
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Model Counting Based
Quantitative Information
Flow for Unbounded Loops

and Recursions

Bachelorarbeit von

Yannick Urbach

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: M. Sc. Johannes Bechberger, M. Sc. Simon Bischof

Abgabedatum: 20. April 2021

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Zusammenfassung

Quantitativer Informationsfluss ist das Problem, die Menge an privater Information,
die von einem Programm über seine Ausgaben preisgegeben wird, zu bestimmen.
Bounded Model Checking kann in Verbindung mit Model Counting für präzise
Analysen des quantitativen Informationsflusses benutzt werden. Ein inherentes Prob-
lem dieses Ansatzes ist allerdings, dass Schleifen und Rekursionen beschränkt sein
müssen. Wir stellen eine neuartige Analyse basierend auf Model Counting vor, die
diese Einschränkung durch besondere Behandlung von Schleifen mit vielen Iteratio-
nen sowie tiefen Rekursionen abschwächt. Wir behandeln abgebrochene Iterationen
und rekursive Aufrufe als Blackboxen und überapproximieren den Informationsfluss
durch diese Blackboxen. Unsere Analyse unterstützt außerdem volle Ein- und Aus-
gabestreams, während vergleichbare Analysen typischerweise auf einem einfacheren
Ein- und Ausgabemodell arbeiten.

Quantitative information flow is the problem of determining the amount of private
information that a program leaks to its outputs. Bounded model checking in
combination with model counting can be used for precise analyses of quantitative
information flow. However, an inherent limitation of this approach is that loops
and recursions must be bounded. We present a novel analysis based on model
counting that alleviates this limitation by introducing a fallback for loops with many
iterations and deep recursions. We treat aborted loop iterations and recursive calls as
black boxes and overapproximate the information flow through them. Furthermore,
our analysis supports full input and output streams, whereas comparable analyses
typically use a simpler input and output model.

Contents

1. Introduction 7
1.1. Contributions . 8
1.2. Related Work . 9

2. Foundations 11
2.1. Program Model . 11
2.2. Attacker Model . 11
2.3. Quantitative Information Flow . 12
2.4. Bounded Model Checking . 15
2.5. SAT Model Counting . 17

3. Design 19
3.1. Output Streams . 19
3.2. Loops and Recursion . 23

4. Implementation 31
4.1. Target Language . 31
4.2. Program Annotation . 32

5. Evaluation 35
5.1. Tested Programs . 35
5.2. Evaluation Process . 36
5.3. Results . 37

6. Conclusion and Future Work 41
6.1. Conclusion . 41
6.2. Future Work . 41

A. Black Box Handling Using Flow Networks 49

B. Evaluated Programs 53

5

1. Introduction

long password = privIn();
long input = pubIn();

boolean isCorrect = password == input;

pubOut(isCorrect);

Figure 1.1.: A simple password check.

Programs often work on private infor-
mation such as passwords, personal in-
formation of users, or industrial secrets.
As processing that information is part of
their purpose, they typically behave dif-
ferently for different private information.
This can be a problem if the difference
in behavior affects publicly visible out-
puts: an attacker may use the informa-
tion gained from observing the outputs
to draw conclusions about the private in-
formation. Consider the password check
in figure 1.1: The program notifies the user on whether they entered the correct
password. While this is generally necessary in a password check, it reveals some
information about the password. The discipline of secure information flow tackles
the problem of identifying such leaks of private information. Two main questions
may be asked with regards to secure information flow:

long in = privIn();
boolean parity = false;

for (int j = 0; j < 64; ++j) {
parity ^= (in & (1 << j)) != 0;

}

pubOut(parity);

Figure 1.2.: Calculating the parity bit for a
64 bit integer.

Does the program leak any private
information? Answering this question
is referred to as qualitative information
flow analysis. A number of analyses for
qualitative information flow exist, and
there are tools like JOANA [1] that are
capable of analyzing large real-world pro-
grams.

Qualitative information flow analysis is
useful when no leakage is acceptable.
However, avoiding all leakage can be very
challenging in some cases, and impossi-
ble or not desirable in others, such as in
the password check. For another exam-
ple, consider a checksum, like the parity

7

1.1. CONTRIBUTIONS

bit calculated in figure 1.2. Observing the checksum reveals some information about
the input, as it rules out all inputs that have a different checksum. However, it
is impossible to guess the input from the checksum due to the small amount of
information contained in the checksum. Nonetheless, it is considered a leak for
qualitative information flow. Accepting that in some cases, leaks can not be avoided,
leads to the following second question:

How much private information does the program leak? Answering this more
difficult question is referred to as quantitative information flow analysis. In the above
example, only one bit of information about the input is leaked. Considering that the
input consists of 64 bits, this may well be acceptable.

The analyses available for quantitative information flow are much more limited.
One promising approach is to use bounded model checking in combination with
approximate model counting to determine an estimate for the amount of information
leaked. However, this approach is limited with regards to the programs which it can
analyze. Bounded model checking can only handle a limited number of execution
paths. Consequently, loops and recursions can only be analyzed up to a certain
depth. This limitation is typically inherited by information flow analyses based on
bounded model checking.

1.1. Contributions

In this thesis, we present a novel analysis that is based on bounded model checking
and model counting, but avoids the limitation mentioned above. In our analysis,
when loops exceed the limit to the number of iterations, the remaining iterations
are treated as a black box. Similarly, when recursion exceeds the depth limit, the
remaining recursive calls are treated as black boxes. We use bounded model checking
to determine partial information flows in the remaining parts of the program. We
then overapproximate the total information flow by taking into account those partial
flows and assuming maximum information flow through the black boxes.

Furthermore, our analysis uses a stream-based input and output model. Existing
analyses typically use a function-like input and output model, where inputs are
passed to the program at the start of the execution, and outputs are returned when
the execution finishes. Our analysis uses output buffers to allow for input and output
at any point during the execution. We use maximum model counting to support
public input. Our analysis supports a subset of Java, including unbounded loops
and recursion, as well as dynamic dispatch.

8

1.2. RELATED WORK

1.2. Related Work

Smith [2] describes the theoretical foundations of quantitative information flow,
in particular the use of min-entropy as an entropy measure for the leakage of a
program. Fremont [3] introduces maximum model counting and describes its use
for quantitative information flow with public inputs. We use maximum model
counting for this purpose in our analysis. Espinoza [4] describes min-entropy-based
quantitative information flow for cascades, which is integral to our approach for
handling unbounded loops and recursion.

ApproxFlow ApproxFlow [5] is an approximative analysis for deterministic C
programs that is based on bounded model checking and approximate model counting.
It uses CBMC [6] as a bounded model checker. ApproxFlow delegates loop and
recursion handling to CBMC, which employs unrolling and inlining with limited
depth. Consequently, it has the limitations discussed above: loops and recursions
are supported only up to a limited depth; loops and recursions beyond that depth
can lead to underapproximations. ApproxFlow analyses information flow through
a C function, treating parameters as private input and the return value as public
output. Additional private input can be read through a stream-like interface. It does
not support output streams, nor public input.

jpf-qif jpf-qif [7] is an analysis for deterministic Java programs based on the Java
Pathfinder model checking platform. It assumes loops and recursions are bounded.
Like ApproxFlow, it analyses a function and interprets parameters as private inputs
and the return value as output. It does not support input or output streams, nor
public input.

nildumu nildumu [8] is an analysis for deterministic programs in a custom language.
It supports unbounded loops and recursion. The approach has similarities to our
approach for unbounded loops and recursion (especially the alternative one described
in appendix A) in so far that it uses network flow principles on a dependency graph.
However, the entire analysis is based on this principle, whereas ours uses it in
combination with the model counting based approach. In nildumu, private inputs
and public outputs are provided through global variables. Nildumu does not support
input and output streams, nor public input.

TAMBA TAMBA [9] is an analysis for deterministic and probabilistic programs
in a custom language. It supports unbounded loops, but not recursion. Input and

9

1.2. RELATED WORK

output are function-like, with no support for streams or public input. TAMBA is
based on the analysis described in [10], but extends it using symbolic execution in
combination with model counting, as well as sampling.

10

2. Foundations

In this chapter, we discuss our program and attacker model, as well as the theoretical
foundations of our analysis.

2.1. Program Model

In this thesis, we discuss deterministic programs that interact with their environment
through input and output streams and, unless otherwise noted, terminate for every
input. Programs may have several input and output streams. The sequence of input
and output operations may depend on the inputs.

2.2. Attacker Model

We assume an attacker that interacts with a program with the goal of obtaining
private information. We distinguish between public input streams and private input
streams as well as public output streams and private output streams.

Input and Output Public input streams are controlled by the attacker: whenever
the program reads a public input, the attacker may make the choice of input. In
contrast, private input streams are not controlled by the attacker, and private input
is invisible to the attacker. Similarly, public output is visible to the attacker, whereas
private output is not. The attacker can observe the sequence of public input and
output operations, including on which stream they occur, but not their timing.

The following is a formalization of the information that an attacker can observe
according to our model:

11

2.3. QUANTITATIVE INFORMATION FLOW

Observable Information Let SI be the set of input streams, SO the set of output
streams, V the set of values, and V (s) ⊂ V the set of values valid for a stream s.
At any point during the execution, the information available to the attacker is a
sequence

observable information ∈ (SI ∪ {(s, v) | s ∈ SO, v ∈ V (s)})∗.

The sequence is initially empty. A public input operation appends its stream to the
sequence, a public output operation appends a tuple (s, v) where s is the output
stream and v is the value written to it.

pubIn1();
pubOut1(a);
pubOut2(b);
pubIn2();

Figure 2.1.: Simple example for input and
output streams

We illustrate this formalization for the
short example program in figure 2.1: The
program has the input streams pubIn1
and pubIn2 and the output streams
pubOut1 and pubOut2. At the end of
the program, the observable information
is the sequence

[pubIn1 , (pubOut1 , a),
(pubOut2 , b), pubIn2].

We are interested in the amount of infor-
mation about the private inputs that is exposed to the attacker through the execution
of the program. We will refer to this quantity as leakage. In particular, the goal
of this thesis is to provide a sound approximation of the leakage. By sound in this
context, we mean that the approximation is an overapproximation of the actual
leakage.

2.3. Quantitative Information Flow

Smith [2] proposes a measure for quantitative information flow. This measure is
based on min-entropy, which in turn is defined using the concept of vulnerability.
We reproduce the definitions for both of those concepts in the following:

Definition 1 (Vulnerability). Let X be a random variable, and X the set of possible
values of X. The vulnerability of X is

V (X) = max
x∈X

P [X = x].

12

2.3. QUANTITATIVE INFORMATION FLOW

V (X) is the probability of guessing the value of X correctly on the first attempt,
maximized over all possible values of X.

Definition 2 (Conditional Vulnerability). Let X and Y be random variables, and
X and Y their sets of possible values. The conditional vulnerability of X | Y is

V (X | Y) =
∑
y∈Y

P [Y = y]V (X | Y = y)

Analogously to V (X), V (X | Y) is the probability of guessing the value of X correctly
on the first attempt, knowing the value of Y , maximized over all possible values of
X.

Definition 3 (Min-Entropy). The min-entropy V (X) and conditional min-entropy
V (X | Y) are given by

H∞(X) = log 1
V (X) ,

H∞(X | Y) = log 1
V (X | Y) .

Like Shannon-entropy, min-entropy can be interpreted as a measure for the degree of
uncertainty about the value of a random variable. In fact, for uniformly distributed
variables, Shannon-entropy and min-entropy are equal [11]. They differ in their
behavior for non-uniformly distributed random variables. Shannon entropy is affected
by all possible values, whereas min-entropy depends only on the most probable value.
Consequently, min-entropy indicates a low degree of uncertainty whenever there is a
highly probable value, even if there are many other possible values.

In Smith’s model, private input and public output are modelled as random variables
H ∈ H and L ∈ L. A deterministic program defines a function f : H → L, H 7→ L.

Following the interpretation of min-entropy as degree of uncertainty, the information
leaked by the program is defined as follows:

Definition 4 (Information leaked).

information leaked = initial uncertainty − remaining uncertainty
= H∞(H) − H∞(H|L)

13

2.3. QUANTITATIVE INFORMATION FLOW

In general, determining the information leaked requires determining the conditional
probabilities of outputs of the program. However, Smith gives an upper bound for
which this is not necessary [11]. For uniformly distributed private inputs, this upper
bound is also the exact value.

Theorem 1 (Upper bound to the information leaked).

information leaked ≤ log |L|.

If the program is deterministic and H is uniformly distributed, then

information leaked = log |L|.

This upper bound depends only on the number of possible public outputs. As such,
it is much easier to determine and can be used as a sound approximation.

A few additional steps are necessary to adapt these definitions and findings to our
attacker model. We expand the approximation to allow for public inputs by taking
the maximum over all possible public inputs:

Theorem 2 (Information leaked for public input). Let I be the set of possible public
inputs. Let Li be the set of outputs possible for the public input i. Then

information leaked ≤ max
i∈I

log |Li|

= log max
i∈I
|Li|

According to our program model, public input and public output can be interleaved.
This may affect leakage in two ways:

Firstly, the attacker can base their choice of public input on information previously
obtained. However, by taking the maximum leakage over all possible public inputs,
we already account for the choice of public input that results in the highest leakage.

Secondly, as discussed in section 2.2, the attacker may obtain information through
the sequence of public input and output operations alone. Consider the example on
the left side of figure 2.2: The output of this program is the same regardless of the
private input. However, the attacker can observe whether the output is written before
or after they are prompted for input. Following the formalization from section 2.2,
if b1 == true, the attacker observes [pubIn, (pubOut, 0)], otherwise they observe
[(pubOut, 0), pubIn]. Consequently, they can deduce the value of b1.

14

2.4. BOUNDED MODEL CHECKING

Without sequence output
boolean b1 = privIn();
boolean b2;

if (b1) {
b2 = pubIn();
pubOut(0);

} else {
pubOut(0);
b2 = pubIn();

}

With sequence output

boolean b1 = privIn();
boolean b2;

if (b1) {
b2 = pubIn();
seqOut(1);

pubOut(0);
seqOut(2);

} else {
pubOut(0);
seqOut(2);

b2 = pubIn();
seqOut(1);

}

Figure 2.2.: Simple example for information being leaked through the sequence
of input and output, and the simulation of this leakage through a
sequence output stream.

To account for this leakage, we assign a unique number to every public input or
output stream and introduce a special additional public output stream which we
call the sequence output stream. Whenever an input or output operation occurs, we
write the number of the stream to the sequence output stream. For the program in
figure 2.2, the result of this is given on the right side.

The regular output remains the same, but the sequence output is either [1, 2] or
[2, 1], reflecting the information leaked through the sequence of input and output
operations.

2.4. Bounded Model Checking

Bounded model checking is a technique for formal verification of programs [12]. The
core principle of bounded model checking is to convert the program to a Boolean
formula and then check properties on that formula. Because the size of a Boolean
formula is finite, bounded model checking can only cover a finite number of execution
paths, hence the name “bounded model checking”.

15

2.4. BOUNDED MODEL CHECKING

Bounded model checkers represent the variables in the program using Boolean
variables. Because the value of a variable may change throughout the execution of
the program, it is generally not enough to introduce a single Boolean variable for
each bit of a program variable. Instead, after every change of a program variable,
a new set of Boolean variables is introduced to represent the value between that
change and the next. Each such representation is referred to as an instance of the
program variable.

Through systematic exploration of execution paths, a formula ϕ on the Boolean
variables is constructed. ϕ is true for an interpretation σ if and only if σ translates
to an interpretation of the program variables that can occur in an execution of the
program. An interpretation σ for which ϕ is true is known as a model of ϕ. Consider
the example in figure 2.3 for illustration:

boolean a = nondet;
boolean b = true;

if (a) { b = false; }

Figure 2.3.: Example program for model
checking.

We use the Boolean variable A to repre-
sent a, B1 to represent b before the if
statement, and B2 to represent b after
the if statement. a is non-determinate,
meaning it can be either true or false,
rather than being assigned a specific
value. Non-determinate values allow
specification of programs that depend
on inputs or randomization. The pro-
gram can be represented by the following
formula in conjunctive normal form:

ϕ(A,B1, B2) = B1 ∧ (A ∨B2) ∧ (¬A ∨ ¬B2)

ϕ has the models (true, true, false) and (false, true, true).

In bounded model checking, ϕ can be used to verify properties of the program. For
example, to verify that at the end of the execution of the above program, a != b, we
check if there is a model of ϕ with A = B2, which is not the case. For more complex
cases, properties can be formulated as instances of the Boolean satisfiability problem
SAT, which can be solved automatically using a SAT solver.

For our purposes, we make use of ϕ in a different but related way: To determine the
amount of information leaked by a program, we need to find the number of possible
outputs. Regarding ϕ, this translates to counting the number of interpretations for
the corresponding Boolean variables that can be expanded to a model of ϕ. This
problem is known as the projected model counting problem #∃SAT.

16

2.5. SAT MODEL COUNTING

2.5. SAT Model Counting

In this section, we introduce the projected model counting problem #∃SAT, as well as
an extension thereof, the maximum model counting problem Max#SAT. For context,
we begin with the model counting problem #SAT before successively extending it
to #∃SAT and Max#SAT. The model counting problem #SAT can be defined as
follows [13]:

Definition 5 (#SAT). Let ϕ(X) be a Boolean formula over a set of variables X.
The model counting problem #SAT is the problem of determining

|{X | ϕ(X)}|.

Informally, this is the number of different interpretations for X such that ϕ(X)
evaluates to true.

An extension of #SAT known as the projected model counting problem or #∃SAT
introduces a sampling set and restricts the count to the variables in the sampling set
[14]:

Definition 6 (#∃SAT). Let ϕ(X, Y) be a Boolean formula over sets of variables X
and Y . The projected model counting problem #∃SAT with sampling set X is the
problem of determining

|{X | ∃Y : ϕ(X, Y)}|,

or informally, the number of different interpretations for X that can be expanded to
a model of ϕ.

For programs without public input, the problem of determining the amount of
information leaked directly translates to #∃SAT on the formula constructed by a
bounded model checker, with the sampling set consisting of the output variables. For
programs with public input, we need to maximize the model count over all possible
public inputs, which leads to a problem known as Max#SAT [3].

Definition 7 (Max#SAT). Let ϕ(X, Y, Z) be a Boolean formula over sets of variables
X, Y and Z, and X the set of interpretations for X. Max#SAT is the problem of
determining

max
x∈X
|{Y | ∃Z : ϕ(x, Y, Z)}|.

17

2.5. SAT MODEL COUNTING

Informally, Max#SAT is #∃SAT with sampling set Y , maximized over the variables
in the maximization set X.

To determine the information leaked by a program with public inputs, we use the
public outputs as the sampling set, and the public inputs as the maximization set.

For both #∃SAT and Max#SAT, “probably approximately correct” model counters
exist [15, 16, 3]. They allow specification of a tolerance ε and a confidence 1− δ, and
guarantee that

P [ce/(1 + ε) ≤ ca ≤ ce(1 + ε)] ≥ 1− δ,
where ce is the exact count and ca is the approximated count. In particular, this
means that

P [ce ≤ ca(1 + ε)] ≥ 1− δ.
Consequently, ca(1 + ε) can be used for a “probably sound” approximation for
the leakage, i.e. one that is sound with a probability of at least 1 − δ. As the
approximation for the leakage is logarithmic in the model count, this ε-adjustment
translates to a constant offset:

log(ca(1 + ε)) = log(ca) + log(1 + ε)

18

3. Design

In the previous chapter, we discussed the foundations of quantitative information
flow analysis using bounded model checking and model counting. In this chapter, we
discuss how we extend this principle to provide the features that set our analysis
apart from existing analyses. In particular, we discuss output streams and unbounded
loops and recursion.

3.1. Output Streams

In our program model in section 2.1, we chose a stream-based input and output
model. We believe that this reflects many real-world applications more accurately
than a simpler model. However, our general model counting based approach assumes
a single output statement at the end of the execution. Additional considerations are
therefore necessary to implement the stream-based output model.

boolean in = privIn();

if (in)
pubOut(false);

pubOut(in);

if (!in)
pubOut(true);

Figure 3.1.: An example program with interleaved input and output

Throughout this section, we will use the following example in figure 3.1 for illustration.
This program has three output statements, each of which depends on the input. Still,
the program is considered not to leak any information. An observer would see the
sequence [false, true] on the output stream, regardless of the input.

As discussed in section 2.3, we introduce the special sequence output stream. The

19

3.1. OUTPUT STREAMS

input and output statements are replaced follows, by adding an additional output
statement for the sequence output stream:

pubIn<a>(); →

pubOut<a>(<v>); →

pubIn<a>();
seqOut(<a>);

pubOut<a>(<v>);
seqOut(<a>);

For the example in figure 3.1, this is demonstrated in figure 3.2.

boolean in = privIn();

if (in) {
pubOut(false);
seqOut(OUT_1);

}

pubOut(in);
seqOut(OUT_1);

if (!in) {
pubOut(true);
seqOut(OUT_1);

}

Figure 3.2.: The example from figure 3.1 with the sequence output stream seqOut
added. OUT_1 is the stream number of the output stream pubOut.

By doing so, we cover the information leaked through the sequence in which input
and output statements occur. What remains is combining the values of the output
statements into a single output. We will discuss two approaches to achieve this.

3.1.1. Modelled as Separate Variables

We will first discuss a naive approach: Each output statement shall be treated as
a separate output variable. We assume that the program is already unwound and
inlined as described in section 3.2, such that every output statement is reached at
most once. To model the sequence output, we use a Boolean variable for each input
and output statement that indicates whether the statement was reached.

20

3.1. OUTPUT STREAMS

Schematically, the input and output statements are replaced as follows, where <i> is
a unique index of each output statement:

pubIn<a>(); →

pubOut<a>(<v>); →

pubIn<a>();
seqOut<i> = true;

pubOut<a>_<i> = <v>;
seqOut<i> = true;

boolean in = privIn();
boolean pubOut0, pubOut1, pubOut2;
boolean seqOut0, seqOut1, seqOut2;

if (in) {
pubOut0 = false;
seqOut0 = true;

}

pubOut1 = in;
seqOut1 = true;

if (!in) {
pubOut2 = true;
seqOut2 = true;

}

Figure 3.3.: The example from figure 3.1 modelled using separate variables

Figure 3.3 demonstrates this for the example from figure 3.1. In this modification
of the program, knowing pubOut1 is enough to determine the full input, resulting
in a leakage of one bit. While this is not the correct result with regards to the
initial program, it can never be lower than the actual leakage. We can compute
all information available to the attacker according to our attacker model from the
values of the output variables: For each of the original public input and output
statements we append the appropriate value to the sequence if the corresponding
sequence output variable is set, and do nothing otherwise. For the above program,
this would result in the sequence [(0, false), (0, true)] as expected. This means that
this naive approach can still serve as a sound approximation for the actual leakage.
However, depending on the program, the approximation can be much higher than
the actual leakage.

21

3.1. OUTPUT STREAMS

3.1.2. Modelled Using an Output Buffer

One approach to correctly model output streams is to use an output buffer and an
offset into that buffer. An output statement, both on regular output streams and
the sequence output stream, is translated into writing its output into the buffer cell
specified by the offset and then incrementing that offset.

Schematically, the input and output statements are replaced as follows:

pubIn<a>(); →

pubOut<a>(<v>); →

pubIn<a>();
seqOut[seqOutOff] = <a>;
seqOutOff++;

pubOut<a>[pubOutOff<a>] = <v>;
pubOutOff<a>++;
seqOut[seqOutOff] = <a>;
seqOutOff++;

Figure 3.4 demonstrates this for the example from figure 3.1. By now treating
the output buffers as output, one gets the expected result: a constant output
of [false, true].

A disadvantage of this buffer-based approach is that the buffer size must be set. For
a correct result, the buffer size should be an upper bound to the number of actual
outputs. A smaller buffer could lead to a result that is lower than the actual leakage.
The total number of output statements can be used as buffer size, but that may be
much higher than the actual maximum. However, it is not always easy to determine
a smaller upper bound. Furthermore, this approach requires far more SAT variables,
which increases the time required for model counting.

3.1.3. Hybrid Approach

It is possible to combine the two approaches outlined above as follows: As long as the
offset is less than the size of the buffer, the buffer-based approach is used. If further
outputs beyond the capacity of the buffer occur, then those outputs are treated as
separate output variables. Using this approach, choosing a correct buffer size is not
essential to get sound results, but one still benefits from exact results as long as the
buffer size is not exceeded.

22

3.2. LOOPS AND RECURSION

boolean in = privIn();

boolean[] pubOut = new boolean[3];
int pubOutOff = 0;

int[] seqOut = new int[3];
int seqOutOff = 0;

if (in) {
pubOut[pubOutOff] = false;
pubOutOff++;

seqOut[seqOutOff] = OUT_1;
seqOutOff++;

}

pubOut[pubOutOff] = in;
pubOutOff++;

seqOut[seqOutOff] = OUT_1;
seqOutOff++;

if (!in) {
pubOut[pubOutOff] = true;
pubOutOff++;

seqOut[seqOutOff] = OUT_1;
seqOutOff++;

}

Figure 3.4.: The example from figure 3.1 modelled using output buffers

3.2. Loops and Recursion

Loops and recursion are essential to many real-world programs. Unfortunately, they
are a major challenge for quantitative information flow control. As discussed in
section 2.4, bounded model checking only supports a finite number of execution
paths. Because of that limitation, existing bounded model checkers typically employ
unwinding and inlining with limited depth [6, 17, 18]. We will discuss both of these
techniques before presenting an alternative that treats loops and recursions as black
boxes to allow for unbounded loops and recursions.

23

3.2. LOOPS AND RECURSION

3.2.1. Unwinding

Unwinding refers to transforming a loop to a finite repetition of its body. In doing so,
loop conditions have to be changed as well, such that they control whether control
flow progresses further along the sequence of copies of the loop body, rather than
controlling a conditional backwards jump. Figure 3.5 illustrates how a simple loop
can be unwound with three iterations.

Before unwinding
int i = 0;

while (i < 2) {
body();
++i;

}

After unwinding

int i = 0;

if (i >= 2) goto end;
body();
++i;
if (i >= 2) goto end;
body();
++i;
if (i >= 2) goto end;
body();
++i;

end:

Figure 3.5.: Unwinding a simple loop

An obvious shortcoming of this approach is that a reasonable number of iterations
has to be determined. Following Rice’s theorem, this is not generally possible, and
even in cases where it is possible, sufficiently unwinding the loop is often not viable.
In particular, conditions that depend on inputs can easily render the approach
unfeasible, as the example in figure 3.6 demonstrates. Unwinding such loops is often
unacceptable for both runtime and memory requirements. Infinite loops can never
accurately be implemented through unwinding.

long in = privIn();
long out = 0;

for (long l = 0; l < in; ++l)
++out;

Figure 3.6.: A loop depending on input. The loop will run for in many iterations.
Because in is unknown, the loop has to be unwound with at least 263

iterations to cover all possible cases.

24

3.2. LOOPS AND RECURSION

3.2.2. Inlining

Inlining refers to replacing a function call with the body of the function. This serves
a similar purpose for recursion as unwinding does for loops: up to a limited depth,
the recursive function can be simulated without using recursion.

Dynamic dispatch For languages with dynamic dispatch, the dispatching must be
recreated as well. This includes Java, as well as most other object-oriented languages.
The dispatching can be simulated through a simple if-else-cascade that checks the
type of the polymorphic variable and executes the applicable method implementation.
Figure 3.7 demonstrates this for an example of an overridden method call.

Example of dynamic dispatch
class Parent {

void foo() {
/* behaviour 1 */

}
}

class Child extends Parent {
@Override
void foo() {

/* behaviour 2 */
}

}

Parent p = ...;
p.foo();

Inlined dispatch of this call

if (p instanceof Parent) {
// behaviour 1

} else if (p instanceof Child) {
// behaviour 2

} else {
// none of the possible classes
// match, must be null
throw new NullPointerException();

}

Figure 3.7.: Inlining a dynamically dispatched call

Recursive functions Recursive functions can not fully be inlined, as that would, due
to their recursive nature, result in an infinitely long program. Analogously to loop
unwinding, one can set a finite limit to the depth of the recursion to mitigate that.
However, doing so introduces the same problems as loop unwinding: a reasonable
limit to the depth has to be determined, and recursive functions whose actual depth
depends on input are often unfeasible.

25

3.2. LOOPS AND RECURSION

3.2.3. Black boxes

Despite the discussed shortcomings, unwinding and inlining remain essential tech-
niques for dealing with loops and recursion. However, they are far from universally
applicable solutions. To broaden the range of programs that can be covered by
quantitative information flow analysis, we propose a technique for dealing with some
of the situations in which they are unfeasible.

The goal of this technique is to isolate parts of the program that can not accurately
be modeled by other techniques and treat them as “black boxes”. We assume the
worst case for the behaviour of the black boxes: that they behave in such way with
regards to the variables on which they depend and which they modify, that the
leakage of the program as a whole is maximized. We will refer to values on which a
black box depends as the input values of that black box, and to values that depend
on a black box as the output values of that black box.

Note that if a black box makes outputs, we have to assume it leaks all of its input
values. Due to the sequence leakage described in section 2.2, this also applies to black
boxes that read public input. Similarly, if a black box reads private input, we have to
assume the output values are composed entirely of private input. A black box that
both reads input and writes output can leak any amount of information, such that
no sound approximation can be given. For simplicity, we omit these considerations
in the analysis described below and instead impose the following restrictions on black
boxes:

• Black boxes shall not make public outputs

• Black boxes shall not read inputs

Using the analysis as described for programs that violate these restrictions will likely
lead to underapproximation.

In the following, let p be a program that is fully unrolled and inlined except for a
number of black box sections {b1, b2, . . . , bn}, labeled in order of their occurence in p.
We want to construct a graph from those black box sections to represent the paths
through which information may be leaked. To that end, we add two special nodes
b0 = in and bn+1 = out to represent private input and public output respectively.
We then construct the following graph:

26

3.2. LOOPS AND RECURSION

Definition 8 (Black box Graph). The black box graph G for p is given by

G = (V,E),
V = { b0︸︷︷︸

=in

, b1, b2, . . . , bn, bn+1︸ ︷︷ ︸
=out

},

E = {(bi, bj) | bi, bj ∈ B, i < j}.

Intuitively, information can only flow to later black box sections, never to earlier
ones. Additionally, information can flow from in to any black box section, and from
any black box section to out, as well as directly from in to out. For a program with
two black box sections, this graph is shown in figure 3.8.

in

b1

b2

out

Figure 3.8.: Black box graph for a program
with two black boxes

Given this graph, a natural approach
would be to determine the maximum
possible information flow along its edges
and treat the resulting weighted graph
as a flow network. This would allow the
use of regular maximum flow algorithms
to find an approximation for the leakage.
We discuss this approach in appendix A
in more detail. However, as we argue
there, the approximation provided by
the following simpler approach is at least
as low, and in some cases lower.

Instead of working on individual edges,
we examine the information flow across
the following cuts:

Definition 9. The inter black box cuts
Ci of G are

Ci = ({bj | 0 ≤ j ≤ i}, {bj | i < j ≤ n+ 1}).

We introduce the concept of partial leakage as a measure for the amount of information
that flows across an inter black box cut:

Definition 10. The partial leakage lp(Ci) is the leakage of the program resulting
from the following modification of p:

• The black box sections B are omitted.

27

3.2. LOOPS AND RECURSION

• For j ≤ i, the output values of bj are replaced with private input.

• For j > i, the output values of bj are replaced with unknown values, and the
input values of bj are considered public output.

Unknown values are treated like public input, but do not affect the sequence output
stream.

Any information that is leaked by p must pass through each inter black box cut. This
means that the leakage of p can not exceed any of the partial leakages lp(Ci) [4].
Consequently, minCi

lp(Ci) is a sound approximation for the leakage of p. Figure 3.9
demonstrates this approach for a simple program.

Example program
int in = privIn();

int r1 = b1(in & 0b11);
int r2 = b2(

(in & 0b01) |
(r1 & 0b10)

);
int out =

(in & 0b10) |
(r1 & ~0b10);

pubOut(out);

Black box graph with cuts
in

b1

b2

out

flow: min {2, 3, 32} = 2

2

3

32

Figure 3.9.: Example for using partial leakage across cuts to determine a sound
approximation; b1 and b2 are black boxes.

It is worthwhile to reflect on how this technique affects the probability of a sound
approximation when using a probably approximately correct model counter. The
leakage reported by this technique is a minimum over results of the model counter.
The guarantees provided by the model counter are valid for each of the results. We
assume that the results have already been adjusted to “probably sound” results as
proposed in section 2.5. Taking the minimum over the results does not affect the
tolerance. However, for the reported leakage to not be sound, it is enough that a single
run of the model counter reports a leakage below the actual leakage. Consequently,
the overall confidence is lower the more model counter runs are performed. This can
be mitigated in two ways: The confidence setting passed to the model counter can be
adjusted accordingly, but doing so significantly increases the runtime. Alternatively,
the run that reported the lowest leakage can be repeated with a different seed. This

28

3.2. LOOPS AND RECURSION

yields a result with the desired guarantees for the corresponding cut, which can
be used as a probably sound approximation of the overall leakage with the desired
confidence.

29

4. Implementation

The approach described in this thesis has been implemented in the tool approxflow-
java1. In this chapter, we discuss implementational details of approxflow-java.
Approxflow-java uses JBMC [17] as a bounded model checker. JBMC is based
on CBMC but operates on Java Bytecode rather than C source code. As a model
counter, ApproxMC [16, 19] or MaxCount [3] is used, depending on whether there are
public inputs in the program. Figure 4.1 provides an overview over the architecture
of approxflow-java. The part in the staggered box may be run multiple times for
black box handling as described in section 3.2.3.

4.1. Target Language

Approxflow-java is intended for a subset of Java 8. Most basic language features
are supported, including classes, methods, control flow statements, and all primitive
types.

The following limitations apply:

• Programs must be single-threaded.

• Exception handling is not supported.

• Reflection is not supported.

• Inputs, outputs, and black box inputs and outputs must be primitively typed.

• Loops treated as black boxes must only operate on local variables.

1https://github.com/yannick-urbach/approxflow-java

31

4.2. PROGRAM ANNOTATION

javac

JBMC

MaxCountApproxMC or

solution count

interpretation

.java

.class

.cnf

kotlinc

preprocessing

.kt .class

.class

leakage

Figure 4.1.: Architecture of approxflow-java

4.2. Program Annotation

Approxflow-java uses a mostly annotation-based interface for specifying the additional
information about the program that is required for the analysis.

An input stream is specified by annotating a method with @PrivateInput or
@PublicInput. An output stream is specified by annotating a parameter with
@PublicOutput.

The treatment of loops and methods, specifically unroll iterations, recursion depth
for inlining, and black box handling, can be configured per method using annotations.
Unrolling and inlining can be combined with black box handling as a fallback for
remaining iterations and recursions.

JBMC provides a way of supplying additional constraints. In the context of quan-
titative information flow, this allows for example restriction of inputs, or manu-

32

4.2. PROGRAM ANNOTATION

ally improving the approximation provided by black box handling (section 3.2.3).
Approxflow-java can optionally translate conventional Java assertions into such
constraints. Additionally, object invariants can be specified as instance methods:

@Invariant
boolean aAlwaysPositive() { return a > 0; }

33

5. Evaluation

In this chapter, we evaluate approxflow-java with a number of test programs and
compare the results with ApproxFlow where applicable.

Limitations Unfortunately, we encountered a problem where in some cases, Max-
Count invariably returned a model count of zero when the number of variables in
the sampling and maximization sets was too high. As the problem did not occur
for equivalent programs with smaller input and output widths, we strongly suspect
this problem lies with MaxCount, rather than our analysis. Nonetheless, it forced
us to adapt some of the test programs that we intended to use for evaluation. For
the Laundry examples in particular, this appears to defy the purpose of the test
programs: For small amounts of data, fully unrolling and inlining the loops and
recursions is viable in those cases when using ApproxFlow. However, as the adapted
examples otherwise behave just like the original, we believe they are still fit to
demonstrate our analysis.

5.1. Tested Programs

We briefly introduce the test programs that we used for evaluation. Some of the
test programs were adapted from the case studies in [20], the remaining ones were
developed by us. The code for the test programs can be found in appendix B.

Parity This is the parity example from chapter 1.

Battlebits In this interactive guessing game, a player attempts to hit set bits on a
secret board, similarly to the board game Battleship. After every “shot”, the program
reports whether the shot was a “hit”, i.e. whether the chosen bit is set.

35

5.2. EVALUATION PROCESS

Laundry This is a simple example of the problem of loop conditions that depend on
inputs. As such, it demonstrates the usefulness of our black box approach compared
to unwinding.

Recursive Laundry This is the recursive equivalent of the Laundry example.

Partial Laundry This variant of the laundry example only “launders” the first
four bits. It demonstrates that the black box approach can in some cases return
approximations that are much higher than the actual leakage.

Voting 1 This is a variant of the single preference voting protocol from [20], which
was simplified to match the limitations of our analysis. This variant models a simple
for/against vote, such as in a referendum.

Voting 2 Another simplified variant of the single preference voting protocol, with
a higher number of options, but only three voters.

Smart Grid This is a variant of the smart grid case study from [20].

5.2. Evaluation Process

The evaluation was done on a desktop computer with an Intel Core i5-6600 CPU,
16GiB of RAM and a Samsung 970 Evo SSD.

Approxflow-java Approxflow-java was built and executed using OpenJDK version
1.8.0_282, and the same was used to compile the benchmark programs. We used
JBMC version 5.25.0 and ApproxMC version 4.0.1. We used a modified version of
MaxCount version 1.0.0 [21] that supports the newer versions of ApproxMC.

ApproxFlow We used a modified version of ApproxFlow [22] that allows for speci-
fying the unroll depth. We used ApproxMC version 4.0.1 for ApproxFlow as well.

36

5.3. RESULTS

Configuration With regards to loops and recursion, we tested each tool in four
configurations per test program. Three of those were with the unwinding and inlining
limits 2, 8, and 32 respectively, and black box handling enabled for approxflow-java.
The fourth configuration was with the lowest limit for each test program that fully
unrolled and inlined the loops and recursions of the program, and with black box
handling disabled for approxflow-java. Battlebits violates our restrictions on black
boxes, and was therefore only tested with the fourth configuration.

For the model counters, we used the parameters ε = 0.8 and δ = 0.2 in both cases,
as well as k = 10 for MaxCount.

5.3. Results

Program actual approxflow-java ApproxFlow
2 8 32 ∞ 2 8 32 ∞

Parity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Battlebits 3.0 -1 -1 -1 3.0 -2 -2 -2 -2
Laundry 7.0 7.0 7.0 7.0 -3 1.6 3.2 5.0 7.0
Recursive Laundry 7.0 7.0 7.0 7.0 -3 8.0 8.0 8.0 7.0
Partial Laundry 4.0 7.0 7.0 7.0 4.0 1.6 3.2 4.0 4.0
Voting 1 5.0 8.0 8.0 5.0 5.0 1.6 3.2 5.0 5.0
Voting 2 10.0 24.0 24.0 9.9 9.9 3.3 7.4 10.0 10.0
Smart Grid 5.0 16.0 15.9 5.0 5.0 1.6 3.7 5.0 5.0

Figure 5.1.: Leakages reported by approxflow-java and ApproxFlow, rounded to
one decimal place. The numbers in the column headers refer to the
unrolling and inlining limits, the columns marked with ∞ show the
results for sufficiently high limits, with black box handling disabled for
approxflow-java (see section 5.2).
1Does not follow restrictions on black boxes (see above).
2ApproxFlow does not support public input.
3Did not terminate after 30 minutes or returned an error.

Figure 5.1 shows the leakages reported by approxflow-java and ApproxFlow. We
briefly discuss these results. Both approxflow-java and ApproxFlow reported the
correct leakage for Parity, even for insufficient unwinding limits. This is a trait of the
test program, as it already leaks one bit even if only one loop iteration is executed.
Battlebits uses public inputs, which ApproxFlow does not support. Approxflow-java
reported the correct leakage. Battlebits demonstrates the stream-based input and

37

5.3. RESULTS

output model of approxflow-java, and its ability to deal with interleaved input and
output.

For Laundry and Recursive Laundry, approxflow-java reported the correct leakage, as
those examples actually leak the maximum possible amount through the black box.
The leakages reported by ApproxFlow for Laundry with the unwinding limits 2, 8,
and 32 were lower than the actual leakage, as the loop was not unwound sufficiently.
To get the correct result through unwinding, the loop has to be unwound with 127
iterations. This is feasible with ApproxFlow, but as mentioned above, the input and
output width were reduced to avoid the problem that we encountered with MaxCount.
For a width of 32 or 64 bits, unrolling would not be feasible. For Recursive Laundry,
ApproxFlow always returned a full leakage of 8 bits. The generated CNF file shows
that the recursive function was not inlined recursively. The reported 8 bit leakage is
therefore likely the result of a fallback behavior after aborting the inlining process.

The Partial Laundry example demonstrates a shortcoming of the black box approach:
The leakage reported by approxflow-java was much higher than the actual leakage, as
the black box approach assumes maximum flow through black boxes. Unwinding the
loop with 16 iterations is sufficient to get the correct result, and this is reflected in
the results reported by ApproxFlow. However, with unwinding, the burden of finding
out that 16 iterations are sufficient falls to the user. The black box approach reports
a sound, though overapproximated, result without requiring such judgment from the
user. With black boxes disabled and at least 16 unroll iterations, approxflow-java
returns the correct result.

The voting and smart grid test programs show similar behavior from ApproxFlow as
the loop-based laundry test programs: For insufficient unrolling limits, the leakage
is underapproximated, but if the limits are sufficiently high, the correct leakage is
reported. For approxflow-java, an important difference to the behavior for Partial
Laundry can be observed: while for Partial Laundry, black box handling has to be
disabled to take advantage of a sufficiently high unrolling limit, this is not the case
for the voting and smart grid programs. The reason for this difference is that the
loops in the voting and smart grid programs abort after a fixed number of iterations.
For approxflow-java this means that the black box is never reached. By contrast,
the loop in Partial Laundry does not abort after 15 iterations; only the conditional
statement in the body is not executed anymore. Approxflow-java can not know this
as it does not analyze the loop body. For insufficient limits, approxflow-java reported
a sound, but overapproximated leakage for the voting and smart grid programs, just
as for the laundry programs.

Runtime Figure 5.2 lists the runtimes of approxflow-java and ApproxFlow for the
tested configurations. The runtimes are the arithmetic means over five runs for each

38

5.3. RESULTS

configuration. The deviation was less than 10% across runs for all configurations.
Approxflow-java had significantly higher runtimes than ApproxFlow for all test
programs and configurations. The primary reason for this is that the CNF formulas
generated by JBMC are much more complex than those generated by CBMC for
equivalent programs. Both the number of clauses and the number of variables were
at least ten times, typically more than 20 times as high.

Black box handling further increases the runtime, as the model checker and model
counter are run multiple times. This also explains the lower runtimes for the runs
without black box handling. Additionally, output streams increase the complexity
of the analyzed program unnecessarily in cases where fixed output variables would
suffice. Finally, maximum model counting, which we use not only for public input,
but also for black box handling, is significantly slower than projected model counting.
This amplifies the impact of black box handling. It also explains the high runtime of
the Battlebits example, which is centered around public input.

Program approxflow-java ApproxFlow
2 8 32 ∞ 2 8 32 ∞

Parity 3.8 4.0 4.6 2.2 0.1 0.1 0.1 0.1
Battlebits -1 -1 -1 66.2 -2 -2 -2 -2
Laundry 18.9 20.5 23.4 -3 0.1 0.2 1.9 4.1
Recursive Laundry 18.4 19.8 52.6 -3 0.1 0.1 0.1 0.1
Partial Laundry 19.1 21.0 23.5 1.9 0.1 0.1 0.4 0.1
Voting 1 2.3 2.3 2.3 2.0 0.1 0.1 0.2 0.2
Voting 2 2.5 2.7 3.2 2.4 0.1 0.2 0.8 0.8
Smart Grid 2.3 2.4 2.4 1.9 0.1 0.1 0.1 0.1

Figure 5.2.: Runtimes of approxflow-java and ApproxFlow in seconds, rounded to
one decimal place. The numbers in the column headers refer to the
unrolling and inlining limits, the columns marked with ∞ show the
results for sufficiently high limits, with black box handling disabled for
approxflow-java (see section 5.2).
1Does not follow restrictions on black boxes (see above).
2ApproxFlow does not support public input.
3Did not terminate after 30 minutes or returned an error.

39

6. Conclusion and Future Work

6.1. Conclusion

We presented a quantitative information flow analysis that uses bounded model
checking and model counting but avoids some of the inherent limitations of that
approach, specifically limited loop iterations and recursion depth. To our knowledge,
it is the first analysis to do so. Furthermore, it supports input and output streams,
whereas comparable analyses work on a simpler input and output model.

While our tool is not yet applicable to most real-world programs, it demonstrates
a novel approach for handling programs with unbounded loops or recursion that
may be used in future analyses. We believe that this, and the more general input
and output model, are important steps towards the goal of using bounded model
checking and model counting to analyze quantitative information flow in real-world
programs.

6.2. Future Work

We see several opportunities for improving the presented analysis and tool regarding,
runtime and supported programs.

While our analysis has several severe limitations with regards to the supported
programs, many of those are not inherent to our approach. In particular, our general
approach is not inherently limited to primitive inputs and outputs, nor does it
inherently limit black boxes to local variables. Future analyses could possibly avoid
those limitations while still using our black box approach.

The accuracy for programs with black boxes could possibly be improved through
limited analysis of the code within the black box. In particular, analyzing the body of
a loop or non-recursive parts of a recursive method may provide valuable information
for the flow through the loop or method as a whole.

41

6.2. FUTURE WORK

The runtime of approxflow-java depends primarily on the runtime of the model
counter. As such, efforts to improve the runtime should in our opinion be focused
on reducing the complexity of the CNF formula and the number of runs of the
model counter. This could possibly be achieved by discarding irrelevant parts of
the formula or the program, respectively. Furthermore, detecting the appropriate
unrolling and inlining limits in simple cases, for example in numerical for loops, could
avoid unnecessary black boxes.

42

Bibliography

[1] G. Snelting, D. Giffhorn, J. Graf, C. Hammer, M. Hecker, M. Mohr, and
D. Wasserrab, “Checking probabilistic noninterference using JOANA,” it -
Information Technology, vol. 56, no. 6, pp. 280–287, 2014.

[2] G. Smith, “On the foundations of quantitative information flow,” in Foundations
of Software Science and Computational Structures (L. de Alfaro, ed.), (Berlin,
Heidelberg), pp. 288–302, Springer Berlin Heidelberg, 2009.

[3] D. J. Fremont, M. N. Rabe, and S. A. Seshia, “Maximum model counting,”
Tech. Rep. UCB/EECS-2016-169, EECS Department, University of California,
Berkeley, Nov 2016. This is the extended version of a paper to appear at AAAI
2017.

[4] B. Espinoza and G. Smith, “Min-entropy leakage of channels in cascade,” in
Formal Aspects of Security and Trust (G. Barthe, A. Datta, and S. Etalle, eds.),
(Berlin, Heidelberg), pp. 70–84, Springer Berlin Heidelberg, 2012.

[5] F. Biondi, M. A. Enescu, A. Heuser, A. Legay, K. S. Meel, and J. Quilbeuf,
“Scalable approximation of quantitative information flow in programs,” in Veri-
fication, Model Checking, and Abstract Interpretation (I. Dillig and J. Palsberg,
eds.), (Cham), pp. 71–93, Springer International Publishing, 2018.

[6] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C programs,”
in Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2004) (K. Jensen and A. Podelski, eds.), vol. 2988 of Lecture Notes in Computer
Science, pp. 168–176, Springer, 2004.

[7] Q.-S. Phan, P. Malacaria, O. Tkachuk, and C. Pasareanu, “Symbolic quantitative
information flow,” ACM SIGSOFT Software Engineering Notes, vol. 37, pp. 1–5,
11 2012.

[8] J. Bechberger, “Quantitative information flow control on program dependency
graphs,” Dec. 2018.

[9] I. Sweet, J. M. C. Trilla, C. Scherrer, M. Hicks, and S. Magill, “What’s the

43

Bibliography

over/under? probabilistic bounds on information leakage,” in Principles of
Security and Trust (L. Bauer and R. Küsters, eds.), (Cham), pp. 3–27, Springer
International Publishing, 2018.

[10] P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa, “Dynamic enforcement of
knowledge-based security policies using probabilistic abstract interpretation,”
Journal of Computer Security, vol. 21, 02 2013.

[11] G. Smith, “Quantifying information flow using min-entropy,” in 2011 Eighth
International Conference on Quantitative Evaluation of SysTems, pp. 159–167,
2011.

[12] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded Model
Checking,” 9 1992.

[13] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. NLD: IOS
Press, 2009.

[14] R. A. Aziz, G. Chu, C. Muise, and P. Stuckey, “#∃SAT: Projected model
counting,” in Theory and Applications of Satisfiability Testing – SAT 2015
(M. Heule and S. Weaver, eds.), (Cham), pp. 121–137, Springer International
Publishing, 2015.

[15] M. Soos, S. Gocht, and K. S. Meel, “Tinted, detached, and lazy CNF-XOR
solving and its applications to counting and sampling,” in Computer Aided
Verification (S. K. Lahiri and C. Wang, eds.), (Cham), pp. 463–484, Springer
International Publishing, 2020.

[16] M. Soos and K. S. Meel, “Bird: Engineering an efficient cnf-xor sat solver
and its applications to approximate model counting,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 1592–1599, Jul. 2019.

[17] L. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, and M. Trtik, “JBMC: A
bounded model checking tool for verifying Java bytecode,” in Computer Aided
Verification (CAV), vol. 10981 of LNCS, pp. 183–190, Springer, 2018.

[18] S. Falke, F. Merz, and C. Sinz, “The bounded model checker LLBMC,” in 2013
28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 706–709, 2013.

[19] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “Algorithmic improvements in
approximate counting for probabilistic inference: From linear to logarithmic SAT

44

Bibliography

calls,” in Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), 7 2016.

[20] F. Biondi, A. Legay, and J. Quilbeuf, “Comparative analysis of leakage tools on
scalable case studies,” 08 2015.

[21] M. Soos, “MaxCount.” https://github.com/meelgroup/maxcount, 2019.

[22] J. Bechberger, “ApproxFlow.” https://github.com/parttimenerd/approxflow,
2021.

[23] L. R. Ford and D. R. Fulkerson, Maximal Flow Through a Network, pp. 243–248.
Boston, MA: Birkhäuser Boston, 1987.

45

Erklärung

Hiermit erkläre ich, Yannick Urbach, dass ich die vorliegende Bachelorarbeit selbst-
ständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis
beachtet habe.

Ort, Datum Unterschrift

47

A. Black Box Handling Using Flow
Networks

This appendix discusses an alternative to the staged flow approach for handling black
boxes described in section 3.2.3. As a starting point, we use the black box graph G
introduced in definition 8. We construct a flow network by introducing edge leakage
as a capacity measure:

Definition 11. The edge leakage le(bi , bj) is the leakage of the program resulting
from the following modification of p:

• The black box sections B are omitted.

• If bi 6= in, private inputs of p are replaced with unknown values, and the output
values of bi are replaced with private input.

• The output values of all other black box sections are replaced with unknown
values.

• If bj 6= out, public outputs of p are omitted, and the input values of bj are
considered public output.

Unknown values are treated like public input, but do not affect the sequence output
stream.

Edge leakage corresponds to the maximum amount of information that can flow
along an edge of G. With the source b0 = in and the sink bn+1 = out, we get the
flow network N = (G, le, in, out). We can apply regular maximum flow algorithms
such as the Ford-Fulkerson algorithm [23] to N to get a sound approximation for
the leakage of p. Figure A.1 demonstrates this approach for the example program
introduced in section 3.2.3.

However, this example also shows a shortcoming of this approach: the bit that is
passed directly from in to out is the same bit as the one passed to b2. Consequently,

49

int in = privIn();

int r1 = b1(in & 0b11);
int r2 = b2((in & 0b01) | (r1 & 0b10));
int out = (in & 0b10) | (r1 & ~0b10);

pubOut(out);

in

b1

b2

out

2

1

11

0

31

flow: 1 + 1 + 1 = 3

Figure A.1.: Example for using maximum flow to determine a sound approximation;
augmenting flows are highlighted.

50

the total information leaked can be at most 2 bit, as the approach discussed in
section 3.2.3 correctly determined. Approaches that only work on individual edges
can not take this into account. This example therefore proves that there are cases
where the staged flow approach provides a better approximation than the flow
network approach.

Additionally, we will show that the approximation given by the staged flow approach
is always at least as good as that of the flow network approach:

Theorem 3. Let maxflowN be the maximum flow through N . Then

min
Ci

lp(Ci) ≤ maxflowN.

Proof. According to the max-flow min-cut theorem [23], maxflowN is equal to the
minimum capacity of all cuts. Due to the structure of G, the cut set of every cut
other than the Ci contains at least the same edges as some Ci, and therefore has at
least the same capacity. Consequently, maxflowN is equal to the minimum capacity
of the Ci.

lp(Ci) is lower than or equal to the capacity of Ci, as all leakage in lp(Ci) must occur
through one of the edges in the cut set of Ci.

Thus, minCi
lp(Ci) ≤ maxflowN.

Note that the staged flow approach is also typically much faster than the flow network
approach, as the number of modifications of p that have to be analyzed is only linear
in the number of black boxes, as opposed to quadratic for the flow network approach.
On top of that, the flow network approach requires more unknown values, which also
significantly impacts performance.

For these reasons, we consider the staged flow approach to be preferable.

51

B. Evaluated Programs

This appendix contains the code listings for the programs used for Evaluation in
chapter 5. For brevity, only the relevant methods are listed.

Parity

static void main(String[] args) {
long in = privIn();

boolean parity = false;

for (int j = 0; j < 64; ++j) {
parity ^= (in & (1 << j)) != 0;

}

pubOut(parity);
}

Battlebits

static void main(String[] args) {
long board = privIn();

for (int i = 0; i < 3; ++i) {
byte shot = pubIn();
assert shot > 0 && shot < 64;

boolean hit = ((board >>> shot) & 1) != 0;

pubOut(hit);
}

}

53

Laundry

static void main(String[] args) {
int in = privIn();
assert in > 0;

int out = 0;

for (int i = 0; i < in; ++i) {
++out;

}

pubOut(out);
}

Recursive Laundry

static int launder(int in) {
if (in <= 0) {

return 0;
}

return launder(in - 1) + 1;
}

static void main(String[] args) {
int in = privIn();
assert in > 0;

pubOut(launder(in));
}

54

Partial Laundry

static void main(String[] args) {
int in = privIn();
assert in > 0;

int out = 0;

for (int i = 0; i < in; ++i) {
if (i < 15) {

++out;
}

}

pubOut(out);
}

Voting 1

static void main(String[] args) {
int voterCount = 31;

byte result = 0;

// bit vector of votes, truncated to match voter count
long votes = privIn() & (-1 >>> (64 - voterCount));

for (int i = 0; i < voterCount; ++i) {
if (((votes >>> i) & 1) != 0) {

++result;
}

}

pubOut(result);
}

55

Voting 2

static void main(String[] args) {
int candidateCount = 31;

// results for candidates, two bits each
long result = 0;

// votes of the three voters
byte voteA = privIn();
byte voteB = privIn();
byte voteC = privIn();

for (int i = 0; i < candidateCount; ++i) {
byte count = 0;

if (voteA == i) {
++count;

}

if (voteB == i) {
++count;

}

if (voteC == i) {
++count;

}

result |= (count << (2 * i));
}

pubOut(result);
}

56

Smart Grid

static void main(String[] args) {
int totalCount = 16;
int smallCount = 4;
int mediumCount = 8;
int largeCount = totalCount - smallCount - mediumCount;

int smallConsumption = 1;
int mediumConsumption = 2;
int largeConsumption = 3;

// bit vector of presence, truncated to match consumer count
long present = privIn() & (-1 >>> (64 - totalCount));

int globalConsumption = 0;

for (int i = 0; i < totalCount; ++i) {
if (((present >> i) & 1) != 0) {

if (i < smallCount) {
globalConsumption += smallConsumption;

} else if (i < smallCount + mediumCount) {
globalConsumption += mediumConsumption;

} else {
globalConsumption += largeConsumption;

}
}

}

pubOut(globalConsumption);
}

57

	Introduction
	Contributions
	Related Work

	Foundations
	Program Model
	Attacker Model
	Quantitative Information Flow
	Bounded Model Checking
	SAT Model Counting

	Design
	Output Streams
	Loops and Recursion

	Implementation
	Target Language
	Program Annotation

	Evaluation
	Tested Programs
	Evaluation Process
	Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Black Box Handling Using Flow Networks
	Evaluated Programs

