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Zusammenfassung
Diese Arbeit liefert eine sprachunabhängige Implementierung eines Algorith-
mus zur Berechnung von Standardkontrollabhängigkeiten in Kontrollfluss-
graphen nach Ferrante et al. [8] mit Hilfe des Theorembeweisers Isabelle/HOL.
Der vorgestellte Algorithmus verwendet eine funktionale Variante des Leng-
auer-Tarjan-Algorithmus [20] für die hierfür benötigte Berechnung von Post-
dominatoren, setzt aber nicht auf den von Lengauer und Tarjan verwende-
ten EVAL-LINK -Mechanismus. Die gesamte Arbeit ist zur Erhaltung der
Modul- arität innerhalb eines Beweiskontextes gehalten, der auf möglichst
wenigen Annahmen über die gegebenen Graphen basiert. Deren Erfüll-
barkeit ist für zwei spezifische Instanzen (eine basierend auf einer formalen
Definition von Graphen, die andere basierend auf den von Kohlmeyer [17]
konstruierten konkreten Kontrollflussgraphen einer einfachen While-Sprache)
bewiesen und die gesamte Theorie lässt sich zu Code in verschiedenen funk-
tionalen Sprachen (u.a. Haskell, SML, Scala) kompilieren. Die Termination
des Algorithmus und bestimmte Korrektheitsaussagen sind mit Hilfe von Isa-
belle bewiesen.

http://www.cl.cam.ac.uk/research/hvg/Isabelle/


Abstract
In this thesis, we present a language independent and machine-checked im-
plementation of an algorithm to compute control dependencies (as defined by
Ferrante et al. [8]) in a control flow graph (CFG). The work presented in this
document uses the proof assistant Isabelle/HOL. The presented algorithm
uses a variant of the Lengauer-Tarjan algorithm for finding dominators, and
operates on abstract CFGs. A proof for the satisfiability of the assumptions
about the given CFGs is present, thus enabling Isabelle to generate code in a
variety of target languages (e.g. Haskell, SML, Scala). We also supply proofs
in Isabelle for termination and certain correctness properties.
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1 INTRODUCTION

1 Introduction
Knowledge of control dependencies enables certain powerful techniques for
static analysis, like optimizations performed on the program dependence
graph [8, 19], as well as a very general tool for program analysis called Slic-
ing [14].

Slicing is a technique defined by Weiser used in optimization, program
analysis, debugging and information flow control [12]. It is a technique for
deciding the following problem:

Given some point p in a program P and a subset V of the variables
in P , which statements affect the values of variables in V at p ?

We distinguish between at least two kinds of slicing: static and dynamic
slicing, referring to slicing using only statically available information, and
slicing augmented with information from specific execution traces. In order
to use slicing, we must first decide on a formal criterion for whether a state-
ment influences another statement called the slicing criterion. A basic slicing
criterion would be deciding which statements influence whether the flow of
execution ever reaches p.

Unfortunately, many software analyses published are lacking proofs of
correctness or only supply pen&paper proofs, which are error-prone. This
is especially tragic in the context of software security analysis, where small
errors and oversights can compromise the soundness of whole cryptosystems
(for an example, see [4] and [16]). It is for this reason that formal proofs
using automated proof assistants or theorem provers are of special interest:
In the case of Language Based Security, machine checked proofs can achieve
a new level of trust unattainable by conventional means when it comes to
properties of language semantics.

With this thesis, we contribute a verified implementation of an algorithm
to compute standard control dependencies in a CFG with the goal of provid-
ing part of a verified slicing framework to be used in the “Quis Custodiet”-
project1 to conduct security analysis.

Section 2 provides an explanation for some of the concepts used in this
thesis, Section 3 sets up the general proof context that is used in this work.
In Section 4 we explain the different phases of our algorithm and present
proofs for their termination and correctness. Finally, in Section 5 we present
two possible instantiations of the proof contexts used in this work, thereby
proving the satisfiability of their assumptions.

1see http://pp.ipd.kit.edu/projects/quis-custodiet/
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2 BACKGROUND

2 Background
This section provides some background knowledge about control flow graphs,
domination, control dependence and the Lengauer-Tarjan algorithm. We also
provide a short explanation of what Isabelle is and present the framework
this thesis uses as its basis.

2.1 Control Flow Graphs
A control flow graph (CFG) is an abstract representation of a program which
highlights the possible flow of execution. CFGs are created by grouping
statements into basic blocks and linking these blocks with edges along which
execution can flow. The defining characteristic of basic blocks is that only
the last statement of such a block is allowed to have more than one potential
jump target, so statements within a block are always executed sequentially.
Many formalizations also define a dedicated Exit-node (which is reachable by
every node) and Entry-node (from which every node is reachable), though
this thesis only requires the existence of the former. CFGs enable certain
compiler optimizations, e.g. elimination of dead code, statement reordering,
etc. through construction of the program dependence graph [8] and static
analyses like information flow control through slicing [23].

2.2 Depth-First Search
The depth-first search algorithm (DFS) for traversing a graph is a fairly
well-known concept in computer science, so we will not give a complete ex-
planation of the algorithm here. We use DFS within this thesis to extract
a spanning tree and a node numbering from a graph. We add edges to this
spanning tree in the order they are traversed during an execution of DFS,
ignoring edges to nodes that have already been discovered. The node num-
bering is produced in a similar manner by numbering newly discovered nodes
in increasing order. This numbering induces an order on nodes, which we
will use extensively in this thesis.

2.3 Postdomination
In a rooted graph (i.e. a graph with a designated node called the root, from
which every node can be reached), domination is defined as follows:

A node n′ dominates another node n iff every path from the root
to n passes through n′.
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2 BACKGROUND 2.4 Control Dependence

Similarly, postdomination is defined on graphs with a designated Exit node
which is reachable from every node:

A node n′ postdominates another node n iff every path from n to
the Exit node passes through n′.

Postdomination is thus equivalent to domination in the graph where all edges
are reversed. (Post)domination is reflexive, transitive and antisymmetric,
and as such can be used as the basis for orderings.

Semidominators, denoted sdom(n), provide a convenient intermediate
step for calculating dominators. Given a CFG and a node numbering result-
ing from a DFS run on the graph starting at the Entry-node, the semidom-
inator of a node n is defined as:

sdom(n) = min{m | there is a path m = m0,m1, . . . ,mk = n
such that mi > n for 1 ≤ i ≤ k − 1} (1)

Analogously, semi-postdominators (noted spdom(n)) can be defined as:

spdom(n) = min{m | there is a path n = m0,m1, . . . ,mk = m
such that mi > n for 1 ≤ i ≤ k − 1} (2)

In the following we will call paths that fit the description in (2) candidate
paths.

For a node n, n’s immediate dominator (noted idom(n)) is the node
m 6= n such that m dominates n and for all other nodes k which dominate
n, k dominates m. Informally, it is the “last” dominator of n on the path
from Entry to n. Immediate postdominators (noted ipdom(n)) are defined
analogously, being the “first” postdominators on the path from n to Exit.
Immediate (post-)dominators form a chain from Entry to n (from n to Exit)
in which every (post-)dominator of n is present. Computation of a node’s
immediate postdominator is possible in linear time [5] and is a major part of
the central algorithm of this thesis.

Figure 1 shows the behavior of sdom and idom under different node num-
berings and spanning trees.

2.4 Control Dependence
A statement s is control dependent on another statement s′ iff the result of
s′ decides whether s executes. For example, in an if-then-else expression, the
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n

normal edge
spanning tree edge

n

sdom(n)

sdom(n) idom(n) idom(n)

m m

Figure 1: Choice of spanning tree affects sdom(n), but not idom(n).
Note that in both these spanning trees, if m < n were true, the edge
(m,n) would be a spanning tree edge, so m must be greater than n.
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2 BACKGROUND 2.5 The Lengauer-Tarjan Algorithm

then and else blocks are control dependent on the if -predicate.

This characterization strongly depends on the semantics of the language
that is being used. Ferrante et al. [8] define a commonly used language
independent version of this called standard control dependence in graph-
theoretical terms. This thesis uses a different but equivalent [22] definition
originally given by Wolfe:

A node n′ is control dependent on a node n iff n has at least two
successors, one postdominated by n′, while the other one is not.

2.5 The Lengauer-Tarjan Algorithm
Lengauer and Tarjan provide a fast (quasilinear) algorithm [20] for computing
dominators in a flow graph. The general structure of Lengauer and Tarjan’s
algorithm is as follows:

1. Crawl the graph using depth-first search (starting at the Entry node),
thus producing a node numbering (called the node’s DFS-ID) and a
spanning tree.

2. Compute the semidominators of all vertices in decreasing order by DFS-
ID.

3. Implicitly define the immediate dominator of each vertex in terms of
semidominators of other nodes.

4. Explicitly define the immediate dominator of each vertex whose domi-
nator was not already computed by step 3, carrying out the computa-
tion vertex by vertex in increasing order by DFS-ID.

After having completed step 1, the algorithm carries out steps 2 and 3
simultaneously, processing each node using two procedures called LINK and
EVAL which extract information from and modify a forest along the course
of computation. More precisely, the forest consists of vertex set V and edge
set {(parent(w), w) | vertex w has been processed}. LINK and EVAL per-
form the following operations:

LINK(v,w): Add edge (v, w) to forest.
EVAL(v): If v is the root of its tree in the forest, return v.

Otherwise, return the node on the path from root to v
which has the smallest sdom.

7



2.6 Isabelle 2 BACKGROUND

LINK and EVAL thus correspond to operations on disjoint-set data struc-
tures. The algorithm state is initialized so that every node initially reports
its sdom to be itself, and the forest is initialized with a graph containing only
nodes and no edges. While processing a node n, the algorithm sets sdom(n)
to be the following:

min{sdom(EVAL(m)) | m is a predecessor of n}

Then the algorithm executes LINK (parent(n), n). Step 3 is carried out by
defining a preliminary idom for each node v that is dominated by parent(n)
by choosing between parent(n) and EVAL(v), selecting the node with smaller
sdom. (Note that the computation is done in decreasing order because we
need to process cross edges after the “surrounding” tree edges have been pro-
cessed.2)
Afterwards, another pass is made over the graph’s nodes, this time by in-
creasing DFS-ID, resolving the last incorrect values for idom by setting the
idom of those nodes k with differing idom and sdom to idom(idom(k)).
Since idom(k) < k, all idoms used in this step are already correct by the
time they’re referenced. The algorithm exploits certain identities that define
semidominators in terms of DFS-ID (see Section 2.3), and immediate domi-
nators in terms of semidominators.

While the original version of this algorithm runs in quasilinear time, linear
versions have been proposed [11, 1, 6, 9, 5], but most of these have been found
to either be overly complicated or nonlinear after all. For a full explanation
and analysis of the original algorithm and a (pen and paper) proof of its
correctness, see Lengauer and Tarjan [20].

2.6 Isabelle
This thesis employs Isabelle, a powerful and generic theorem prover that
can be instantiated with a series of object logics. This thesis uses its default
logic, Isabelle/HOL, which provides a large library of lemmas in higher-order
logic. Isabelle provides Isar, an intelligible proof structuring language, and
supports generation of code from theories, allowing a user to harness the
power of Isabelle along with the efficiency of the advanced compilers that
exist for the target languages. Code generation into SML, OCaml, Haskell
and Scala is supported.

2All cross edges are edges (e, f) with e > f .
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The examples, definitions and code snippets shown in this document have
been simplified and stripped of redundant information to improve legibility.

Much of Isabelle/HOL syntax is standard mathematical notation. Func-
tion application is written by leaving a space between function symbols.
Function types are denoted by the ⇒ symbol. Meta-level implication is de-
noted using =⇒. The definition keyword defines a nonrecursive function, the
keywords fun and function define potentially recursive functions using mech-
anisms like pattern matching, case _ of expressions and let _ in definitions
familiar from other languages. Functions in Isabelle/HOL are total functions
which are well-defined for all possible parameters, two properties which first
have to be proven by the user. Using fun, Isabelle attempts to prove these
automatically [18], while function requires explicit proofs. Type annotations
of the form t::τ mean that the term t has type τ . Type variables start with
a single quote, and nat, bool, unit are types representing natural numbers,
boolean values and the unit type respectively. Tuple types are written as
cartesian products and internally represented as nested 2-tuples. The empty
set is simply written as {}, and the image of a set A under a function f is
written as f ‘ A. Lists can be either the empty list [] or a list consisting of one
element x and the rest xs of the list, with such a construct being written as
x#xs. In that case, the head of the list is fetched by the function hd, and the
rest by the function tl. Concatenation of two lists xs and ys is noted as xs@ys.
The concat function flattens a list of lists by concatenation, map applies a
function to all elements of a list, and butlast returns the given list stripped
of its last element. The option types represent either None or Some value,
which can be unwrapped with the function the. New types (which mustn’t
be empty) can be defined by using the typedef or datatype keywords, with
datatype providing Haskell-like syntax for defining algebraic data types [3],
and typedef allowing users to define new types by limiting previously-defined
types.

Isabelle locales [2] are a mechanism Isabelle provides for modularizing
theories. A locale is a named theory context for which a user can postulate
certain assumptions and operations (referred to as locale parameters, which
are fixed). All lemmas formulated within the context of a locale have access
to the locale’s parameters and assume the locale’s assumptions to hold. Thus
it is of critical importance for the locale assumptions to be satisfiable, as any-
thing can be proven by relying on insatisfiable assumptions. Locales can be
extended using the + operator. A locale extension has access to the original
locale’s parameters, assumptions, and all lemmas proved in the original.

9
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Proving the satisfiability of a locale’s assumptions is part of the respon-
sibility of the user. To do this we have to interpret the locale, a term which
refers to the act of instantiating all locale parameters and proving the lo-
cale assumptions to hold for the given parameters. Isabelle’s built-in code
generation feature can only generate code for interpreted locales.

2.7 Graph Framework
This thesis uses and extends the graph framework built in Isabelle by Kohl-
meyer [17] to represent CFGs. The locale signatures and an explanation of
the relevant operations follow:

locale graph =
fixes
αe :: ′g ⇒ ( ′node × ′edgeD × ′node) set and
invar :: ′g ⇒ bool

The locale graph is the most basic version of a graph, providing only
a function for fetching a graph’s edge set (αe) and a predicate for sanity-
checking the given graph (invar). The signature of this locale also shows the
type parameters involved: ’g is the graph type,’node is the type of nodes in
the graph, and ’edgeD is the type of the edge descriptors (these are not used
in this thesis). The invar predicate is needed in extensions of this locale for
limiting lemmas to valid graphs.

locale graph-nodes = graph +
fixes
αn :: ′g ⇒ ′node list

assumes αn-correct:
invar g =⇒ set (αn g) = fst ‘ αe g ∪ snd ‘ snd ‘ αe g

Locale graph-nodes extends graph and provides αn, a function which re-
turns a list of all nodes of the given graph. It follows from the assumption
αn-correct that no isolated node can exist in a graph, as nodes are only char-
acterized as end points of an edge.

locale graph-empty = graph +
fixes empty :: ′g
assumes
empty-invar : invar empty and
empty-correct: αe empty = {}

10



2 BACKGROUND 2.7 Graph Framework

locale graph-addEdge = graph +
fixes addEdge :: ′g ⇒ ′node ⇒ ′edgeD ⇒ ′node ⇒ ′g
assumes
addEdge-invar : invar g =⇒ invar (addEdge g f d t) and
addEdge-correct: invar g =⇒ e ∈ αe (addEdge g f d t)
←→ e = (f , d, t) ∨ e ∈ αe g

The locale graph-empty augments the graph-locale with an empty graph,
and graph-addEdge adds a function for adding edges to a given graph. These
two locales allow graphs to be constructed edge by edge.

locale graph-outEdges = graph +
fixes outEdges :: ′g ⇒ ′node ⇒ ( ′node × ′edgeD × ′node) list
assumes outEdges-correct:
invar g =⇒ set (outEdges g n) = {(f , -, -). f = n} ∩ αe g

locale graph-inEdges = graph +
fixes inEdges :: ′g ⇒ ′node ⇒ ( ′node × ′edgeD × ′node) list
assumes inEdges-correct:
invar g =⇒ set (inEdges g n) = {(-, -, t). t = n} ∩ αe g

The locales graph-outEdges and graph-inEdges provide functions return-
ing a list of a node’s outgoing and incoming edges respectively, along with
assumptions concerning the correctness of the functions.

11



3 TECHNICAL FOUNDATION

3 Technical Foundation
Before getting into the details of the algorithm used in this paper, we first
have to create the abstract setting in which the algorithm is defined.

locale graph-path = graph-nodes
for αe :: ′g ⇒ ( ′node × ′edgeD × ′node) set
and invar :: ′g ⇒ bool
and αn :: ′g ⇒ ′node list

inductive path-to
:: ′g ⇒ ′node ⇒ ( ′node × ′edgeD × ′node) list ⇒ ′node ⇒ bool (- ` - −-→ -)
for g :: ′g and n :: ′node where
[[ n ∈ set (αn g) ]] =⇒ (g ` n −[]→ n) |
[[ g ` n −es→ n ′; (n ′,e,n ′′) ∈ αe g ]]

=⇒ (g ` n −es@[(n ′,e,n ′′)]→ n ′′)

The locale graph-path augments graph-nodes with the recursively defined
predicate path-to, which expresses the existence of a path within the graph.
Paths are modeled as lists of edges, and defined inductively from “front to
back”, though an introduction rule for prepending edges to a path exists
too. Null (i.e. empty) paths are explicitly allowed, so for every node n in the
graph g, “g ` n -[]→ n” is true. Note that in general inductive predicates
in Isabelle are not “executable” in the sense that we can’t generate code for
obtaining parameter combinations which satisfy the predicate, so this predi-
cate can only be used for proving properties about the objects defined in our
locale, not for performing any computation3.

locale graph-exit = graph-path αe invar αn
for αe :: ′g ⇒ ( ′node × ′edgeD × ′node) set
and invar :: ′g ⇒ bool
and αn :: ′g ⇒ ′node list +
fixes Exit :: ′node
assumes Exit-in-graph: Exit ∈ set (αn g)
and path-to-Exit: [[ n ∈ set (αn g) ]] =⇒ (∃ es. g ` n −es→ Exit)
and Exit-is-Exit:
[[ g ` Exit −es→ n ]] =⇒ es = [] ∧ n = Exit

3While there exists a mechanism for attempting to automatically create code for such
inductive predicates, this does not always succeed and will in general generate rather
inefficient code
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3 TECHNICAL FOUNDATION

The locale graph-exit extends graph-path by fixing the Exit-node and as-
suming two basic properties about this node:

path-to-Exit: Exit is reachable from every node in g.
Exit-is-Exit: Exit has no outgoing edges.

The final locale signature presented in this section is graph-control-
Dependencies. It handles three different graph types:

’g
The input CFG, captured in the namespace “in”. It needs to support
the operations invar, αe, αn, outEdges and inEdges.

’span
The graph used for building and working with the spanning tree ob-
tained during the computation, captured in the namespace “span”.
Supported operations are invar, αe, αn, outEdges and addEdge. The
existence of an empty graph of this type is also needed for building
a graph from scratch. As shorthand, operations on the spanning tree
share a ’ as suffix.

’outg
The output graph type, captured in the namespace “out”. Supported
operations are invar, αe, addEdge. An empty graph is needed here,
too. As shorthand, operations on the output graph share ’ ’ as suffix.

Together with the basic parts of the graph framework presented in Sec-
tion 2.7, this provides us with all the basic operations we need for computing
postdominators and control dependencies.

13
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locale graph-controlDependencies =
in:graph-nodes
+ in:graph-inEdges
+ in:graph-outEdges
+ in:graph-exit
+ span:graph-nodes
+ span:graph-outEdges
+ span:graph-addEdge
+ span:graph-empty
+ out:graph-addEdge
+ out:graph-empty
for αe :: ′g ⇒ ( ′node::linorder × ′edgeD × ′node) set
and invar :: ′g ⇒ bool
and αn :: ′g ⇒ ′node list
and inEdges :: ′g ⇒ ′node ⇒ ( ′node × ′edgeD × ′node) list
and outEdges :: ′g ⇒ ′node ⇒ ( ′node × ′edgeD × ′node) list
and αe ′ :: ′span ⇒ ( ′node × unit × ′node) set
and invar ′ :: ′span ⇒ bool
and αn ′ :: ′span ⇒ ′node list
and outEdges ′ :: ′span ⇒ ′node ⇒ ( ′node × unit × ′node) list
and addEdge ′ :: ′span ⇒ ′node ⇒ unit ⇒ ′node ⇒ ′span
and empty ′ :: ′span
and αe ′′ :: ′outg ⇒ ( ′node::linorder × unit × ′node) set
and invar ′′ :: ′outg ⇒ bool
and addEdge ′′ :: ′outg ⇒ ′node ⇒ unit ⇒ ′node ⇒ ′outg
and empty ′′ :: ′outg +
assumes finiteness: finite (αe g)
and g-always-invar : invar g

Apart from the assumptions inherited from other graph locales, this locale
also assumes the given graph to be finite, as a depth-first search on an infinite
graph is problematic at best. For technical reasons and for convenience when
defining functions, this locale also assumes that all graphs that serve as input
are valid graphs.

14



4 CONSTRUCTION

4 Construction
This section explains the different steps taken by our algorithm to get from
program code in any programming language to the control dependence graph.
A high-level view distinguishes four different phases of the algorithm:

Prep Generate a CFG from the given code.

1. Crawl the CFG using a depth-first search, yielding a node numbering
and a spanning tree.

2. Calculate semi-postdominators and immediate postdominators.

3. Compute control dependencies and generate the output graph.

4.1 CFG Generation
The first step is to extract the CFG from the program code. This strongly
depends on the semantics of the programming language in question, and as
this thesis concentrates on computing the control dependence graph from a
CFG, this is only listed here for the sake of completeness.

The examples and figures presented in the context of this thesis represent
the following simple program4:

1 if (x <= 0) {
2 if (x < 0) {
3 y := y - 1;
4 x := 100;
5 } else {
6 x := y / x;
7 }
8 z := true;
9 } else {

10 while (x > 0) {
11 x := x - 1;
12 y := y + 1;
13 }
14 z := false;
15 }

4The actual language for which we supply a locale interpretation only supports the
operators “=”, “&”, “<”, “+” and “-”. Though this set is formally complete, it lacks
several operators shown in the example. We still use these here for didactic purposes.

15



4.2 Depth-First Search 4 CONSTRUCTION

if (x <= 0) {

if (x < 0) {

y := y - 1;

x := 100;

z := true;

x := y / x;

while (x > 0) {

x := x - 1;

y := y + 1;

z := false;

Exit

Figure 2: A control flow graph for the example program. Note the
edge from “x := y / x;” to Exit. This is due to the possibility of a
division-by-zero-exception.

The execution of line 2 depends on line 1, lines 3 and 4 depend directly
on line 2, and so on. It is important to note that while lines 3 and 4 also
depend on line 1 indirectly, this thesis does not concern itself with indirect
dependencies, as indirect dependence can easily be computed by forming the
transitive closure of the direct dependencies.

A possible control flow graph for this program is shown in Figure 2.

4.2 Depth-First Search
In order to compute postdominators, we first need to extract a spanning
tree and the corresponding node numbering from the graph. As the orig-
inal version of Lengauer-Tarjan considers dominators and we’re interested
in postdominators, we could use the algorithm on an edge-reversed graph5.
Instead, we simply treat edges as if they were reversed and start the DFS on

5By reversing all edges, a node’s dominators become its postdominators and vice versa.

16



4 CONSTRUCTION 4.2 Depth-First Search

the Exit node, thus saving us the trouble of reversing the graph twice.

The depth-first search is split into three parts: A single-step function, dfs-
step, a recursive function dfs’ and a wrapper dfs around dfs’ with the initial
parameters. This splitting of one function into three parts is done in order
to make the function more tractable for proofs. But first, some preliminaries:

type-synonym ′node numbering = ( ′node, nat) mapping

type-synonym ( ′node, ′edgeD, ′span) dfs-state =
(( ′node × ′edgeD × ′node) list × ′node numbering × ′span)

The function symbols getTo and getFrom are abbreviations for the func-
tions which return the first and third entry in a tuple, respectively. Their
use is to make function definitions handling edges and their end points more
readable. We define a numbering to be a mapping from type ’node to the
natural numbers. In Isabelle/HOL, mappings provide an abstract view on
partial functions which can be updated6. They support code generation and
are used as key-value stores.

Furthermore, to simplify type signatures we define dfs-state to be the
type synonym to a tuple consisting of an edge list, a node numbering and
a graph7. During the computation of DFS, this tuple will hold the stack of
edges we have yet to look at, our mapping of visited nodes (the node num-
bering), and the part of the spanning tree constructed so far.

6using the function Mapping.update :: ’a ⇒’b ⇒(’a, ’b) mapping
7Technically, all these are still type parameters at this point and could be anything.
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4.2 Depth-First Search 4 CONSTRUCTION

fun dfs-step :: ′g ⇒ ( ′node, ′edgeD, ′span) dfs-state ⇒ (( ′node, ′edgeD, ′span)
dfs-state) option
where
dfs-step g ([],visited,span) = None |
dfs-step g (x#xs,visited,span) = (

if getFrom x ∈ set (αn g) then
(case (getFrom x ∈ Mapping.keys visited) of
True ⇒ Some (xs,visited,span) |
False ⇒ Some (

(inEdges g (getFrom x)) @ xs,
Mapping.update (getFrom x) (Mapping.size visited) visited,
addEdge ′ span (getFrom x) () (getTo x)
)

)
else None)

Function dfs-step is the aforementioned single-step function. It takes a
graph to search and an algorithm state and computes the state of the algo-
rithm after the next step of DFS.
If the stack is empty, we’ve already crawled the whole graph, and return
None, as there is nothing left to be done. If we still have edges to process,
we pop the topmost edge off the stack and check if its source node8 is in the
set of all nodes we’ve found (and numbered) so far. If so, both the spanning
tree and the node numbering remain untouched and are returned together
with the rest of the stack as the next dfs-state.
If however the edge we’re processing originates from a node we haven’t en-
countered yet, we push this node’s incoming edges on the stack, update the
numbering to incorporate the new node9 and add this edge to the spanning
tree.

As only “new” nodes are added to the graph and to the numbering, our
numbering will not get corrupted by overwriting values and we’re not intro-
ducing a new loop into the spanning tree.

8In a conventional depth-first search, we’d examine the edge’s target node, but as we’re
interested in postdominators, we treat edges as if they were reversed.

9We use “Mapping.size visited” as a convenient way to identify the nodes with the order
in which they were found without introducing another parameter.
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4 CONSTRUCTION 4.2 Depth-First Search

function (sequential) dfs ′ :: ′g ⇒ ( ′node, ′edgeD, ′span) dfs-state
⇒ ( ′node numbering × ′span)

where (dfs ′ g (st,vs,span)) = (case dfs-step g (st,vs,span) of
None ⇒ (vs,span)
| Some result ⇒ (dfs ′ g result))

The function dfs’ does little else but recursively call dfs-step until this
returns no new state. This happens as soon as the stack is exhausted. We
can prove that this eventually happens by examining the number of nodes
left undiscovered and the size of the stack over the course of the algorithm’s
run time. The stack is only “refilled” with new edges if we find a node that
has never been discovered. As there is only a limited number of nodes in the
graph, this only happens a finite number of time. Every call to dfs-step that
doesn’t increase the stack’s size decreases it, so the stack will eventually be
exhausted and dfs’ will come to a halt.

definition dfs :: ′g ⇒ ( ′node numbering × ′span)
where dfs g = dfs ′ g ((inEdges g Exit), Mapping.update Exit 0 Mapping.empty,
empty ′)

The final piece of the DFS implementation is dfs, which calls dfs’ with
the appropriate parameters and returns a tuple containing the final node
numbering and spanning tree. The stack used for this contains all incoming
edges into Exit, the initial numbering only contains Exit with DFS-ID zero,
and the empty graph as initial spanning tree10. Figure 3 shows the result of
applying dfs to our running example. Note that in the initial node number-
ing, Exit is treated as having DFS-ID zero.

definition dfs-state-consistent :: ′g ⇒ ( ′node, ′edgeD, ′span) dfs-state ⇒ bool
where dfs-state-consistent g (st,vs,span) = [. . . ]

As a first step in proving the correctness of this DFS implementation, we
define a consistency predicate on a dfs-state named dfs-state-consistent and
prove that this is preserved across the execution of dfs-step. The properties
ensured by dfs-step-consistent include:

• span’s nodes are a subset of g’s.

• All nodes in vs have different DFS-ID.
10Due to the empty initial spanning tree but nonempty initial numbering, this initial

state is not considered “consistent” by the version of the consistency predicate defined in
this document. This discrepancy between spanning tree and numbering is unavoidable,
since the graph framework this work uses doesn’t allow the existence of unconnected nodes
in a graph.
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Figure 3: The node numbering and spanning tree superimposed on
the CFG after one possible execution of the first phase of the algo-
rithm.

• All edges in the stack lead to nodes that are already in span.

• All edges in g for which only the target node is in vs are in the stack.

• For every node n not in span, there exists a path from n through an
edge that is in the stack.

• All nodes have a DFS-ID smaller than the size of the numbering.

• The target node of all edges in the stack is in span.

• The numbered nodes are exactly the nodes in span.

• span is a reversed minheap, i.e. a node n’s tree parent is always smaller
than n.

As a next step, we prove that after one execution of dfs-step, the state of
the algorithm as started by dfs fulfills dfs-state-consistent. By induction, we
obtain that the result of dfs also fulfills this predicate.
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4 CONSTRUCTION 4.3 Computation of Postdominators

4.3 Computation of Postdominators

In Section 2.5 we’ve already presented the classical Lengauer-Tarjan algo-
rithm for computing dominators in a flow graph. However, as Lengauer-
Tarjan (and its variants) derive much of their efficiency from using highly
specialized mutable data structures which are not readily available in a func-
tional setting, we’ve opted for implementing the functions computing a node’s
semi-postdominator and immediate postdominator more directly according
to their formal definitions. This has the consequence that the implementation
discussed here doesn’t fulfill the same asymptotic speed bound as classical
Lengauer-Tarjan or its linear-time variants, but it also greatly increases the
formal tractability of the code.

Before elaborating on the intricacies of spdom and ipdom computation,
we will introduce some helper functions:

The functions spanning-tree, spanning-tree-parent and dfs-id provide high-
level access to the results of dfs, and behave as one would expect. Their
definitions are as follows.

definition tree-parent :: ′span ⇒ ′node ⇒ ′node option
where tree-parent s n = (if outEdges ′ s n = [] then
None

else
Some (getTo (hd (outEdges ′ s n))))

definition spanning-tree :: ′g ⇒ ′span
where spanning-tree g = snd (dfs g)

definition spanning-tree-parent :: ′g ⇒ ′node ⇒ ′node option
where spanning-tree-parent g n = tree-parent (spanning-tree g) n

definition dfs-id :: ′g ⇒ ′node ⇒ nat
where dfs-id g n = the (Mapping.lookup (fst (dfs g)) n)

Next we define the function tree-path-nodes, which takes a graph g and
two nodes n and m, and returns the list of nodes in the spanning tree path
from n to m (including n and m) in g, if such a path exists, and None other-
wise. It operates by first checking if such a path exists between n’s spanning
tree parent and m and if so, returns this path, prepended with n.
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function tree-path-nodes :: ′g ⇒ ′node ⇒ ′node ⇒ ( ′node list) option
where tree-path-nodes g n m = (
if (n = m) then
Some [n]

else
(if spanning-tree-parent g n = None then
None

else
Option.map (op # n)
(tree-path-nodes g (the (spanning-tree-parent g n)) to)

)
)

The following definition provides us with min-target-node, which takes an
edge as a seed and a list of edges and returns the smallest target node of all
these edges.

fun min-target-node :: ′g ⇒ ( ′node × ′edgeD × ′node)⇒ ( ′node × ′edgeD × ′node)
list ⇒ ′node
where
min-target-node g e [] = getTo e |
min-target-node g accu (x#xs) = (

if dfs-id g (getTo x) < dfs-id g (getTo accu) then
min-target-node g x xs

else
min-target-node g accu xs

)

4.3.1 Semi-Postdominators

The Lengauer-Tarjan algorithm computes semi-postdominators with its EVAL-
LINK -mechanism, which is based on a disjoint-set forest. The algorithm
presented in this thesis however does not use this mechanism and employs
a more naive and direct implementation based on the formal definition of
spdom. In Section 2.3 we’ve established the following:

spdom(n) = min{m | there is a path n = m0,m1, . . . ,mk = m such
that mi > n for 1 ≤ i ≤ k − 1} (2)

First, we define the function non-smaller-reachable-nodes, which takes a
graph g, a node n, a list visited of nodes already visited, and a node m, and
returns all nodes reachable from m without ever crossing one a node k with
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k < n or a node in the visited list.

function non-smaller-reachable-nodes :: ′g ⇒ ′node ⇒ ′node list ⇒ ′node ⇒ ′node
list
where non-smaller-reachable-nodes g n visited m = (
if m ∈ set visited ∨ m /∈ set (αn g) ∨ (dfs-id g m) < (dfs-id g n) then

[]
else
m # concat

(List.map (non-smaller-reachable-nodes g n (m#visited) ◦ getTo)
(outEdges g m))

)

As we’re adding the nodes we’ve already visited to the list visited used for
the recursive call, the number of nodes we avoid increases with each recursive
step. Since all CFGs handled by this thesis are finite, this can only happen
a finite number of times, and we can guarantee that this function always
terminates. We can use non-smaller-reachable-nodes to compute all nodes
reachable by a node n without ever crossing a smaller node by choosing the
parameters m = n and visited = []. Figures 4 to 6 show an example of this
computation.

With non-smaller-reachable-nodes we have everything we need to define
the semi-postdominator function spdom:

fun spdom :: ′g ⇒ ′node ⇒ ′node option
where spdom g n = (
if n = Exit then
None

else
Some (

let reachable-outEdges = concat (
List.map (outEdges g)
(n#(non-smaller-reachable-nodes g n [] n)))

in min-target-node g (hd reachable-outEdges) reachable-outEdges
)

)

As the result of non-smaller-reachable-nodes g exit-path n won’t include
any nodes smaller than n, applying outEdges to this list will still leave the
resulting node list filled with viable candidates for the semi-postdominator
(as no further restrictions are placed on the last node of a candidate path)
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while decreasing the minimum node in the list11. Thus, the function spdom
performs as needed and computes a node’s semi-postdominator.

4.3.2 Immediate Postdominators

Lengauer et al. proved the following identity [20]12:

Let n be a node different from Exit and let u be a node for
which sdom(u) is minimum among nodes satisfying n ∗−→ u

+−→
spdom(n)13.

ipdom(n) =

spdom(n) if spdom(n) = spdom(u)
ipdom(u) otherwise

(4)

We can even restrict the definition of u further without violating this
identity by choosing u to be the node with minimum spdom on the spanning
tree path from w to spdom(w): suppose the node u referenced above is not
on the tree path from n to spdom(n). Then the node k at which the spanning
tree path from n to spdom(n) and the path from n to u diverge will have
spdom(k) = spdom(u)14. Thus the spanning tree path from n to spdom(n)
contains all nodes necessary for deciding whether ipdom(n) = spdom(n).

With this result, we can compute immediate dominators using the fol-
lowing function:

fun smallest-spdom :: ′g ⇒ ′node ⇒ ′node list ⇒ ′node
where smallest-spdom g accu [] = accu |
smallest-spdom g accu (x#xs) = (
if (spdom g accu = None) ∨
¬ (dfs-id g (the (spdom g accu)) < dfs-id g (the (spdom g x))) then

smallest-spdom g x xs else
smallest-spdom g accu xs

)

11Every node has at least one outgoing edge: the spanning tree edge, which is known
to lead to a node of smaller DFS-ID.

12The version given here has already been adjusted to fit immediate postdominators,
while their version spoke of immediate dominators.

13The notation n +−→ m means “there exists a nonnull path from n to m”, n ∗−→ m also
allows null paths (i.e. n = m is allowed).

14This is true as all nodes from k to u are not in the spanning tree path from k to
spdom(k) and because u has minimal spdom of all relevant nodes.
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Figure 4: An example graph to show the execution of non-smaller-reachable-
nodes as used by spdom on node 4.
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Figure 5: The green nodes are those found by non-smaller-reachable-nodes con-
sidering a recursion depth of 1.
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Figure 6: The nodes found considering a recursion depth of 2. As no new nodes
greater than 4 are reachable, the function terminates, returning all nodes colored
in green.
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The function smallest-spdom takes a node as accumulator seed and a list
of nodes and performs a fold over the list selecting for smaller spdom. It
thus returns the node with the smallest spdom of seed and the list. In this
respect, it is very much like min-target-node. With this, defining a function
returning a node’s ipdom is fairly straightforward:

function ipdom :: ′g ⇒ ′node ⇒ ′node option
where ipdom g n = (
if (spdom g n = None) ∨ (tree-path-nodes g n (the (spdom g n)) = None)
then
None

else
(let spdom-path =
butlast (the (tree-path-nodes g n (the (spdom g n))));
relevant-node = smallest-spdom g spdom-path in
if dfs-id g (the (spdom g relevant-node)) = dfs-id g (the (spdom g n))
then
spdom g n

else
ipdom g relevant-node

)
)

This function always terminates because we know relevant-node to be in
the spanning tree path from n to spdom(n) and (in the case of the recursive
application of ipdom) to be different from n. Together, we have that in the
recursive case, relevant-node is always smaller than n, so it must at some
point terminate (as DFS-ID is defined on natural numbers only).

Figure 7 shows how spdom and ipdom behave on our running example.

4.4 Computation of Control Dependencies
Our algorithm computes control dependencies matching the definition of
standard control dependence outlined by Wolfe [26] (proven by Wasserrab
to be equivalent to the definition of Ferrante et al. [8]):

A node n′ is control dependent on a node n, if n has at least two
successors, one postdominated by n′, while the other one is not.

It can easily be seen that control dependencies on a node n can only exist
for the nodes on the paths from n to ipdom(n) excluding n and ipdom(n)
themselves. As n’s postdominators are all on the spanning tree path from
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Figure 7: Our CFG, along with the information extracted from
the depth-first search (node numbering and spanning tree) and semi-
postdominator and immediate dominator. Take special note of node
3, which is the only node with differing spdom and ipdom.

n to Exit and as the immediate dominator is unique for every node, they
can be ordered by increasing DFS-ID. In this ordering, each node in the
list is the immediate postdominator of the next (per definition of immediate
postdomination), starting with Exit up to n. This also means that we can
iterate over all postdominators of n by chaining applications of ipdom. This,
together with the fact that all nodes that may be control dependent on n
must occur on some path between n and ipdom(n)15, provides us with an
efficient way of iterating over all nodes which are standard control dependent
on any node n.

The function cdeps-in-chain shown below returns the list of all tuples
(k, n) such that k postdominates m and ipdom(n) postdominates k if given
a node m and a direct predecessor16 n as parameters. For fixed n, this coin-

15By ipdom(n), all diverging paths starting at n must have converged again by definition
of postdomination.

16This refers to the predecessor in the sense of the CFG, not the spanning tree.
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cides exactly with all tuples (k, n) such that k is standard control dependent
on n.

function cdeps-in-chain :: ′g ⇒ ′node ⇒ ′node ⇒ ( ′node × ′node) list
where cdeps-in-chain g n topnode = (
if (ipdom g topnode = Some n) ∨

(topnode = n) ∨
(ipdom g topnode = None) ∨
(ipdom g n = None)

then
[]

else
(n, topnode) # cdeps-in-chain g (the (ipdom g n)) topnode

)

As cdeps-in-chain follows the ipdom chain on every recursive call, ex-
ecution will sooner or later encounter ipdom(topnode) or Exit (for which
ipdom g n = None is true), so we can guarantee termination for every possi-
ble input.

The next function, cdeps-from-node, provides the last piece needed for
computing standard control dependencies for arbitrary nodes: for a node
n, it calls cdeps-in-chain for all of n’s successors with n as the topnode pa-
rameter, combining the result into a single list of all tuples (k, n) with k is
standard control dependent on n.

fun cdeps-from-node :: ′g ⇒ ′node ⇒ ( ′node × ′node) list
where cdeps-from-node g n =
concat (List.map (λm. cdeps-in-chain g m n) (List.map getTo (outEdges g n)))

The function control-deps applies the computation of standard control
dependencies to all nodes in the graph and concatenates the results into a
single list:

fun control-deps :: ′g ⇒ ( ′node × ′node) list
where control-deps g = concat (List.map (cdeps-from-node g) (αn g))

As we’re interested in having the possibility of delivering the result of
this computation as a control dependence graph, the final two functions dis-
cussed in this section will provide just this functionality: tuple-list-to-graph
converts a list of tuples to a graph, leaving the edge descriptor of type unit,
and control-dependence-graph is essentially an abbreviation for performing
this computation on a graph, yielding the control dependence graph.
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Figure 8: The CFG overlaid with some of the information we have
extracted: For each node, its DFS-ID, spdom, ipdom, and control
dependence edges are shown.

fun tuple-list-to-graph :: ( ′node × ′node) list ⇒ ′outg ⇒ ′outg
where
tuple-list-to-graph [] g = g |
tuple-list-to-graph ((from,to)#xs) g = (
if (from,(),to) ∈ αe ′′ g then
tuple-list-to-graph xs g

else
tuple-list-to-graph xs (addEdge ′′ g from () to)

)

definition control-dependence-graph :: ′g ⇒ ′outg
where control-dependence-graph g = tuple-list-to-graph (control-deps g) empty ′′

Figure 8 shows the CFG previously constructed for our example overlaid
with the control dependence graph generated by this function, and Figure 9
shows the result of all this combined work on the code of our running example.
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Exit normal edge
control dependency

if (x <= 0) {

if (x < 0) {

y := y - 1;

x := 100;

z := true;

x := y / x;

while (x > 0) {

x := x - 1;

y := y + 1;

z := false;

Figure 9: An annotated version of the CFG of our example showing
that the control dependencies computed by this thesis are indeed the
control dependencies present in the code.

30



5 INTERPRETATIONS

5 Interpretations
An Isabelle locale that cannot be interpreted is useless for any practical
purpose. Within the scope of this thesis, we supply two interpretations of our
theory: One which works directly on flowgraphs and one which uses the CFGs
constructed by the work of Kohlmeyer [17]. As the while language handled
with this framework only includes structured control flow, the interpretation
on raw graphs serves to illustrate the workings of the code of this thesis on
nonreducible CFGs.

5.1 Graph Interpretation
As we have to ensure that the graphs we’re using for this interpretation
contain an Exit node, we first define a new datatype called cfg-node which
differentiates between the special node Exit and any other node.

datatype ′n cfg-node = Node ′n | Exit

For the basic graph locales defined in Section 2.7, there is an implementa-
tion based on red-black trees readily available that we can extend and reuse.
The functions provided by this implementation carry the names also used in
this thesis, but are prefixed with “mg-”, so the invar predicate provided by
this package is called mg-invar and so on.

As we cannot guarantee all graphs that can be built by this framework to
be valid CFGs, we restrict the graph type to a new type which describes only
graphs that fulfill our assumptions. This is done using the typedef keyword,
which requires us to supply a proof that the type to be defined is not empty.

typedef ( ′n, ′ed) sane-graph = {g :: (( ′n::linorder) cfg-node, ′ed) graph.
mg-invar g ∧
Exit ∈ set (mg-αn g) ∧
(∀n. (n ∈ set (mg-αn g) −→ (∃ es. g ` n −es→ Exit))) ∧
(∀ es n. g ` Exit −es→ n −→ es = [] ∧ n = Exit)}

The restrictions imposed on this type match the assumptions made by
the locales graph-exit and graph-controlDependencies in Section 3, save for
the assumption that all graphs are finite, which mg-αe already guarantees.
In order to prove that this type is not empty, we provide one instance of a
graph which fulfills these requirements: the graph containing only one edge
with undefined edge descriptor from an undefined Node to Exit.
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definition sane-graph-instance
where sane-graph-instance = addEdge mg-empty (Node undefined) undefined Exit

As undefined is an instance of every type, this graph is certainly of type
g :: ((’n::linorder) cfg-node, ’ed) graph. The empty graph mg-empty fulfills
mg-invar and mg-addEdge preserves this, so sane-graph-instance also fulfills
mg-invar. Since the set of nodes in sane-graph-instance contains only Node
undefined and Exit, the other assertions are trivially true.

The mg- functions are defined on the type (’n, ’ed) graph and not on the
type sane-graph, hence the need for another set of functions fulfilling the role
of mg-addEdge, mg-αe etc. Fortunately, we can fully automate the tedious
task of redefining these functions to differently-typed variants by using the
lifting package [15]. For example, for mg-αn:

setup-lifting type-definition-sane-graph

lift-definition sg-αn :: (( ′n::linorder), ′ed) sane-graph ⇒ ( ′n cfg-node) list is
mg-αn..

We continue this for all mg- functions, obtaining a full set of operations
on this new graph type prefixed with sg- instead ofmg-. Once we’ve done this,
we can use our lifted definitions to finally interpret graph-controlDependencies:

interpretation sg-conDep: graph-controlDependencies cfg-node.Exit sg-αe
sg-invar sg-αn sg-inEdges sg-outEdges mg-αe mg-invar mg-αn mg-outEdges
mg-addEdge mg-empty mg-αe mg-invar mg-addEdge mg-empty

With this interpretation, we can finally execute the theory and generate
code. In order to show that the running example we’ve been using isn’t
completely spurious, we can manually build exactly the graph we’ve been
using and to execute our code on it17. The results are shown in Figures 10
to 12.

17As the while language used for the other interpretion only supports structured control
flow, yielding a graph like this one is impossible with the other interpretation.
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Figure 12: The control dependence graph of our example, as direct output of our
generated code.
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5.2 While Interpretation

The work of Kohlmeyer [17] provides a mechanism for generating CFGs from
code in a simple while language. These CFGs not only supply an Exit node,
but also an Entry node:

datatype w-node = Node nat ( ′( ′- - ′- ′))
| Entry ( ′( ′-Entry ′- ′))
| Exit ( ′( ′-Exit ′- ′))

The input “graph” type used represents abstract syntax trees (ASTs) of
while programs and is called cmd, while all operations on this type use the
function build to convert these ASTs to graphs, thus enabling us to work
directly on programs:

abbreviation while-edges c ≡ mg-αe (build c)
abbreviation while-nodes c ≡ mg-αn (build c)
abbreviation while-outEdges c ≡ mg-outEdges (build c)
abbreviation while-inEdges c ≡ mg-inEdges (build c)
definition while-invar c ≡ mg-invar (build c)

With the type signature of build being:

build :: cmd ⇒ (w-node, state edge-kind) graph

The CFG generation theory supplies its own predicate path (noted “g `
n -es→∗ n”) for reasoning about paths in the generated CFGs, very much
like the path-to predicate defined in graph-path. In fact, both are equivalent,
a fact which we prove in order to reuse the lemmas about path:

lemma path-equiv: (g ` n −es→∗ n ′) ←→ (g ` n −es→ n ′)

Using this equivalence, we can directly use some lemmas about path which
directly coincide with the assumptions we need to prove to interpret our the-
ory, for example18:

lemma while-invar : while-invar c
lemma Exit-in-while-nodes: (-Exit-) ∈ set (while-nodes c)
lemma valid-node-Exit-path:
assumes valid-node g n shows ∃ as. g ` n −as→∗ (-Exit-)

18We shall not dwell on valid-node g n. Suffice it to say that it follows from the combi-
nation of the correctness of αn and “n ∈ αn g”.
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5 INTERPRETATIONS 5.2 While Interpretation

Combining all these results finally lets us interpret the theory, using the
while- functions for the input graph, and the mg- functions for the spanning
tree graph type and output graph type.

interpretation while-conDep: graph-controlDependencies (-Exit-) while-edges
while-invar while-nodes while-inEdges while-outEdges mg-αe mg-invar mg-αn
mg-outEdges mg-addEdge mg-empty mg-αe mg-invar mg-addEdge mg-empty

After having interpreted the graph-controlDependencies locale, we can
generate code for the theory in a variety of functional languages, e.g. Haskell:

export-code while-conDep.control-dependence-graph in Haskell

To deliver a concrete example of the code “in action”, consider the fol-
lowing code snippet written in the while language:

1 if (y < (x - 1)) {
2 if (x < y) {
3 x := y;
4 } else {
5 y := x;
6 }
7 x := x;
8 } else {
9 c := y;

10 }
11 y := y;

The CFG generated from this code snippet by Kohlmeyer’s thesis is shown
in Figure 13, and the control dependence graph computed by the exported
Haskell code is shown in Figure 14
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Figure 13: The CFG built from the code example. Note that not ev-
ery node can directly be identified with a statement, as the conversion
algorithm inserts “empty” nodes at around certain instruction types.
Other than that, the CFGs generated by Kohlmeyer are regular CFGs
with minimal basic blocks.
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Figure 14: The control dependence graph computed by the exported
Haskell code.
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6 Related Work
While this thesis is the first work known to us to attempt the machine-
assisted verification of an algorithm for computing the control dependence
graph from a CFG, a lot of work has been done in recent years in related
topics:

Neumann [21] provides a verified generic formalization of depth-first al-
gorithms in Isabelle/HOL using a similar approach to the one used in this
thesis which also supports efficient code generation. To the best of our knowl-
edge, there is not yet a published and verified formalization of disjoint-set
operations which could be used for improving the algorithm presented in this
paper.

Cooper et al. [7] provide a simple iterative approach to computing domi-
nators reaching an efficiency comparable to that of Lengauer-Tarjan in com-
mon cases. To the best of our knowledge, there is not yet a machine-checked
proof for the correctness of their algorithm. Buchsbaum et al. [5] present
linear-time algorithms for several graph-theoretical problems including com-
puting dominators, thereby attempting to once and for all provide solutions
to these problems that can both be called simple and efficient. Their algo-
rithm for computing dominators might be a suitable candidate as a replace-
ment for the dominator algorithm used in this thesis. The Haskell package
Data.Graph.Dom19 provides an implementation of Lengauer-Tarjan. While
this supplies a functional implementation of Lengauer-Tarjan, it is not veri-
fied in any way and is written in a style using many monadic structures, and
is as such unsuitable for porting to Isabelle/HOL.

Zhao and Zdancewic [27] provide an abstract specification of dominance
analysis and supply verified implementations of two different approaches to
computing dominance for the Vellvm project20. Their work uses the Cooper-
Harvey-Kennedy algorithm [7] instead of the slightly faster Lengauer-Tarjan
algorithm for computing postdominators. All proofs in their work are carried
out using the Coq proof assistant. Harrold et al. [13] generalize control de-
pendencies to interprocedural control dependencies and present an efficient
algorithm for computing these dependencies. (This work only concerns itself
with intraprocedural control dependencies)

As for work on topics that build upon the existence of control dependen-

19See http://hackage.haskell.org/package/dom-lt-0.1.3/docs/Data-Graph-Dom.html
20See http://www.cis.upenn.edu/~stevez/vellvm/
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6 RELATED WORK

cies:

Horwitz et al. [14] present a technique for performing interprocedural
slicing based on the information in dependence graphs. Hammer and Snelting
[10] present a formalization of a flow-sensitive, context-sensitive, and object-
sensitive technique for performing information flow control based on program
dependence graphs, which Wasserrab and Lohner [23] draw upon to present
a language independent machine-checked correctness proof for information
flow noninterference based on interprocedural slicing.
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7 Conclusion
In this thesis we presented a functional algorithm for computing standard
control dependencies based on a variant of the classical Lengauer-Tarjan
algorithm for finding dominators in a flowgraph along with a combination
of pen&paper proofs and machine checked proofs for the correctness of this
algorithm. The complete work is executable and can be exported into a
variety of functional languages. As proven by construction in Section 5, the
assumptions made by the used proof context are satisfiable.

Complications
Proving the necessary properties of the implementation (especially of the
depth-first search) turned out to be more arduous than anticipated, and the
lack of unconnected nodes in the used graph formalization further compli-
cated this task. Our limited experience with theorem provers and Isabelle in
particular certainly did not help, requiring us to learn the tools of the trade
as we went along.

Future Work
In the future, this work can be extended by providing Isar proofs for those cor-
rectness properties only proven in this thesis by pen&paper or with old-style
proof scripts, thus making this work into a maintainable and fully machine-
checked building block. The graph-controlDependencies locales currently con-
tains the fully verified implementation of DFS, the postdominator algorithm
and the control dependency algorithm. In order to improve modularity and
reusability of this work, this locale can be split up into its parts. In order
to improve the performance of the generated code, the naive implementation
of semi-postdominator and immediate postdominator computation can be
replaced by a more efficient variant, and the work provided by this paper
can be complemented by formalizing (and proving correct) an algorithm for
computing data dependencies, thus providing more of the requirements for
building a fully verified slicing framework.
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