.047 % 0/112
twolf 26.23 ms 0.26 % 74.05 s 0.30 % 0.035 % 0/2154
parser 10.92 ms 0.49 % 42.05 s 0.33 % 0.026 % 0/1136
equake 1.83 ms 0.37 % 3.94 s 0.74 % 0.046 % 0/161
art 1.29 ms 0.77 % 3.11 s 1.32 % 0.042 % 0/156

Table 5.1.: Performance and efficacy of the peeling algorithm alongside a full set
of optimizations in SPEC CPU2000. Standard deviations assume a
normal distribution and are listed alongside their corresponding data
point. The measured mean times correspond to the time spent executing
the peeling algorithm and the total compilation time, respectively. The
rightmost column lists the number of redundant φ-functions that were
eliminated and the total number of φ-functions in the benchmark before
minimization.
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5.1. OCCURRANCE OF REDUNDANT φ-FUNCTIONS

benchmark time peeling st. dev. total time st. dev. % of total time φs removed

libquantum 3.18 ms 0.62 % 11.72 s 0.54 % 0.027 % 0/211
perlbench 145.20 ms 0.51 % 442.60 s 2.16 % 0.033 % 30/7626
bzip2 52.33 ms 1.37 % 21.09 s 0.41 % 0.250 % 187/965
milc 11.35 ms 1.15 % 33.37 s 0.54 % 0.034 % 0/966
mcf 1.56 ms 2.08 % 3.41 s 2.60 % 0.046 % 0/111
h264ref 56.86 ms 0.17 % 178.59 s 1.83 % 0.032 % 0/4667
sphinx3 16.00 ms 0.82 % 40.50 s 0.57 % 0.039 % 0/1364
lbm 1.02 ms 0.74 % 2.09 s 0.35 % 0.049 % 0/60
sjeng 11.73 ms 0.36 % 34.66 s 0.35 % 0.034 % 0/750
gcc 340.80 ms 0.20 % 1375.04 s 0.77 % 0.025 % 0/16624
hmmer 28.84 ms 0.26 % 79.38 s 0.08 % 0.036 % 0/2187
gobmk 73.89 ms 0.09 % 223.61 s 0.18 % 0.033 % 0/4620

Table 5.2.: Performance and efficacy of the peeling algorithm alongside a full set
of optimizations in SPEC CPU2006. Standard deviations assume a
normal distribution and are listed alongside their corresponding data
point. The measured mean times correspond to the time spent executing
the peeling algorithm and the total compilation time, respectively. The
rightmost column lists the number of redundant φ-functions that were
eliminated and the total number of φ-functions in the benchmark before
minimization.

benchmark time peeling st. dev. total time st. dev. % of total time φs removed

spass 68.26 ms 0.48 % 260.9 s 0.41 % 0.026 % 0/5178
apache 38.46 ms 96.49 % 77.7 s 91.54 % 0.049 % 44/5382
lua 7.11 ms 53.03 % 21.4 s 95.34 % 0.033 % 0/802
vim 38.77 ms 0.39 % 103.7 s 0.21 % 0.037 % 449/13171
cpython 77.77 ms 1.05 % 203.5 s 0.43 % 0.038 % 90/17352

Table 5.3.: Performance and efficacy of the peeling algorithm alongside a full set
of optimizations in misc. benchmarks. Standard deviations assume a
normal distribution and are listed alongside their corresponding data
point. The measured mean times correspond to the time spent executing
the peeling algorithm and the total compilation time, respectively. The
rightmost column lists the number of redundant φ-functions that were
eliminated and the total number of φ-functions in the benchmark before
minimization.
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5.2. EFFECT OF REDUNDANT φ-FUNCTIONS ON PERFORMANCE

benchmark time peeling st. dev. total time st. dev. % of time φs removed

vortex 27.17 ms 2.33 % 11.36 s 1.65 % 0.24 % 0/2727
bzip2 1.50 ms 10.04 % 0.47 s 6.03 % 0.31 % 0/416
vpr 7.94 ms 2.40 % 2.46 s 1.89 % 0.32 % 0/2923
crafty 11.31 ms 2.78 % 7.88 s 1.15 % 0.14 % 0/1437
gcc 94.50 ms 1.83 % 58.25 s 0.44 % 0.16 % 0/18491
gzip 2.83 ms 5.25 % 0.93 s 4.50 % 0.30 % 0/602
perlbmk 32.75 ms 2.61 % 16.29 s 0.44 % 0.20 % 0/6839
mesa 30.14 ms 2.41 % 11.16 s 1.89 % 0.27 % 0/5092
ammp 7.66 ms 3.05 % 2.71 s 2.89 % 0.28 % 0/1000
gap 39.53 ms 2.35 % 11.55 s 1.03 % 0.34 % 0/8493
mcf 0.67 ms 15.34 % 0.39 s 13.86 % 0.17 % 0/145
twolf 17.27 ms 3.95 % 7.83 s 3.10 % 0.22 % 0/2837
parser 6.05 ms 2.38 % 2.20 s 1.95 % 0.28 % 0/1312
equake 1.04 ms 9.93 % 0.34 s 7.31 % 0.31 % 0/179
art 0.64 ms 14.27 % 0.20 s 11.66 % 0.33 % 0/217

Table 5.4.: Performance and efficacy of the peeling algorithm in SPEC CPU2000
benchmarks when using only essential optimizations. Standard de-
viations assume a normal distribution and are listed alongside their
corresponding data point. The measured mean times correspond to the
time spent executing the peeling algorithm and the total compilation
time, respectively. The rightmost column lists the number of redundant
φ-functions that were eliminated and the total number of φ-functions
in the benchmark before minimization.

Interestingly, there are no functions in the vim code base which exhibit redundant
φ-functions in both configurations. The vim benchmark thus shows two kinds of
interesting behaviour simultaneously: redundant φ-functions being removed by other
optimizations and sets of φ-functions being made redundant by other optimizations.
Through manual analysis, we have determined that the combo phase is the cause of
almost all of the redundant φ-functions observed in vim in the optimized configuration.

5.2. Effect of Redundant φ-Functions on Performance

In this section we evaluate the effects of redundant φ-functions on the efficiency
of the generated code. That is, we attempt to answer the question “But does it
even matter?”. Unfortunately, the persuasiveness of our results is limited, since we
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5.2. EFFECT OF REDUNDANT φ-FUNCTIONS ON PERFORMANCE

benchmark time peeling st. dev. total time st. dev. % of time φs removed

libquantum 1.62 ms 4.83 % 0.92 s 4.87 % 0.18 % 0/268
perlbench 62.18 ms 1.51 % 69.90 s 0.26 % 0.09 % 226/11821
bzip2 4.99 ms 5.80 % 1.84 s 3.05 % 0.27 % 401/1243
milc 5.71 ms 6.71 % 2.53 s 3.6 % 0.23 % 0/983
mcf 0.73 ms 5.40 % 0.42 s 4.58 % 0.17 % 0/148
h264ref 35.89 ms 2.25 % 28.13 s 0.51 % 0.13 % 7/5884
sphinx3 8.12 ms 1.98 % 3.91 s 2.25 % 0.21 % 0/1376
lbm 1.29 ms 2.62 % 0.52 s 3.23 % 0.25 % 0/60
sjeng 7.80 ms 5.99 % 4.41 s 2.46 % 0.18 % 0/1190
gcc 180.90 ms 2.86 % 247.70 s 0.16 % 0.073 % 0/35571
hmmer 16.45 ms 1.86 % 7.12 s 1.77 % 0.23 % 0/2491
gobmk 36.81 ms 1.77 % 24.32 s 0.67 % 0.15 % 0/6217

Table 5.5.: Performance and efficacy of the peeling algorithm in SPEC CPU2006
benchmarks when using only essential optimizations. Standard de-
viations assume a normal distribution and are listed alongside their
corresponding data point. The measured mean times correspond to the
time spent executing the peeling algorithm and the total compilation
time, respectively. The rightmost column lists the number of redundant
φ-functions that were eliminated and the total number of φ-functions
in the benchmark before minimization.

benchmark time peeling st. dev. total time st. dev. % of total time φs removed

spass 31.13 ms 2.39 % 15.46 s 1.50 % 0.20 % 0/6388
apache 31.10 ms 1.86 % 27.06 s 1.23 % 0.11 % 63/7051
lua* 6.11 ms 0.87 % 11.22 s 0.51 % 0.05 % 0/813
vim* 70.77 ms 1.46 % 30.80 s 0.58 % 0.23 % 31/16874
cpython* 87.23 ms 0.73 % 113.01 s 0.57 % 0.08 % 1055/19973

Table 5.6.: Performance and efficacy of the peeling algorithm in misc. benchmarks
when using only essential optimizations. Standard deviations assume
a normal distribution and are listed alongside their corresponding data
point. The measured mean times correspond to the time spent executing
the peeling algorithm and the total compilation time, respectively. The
rightmost column lists the number of redundant φ-functions that were
eliminated and the total number of φ-functions in the benchmark before
minimization.
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5.3. SOURCES OF REDUNDANT φ-FUNCTIONS

benchmark minimized st. dev. not minimized st. dev improvement

bzip2 490.39 s 0.38 % 492.64 s 0.36 % 0.46 %
h264ref 771.72 s 0.66 % 767.64 s 0.15 % −0.53 %
perlbench 810.68 s 0.11 % 811.19 s 0.15 % 0.06 %
cpython (fannkuch.py) 201.45 s 0.49 % 205.31 s 0.96 % 1.88 %
cpython (nqueens.py) 32.11 s 0.83 % 32.51 s 0.53 % 1.25 %

Table 5.7.: Effect of redundant φ elimination on benchmark run time when using
only essential optimizations. “minimized” and “not minimized” times
refer to whether the peeling algorithm has been enabled (minimized) or
not (not minimized). Standard deviations assume a normal distribution
and are listed alongside their corresponding data point.

have found very few programs exhibiting redundant φ-functions. As an additional
hurdle, due to time constraints, we could not measure performance data for programs
outside the SPEC benchmark suites and cpython. For performance benchmarking
of cpython, we adopted two benchmarks used by the PyPy project3. These two
were simply chosen because they are relatively well-known and used in various forms
across a large number of languages.

Tables 5.7 and 5.8 list the performance measurements we performed. To our surprise,
the difference in performance was measurable and statistically significant in the case
of the version of bzip2 included in SPEC CPU2006 and in cpython. Puzzlingly,
the baseline configuration of bzip2, which showed a higher number of redundant
φ-functions, did not benefit as much from redundant φ-function removal as the
optimized configuration. We suspect this stems from the fact that a more concise
SSA representation may enable other optimizations. In this sense, redundant φ-
functions only serve to “mask” patterns that other optimizations may match for. This
result proves that, while rare, there are indeed cases where redundant φ-functions
can have a measurable performance impact on the generated code.

5.3. Sources of Redundant φ-Functions

We have manually inspected each function with at least ten redundant φ-functions
across all benchmarks to attempt to spot some of the more common patterns in
code which exhibits redundant φ-functions. Table 5.9 shows a summary of our
results. Note that there are several functions with different purposes that only
express redundant φ-functions if other optimizations are included in the compilation

3See https://bitbucket.org/pypy/benchmarks for the original sources.

41

https://bitbucket.org/pypy/benchmarks


5.3. SOURCES OF REDUNDANT φ-FUNCTIONS

benchmark minimized st. dev. not minimized st. dev improvement

perlbench 366.43 s 0.48 % 366.69 s 0.22 % 0.07 %
bzip2 397.20 s 0.36 % 404.54 s 0.55 % 1.80 %

Table 5.8.: Effect of redundant φ elimination on benchmark run time when using
all optimizations. cpython, apache and vim are omitted for lack of
benchmarks that execute code with redundant φ-functions. “minimized”
and “not minimized” times refer to whether the peeling algorithm has
been enabled (minimized) or not (not minimized). Standard deviations
assume a normal distribution and are listed alongside their corresponding
data point.

benchmark function name min. opt. full opt. purpose

perlbench Perl_re_intuit_start X X regex engine
Perl_ck_subr X X interpreter
Perl_regexec_flags X regex engine
Perl_sv_vcatpvfn X string formatter

bzip2 unRLE_obuf_to_output_FAST X ?
BZ2_decompress X X decompressor

apache apr_socket_sendfile X network code
apr_socket_sendv X network code
apr_vformatter X string formatter
fnmatch_ch X pattern matching
compile_branch X regex engine

vim vgetorpeek X input routine
win_line X display text
find_pattern_in_path X pattern matching

cpython sre_ucsX_match X X regex engine
_PyEval_EvalFrameDefault X interpreter

Table 5.9.: All functions that, in some configuration, expressed ten or more re-
dundant φ-functions. The columns labeled “min. opt.” and “full opt.”
list whether redundant φ-functions were found in the baseline and fully
optimized configurations, respectively.
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5.3. SOURCES OF REDUNDANT φ-FUNCTIONS

process. However, it is hard to miss that among these functions, certain kinds of
software occur suspiciously often: regular expression engines, string formatting (and
other kinds of ad-hoc parsers), and the inner loops of language interpreters tend to
generate redundant φ-functions. In fact, these types of functions, along with the
bzip2 decompressor and vim’s input handling, have one thing in common. They
all perform a form of dynamic dispatch, that is, they all contain a loop iterating
over some input sequence and decide based on the current item which operation to
perform.

Naive implementations of such a dispatch have a well-documented disadvantage: The
branch misprediction penalty incurred at the dispatch location due to the inherent
unpredictability of the operation that is to be performed. A common mitigation for
this overhead is to avoid having a single dispatch point by using gotos to manually
thread the flow of execution. Most of the functions in Table 5.9 employ this kind of
manual threading.

There are, however, exceptions to this. The network code in apache has gotos leading
into a loop, and is uninteresting for our purposes. The win_line function is used by
vim to render a single line of text into the window buffer. It is especially noteworthy
because even after macro expension, it contains no gotos and no interlacing of
control flow structures à la Duff’s Device. In spite of this, it generates about as many
redundant φ-functions (362) as non-redundant ones (410) when compiled alongside
libFirm’s combo pass. This provides an excellent example for the fact that even
without irreducible control flow at source level, redundant φ-functions can occur.
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6. Related Work

Interactive theorem provers have grown powerful and useful enough that even
daunting tasks such as constructing fully verified compilers have become tractable.
It is thus that recent years have seen an uptick in academic publications in this field.
This section serves to highlight some of these publications and put this thesis in its
wider context.

Starting with SSA construction in general, Braun et al.[1] proposed an algorithm
combining relative simplicity (forgoing the need for previous analyses) with perfor-
mance which is competitive to that of LLVM’s implementation of the algorithm by
Sreedhar et al. [15]. Buchwald et al. [4] then proceeded to implement a functional
variant of Braun et al.’s SSA construction algorithm in Isabelle and proved the
correctness of the algorithm and the minimality of its output given reducible CFGs,
forming the framework this thesis is based upon.

Vellvm [16] is an implementation of LLVM’s IR in the theorem prover Coq. Recently,
Zhao et al. [17] have formalized a subset of the IR supported by Vellvm called
Vminus along with an operational semantic for it. They then proceeded to implement
LLVM’s mem2reg SSA transformation pass in Vminus and prove it correct. Our
approach differs in that our framework does not formalize a direct semantic for SSA,
but concerns itself with semantic equivalence between an input CFG and its SSA
version. Following this, Zhao et al. [18] then formalized the notion of dominance in
this framework. They used Vminus to implement several algorithms for dominance
analysis and proved each of them correct. They stated construction of dominator
trees (which enable several SSA optimizations) and an SSA type checker as possible
applications of their work. While still non-obvious, they thereby proved that an
efficient implementation of dominance analysis is possible within the scope of verified
compiler construction.

CompCert [19] is an unrelated project aiming to write a completely verified compiler
for a substantial subset of the C language. CompCert is also implemented and
verified in Coq, but unlike Vellvm, it uses a register transfer language as IR. Recent
developments include an SSA-based middle-end [20] given the name CompCertSSA.
Buchwald et al. [4] extracted their implementation of Braun et al.’s SSA construction
algorithm into a form usable by CompCertSSA, providing a second SSA middle-end
which is directly verified, as opposed to the translation validation approach taken by
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CompCertSSA.

In the meantime, Demange et al. [21] have turned their attention to implementing and
verifying SSA-based optimizations (specifically, Global Value Numbering and Sparse
Conditional Constant Propagation) to make better use of their SSA middle-end for
CompCert. Another interesting development is the work by Demange et al. [22] on
extending CompCertSSA by improving the previous SSA destruction phase. Their
contribution is an implementation and verification of the SSA destruction algorithm
of Boissinot et al.[23], thus enabling code generation for a larger class of SSA CFGs
and improving compiler output significantly.

In more generally related papers, Mansky et al. [24] provided a small-step op-
erational semantic for CFGs and a variant of TRANS, a graph transformation
language, to prove the correctness of an SSA construction algorithm in Isabelle/HOL.
Blech et al. [25] provided a formalization of the semantics of SSA form and of a
simple machine language. They proved that every translation from SSA to machine
language that respects the partial ordering induced by use-def-edges in the SSA IR
is a valid scheduling. They thus provided an example for how even the later stages
of compilation can be made formally tractable.
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7. Conclusion

Using the theorem prover Isabelle/HOL, we formally proved the correctness of
Braun et al.’s peeling algorithm. We then proved that freedom of redundant φ-
functions implies a criterion for minimality that, in the case of conventional SSA,
coincides with cytron-minimality. This definition of minimality is thus more general
than cytron-minimality, and can be used to assess SSA form that has been modified
by other optimizations. The entirety of the Isabelle proofs consists of around 1000
lines of proof text. We established a runtime complexity of O(|V |2 + |V ||E|), where
V and E are the vertices and edges of the graph induced by φ-functions and their
arguments, respectively.

We implemented the algorithm as an optimization pass in libFirm. The implemen-
tation consists of around 400 lines of C code, not counting reused data structure
implementations that are part of libFirm. Our experiments on worst-case instances
of input CFGs suggest this implementation performs well enough on φ webs of
reasonable size.

In our evaluation of the algorithm, we vetted Braun et al.’s peeling algorithm against
real-world programs from several benchmark suites and miscellaneous sources. These
experiments confirm our previous judgment of the implementation’s performance
on realistic programs. Our results further show that irreducible control flow is a
rather rare occurrence, and program constructs that introduce redundant φ-functions
even more so. Nevertheless, such cases do exist. We found cases in which redundant
φ-functions could be optimized away by other analyses, as well as cases in which
no other optimization in libFirm could identify and remove these φ-functions. We
further found cases in which executing Braun et al.’s peeling algorithm along with
other optimization passes uncovered redundant φ-functions which were not present
when executed with only minimal optimization after SSA construction. This suggests
that there are situations in which even a compiler that guarantees construction of
minimal SSA form could benefit from employing Braun et al.’s peeling algorithm as
an optimization pass.

Using manual analysis of the functions exhibiting redundant φ-functions at source
level, we identified a common factor in these functions: All functions we found to
be generating a substantial number of such φ-functions were manually optimized
interpreter loops doing some form of dynamic dispatch. These can be found in a wide
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array of software, e.g. in implementations of programming languages, compression
software, regular expression engines, emulators, and ad-hoc parsers. The redundant
φ-functions observed in these kinds of loops are a direct result of a common technique
for mitigating branch misprediction overhead: manually threading control flow using
gotos. The effect of large a number of redundant φ-functions on the runtime of the
generated code turned out to be statistically significant, but not large percentually.

We thus conclude that though there are cases where redundant φ-functions can have
a measurable impact on the performance of the generated code, in general these
occur only rarely. Compilers which already use sophisticated data flow analyses
such as that proposed by Click [14] can easily “get away” with ignoring redundant
φ-functions. In such cases Braun et al.’s SSA construction algorithm has proven
itself to be a good compromise between implementation complexity, efficiency and
quality of the output SSA form. The fact that redundant φ-functions tend to occur in
especially “hot” sections of code that have been hand-tuned for performance suggests
that the added complexity may still be worth it in rare cases.

Though we proved the correctness and efficacy of Braun et al.’s peeling algorithm,
the implementation we provide remains unverified, and we have encountered multiple
bugs during implementation. Thus implementing a functional variant of the algorithm
in Isabelle and proving it correct would be an obvious opportunity for future work.
This could be combined into the effort by Buchwald et al. [4] to produce a fully
verified SSA middle-end for CompCertSSA.
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A. Appendices

A.1. Full Isabelle Proof Document

Minimality under Irreducible Control Flow

Braun et al. [1] provide an extension to the original construction algorithm to ensure
minimality according to Cytron’s definition even in the case of irreducible control flow.
This extension establishes the property of being redundant-scc-free, i.e. the resulting graph
G contains no subsets inducing a strongly connected subgraph G′ via φ-functions such that
G′ has less than two φ arguments in G \G′. In this section we will show that a graph with
this property is Cytron-minimal.

theory Irreducible
imports Minimality Graph-path
begin

context CFG-SSA-Transformed
begin

Proof of Lemma 1 from Braun et al.

To preserve readability, we won’t distinguish between graph nodes and the φ-functions
contained inside such a node.

The graph induced by the φ network contained in the vertex set P. Note that the edges of
this graph are not necessarily a subset of the edges of the input graph.

definition induced-phi-graph g P ≡ {(ϕ,ϕ ′). phiArg g ϕ ϕ ′} ∩ P × P

For the purposes of this section, we define a "redundant set" as a nonempty set of φ-functions
with at most one φ argument outside itself. A redundant SCC is defined analogously. Note
that since any uses of values in a redundant set can be replaced by uses of its singular
argument (without modifying program semantics), the name is adequate.

definition redundant-set g P ≡ P 6= {} ∧ P ⊆ dom (phi g) ∧ (∃ v ′ ∈ allVars g. ∀ϕ ∈ P.
∀ϕ ′. phiArg g ϕ ϕ ′ −→ ϕ ′ ∈ P ∪ {v ′})
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definition redundant-scc g P scc ≡ redundant-set g scc ∧ is-scc (induced-phi-graph g P)
scc

We prove an important lemma via condensation graphs of φ networks, so the relevant
definitions are introduced here.

definition condensation-nodes g P ≡ scc-of (induced-phi-graph g P) ‘ P
definition condensation-edges g P ≡ ((λ(x,y). (scc-of (induced-phi-graph g P) x, scc-of
(induced-phi-graph g P) y)) ‘ (induced-phi-graph g P)) − Id

For a finite P, the condensation graph induced by P is finite and acyclic.

lemma condensation-finite: finite (condensation-edges g P)

The set of edges of the condensation graph, spanning at most all φ nodes and their
arguments (both of which are finite sets), is finite itself.

proof −
let ?phiEdges={(a,b). phiArg g a b}
have finite ?phiEdges
proof −
let ?phiDomRan=(dom (phi g) ×

⋃
(set ‘ (ran (phi g))))

from phi-finite
have finite ?phiDomRan by (simp add: imageE phi-finite map-dom-ran-finite)
have ?phiEdges ⊆ ?phiDomRan
apply (rule subst[of ∀ a ∈ ?phiEdges. a ∈ ?phiDomRan])
apply (simp-all add: subset-eq[symmetric] phiArg-def )
by (auto simp: ran-def )
with 〈finite ?phiDomRan〉

show finite ?phiEdges by (rule Finite-Set.rev-finite-subset)
qed
hence

∧
f . finite (f ‘ (?phiEdges ∩ (P × P))) by auto

thus finite (condensation-edges g P) unfolding condensation-edges-def induced-phi-graph-def
by auto
qed

auxiliary lemmas for acyclicity

lemma condensation-nodes-edges: (condensation-edges g P) ⊆ (condensation-nodes g P ×
condensation-nodes g P)
unfolding condensation-edges-def condensation-nodes-def induced-phi-graph-def
by auto

lemma condensation-edge-impl-path:
assumes (a, b) ∈ (condensation-edges g P)
assumes (ϕa ∈ a)
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assumes (ϕb ∈ b)
shows (ϕa, ϕb) ∈ (induced-phi-graph g P)∗
unfolding condensation-edges-def
proof −
from assms(1 )
obtain x y where x-y-props:

(x, y) ∈ (induced-phi-graph g P)
a = scc-of (induced-phi-graph g P) x
b = scc-of (induced-phi-graph g P) y
unfolding condensation-edges-def by auto
hence x ∈ a y ∈ b by auto

All that’s left is to combine these paths.

with assms(2 ) x-y-props(2 )
have (ϕa, x) ∈ (induced-phi-graph g P)∗ by (meson is-scc-connected scc-of-is-scc)
moreover with assms(3 ) x-y-props(3 ) 〈y ∈ b〉

have (y, ϕb) ∈ (induced-phi-graph g P)∗ by (meson is-scc-connected scc-of-is-scc)
ultimately
show (ϕa, ϕb) ∈ (induced-phi-graph g P)∗ using x-y-props(1 ) by auto

qed

lemma path-in-condensation-impl-path:
assumes (a, b) ∈ (condensation-edges g P)+

assumes (ϕa ∈ a)
assumes (ϕb ∈ b)
shows (ϕa, ϕb) ∈ (induced-phi-graph g P)∗
using assms
proof (induction arbitrary: ϕb rule:trancl-induct)
fix y z ϕb

assume (y, z) ∈ condensation-edges g P

hence is-scc (induced-phi-graph g P) y unfolding condensation-edges-def by auto
hence ∃ϕy. ϕy ∈ y using scc-non-empty ′ by auto
then obtain ϕy where ϕy-in-y: ϕy ∈ y by auto

assume ϕb-elem: ϕb ∈ z
assume

∧
ϕb. ϕa ∈ a =⇒ ϕb ∈ y =⇒ (ϕa, ϕb) ∈ (induced-phi-graph g P)∗

with assms(2 ) ϕy-in-y
have ϕa-to-ϕy: (ϕa, ϕy) ∈ (induced-phi-graph g P)∗ using condensation-edge-impl-path

by auto

from ϕb-elem ϕy-in-y 〈(y, z) ∈ condensation-edges g P〉

have (ϕy, ϕb) ∈ (induced-phi-graph g P)∗ using condensation-edge-impl-path by auto
with ϕa-to-ϕy

show (ϕa, ϕb) ∈ (induced-phi-graph g P)∗ by auto
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qed (auto intro:condensation-edge-impl-path)

lemma condensation-acyclic: acyclic (condensation-edges g P)
proof (rule acyclicI , rule allI , rule ccontr , simp)
fix x

Assume there is a cycle in the condensation graph.

assume cyclic: (x, x) ∈ (condensation-edges g P)+

have nonrefl: (x, x) /∈ (condensation-edges g P) unfolding condensation-edges-def by
auto

Then there must be a second SCC b on this path.

from this cyclic
obtain b where b-on-path: (x, b) ∈ (condensation-edges g P) (b, x) ∈ (condensation-edges

g P)+

by (meson converse-tranclE)

hence x ∈ (condensation-nodes g P) b ∈ (condensation-nodes g P) using condensation-nodes-edges
by auto
hence nodes-are-scc: is-scc (induced-phi-graph g P) x is-scc (induced-phi-graph g P) b
using scc-of-is-scc unfolding induced-phi-graph-def condensation-nodes-def by auto

However, the existence of this path means all nodes in b and x are mutually reachable g.

have ∃ϕx. ϕx ∈ x ∃ϕb. ϕb ∈ b using nodes-are-scc scc-non-empty ′ ex-in-conv by auto
then obtain ϕx ϕb where ϕxb-elem: ϕx ∈ x ϕb ∈ b by metis
with nodes-are-scc(1 ) b-on-path path-in-condensation-impl-path condensation-edge-impl-path
ϕxb-elem(2 )
have ϕb ∈ x
by − (rule is-scc-closed)

This however means x and b must be the same SCC, which is a contradiction to the
nonreflexivity of condensation-edges.

with nodes-are-scc ϕxb-elem
have x = b using is-scc-unique[of induced-phi-graph g P] by simp
hence (x, x) ∈ (condensation-edges g P) using b-on-path by simp
with nonrefl
show False by simp

qed

Since the condensation graph of a set is acyclic and finite, it must have a leaf.

lemma Ex-condensation-leaf :
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assumes P 6= {}
shows ∃ leaf . leaf ∈ (condensation-nodes g P) ∧ (∀ scc.(leaf , scc) /∈ condensation-edges g
P)
proof −
from assms obtain x where x ∈ condensation-nodes g P unfolding condensation-nodes-def
by auto
show ?thesis
proof (rule wfE-min)
from condensation-finite condensation-acyclic
show wf ((condensation-edges g P)−1) by (rule finite-acyclic-wf-converse)

next
fix leaf
assume leaf-node: leaf ∈ condensation-nodes g P
moreover
assume leaf-is-leaf : scc /∈ condensation-nodes g P if (scc, leaf ) ∈ (condensation-edges

g P)−1 for scc
ultimately
have leaf ∈ condensation-nodes g P ∧ (∀ scc. (leaf , scc) /∈ condensation-edges g P)

using condensation-nodes-edges by blast
thus ∃ leaf . leaf ∈ condensation-nodes g P ∧ (∀ scc. (leaf , scc) /∈ condensation-edges g

P) by blast
qed fact

qed

lemma scc-in-P:
assumes scc ∈ condensation-nodes g P
shows scc ⊆ P
proof −
have scc ⊆ P if y-props: scc = scc-of (induced-phi-graph g P) n n ∈ P for n
proof −
from y-props
show scc ⊆ P
proof (clarsimp simp:y-props(1 ); case-tac n = x)
fix x
assume different: n 6= x
assume x ∈ scc-of (induced-phi-graph g P) n
hence (n, x) ∈ (induced-phi-graph g P)∗ by (metis is-scc-connected scc-of-is-scc

node-in-scc-of-node)
with different
have (n, x) ∈ (induced-phi-graph g P)+ by (metis rtranclD)
then obtain z where step: (z, x) ∈ (induced-phi-graph g P) by (meson tranclE)
from step
show x ∈ P unfolding induced-phi-graph-def by auto

qed simp
qed
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from this assms(1 ) have x ∈ P if x-node: x ∈ scc for x
apply −
apply (rule imageE [of scc scc-of (induced-phi-graph g P)])
using condensation-nodes-def x-node by blast+

thus ?thesis by clarify
qed

lemma redundant-scc-phis:
assumes redundant-set g P scc ∈ condensation-nodes g P x ∈ scc
shows phi g x 6= None
using assms by (meson domIff redundant-set-def scc-in-P subsetCE)

The following lemma will be important for the main proof of this section. If P is redundant,
a leaf in the condensation graph induced by P corresponds to a strongly connected set
with at most one argument, thus a redundant strongly connected set exists.

Lemma 1. Every redundant set contains a redundant SCC.
lemma 1 :
assumes redundant-set g P
shows ∃ scc ⊆ P. redundant-scc g P scc
proof −
from assms Ex-condensation-leaf [of P g]
obtain leaf where leaf-props: leaf ∈ (condensation-nodes g P) ∀ scc. (leaf , scc) /∈

condensation-edges g P
unfolding redundant-set-def by auto
hence is-scc (induced-phi-graph g P) leaf unfolding condensation-nodes-def by auto
moreover
hence leaf 6= {} by (rule scc-non-empty ′)
moreover
have leaf ⊆ dom (phi g)
apply (subst subset-eq, rule ballI )
using redundant-scc-phis leaf-props(1 ) assms(1 ) by auto

moreover
from assms
obtain pred where pred-props: pred ∈ allVars g ∀ϕ∈P. ∀ϕ ′. phiArg g ϕ ϕ ′ −→ ϕ ′ ∈ P
∪ {pred} unfolding redundant-set-def by auto
{

Any argument of a φ-functionin the leaf SCC which is not in the leaf SCC itself must be
the unique argument of P

fix ϕ ϕ ′

consider (in-P) ϕ ′ /∈ leaf ∧ ϕ ′ ∈ P | (neither) ϕ ′ /∈ leaf ∧ ϕ ′ /∈ P ∪ {pred} | ϕ ′ /∈
leaf ∧ ϕ ′ ∈ {pred} | ϕ ′ ∈ leaf by auto
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hence ϕ ′ ∈ leaf ∪ {pred} if ϕ ∈ leaf and phiArg g ϕ ϕ ′

proof cases
case in-P — In this case leaf wasn’t really a leaf, a contradiction
moreover
from in-P that leaf-props(1 ) scc-in-P[of leaf g P]
have (ϕ, ϕ ′) ∈ induced-phi-graph g P unfolding induced-phi-graph-def by auto
ultimately
have (leaf , scc-of (induced-phi-graph g P) ϕ ′) ∈ condensation-edges g P unfolding

condensation-edges-def
using leaf-props(1 ) that 〈is-scc (induced-phi-graph g P) leaf 〉

apply −
apply clarsimp
apply (rule conjI )
prefer 2
apply auto[1 ]
unfolding condensation-nodes-def

by (metis (no-types, lifting) is-scc-unique node-in-scc-of-node pair-imageI scc-of-is-scc)
with leaf-props(2 )
show ?thesis by auto

next
case neither — In which case P itself wasn’t redundant, a contradiction
with that leaf-props pred-props
have ¬redundant-set g P unfolding redundant-set-def
by (meson rev-subsetD scc-in-P)

with assms
show ?thesis by auto

qed auto — the other cases are trivial
}
with pred-props(1 )
have ∃ v ′∈allVars g. ∀ϕ∈leaf . ∀ϕ ′. phiArg g ϕ ϕ ′ −→ ϕ ′ ∈ leaf ∪ {v ′} by auto
ultimately
have redundant-scc g P leaf unfolding redundant-scc-def redundant-set-def by auto
thus ?thesis using leaf-props(1 ) scc-in-P by blast

qed

Proof of Minimality

We inductively define the reachable g-set of a φ-functionas all φ-functions reachable g from
a given node via an unbroken chain of φ argument edges to unnecessary φ-functions.

inductive-set reachable :: ′g ⇒ ′val ⇒ ′val set
for g :: ′g and ϕ :: ′val
where refl: unnecessaryPhi g ϕ =⇒ ϕ ∈ reachable g ϕ
| step: ϕ ′ ∈ reachable g ϕ =⇒ phiArg g ϕ ′ ϕ ′′ =⇒ unnecessaryPhi g ϕ ′′ =⇒ ϕ ′′ ∈

reachable g ϕ
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lemma reachable-props:
assumes ϕ ′ ∈ reachable g ϕ
shows (phiArg g)∗∗ ϕ ϕ ′ and unnecessaryPhi g ϕ ′
using assms
by (induction ϕ ′ rule: reachable.induct) auto

We call the transitive arguments of a φ-functionnot in its reachable g-set the "true arguments"
of this φ-function.

definition [simp]: trueArgs g ϕ ≡ {ϕ ′. ϕ ′ /∈ reachable g ϕ} ∩ {ϕ ′. ∃ϕ ′′ ∈ reachable g ϕ.
phiArg g ϕ ′′ ϕ ′}

lemma preds-finite: finite (trueArgs g ϕ)
proof (rule ccontr)
assume infinite (trueArgs g ϕ)
hence a: infinite {ϕ ′. ∃ϕ ′′ ∈ reachable g ϕ. phiArg g ϕ ′′ ϕ ′} by auto
have phiarg-set: {ϕ ′. ∃ϕ. phiArg g ϕ ϕ ′} =

⋃
(set ‘{b. ∃ a. phi g a = Some b}) unfolding

phiArg-def by auto

If the true arguments of a φ-functionare infinite in number, there must be an infinite
number of φ-functions. . .

have infinite {ϕ ′. ∃ϕ. phiArg g ϕ ϕ ′}
by (rule infinite-super [of {ϕ ′. ∃ϕ ′′ ∈ reachable g ϕ. phiArg g ϕ ′′ ϕ ′}]) (auto simp:

a)
with phiarg-set
have infinite (ran (phi g)) unfolding ran-def phiArg-def by clarsimp

Which cannot be.

thus False by (simp add:phi-finite map-dom-ran-finite)
qed

Any unnecessary φ with less than 2 true arguments induces with reachable g ϕ a redundant
set itself.

lemma few-preds-redundant:
assumes card (trueArgs g ϕ) < 2 unnecessaryPhi g ϕ
shows redundant-set g (reachable g ϕ)
unfolding redundant-set-def
proof (intro conjI )
from assms
show reachable g ϕ 6= {}
using empty-iff reachable.intros(1 ) by auto

next
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from assms(2 )
show reachable g ϕ ⊆ dom (phi g)
by (metis domIff reachable.cases subsetI unnecessaryPhi-def )

next
from assms(1 )
consider (single) card (trueArgs g ϕ) = 1 | (empty) card (trueArgs g ϕ) = 0 by force
thus ∃ pred∈allVars g. ∀ϕ ′∈reachable g ϕ. ∀ϕ ′′. phiArg g ϕ ′ ϕ ′′ −→ ϕ ′′ ∈ reachable g ϕ
∪ {pred}
proof cases
case single
then obtain pred where pred-prop: trueArgs g ϕ = {pred} using card-eq-1-singleton

by blast
hence pred ∈ allVars g by (auto intro: Int-Collect phiArg-in-allVars)
moreover
from pred-prop
have ∀ϕ ′∈reachable g ϕ. ∀ϕ ′′. phiArg g ϕ ′ ϕ ′′ −→ ϕ ′′ ∈ reachable g ϕ ∪ {pred} by

auto
ultimately
show ?thesis by auto

next
case empty
from allDefs-in-allVars[of - g defNode g ϕ] assms
have phi-var : ϕ ∈ allVars g unfolding unnecessaryPhi-def phiDefs-def allDefs-def

defNode-def phi-def trueArgs-def
by (clarsimp simp: domIff phis-in-αn)

from empty assms(1 )
have no-preds: trueArgs g ϕ = {} by (subst card-0-eq[OF preds-finite, symmetric])

auto
show ?thesis
proof (rule bexI , rule ballI , rule allI , rule impI )
fix ϕ ′ ϕ ′′

assume phis-props: ϕ ′ ∈ reachable g ϕ phiArg g ϕ ′ ϕ ′′
with no-preds
have ϕ ′′ ∈ reachable g ϕ
unfolding trueArgs-def
proof −
from phis-props
have ϕ ′′ ∈ {ϕ ′. ∃ϕ ′′∈reachable g ϕ. phiArg g ϕ ′′ ϕ ′} by auto
with phis-props no-preds
show ϕ ′′ ∈ reachable g ϕ unfolding trueArgs-def by auto

qed
thus ϕ ′′ ∈ reachable g ϕ ∪ {ϕ} by simp

qed (auto simp: phi-var)
qed

qed
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lemma phiArg-trancl-same-var :
assumes (phiArg g)++ ϕ n
shows var g ϕ = var g n
using assms
apply (induction rule: tranclp-induct)
apply (rule phiArg-same-var [symmetric])
apply simp
using phiArg-same-var by auto

The following path extension lemma will be used a number of times in the inner induction
of the main proof. Basically, the idea is to extend a path ending in a φ argument to the
corresponding φ-functionwhile preserving disjointness to a second path.

lemma phiArg-disjoint-paths-extend:
assumes var g r = V and var g s = V and r ∈ allVars g and s ∈ allVars g
and V ∈ oldDefs g n and V ∈ oldDefs g m
and g ` n−ns→defNode g r and g ` m−ms→defNode g s
and set ns ∩ set ms = {}
and phiArg g ϕr r
obtains ns ′
where g ` n−ns@ns ′→defNode g ϕr

and set (butlast (ns@ns ′)) ∩ set ms = {}
proof (cases r = ϕr)
case (True)

If the node to extend the path to is already the endpoint, the lemma is trivial.

with assms(7 ,8 ,9 ) in-set-butlastD
have g ` n−ns@[]→defNode g ϕr set (butlast (ns@[])) ∩ set ms = {}
by simp-all fastforce

with that show ?thesis .
next
case False

It suffices to obtain any path from r to ϕr. However, since we’ll need the corresponding
predecessor of ϕr later, we must do this as follows:

from assms(10 )
have ϕr ∈ allVars g unfolding phiArg-def
by (metis allDefs-in-allVars phiDefs-in-allDefs phi-def phi-phiDefs phis-in-αn)

with assms(10 )
obtain rs ′ predϕr where rs ′-props: g ` defNode g r−rs ′→ predϕr old.EntryPath g rs ′ r
∈ phiUses g predϕr predϕr ∈ set (old.predecessors g (defNode g ϕr))
by (rule phiArg-path-ex ′)

def rs≡rs ′@[defNode g ϕr]
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from rs ′-props(2 ,1 ) old.EntryPath-distinct old.path2-hd
have rs ′-loopfree: defNode g r /∈ set (tl rs ′) by (simp add: Misc.distinct-hd-tl)

from False assms have defNode g ϕr 6= defNode g r
apply −
apply (rule phiArg-distinct-nodes)
apply (auto intro:phiArg-in-allVars)

unfolding phiArg-def by (metis allDefs-in-allVars phiDefs-in-allDefs phi-def phi-phiDefs
phis-in-αn)

from rs ′-props
have rs-props: g ` defNode g r−rs→ defNode g ϕr length rs > 1 defNode g r /∈ set (tl

rs)
apply (subgoal-tac defNode g r = hd rs ′)
prefer 2 using rs ′-props(1 )
apply (rule old.path2-hd)
using old.path2-snoc old.path2-def rs ′-props(1 ) rs-def rs ′-loopfree 〈defNode g ϕr 6=

defNode g r 〉 by auto

show thesis
proof (cases set (butlast rs) ∩ set ms = {})
case inter-empty: True

If the intersection of these is empty, tl rs is already the extension we’re looking for

show thesis
proof (rule that)
show set (butlast (ns @ tl rs)) ∩ set ms = {}
proof (rule ccontr , simp only: ex-in-conv[symmetric])
assume ∃ x. x ∈ set (butlast (ns @ tl rs)) ∩ set ms
then obtain x where x-props: x ∈ set (butlast (ns @ tl rs)) x ∈ set ms by auto
with rs-props(2 )
consider (in-ns) x ∈ set ns | (in-rs) x ∈ set (butlast (tl rs)) by (metis Un-iff

butlast-append in-set-butlastD set-append)
thus False
apply (cases)
using x-props(2 ) assms(9 )
apply (simp add: disjoint-elem)
by (metis x-props(2 ) inter-empty in-set-tlD List.butlast-tl disjoint-iff-not-equal)

qed
qed (auto intro:assms(7 ) rs-props(1 ) old.path2-app)

next
case inter-ex: False

If the intersection is nonempty, there must be a first point of intersection i.

from inter-ex assms(7 ,8 ) rs-props
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obtain i ri where ri-props: g ` defNode g r−ri→i i ∈ set ms ∀ n ∈ set (butlast ri). n
/∈ set ms prefixeq ri rs

apply −
apply (rule old.path2-split-first-prop[of g defNode g r rs defNode g ϕr, where P=λm.

m ∈ set ms])
apply blast
apply (metis disjoint-iff-not-equal in-set-butlastD)
by blast
with assms(8 ) old.path2-prefix-ex
obtain ms ′ where ms ′-props: g ` m −ms ′→ i prefixeq ms ′ ms i /∈ set (butlast ms ′)

by blast

We proceed by case distinction:

• if i = defNode g ϕr, the path ri is already the path extension we’re looking for

• Otherwise, the fact that i is on the path from φ argument to the φ itself leads to a
contradiction. However, we still need to distinguish the cases of whether m = i

consider (ri-is-valid) i = defNode g ϕr | (m-i-same) i 6= defNode g ϕr m = i |
(m-i-differ) i 6= defNode g ϕr m 6= i by auto

thus thesis
proof (cases)
case ri-is-valid

ri is a valid path extension.

with assms(7 ) ri-props(1 )
have g ` n −ns@(tl ri)→ defNode g ϕr by auto

moreover
have set (butlast (ns@(tl ri))) ∩ set ms = {}
proof (rule ccontr)
assume contr : set (butlast (ns @ tl ri)) ∩ set ms 6= {}
from this
obtain x where x-props: x ∈ set (butlast (ns @ tl ri)) x ∈ set ms by auto
with assms(9 ) have x /∈ set ns by auto
with x-props 〈g ` n−ns @ tl ri→defNode g ϕr〉 〈defNode g ϕr 6= defNode g r 〉

assms(7 )
have x ∈ set (butlast (tl ri))
by (metis Un-iff append-Nil2 butlast-append old.path2-last set-append)
with x-props(2 ) ri-props(3 )
show False by (metis FormalSSA-Misc.in-set-tlD List.butlast-tl)

qed
ultimately
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show thesis by (rule that)
next
case m-i-same

If m = i, we have, with m, a variable definition on the path from a φ-functionto its
argument. This constitutes a contradiction to the conventional property.

note rs ′-props(1 ) rs ′-loopfree
moreover have r ∈ allDefs g (defNode g r) by (simp add: assms(3 ))
moreover from rs ′-props(3 ) have r ∈ allUses g predϕr unfolding allUses-def by

simp

moreover
from rs-props(1 ) m-i-same rs-def ri-props(1 ,2 ,4 ) 〈defNode g ϕr 6= defNode g r 〉

assms(7 ,9 )
have m ∈ set (tl rs ′)
by (metis disjoint-elem hd-append in-hd-or-tl-conv in-prefix list.sel(1 ) old.path2-hd

old.path2-last old.path2-last-in-ns prefixeq-snoc)

moreover
from assms(6 ) obtain defm where defm ∈ allDefs g m var g defm = V unfolding

oldDefs-def using defs-in-allDefs by blast

ultimately
have var g defm 6= var g r by − (rule conventional, simp-all)
with 〈var g defm = V 〉 assms(1 )
have False by simp
thus ?thesis by simp

next
case m-i-differ

If m 6= i, i constitutes a proper path convergence point.

have old.pathsConverge g m ms ′ n (ns @ tl ri) i
proof (rule old.pathsConvergeI )
show 1 < length ms ′ using m-i-differ ms ′-props old.path2-nontriv by blast

next
show 1 < length (ns @ tl ri)
using ri-props old.path2-nontriv assms(9 ) by (metis assms(7 ) disjoint-elem

old.path2-app old.path2-hd-in-ns)
next
show set (butlast ms ′) ∩ set (butlast (ns @ tl ri)) = {}
proof (rule ccontr)
assume set (butlast ms ′) ∩ set (butlast (ns @ tl ri)) 6= {}
then obtain i ′ where i ′-props: i ′ ∈ set (butlast ms ′) i ′ ∈ set (butlast (ns @ tl

ri)) by auto
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with ms ′-props(2 )
have i ′-not-in-ms: i ′ ∈ set (butlast ms) by (metis in-set-butlast-appendI prefixeqE)

with assms(9 )
show False
proof (cases i ′ /∈ set ns)
case True
with i ′-props(2 )
have i ′ ∈ set (butlast (tl ri))
by (metis Un-iff butlast-append in-set-butlastD set-append)
hence i ′ ∈ set (butlast ri) by (simp add:in-set-tlD List.butlast-tl)
with i ′-not-in-ms ri-props(3 )
show False by (auto dest:in-set-butlastD)

qed (meson disjoint-elem in-set-butlastD)
qed

qed (auto intro: assms(7 ) ri-props(1 ) old.path2-app ms ′-props(1 ))

At this intersection of paths we can find a φ-function.

from this assms(6 ,5 )
have necessaryPhi g V i by (rule necessaryPhiI )

Before we can conclude that there is indeed a φ at i, we have to prove a couple of
technicalities. . .

moreover
from m-i-differ ri-props(1 ,4 ) rs-def old.path2-last prefixeq-snoc
have ri-rs ′-prefix: prefixeq ri rs ′ by fastforce
then obtain rs ′-rest where rs ′-rest-prop: rs ′ = ri@rs ′-rest using prefixeqE by

auto
from old.path2-last[OF ri-props(1 )] last-snoc[of - i] obtain tmp where ri = tmp@[i]
apply (subgoal-tac ri 6= [])
prefer 2
using ri-props(1 ) apply (simp add: old.path2-not-Nil)
apply (rule-tac that)
using append-butlast-last-id[symmetric] by auto
with rs ′-rest-prop have rs ′-rest-def : rs ′ = tmp@i#rs ′-rest by auto
with rs ′-props(1 ) have g ` i −i#rs ′-rest→ predϕr

by (simp add:old.path2-split)
moreover
note 〈var g r = V 〉 [simp]
from rs ′-props(3 )
have r ∈ allUses g predϕr unfolding allUses-def by simp

moreover
from 〈defNode g r /∈ set (tl rs ′)〉 rs ′-rest-def
have defNode g r /∈ set rs ′-rest by auto
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with 〈g ` i −i#rs ′-rest→ predϕr〉

have
∧
x. x ∈ set rs ′-rest =⇒ r /∈ allDefs g x

by (metis defNode-eq list.distinct(1 ) list.sel(3 ) list.set-cases old.path2-cases old.path2-in-αn)

moreover
from assms(7 ,9 ) 〈g ` i −i#rs ′-rest→ predϕr〉 ri-props(2 )
have r /∈ defs g i
by (metis defNode-eq defs-in-allDefs disjoint-elem old.path2-hd-in-αn old.path2-last-in-ns)
ultimately

The convergence property gives us that there is a φ in the last node fulfilling necessaryPhi
on a path to a use of r without a definition of r. Thus i bears a φ-functionfor the value of
r.

have ∃ y. phis g (i, r) = Some y
by (rule convergence-prop [where g=g and n=i and v=r and ns=i#rs ′-rest,

simplified])
moreover

from 〈g ` n−ns→defNode g r 〉 have defNode g r ∈ set ns by auto
with 〈set ns ∩ set ms = {}〉 〈i ∈ set ms〉 have i 6= defNode g r by auto
moreover

from ms ′-props(1 ) have i ∈ set (αn g) by auto
moreover

have defNode g r ∈ set (αn g) by (simp add: assms(3 ))

However, we now have two definitions of r : one in i, and one in defNode g r, which we
know to be distinct. This is a contradiction to the allDefs-disjoint-property.

ultimately have False
using allDefs-disjoint [where g=g and n=i and m=defNode g r ]
unfolding allDefs-def phiDefs-def
apply clarsimp
apply (erule-tac c=r in equalityCE)
using phi-def phis-phi by auto

thus ?thesis by simp
qed

qed
qed

lemma reachable-same-var :
assumes ϕ ′ ∈ reachable g ϕ
shows var g ϕ = var g ϕ ′
using assms by (metis Nitpick.rtranclp-unfold phiArg-trancl-same-var reachable-props(1 ))
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lemma ϕ-node-no-defs:
assumes unnecessaryPhi g ϕ ϕ ∈ allVars g var g ϕ ∈ oldDefs g n
shows defNode g ϕ 6= n
using assms simpleDefs-phiDefs-var-disjoint defNode(1 ) not-None-eq phi-phiDefs
unfolding unnecessaryPhi-def by auto

lemma defNode-differ-aux:
assumes ϕs ∈ reachable g ϕ ϕ ∈ allVars g s ∈ allVars g ϕs 6= s var g ϕ = var g s
shows defNode g ϕs 6= defNode g s unfolding reachable-def
proof (rule ccontr)
assume ¬ defNode g ϕs 6= defNode g s
hence eq: defNode g ϕs = defNode g s by simp
from assms(1 )
have vars-eq: var g ϕ = var g ϕs

apply −
apply (cases ϕ = ϕs)
apply simp
apply (rule phiArg-trancl-same-var)
apply (drule reachable-props)
unfolding reachable-def by (meson IntD1 mem-Collect-eq rtranclpD)

have ϕs-in-allVars: ϕs ∈ allVars g unfolding reachable-def
proof (cases ϕ = ϕs)
case False
with assms(1 )
obtain ϕ ′ where phiArg g ϕ ′ ϕs by (metis rtranclp.cases reachable-props(1 ))
thus ϕs ∈ allVars g by (rule phiArg-in-allVars)

next
case eq: True
with assms(2 )
show ϕs ∈ allVars g by (subst eq[symmetric])

qed

from eq ϕs-in-allVars assms(3 ,4 )
have var g ϕs 6= var g s by − (rule defNode-var-disjoint)
with vars-eq assms(5 )
show False by auto

qed

Theorem 1. A graph which does not contain any redundant SCCs is minimal according to
Cytron et al.’s definition of minimality.

theorem no-redundant-SCC-minimal:
assumes ¬(∃P scc. redundant-scc g P scc)
shows cytronMinimal g
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proof (rule ccontr)

Assume there are no redundant SCCs. Thus with lemma 1, there are no redundant sets.

from assms 1
have no-redundant-set: ¬(∃ s. redundant-set g s) by blast

assume ¬cytronMinimal g

Assume the graph is not Cytron-minimal. Thus there is a φ-functionwhich does not sit at
the convergence point of multiple liveness intervals.

then obtain ϕ where ϕ-props: unnecessaryPhi g ϕ ϕ ∈ allVars g ϕ ∈ reachable g ϕ
using cytronMinimal-def unnecessaryPhi-def reachable-def unnecessaryPhi-def reach-

able.intros by auto

We consider the reachable g-set of ϕ. If ϕ has less than two true arguments, we know it to
be a redundant set, a contradiction. Otherwise, we know there to be at least two paths
from different definitions leading into the reachable g set of ϕ.

consider (nontrivial) card (trueArgs g ϕ) ≥ 2 | (trivial) card (trueArgs g ϕ) < 2 using
linorder-not-le by auto
thus False
proof cases
case trivial

If there are less than 2 true arguments of this set, the set is trivially redundant (see
few-preds-redundant).

from this ϕ-props(1 )
have redundant-set g (reachable g ϕ) by (rule few-preds-redundant)
with no-redundant-set
show False by simp

next
case nontrivial

If there are two or more necessary arguments, there must be disjoint paths from Defs to
two of these φ-functions.

then obtain r s ϕr ϕs where assign-nodes-props:
r 6= s ϕr ∈ reachable g ϕ ϕs ∈ reachable g ϕ
¬ unnecessaryPhi g r ¬ unnecessaryPhi g s
r ∈ {n. (phiArg g)∗∗ ϕ n} s ∈ {n. (phiArg g)∗∗ ϕ n}
phiArg g ϕr r phiArg g ϕs s
apply simp
apply (rule set-take-two[OF nontrivial])
apply simp
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by (meson reachable.intros(2 ) reachable-props(1 ) rtranclp-tranclp-tranclp tranclp.r-into-trancl
tranclp-into-rtranclp)

moreover from assign-nodes-props
have ϕ-r-s-uneq: ϕ 6= r ϕ 6= s using ϕ-props by auto
moreover
from assign-nodes-props this
have r-s-in-tranclp: (phiArg g)++ ϕ r (phiArg g)++ ϕ s
by (meson mem-Collect-eq rtranclpD) (meson assign-nodes-props(7 ) ϕ-r-s-uneq(2 )

mem-Collect-eq rtranclpD)
from this
obtain V where V-props: var g r = V var g s = V var g ϕ = V by (metis

phiArg-trancl-same-var)
moreover
from r-s-in-tranclp
have r-s-allVars: r ∈ allVars g s ∈ allVars g by (metis phiArg-in-allVars tran-

clp.cases)+
moreover
from V-props defNode-var-disjoint r-s-allVars assign-nodes-props(1 )
have r-s-defNode-distinct: defNode g r 6= defNode g s by auto
ultimately
obtain n ns m ms where r-s-path-props: V ∈ oldDefs g n g ` n−ns→defNode g r V

∈ oldDefs g m g ` m−ms→defNode g s
set ns ∩ set ms = {} by (auto intro: ununnecessaryPhis-disjoint-paths[of g r s])

have n-m-distinct: n 6= m
proof (rule ccontr)
assume n-m: ¬ n 6= m
with r-s-path-props(2 ) old.path2-hd-in-ns
have n ∈ set ns by blast
moreover
from n-m r-s-path-props(4 ) old.path2-hd-in-ns
have n ∈ set ms by blast
ultimately
show False using r-s-path-props(5 ) by auto

qed

These paths can be extended into paths reaching φ-functions in our set.

from V-props r-s-allVars r-s-path-props assign-nodes-props
obtain rs where rs-props: g ` n −ns@rs→ defNode g ϕr set (butlast (ns@rs)) ∩ set

ms = {}
using phiArg-disjoint-paths-extend by blast

(In fact, we can prove that set (ns @ rs) ∩ set ms = {}, which we need for the next path
extension.)

have defNode g ϕr /∈ set ms
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proof (rule ccontr)
assume ϕr-in-ms: ¬ defNode g ϕr /∈ set ms
from this r-s-path-props(4 )
obtain ms ′ where ms ′-props: g ` m −ms ′→ defNode g ϕr prefixeq ms ′ ms by −(rule

old.path2-prefix-ex[of g m ms defNode g s defNode g ϕr], auto)

have old.pathsConverge g n (ns@rs) m ms ′ (defNode g ϕr)
proof (rule old.pathsConvergeI )
show set (butlast (ns @ rs)) ∩ set (butlast ms ′) = {}
proof (rule ccontr)
assume set (butlast (ns @ rs)) ∩ set (butlast ms ′) 6= {}
then obtain c where c-props: c ∈ set (butlast (ns@rs)) c ∈ set (butlast ms ′) by

auto
from this(2 ) ms ′-props(2 )
have c ∈ set ms by (simp add: in-prefix in-set-butlastD)
with c-props rs-props(2 )
show False by auto

qed
next
have m-n-ϕr-differ : n 6= defNode g ϕr m 6= defNode g ϕr

using assign-nodes-props(2 ,3 ,4 ,5 ) V-props r-s-path-props ϕr-in-ms
apply fastforce
using V-props(1 ) ϕr-in-ms assign-nodes-props(8 ) old.path2-in-αn phiArg-def

phiArg-same-var r-s-path-props(3 ,4 ) simpleDefs-phiDefs-var-disjoint
by auto
with ms ′-props(1 )
show 1 < length ms ′ using old.path2-nontriv by simp
from m-n-ϕr-differ rs-props(1 )
show 1 < length (ns@rs) using old.path2-nontriv by blast

qed (auto intro: rs-props set-mono-prefixeq ms ′-props)
with V-props r-s-path-props
have necessaryPhi ′ g ϕr unfolding necessaryPhi-def using assign-nodes-props(8 )

phiArg-same-var by auto
with reachable-props(2 )[OF assign-nodes-props(2 )]
show False unfolding unnecessaryPhi-def by simp

qed

with rs-props
have aux: set ms ∩ set (ns @ rs) = {}
by (metis disjoint-iff-not-equal not-in-butlast old.path2-last)

have ϕr-V : var g ϕr = V
using V-props(1 ) assign-nodes-props(8 ) phiArg-same-var by auto

have ϕr-allVars: ϕr ∈ allVars g
by (meson phiArg-def assign-nodes-props(8 ) allDefs-in-allVars old.path2-tl-in-αn
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phiDefs-in-allDefs phi-phiDefs rs-props)

from V-props(2 ) ϕr-V r-s-allVars(2 ) ϕr-allVars r-s-path-props(3 ) r-s-path-props(1 )
r-s-path-props(4 ) rs-props(1 ) aux assign-nodes-props(9 )

obtain ss where ss-props: g ` m −ms@ss→ defNode g ϕs set (butlast (ms@ss)) ∩
set (butlast (ns@rs)) = {}

by (rule phiArg-disjoint-paths-extend) (metis disjoint-iff-not-equal in-set-butlastD)

def pm ≡ ms@ss
def pn ≡ ns@rs

have ind-props: g ` m −pm→ defNode g ϕs g ` n −pn→ defNode g ϕr set (butlast
pm) ∩ set (butlast pn) = {}

using rs-props(1 ) ss-props pm-def pn-def by auto

The following case will occur twice in the induction, with swapped identifiers, so we’re
proving it outside. Basically, if the paths pm and pn intersect, the first such intersection
point must be a φ-functionin reachable g ϕ, yielding the path convergence we seek.

have path-crossing-yields-convergence:
∃ϕz ∈ reachable g ϕ. ∃ns ms. old.pathsConverge g n ns m ms (defNode g ϕz)
if ϕr ∈ reachable g ϕ and ϕs ∈ reachable g ϕ and g ` n −pn→ defNode g ϕr

and g ` m −pm→ defNode g ϕs and set (butlast pm) ∩ set (butlast pn) = {}
and set pm ∩ set pn 6= {}

for ϕr ϕs pm pn

proof −
from that(6 ) split-list-first-propE
obtain pm1 nz pm2 where nz-props: nz ∈ set pn pm = pm1 @ nz # pm2 ∀ n ∈ set

pm1 . n /∈ set pn

by (auto intro: split-list-first-propE)

with that(3 ,4 )
obtain pn

′ where pn
′-props: g ` n−pn

′→nz g ` m−pm1@[nz]→nz prefixeq pn
′ pn

nz /∈ set (butlast pn
′)

by (meson old.path2-prefix-ex old.path2-split(1 ))

from V-props(3 ) reachable-same-var [OF that(1 )] reachable-same-var [OF that(2 )]
have phis-V : var g ϕr = V var g ϕs = V by simp-all
from reachable-props(1 ) that(1 ,2 ) ϕ-props(2 ) phiArg-in-allVars
have phis-allVars: ϕr ∈ allVars g ϕs ∈ allVars g by (metis rtranclp.cases)+

Various inequalities for proving paths aren’t trivial.

have n 6= defNode g ϕr m 6= defNode g ϕr

using ϕ-node-no-defs phis-V (1 ) phis-allVars(1 ) r-s-path-props(1 ,3 ) reachable-props(2 )
that(1 ) by blast+
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from ϕ-node-no-defs reachable-props(2 ) that(2 ) r-s-path-props(1 ,3 ) phis-V (2 ) that
phis-allVars

have m 6= defNode g ϕs n 6= defNode g ϕs by blast+

With this scenario, since set (butlast pn) ∩ set (butlast pm) = {}, one of the paths pn and
pm must end somewhere within the other, however this means the φ-functionin that node
must either be ϕ or ϕr

from assms nz-props
consider (pn-ends-in-pm) nz = defNode g ϕs | (pm-ends-in-pn) nz = defNode g ϕr

proof (cases nz = last pn)
case True
with 〈g ` n −pn→ defNode g ϕr〉

have nz = defNode g ϕr using old.path2-last by auto
with that(2 ) show ?thesis.

next
case False
from nz-props(2 )
have nz ∈ set pm by simp
with False nz-props(1 ) 〈set (butlast pm) ∩ set (butlast pn) = {}〉 〈g ` m −pm→

defNode g ϕs〉

have nz = defNode g ϕs by (metis disjoint-elem not-in-butlast old.path2-last)
with that(1 ) show ?thesis.

qed

thus ∃ϕz ∈ reachable g ϕ. ∃ ns ms. old.pathsConverge g n ns m ms (defNode g ϕz)
proof (cases)
case pn-ends-in-pm

have old.pathsConverge g n pn
′ m pm (defNode g ϕs)

proof (rule old.pathsConvergeI )
from pn-ends-in-pm pn

′-props(1 ) show g ` n−pn
′→defNode g ϕs by simp

from 〈n 6= defNode g ϕs〉 pn-ends-in-pm pn
′-props(1 ) old.path2-nontriv show 1

< length pn
′ by auto

from that(4 ) show g ` m −pm→ defNode g ϕs.
with 〈m 6= defNode g ϕs〉 old.path2-nontriv show 1 < length pm by simp
from that pn

′-props(3 ) show set (butlast pn
′) ∩ set (butlast pm) = {}

by (meson butlast-prefixeq disjointI disjoint-elem in-prefix)
qed
with that(1 ,2 ,3 ) show ?thesis by (auto intro:reachable.intros(2 ))

next
case pm-ends-in-pn

have old.pathsConverge g n pn
′ m (pm1@[nz]) (defNode g ϕr)

proof (rule old.pathsConvergeI )
from pm-ends-in-pn pn

′-props(1 ,2 ) show g ` n−pn
′→defNode g ϕr g ` m−pm1

@ [nz]→defNode g ϕr by simp-all
with 〈n 6= defNode g ϕr〉 〈m 6= defNode g ϕr〉 show 1 < length pn

′ 1 < length
(pm1 @ [nz])
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using old.path2-nontriv[of g m pm1 @ [nz]] old.path2-nontriv[of g n] by simp-all
from nz-props pn

′-props(3 ) show set (butlast pn
′) ∩ set (butlast (pm1 @ [nz]))

= {}
using butlast-snoc disjointI in-prefix in-set-butlastD by fastforce

qed
with that(1 ) show ?thesis by (auto intro:reachable.intros)

qed
qed

Since the reachable g set was built starting at a single φ, these paths must at some point
converge within reachable g ϕ.

from assign-nodes-props(3 ,2 ) ind-props V-props(3 ) ϕr-V ϕr-allVars
have ∃ϕz ∈ reachable g ϕ. ∃ ns ms. old.pathsConverge g n ns m ms (defNode g ϕz)
proof (induction arbitrary: pm pn rule: reachable.induct)
case refl

In the induction basis, we know that ϕ = ϕs, and a path to ϕr must be obtained – for this
we need a second induction.

from refl.prems refl.hyps show ?case
proof (induction arbitrary: pm pn rule: reachable.induct)
case refl

The first case, in which ϕr = ϕs = ϕ, is trivial – ϕ suffices.

have old.pathsConverge g n pn m pm (defNode g ϕ)
proof (rule old.pathsConvergeI )
show 1 < length pn 1 < length pm

using refl V-props simpleDefs-phiDefs-var-disjoint unfolding unnecessaryPhi-def
by (metis domD domIff old.path2-hd-in-αn old.path2-nontriv phi-phiDefs

r-s-path-props(1 ) r-s-path-props(3 ))+
show g ` n−pn→defNode g ϕ g ` m−pm→defNode g ϕ set (butlast pn) ∩ set

(butlast pm) = {}
using refl by auto

qed
with 〈ϕ ∈ reachable g ϕ〉 show ?case by auto

next
case (step ϕ ′ ϕr)

In this case we have that ϕ = ϕs and need to acquire a path going to ϕr, however with
the aux. lemma we have, we still need that pn and pm are disjoint.

thus ?case
proof (cases set pn ∩ set pm = {})
case paths-cross: False
with step reachable.intros
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show ?thesis using path-crossing-yields-convergence[of ϕr ϕ pn pm] by (metis
disjointI disjoint-elem)

next
case True

If the paths are intersection-free, we can apply our path extension lemma to obtain the
path needed.

from step(9 ,8 ,10 ) 〈ϕ ∈ allVars g〉 r-s-path-props(1 ,3 ) step(6 ,5 ) True step(2 )
obtain ns where g ` n −pn@ns→ defNode g ϕ ′ set (butlast (pn@ns)) ∩ set pm

= {} by (rule phiArg-disjoint-paths-extend)

from 〈set (butlast (pn@ns)) ∩ set pm = {}〉 have set (butlast pm) ∩ set (butlast
(pn @ ns)) = {}

using in-set-butlastD by fastforce
moreover
from phiArg-same-var step.hyps(2 ) step.prems(5 ) have var g ϕ ′ = V
by auto

moreover
have ϕ ′ ∈ allVars g
by (metis ϕ-props(2 ) phiArg-in-allVars reachable.cases step.hyps(1 ))

ultimately
show ∃ϕz∈reachable g ϕ. ∃ns ms. old.pathsConverge g n ns m ms (defNode g

ϕz)
using step.prems(1 ) ϕ-props V-props 〈g ` n −pn@ns→ defNode g ϕ ′〉
by −(rule step.IH ; blast)

qed
qed

next
case (step ϕ ′ ϕs)

With the induction basis handled, we can finally move on to the induction proper.

show ?thesis
proof (cases set pm ∩ set pn = {})
case True
have ϕs-V : var g ϕs = V using step(1 ,2 ,3 ,9 ) reachable-same-var by (simp add:

phiArg-same-var)
from step(2 ) have ϕs-allVars: ϕs ∈ allVars g by (rule phiArg-in-allVars)

obtain pm
′ where tmp: g ` m −pm@pm

′→ defNode g ϕ ′ set (butlast (pm@pm
′))

∩ set (butlast pn) = {}
by (rule phiArg-disjoint-paths-extend[of g ϕs V ϕr m n pm pn ϕ ′])

(metis ϕs-V ϕs-allVars step r-s-path-props(1 ,3 ) True disjoint-iff-not-equal
in-set-butlastD)+

from step(5 ) this(1 ) step(7 ) this(2 ) step(9 ) step(10 ) step(11 )
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show ?thesis by (rule step.IH [of pm@pm
′ pn])

next
case paths-cross: False
with step reachable.intros
show ?thesis using path-crossing-yields-convergence[of ϕr ϕs pn pm] by blast

qed
qed

then obtain ϕz ns ms where ϕz ∈ reachable g ϕ and old.pathsConverge g n ns m
ms (defNode g ϕz)

by blast
moreover
with reachable-props have var g ϕz = V by (metis V-props(3 ) phiArg-trancl-same-var

rtranclpD)
ultimately have necessaryPhi ′ g ϕz using r-s-path-props
unfolding necessaryPhi-def by blast

moreover with 〈ϕz ∈ reachable g ϕ〉 have unnecessaryPhi g ϕz by −(rule reachable-props)
ultimately show False unfolding unnecessaryPhi-def by blast

qed
qed

Finally, to conclude, we’ll show that the above theorem is indeed a stronger assertion about
a graph than the lack of trivial φ-functions. Intuitively, this is because a set containing
only a trivial φ-functionis a redundant set.

corollary
assumes ¬(∃P. redundant-set g P)
shows ¬redundant g
proof −
have redundant g =⇒ ∃P. redundant-set g P
proof −
assume redundant g
then obtain ϕ where phi g ϕ 6= None trivial g ϕ
unfolding redundant-def redundant-set-def dom-def phiArg-def trivial-def isTrivialPhi-def
by (clarsimp split: option.splits) fastforce
hence redundant-set g {ϕ}
unfolding redundant-set-def dom-def phiArg-def trivial-def isTrivialPhi-def
by auto
thus ?thesis by auto

qed
with assms show ?thesis by auto

qed

end

end
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4 ∗/
5

6 /∗∗
7 ∗ @ f i l e
8 ∗ @ b r i e f Unneces sa ry Phi SCC remova l .
9 ∗ @date 13 .03 .2016

10 ∗ @author Max Wagner
11 ∗ @ b r i e f
12 ∗ Removal o f Phi SCCs which have at most one t r u e p r e d e c e s s o r .
13 ∗ See " S imple and E f f i c i e n t C o n s t r u c t i o n o f S t a t i c S i n g l e Ass ignment

Form" by Braun e t a l .
14 ∗/
15

16 #inc lude <irdump_t . h>
17 #inc lude <b i t s / t ime . h>
18 #inc lude <time . h>
19 #inc lude " debug . h"
20 #inc lude " i r c o n s . h"
21 #inc lude " irgmod . h"
22 #inc lude " i r gwa l k . h"
23 #inc lude " i rnodehashmap . h"
24 #inc lude " i r n o d e s e t . h"
25 #inc lude " i r t o o l s . h"
26 #inc lude " u t i l . h "
27

28

29 /∗∗ We use ( ye t ano the r imp l ementa t i on o f ) Tar jan ’ s a l g o r i t h m to f i n d
SCCs , which i m p l i c i t l y o b t a i n s them

30 ∗ i n r e v e r s e t o p o l o g i c a l o r d e r . ( which f o r g o e s the need f o r a f i x p o i n t
i t e r a t i o n )

31 ∗ These SCCs a r e then checked f o r whether they are , as a whole ,
r edundant . I f they are , we mark the mapping

32 ∗ from nodes i n the SCC to t h e i r un ique non−SCC p r e d e c e s s o r f o r edge
r e r o u t i n g l a t e r .

33 ∗
34 ∗ I f an SCC i s not redundant , we s t i l l have to check a l l SCCs i n the

subgraph induced by the SCC ( removing any nodes tha t
35 ∗ connect to i t s o u t s i d e from the work ing s e t ) . I n o r d e r to do t h i s ,

we note the " s c c i d " o f each node
36 ∗ and on l y i n c r e a s e t h i s number f o r the nodes we may r e c u r s e on . (

s i n c e the " i n n e r " pa r t o f d i f f e r e n t SCCs a r e
37 ∗ d i s connec t ed , t h i s works out on the whole )
38 ∗
39 ∗ SCCs a r e s t o r e d i n a doubly− l i n k e d l i s t , w i th each SCC c o n s i s t i n g o f

an i r _ n o d e s e t o f nodes .
40 ∗/
41
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42 typedef s t ruc t s c c {
43 l i s t _ h e a d l i n k ;
44 i r_node s e t_ t nodes ;
45 unsigned depth ;
46 } scc_t ;
47

48 typedef s t ruc t scc_env {
49 s t ruc t obs tack obs t ;
50 i r_node ∗∗ s t a c k ;
51 s i z e_ t s tack_top ;
52 unsigned nex t_ index ;
53 l i s t _ h e a d work ing_se t_scc s ; /∗∗< the s c c s we ∗ j u s t ∗ found ,

and haven ’ t y e t e v a l u a t e d ∗/
54 l i s t _ h e a d scc_work_stack ; /∗∗< the s e t s o f nodes we s t i l l

need to e v a l u a t e i n f u t u r e i t e r a t i o n s ∗/
55 i r_nodehashmap_t replacement_map ; /∗∗< map from node to t h e i r

r ep l a cement ∗/
56 } scc_env_t ;
57

58 typedef s t ruc t s c c_ i r n_ i n f o {
59 boo l i n_s t a ck ; /∗∗< Marks whether node i s on the s t a c k

. ∗/
60 unsigned dfn ; /∗∗< Depth f i r s t s e a r c h number . ∗/
61 unsigned up l i n k ; /∗∗< dfn number o f a n c e s t o r . ∗/
62 unsigned depth ; /∗∗< i t e r a t i o n depth o f s c c s e a r c h ∗/
63 } s c c_ i r n_ i n f o_ t ;
64

65

66 s t a t i c s c c_ i r n_ i n f o_ t ∗ g e t_ i r n_ i n f o ( i r_node ∗node , scc_env_t ∗ env )
67 {
68 s c c_ i r n_ i n f o_ t ∗e = g e t_ i r n_ l i n k ( node ) ;
69 i f ( e == NULL) {
70 e = OALLOCZ(&env−>obst , s c c_ i r n_ i n f o_ t ) ;
71 node−>l i n k = e ;
72 }
73 return e ;
74 }
75

76 /∗∗
77 ∗ push a node onto the s tack , p o t e n t i a l l y growing i t
78 ∗
79 ∗ @param env the a l g o r i t h m env i ronment
80 ∗ @param node the node to push
81 ∗/
82 s t a t i c void push ( scc_env_t ∗env , i r_node ∗node )
83 {
84 i f ( env−>stack_top == ARR_LEN( env−>sta ck ) ) {
85 s i z e_ t n l en = ARR_LEN( env−>sta ck ) ∗ 2 ;
86 ARR_RESIZE( i r_node ∗ , env−>stack , n l e n ) ;
87 }
88 env−>sta ck [ env−>stack_top++] = node ;
89 s c c_ i r n_ i n f o_ t ∗e = ge t_ i r n_ i n f o ( node , env ) ;
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90 e−>in_s ta ck = t r u e ;
91

92 }
93

94 /∗∗
95 ∗ pop a node from the s t a c k
96 ∗
97 ∗ @param env the a l g o r i t h m env i ronment
98 ∗ @re tu rn The topmost node
99 ∗/

100 s t a t i c i r_node ∗pop ( scc_env_t ∗ env )
101 {
102 i r_node ∗n = env−>sta ck [−−env−>stack_top ] ;
103 s c c_ i r n_ i n f o_ t ∗e = ge t_ i r n_ i n f o (n , env ) ;
104 e−>in_s ta ck = f a l s e ;
105 return n ;
106 }
107

108

109 /∗∗ r e t u r n the un ique p r e d e c e s s o r o f a redundant scc , o r NULL i f the
s c c i s not redundant .

110 ∗ ( A l so marks nodes e l i d i b l e f o r nex t i t e r a t i o n by c l e a r i n g t h e i r d fn
and s e t t i n g t h e i r depth )

111 ∗/
112 s t a t i c i r_node ∗ get_unique_pred ( scc_t ∗ scc , scc_env_t ∗ env ) {
113 i r_node ∗ unique_pred = NULL ;
114 boo l redundant = t r u e ;
115 f o r e a ch_ i r_node s e t (&scc−>nodes , i r n , i t e r ) {
116 // on l y nodes which a r e not on the " r im " o f the s c c a r e

e l i g i b l e f o r the next i t e r a t i o n
117 boo l e l i g i b l e _ f o r _ n e x t _ i t e r a t i o n = t r u e ;
118 f o r e a c h_ i r n_ i n ( i r n , idx , o r i g i n a l _ p r e d ) {
119 // we can s a f e l y i g n o r e s e l f −l o o p s i n t h i s r e ga r d
120 i f ( o r i g i n a l _ p r e d != i r n ) {
121

122 // p r e v i o u s i t e r a t i o n s might have " d e l e t e d " the node
a l r e a d y .

123 i r_node ∗ pred = ir_nodehashmap_get ( i r_node , &env−>
replacement_map , o r i g i n a l _ p r e d ) ;

124 i f ( pred == NULL) pred = o r i g i n a l _ p r e d ;
125

126 i f ( ! i r_nod e s e t_con t a i n s (&scc−>nodes , pred ) ) {
127 i f ( un ique_pred && unique_pred != pred ) redundant =

f a l s e ;
128 // we don ’ t b reak out o f the l oop because we s t i l l

want to mark a l l n e c e s s a r y nodes
129 unique_pred = pred ;
130 e l i g i b l e _ f o r _ n e x t _ i t e r a t i o n = f a l s e ;
131 }
132 }
133 }
134 i f ( e l i g i b l e _ f o r _ n e x t _ i t e r a t i o n ) {
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135 s c c_ i r n_ i n f o_ t ∗ i n f o = ge t_ i r n_ i n f o ( i r n , env ) ;
136 i n f o−>depth++;
137 scc−>depth = in f o−>depth ;
138 i n f o−>dfn = 0 ;
139 }
140 }
141 return r edundant ? un ique_pred : NULL ;
142 }
143

144

145 /∗∗ Append the work ing s e t to the work queue and pr ime the f i r s t
e l i g i b l e SCC i n the work queue f o r the next i t e r a t i o n

146 ∗ ( redundant or oute r−node−on l y SCCs a r e e v a l u a t e d and d i s c a r d e d )
147 ∗/
148 s t a t i c void p r e p a r e_n e x t_ i t e r a t i o n ( scc_env_t ∗ env ) {
149

150 l i s t _ s p l i c e _ i n i t (&env−>work ing_set_sccs , &env−>scc_work_stack ) ;
151

152 l i s t_ f o r_ e a c h_en t r y_ s a f e ( scc_t , scc , tmp , &env−>scc_work_stack ,
l i n k ) {

153 i r_node ∗ unique_pred = get_unique_pred ( scc , env ) ;
154 i f ( un ique_pred ) {
155 // SCC i s redundant , r e r o u t e and d i s c a r d
156 f o r e a ch_ i r_node s e t (&scc−>nodes , i r n , i t e r ) {
157 i r_nodehashmap_inse r t (&env−>replacement_map , i r n ,

un ique_pred ) ;
158 }
159 i r_nod e s e t_de s t r o y (&scc−>nodes ) ;
160 l i s t _ d e l _ i n i t (&scc−>l i n k ) ;
161 } e l s e {
162 f o r e a ch_ i r_node s e t (&scc−>nodes , i r n , i t e r ) {
163 // get_unique_pred has marked a l l " i n n e r " nodes by

r e s e t t i n g t h e i r dfn , the r e s t must be removed .
164 i f ( g e t_ i r n_ i n f o ( i r n , env )−>dfn != 0)
165 i r_node s e t_ r emove_ i t e r a t o r (&scc−>nodes , & i t e r ) ;
166 }
167

168 i f ( i r _nod e s e t_ s i z e (&scc−>nodes ) > 1) break ;
169 e l s e {
170 // we have no need f o r t h i s s c c anymore
171 i r_nod e s e t_de s t r o y (&scc−>nodes ) ;
172 l i s t _ d e l _ i n i t (&scc−>l i n k ) ;
173 }
174 }
175 }
176 }
177

178 s t a t i c i n l i n e boo l i s_ removab l e ( i r_node ∗ i r n , scc_env_t ∗env , unsigned
depth ) {

179 s c c_ i r n_ i n f o_ t ∗ i n f o = ge t_ i r n_ i n f o ( i r n , env ) ;
180 return i s_Ph i ( i r n ) && ! get_Phi_loop ( i r n ) && in f o−>depth >= depth ;
181 }
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182

183 /∗∗ Perform ’ s Tar jan ’ s a l go r i t hm , s t a r t i n g at a g i v en node
184 ∗
185 ∗ r e t u r n s f a l s e i f n must be i g n o r e d
186 ∗ ( e i t h e r because i t ’ s not a Phi node or because i t ’ s been exc l uded

i n a p r e v i o u s run ) ∗/
187 s t a t i c boo l f i nd_scc_at ( i r_node ∗n , scc_env_t ∗env , unsigned depth )
188 {
189 i f ( ! i s_ removab l e (n , env , depth ) ) return f a l s e ;
190

191 s c c_ i r n_ i n f o_ t ∗ i n f o = ge t_ i r n_ i n f o (n , env ) ;
192 i f ( i n f o−>dfn != 0) {
193 // node has a l r e a d y been v i s i t e d
194 return t r u e ;
195 }
196 i n f o−>dfn = ++env−>next_ index ;
197 i n f o−>up l i n k = in f o−>dfn ;
198 push ( env , n ) ;
199 i n f o−>in_s ta ck = t r u e ;
200 f o r e a c h_ i r n_ i n (n , i , p red ) {
201 // the node might have been i d e n t i f i e d as pa r t o f a redundant

s c c a l r e ady , so we need to check
202 i r_node ∗ canon i c a l_p r ed = ir_nodehashmap_get ( i r_node , &env−>

replacement_map , pred ) ;
203 i f ( ! c anon i c a l_p r ed ) canon i c a l_p r ed = pred ;
204

205 s c c_ i r n_ i n f o_ t ∗ p r ed_ in f o = ge t_ i r n_ i n f o ( canon i ca l_p red , env ) ;
206 i f ( p red_ in fo−>dfn == 0 && f ind_scc_at ( canon i ca l_p red , env ,

depth ) ) {
207 i n f o−>up l i n k = MIN( pred_ in fo−>up l i nk , i n f o−>up l i n k ) ;
208 } e l s e i f ( p red_ in fo−>in_s ta ck ) {
209 i n f o−>up l i n k = MIN( pred_ in fo−>dfn , i n f o−>up l i n k ) ;
210 }
211 }
212 i f ( i n f o−>dfn == in f o−>up l i n k ) {
213 // found an scc
214 s t ruc t s c c ∗ s c c = OALLOC(&env−>obst , s t ruc t s c c ) ;
215 i r _ n o d e s e t _ i n i t (&scc−>nodes ) ;
216

217 i r_node ∗n2 ;
218 do {
219 n2 = pop ( env ) ;
220 s c c_ i r n_ i n f o_ t ∗ n2_in fo = ge t_ i r n_ i n f o ( n2 , env ) ;
221 n2_info−>in_s ta ck = f a l s e ;
222 i r _ n o d e s e t_ i n s e r t (&scc−>nodes , n2 ) ;
223 scc−>depth = n2_info−>depth ;
224 } whi le ( n2 != n ) ;
225 l i s t _ a d d_ t a i l (&scc−>l i n k , &env−>work ing_se t_scc s ) ;
226 }
227 return t r u e ;
228 }
229
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230 // One r e c u r s i v e " f i nd_scc_at " hand l e s a complete ph i web , but t h e r e
may be many , so we need to walk the graph

231 s t a t i c void _star t_wa lk ( i r_node ∗ i r n , void ∗ env ) {
232 f i nd_scc_at ( i r n , ( scc_env_t ∗) env , 0 /∗ t h i s i s on l y used f o r the

i n i t i a l SCC sea rch , so depth 0 i s f i n e ∗/ ) ;
233 }
234

235 FIRM_API void opt_remove_unnecessary_ph i_sccs ( i r_g raph ∗ i r g )
236 {
237 s t ruc t scc_env env ;
238 memset(&env , 0 , s i z eo f ( env ) ) ;
239 s t ruc t obs tack temp ;
240 o b s t a c k_ i n i t (&temp ) ;
241 env . obs t = temp ;
242 env . s t a c k = NEW_ARR_F( i r_node ∗ , 128) ;
243 i r_nodehashmap_in i t (&env . replacement_map ) ;
244 INIT_LIST_HEAD(&env . work ing_se t_scc s ) ;
245 INIT_LIST_HEAD(&env . scc_work_stack ) ;
246

247 i r _ r e s e r v e_ r e s o u r c e s ( i r g , IR_RESOURCE_IRN_LINK) ;
248 i rg_walk_graph ( i r g , NULL , f i rm_c l e a r_ l i n k , NULL) ;
249

250 // popu l a t e work queue wi th an i n i t i a l round o f SCCs
251 i rg_walk_graph ( i r g , _start_walk , NULL , &env ) ;
252 p r e p a r e_n e x t_ i t e r a t i o n (&env ) ;
253

254 whi le ( ! l i s t_empt y (&env . scc_work_stack ) ) {
255 // pop an SCC from the f r o n t o f the queue and e v a l u a t e i t
256 scc_t ∗ c u r r e n t_ s e t = l i s t _ e n t r y ( env . scc_work_stack . next , scc_t ,

l i n k ) ;
257 l i s t _ d e l ( env . scc_work_stack . nex t ) ;
258 f o r e a ch_ i r_node s e t (& cu r r en t_s e t−>nodes , i r n , i t e r ) {
259 f i nd_scc_at ( i r n , &env , cu r r en t_s e t−>depth ) ;
260 }
261 // c l e a n up the s c c we j u s t popped o f f
262 i r_nod e s e t_de s t r o y (& cu r r en t_s e t−>nodes ) ;
263 p r e p a r e_n e x t_ i t e r a t i o n (&env ) ;
264

265 }
266

267 i r_nodehashmap_entry_t e n t r y ;
268 i r_nodehashmap_ i t e ra to r_t i t e r ;
269

270 DEBUG_ONLY ( i f ( i r_nodehashmap_s ize (&env . replacement_map ) )
dump_ir_graph ( i r g , "PRE" ) ; ) ;

271

272 fo reach_i r_nodehashmap(&env . replacement_map , ent ry , i t e r ) {
273 exchange ( e n t r y . node , ( i r_node ∗) e n t r y . data ) ;
274 }
275

276 DEBUG_ONLY( i f ( i r_nodehashmap_s ize (&env . replacement_map ) )
dump_ir_graph ( i r g , "POST" ) ; ) ;
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277

278 i r_nodehashmap_dest roy ( ( ir_nodehashmap_t ∗) &env . replacement_map ) ;
279 DEL_ARR_F( env . s t a c k ) ;
280 ob s t a c k_ f r e e (&env . obst , NULL) ;
281 i r _ f r e e _ r e s o u r c e s ( i r g , IR_RESOURCE_IRN_LINK) ;
282

283 }

A.3. Code Used for Worst-Case Example

Note that libFirm automatically optimizes IR nodes as they’re created. To prevent
libFirm from optimizing the (in this case obvious) redundant φ-functions on creation,
we also had to temporarily disable this optimization for φ nodes. A more elaborate
setup for creating test graphs could have avoided this though.

1

2 i r_g raph ∗ c rea te_b lank_graph ( void ) {
3 i r _ t y p e ∗ t = new_type_method (0 , 1 , f a l s e , 0 , mtp_no_property ) ;
4 set_method_res_type ( t , 0 , new_type_pr im i t i v e ( get_modeIs ( ) ) ) ;
5 i r _ e n t i t y ∗ ent = new_ent i ty ( get_g lob_type ( ) , new_id_from_str ( " t e s t_

" ) , t ) ;
6 i r_g raph ∗g = new_ir_graph ( ent , 100) ;
7 return g ;
8 }
9

10 i r_g raph ∗ c r ea t e_ l adde r_g raph ( i n t s t e p s ) {
11 i r_g raph ∗g = crea te_b lank_graph ( ) ;
12 s e t_cu r r en t_ i r_g r aph ( g ) ;
13

14 i r_node ∗ s t a r t b l = ge t_ i r g_ s t a r t_b l o c k ( g ) ;
15 s e t_cu r_b lock ( s t a r t b l ) ;
16

17 i r_node ∗n0 = new_Const_long (mode_Is , 0) ;
18 i r_node ∗n1 = new_Const_long (mode_Is , 1) ;
19

20 i r_node ∗ i n s 1 [ ] = {n0 } ;
21 i r_node ∗ r e t = new_r_Return ( s t a r t b l , g e t_ i r g_ in i t i a l_mem ( g ) , 1 ,

i n s 1 ) ;
22 add_immBlock_pred ( get_ i rg_end_b lock ( g ) , r e t ) ;
23

24 i r_node ∗ i n s [ ] = {n0 , n1 } ;
25 i r_node ∗ f i n a l 0 = new_r_Phi ( s t a r t b l , 2 , i n s , mode_Is ) ;
26 i r_node ∗ f i n a l 1 = new_r_Phi ( s t a r t b l , 2 , i n s , mode_Is ) ;
27

28 i n s [ 0 ] = f i n a l 0 ;
29 i n s [ 1 ] = f i n a l 1 ;
30

31 i r_node ∗ f i n a l = new_r_Phi ( s t a r t b l , 2 , i n s , mode_Is ) ;
32

33 i r_node ∗phi0 , ∗ ph i1 ;
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34 i r_node ∗ o l d ph i 0 = n0 , ∗ o l d ph i 1 = n1 ;
35 // Loop c r e a t i n g n s t e p s
36 f o r ( i n t n = 0 ; n < s t e p s ; n++) {
37 i n s [ 0 ] = o l d ph i 0 ;
38 i n s [ 1 ] = f i n a l 0 ;
39 ph i0 = new_r_Phi ( s t a r t b l , 2 , i n s , mode_Is ) ;
40 i n s [ 0 ] = o l d ph i 1 ;
41 i n s [ 1 ] = f i n a l 1 ;
42 ph i1 = new_r_Phi ( s t a r t b l , 2 , i n s , mode_Is ) ;
43

44 o l d ph i 0 = ph i0 ;
45 o l d ph i 1 = ph i1 ;
46 }
47

48 i r_node ∗ f i x u p [ ] = {phi0 , f i n a l 1 } ;
49 s e t_ i r n_ i n ( f i n a l 0 , 2 , f i x u p ) ;
50 f i x u p [ 0 ] = ph i1 ;
51 f i x u p [ 1 ] = f i n a l 0 ;
52 s e t_ i r n_ i n ( f i n a l 1 , 2 , f i x u p ) ;
53

54 s e t_ i rn_n ( r e t , 1 , f i n a l ) ;
55 c l e a r _ i r g _ c o n s t r a i n t s ( g , IR_GRAPH_CONSTRAINT_CONSTRUCTION) ;
56 return g ;
57 }
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