Using JOANA for Information Flow Control in Java
Programs — A Practical Guide

Jiirgen Graf, Martin Hecker, Martin Mohr

Programming Paradigms Group
Karlsruhe Institute of Technology
Am Fasanengarten 5
76131 Karlsruhe
{graf,martin.hecker,martin.mohr} @kit.edu

Abstract: We present the JOANA (Java Object-sensitive ANAlysis) framework for
information flow control (IFC) of Java programs. JOANA can analyze a given Java
program and guarantee the absence of security leaks, e.g. that a online banking
application does not send sensitive information to third parties. It applies a wide range
of program analysis techniques such as dependence graph computation, slicing and
chopping of sequential as well as concurrent programs. We introduce the Java Web
Start application /F'C Console and show how it can be used to apply JOANA to arbitrary
programs in order to specify and verify security properties.

1 Introduction

Conventional access control mechanism control what data a program may access, but what
happens with this data inside the program, once access has been granted? Information flow
control (IFC) aims to answer this question. For example, an email application shall both
read data from an address book and send other data to the network, but it should not send
address book data over the network. With IFC one can check if the email program may
conduct such forbidden behaviour or not.

Much work in the area of IFC has focused either on building theoretical foundations
for proveable security guarantees or on practical tools that can detect a subset of all
information leaks in a program. We present a static IFC analysis framework named
JOANA that aims to combine both directions. JOANA is the first tool that can verify
the absence of possibilistic and even probabilistic leaks for full Java bytecode, including
exceptions, dynamic dispatch and inheritance. It can deal with sequential [HS09] as well as
multi-threaded [GS12| (GHMN13|] programs and applies to medium sized programs with
around 30-50kLoC and in some cases up to 100kLoC [Gra09, (GralOl]. A machine-checked
proof [WL10,WLS09|] guarantees that the underlying algorithms are sound and no potential
information flow is missed.

The frontend of JOANA builds upon the WALA program analysis framework[ﬂ WALA

"http://wala.sf.net/

http://wala.sf.net/

comes with an intermediate representation (IR) in SSA-form, a variety of dataflow solvers
and a points-to analysis framework. WALA helps to resolve dynamic dispatch, detect
potential exceptions and compute side-effects of method invocations. It can deal with Java
bytecode, Java source code and javascript programs. Currently we work on support for
Dalvik bytecode of the Android platform. JOANA mostly operates on the IR and therefore
may be extended to support other languages with relatively little effort.

Our backend is based on dependence graphs which capture dependencies between program
statements in form of a graph. Those graphs are called program dependence graphs (PDG)
or, to be more precise, system dependence graphs (SDG). Previous work already showed
that PDG-based IFC [Ham10] can be useful in practice and has the great advantage that
only minimal user effort is needed. This work focuses even more on practicability. We
introduce a Ul for our IFC framework named IFC Console and explain how it can be used to
analyze information flow. The source code of JOANA, including IFC Console, is available
athttp://joana.ipd.kit.edu and may be used freely for research purposes.

The major contributions of this paper are:

e We introduce the Web Start application IFC Console that enables developers to check
information flow properties of their own programs with little effort.

o We discuss the benefits of using system dependence graphs for IFC analysis in terms
of precision and ease of use.

e We discuss the relevant properties for IFC in a concurrent setup.

e Two case studies show how IFC Console can be applied to a single- and a multi-
threaded program.

We start with a more detailed introduction to information flow control and show how it
can be achieved with the help of dependence graphs in section 2] Then we introduce IFC
Console in section [3]and show how it can be applied to sequential and concurrent programs
in section[d} Section[5]discusses related work and section [6|concludes the presented work
and provides an outlook for future work.

2 Information flow control

Information flow control is concerned with the flow of information inside a program.
It is used to prevent leakage of secret information to public output channels, thus to
ensure confidentiality and it is also used to verify the integrity of a program, which is the
dual property to confidentiality: It ensures that no unverified input may influence critical
computation or secret values. In order to verify these properties, it does not suffice to check
where secret or public data is copied from or moved to. In addition, the effects that the
value of the data may have on the execution of the program need to be tracked.

For example in figure[I] we do not want an attacker to gain any information about the secret
input value by observing the program output. This program contains three print statements
that produce output. While the statement in line[/|does not reveal any information about

http://joana.ipd.kit.edu

the input, the other two statements do. Line [3|directly prints the value of the input and is
therefore called a direct leak. The effect of the output in line [5]is more subtle, as it does
not print anything related to the input value. However it is only executed if the input is an
even number. Hence, the attacker is able to infer that the input is even if he sees the output
produced by line|5| These kind of information leaks are called indirect leaks.

void mainQ):
int secret = input();

1

2

3 print(secret); // direct leak
s 1f (secret %2 = 0) {

5 print("secret._is._even™); // indirect leak
6}

7 print("Hello_World.™); // no leak

Figure 1: A program fragment with a direct and an indirect information leak.

An IFC analysis has to detect direct as well as indirect information flow and it needs to
know which information is considered secret and what is considered a public output in
order to check for confidentiality. In JOANA this is achieved by annotating variables or
statements with a security label. For the example above we need two different labels: high
(secret) and low (public). Statement 2]is labeled as high input and statements [3] [5] and 7]
are labeled as low output. The IFC analysis then checks if any information flow from high
input to low output is possible. In contrast to other IFC analyses that are often based on
type systems, only statements corresponding to input or output need to be labeled. JOANA
propagates the labels for other statements automatically.

This approach is not restricted to only two security labels. For more complex IFC analyses,
it supports an arbitrary number of labels. They have to be specified in form of a security
lattice that defines a partial order on the labels. Any flow from a statement labeled /; to a
statement labeled [, is considered legal iff /; < /5. In the remainder of this work we will use
the standard two-valued lattice low < high.

2.1 Sequential IFC with dependency graphs

Our IFC analysis[HS09] uses SDGs to conservatively approximate all possible information
flow inside a program. A SDG is a language-independent representation of dependencies
between statements of a program. It contains nodes for each statement of the program and
edges between them if one statement depends on the other one. In sequential programs these
dependencies are either direct or indirect dependencies. Direct dependencies, also called
data dependencies, occur whenever a statement produces a value, e.g. writes a variable,
that the other statement potentially may read. Indirect dependencies between statements
occur if the outcome of the execution of one statement decides if the other is executed,
e.g. the condition of an if-clause decides if the statements in the body of the if-clause are
executed. A machine-checked proof [WL10L[WLS09] shows that the SDG is a conservative
approximation of the effects of sequential programs and that our IFC algorithm is sound.

- ~ ~

- / N ~~
- / N ~~_
» N -
2: secret = input() ’ 3: print(secret) ‘ 4:if (secret % 2 ==0) ‘ { 7: print("Hello World") ‘
out: low T out: low
|
5: print("secret is even") ———-—» Control dependence
—— Data dependence

Figure 2: The dependence graph for ﬁgureE]with annotated security labels.

Figure [2 shows a simplified version of the SDG for the program in figure[I] It contains
data dependencies between statement 2] where the input is written to variable secret,
and statements (3| and |4} that read the value of secret. Control dependencies between
the method entry point and statements and[7]signal that those statements are only
executed when main is called. Statement[5|however is control dependent on the if-clause in
statement 4] because its execution depends on the evaluation of this statement. The input
and output statements are annotated with security labels high and low as described in the
previous section.

The SDG based IFC analysis then checks if the graph contains a path from a statement
labeled high to a statement labeled low. To achieve this, we use a special form of conditional
reachability analysis that applies slicing[[Kri03, RHSR94| Wei81]] and chopping[Gifl1]
RR935] techniques. This enables us to restrict the set of possible paths in the graph to a
subset of valid paths, which helps to significantly reduce the number of false alarms. A valid
path is a path in the SDG that respects additional conditions, like e.g. context-sensitivity.
The example contains two valid paths that correspond to illegal flow: 2 — 3and2 — 4 — 5.
Thus our analysis reports two potential security violations.

In case no violations are found, the program is considered safe. Hence our analysis can
guarantee the absence of security violations, but it can only detect the potential presence of
leaks, because false alarms are possible due to conservative approximations in our analysis
algorithms.

JOANA contains many optimizations that improve analysis precision and thus help to
reduce the number of false alarms:

points-to information We use points-to analysis to compute side-effects across method
boundaries and to approximate the effects of late binding. Various precision options
are available.

exception analysis We include an analysis that detects exceptions that never occur. This
is very essential in Java, because almost any instruction may potentially throw an
exception, e.g. any object field-access may throw a NullPointerException if the
referenced object is null.

context-sensitive We distinguish between different calls to the same method and offer

unlimitecﬂ context-sensitivity through interprocedural program slicing [RHSR94].

object-sensitive We distinguish different instances of the same class and methods invoked
on different instances.

field-sensitive We distinguish different fields of an object instance through modelling
accessible fields in form of an object graph [Gral0].

flow-sensitive The dependencies inside an SDG respect the execution order. It contains
only dependencies between two statements s; — s, if s, may be executed after s;.

2.2 IFC for concurrent programs

Concurrent Java programs consist of multiple threads that execute in parallel. Threads can
communicate through shared variables. In addition to the previously mentioned direct and
indirect leaks, these so-called interferences between threads introduce two new kinds of
information leaks: possibilistic and probabilistic leaks.

1 void thread_10): 4+ void thread_2(Q):
2 x = 0; 5 secret = input();
3 print(x); 6 X = secret;

Figure 3: Two threads with a shared variable X that contain a possibilistic leak.

A possibilistic leak results in illegal flow depending on the order in which statements of
different threads are executed. The example in figure[3|has a possibilistic leak. The program
consists of two threads that communicate through a shared variable x. The print statement
in line 3| does leak the value of the secret input in line[3]if line[6]is executed after line [2]and
before line

1 void thread_10Q: + void thread_20Q:

2 x = 0; 5 secret = input(Q);

3 print(x); 6 while (secret != 0)
7 secret—-;
8 x =1;

Figure 4: Two threads with a shared variable X that contain a probabilistic leak.

Probabilistic leaks are even trickier. A secret value can potentially influence the probability
of the order in which statements that influence public outputs are executed. An attacker that
can run the program with the same secret input multiple times is able to infer information
about the secret value through a statistical analysis of observable outputs. Figure[d]illustrates
this problem. The statement in line [3| prints the value of variable x. Depending on the

2Multiple recursive calls are not distinguished.

execution order of the statements in line [2| and [§] it prints either ® or 1. However the
probability that line [§] is executed before the print statement depends on the value of
secret. The bigger the value of secret is, the more time is spent executing the while loop
in lines[6}{7]and thus the less likely it is that line [§]is executed before the print statement. So
if the attacker observes a huge number of program runs and keeps track of ratio between
output ® and 1 he can infer if the value of secret is a large number.

Albeit probabilistic leaks seem to pose more of a theoretical than an actual security thread,
this is far from true. With additional knowledge about the scheduling algorithm the attacker
is in some cases able to infer concrete values. These leaks have already been successfully
used to break well known encryption algorithms [Koc96].

JOANA is able to detect possibilistic as well as probabilistic leaks[Gif12]]. It computes
possible interferences between threads with the help of points-to and may-happen-in parallel
(MHP) analyses. We apply a special version of slicing [KriO3, RHSR94| Wei81] and
chopping [Gif11,[RR95] algorithms optimized for concurrent IFC. This allows us to achieve
precise results that are time-, join- and in future versions even lock-sensitive[GHMN13]].

3 IFC Console

IFC Console is a graphical user interface which hides most of JOANA’s internals. It
simplifies SDG construction and the annotation of SDG nodes with security labels. Instead
the user can annotate program artifacts such as attributes, method parameters or bytecode
instructions and an integrated heuristic selects the appropriate nodes.

3.1 A Quick tour through the interface

The graphical user interface in figure [5]is divided into two parts. The upper part shows
options for SDG construction and general configuration and also contains additional tabs for
security label annotation (figure[6) and running the IFC analysis (figure[7). The lower part
shows a console that displays detailed output and can be used to enter advanced commands.
Every action the user performs is recorded as a command in the console. This allows the
user to save his actions to a script file, that can be loaded and automatically replayed.

Configuration Tab The configuration tab in figure [5 is used to select the program to
analyze (1.), build or load a SDG for the program (2.), select the security lattice (3.) and
save or replay scripts of previous actions (4.).

In order to select a program, the user sets the class path to a directory or .jar file that
contains the compiled .class files. Then he hits “update” and selects the main method he
wishes to analyze in the drop down list.

In the next step the user selects the desired SDG computation options. He can choose how
the analysis should handle the effects of exceptions and the treatment of multi-threaded

Configuration| Annotate | Run
1. Choose program and entry point
Classpath: bin browse
Entry method: |hit update to search for entries in the current classpath v | |update
2. System Dependence Graph
SDG Build options
integrate all exceptions, optimize intraprocedurally v

compute interference edges

select stubs to use JRE_14 v
build auto-save

status

<no sdgin memory> load SDG from file

3. Security Lattice
Security lattice: |binary lattice low <= high v
4, Configuration Script

load script | |save script

Type help to view availiable commands.
New lattice set.

enter

Figure 5: The configuration tab and the console view of the IFC Console.

programs. The exception analysis options are:

integrate exceptions without optimization No additional exception analysis is performed.
This is the least precise option that does not detect any impossible exceptions. For ex-
ample every field access is treated as it may or may not cause a NullPointerException,
even subsequent accesses to the same field or references to the this pointer.

integrate exceptions, optimize intra-/interprocedurally An exception analysis is per-
formed that detects impossible and also guaranteed exceptions. For example, JOANA
identifies field reading accesses where the field can never be null. The interprocedural
analysis is more precise but also more time-consuming.

In order to analyze multi-threaded programs, the check box “compute interference edges”
has to be selected. Then the user can choose between various precision options of the
may-happen-in-parallel (MHP) analysis. The least precise option is no MHP, whereas
“precise may-happen-in parallel analysis” takes a closer look at the control-flow of the
program and in particular the life span of its threads. For example, it detects that a thread

Configuration| Annotate |Run

v unsaved SDG with entry method: void edu.kit.joana.ui.ifc.wala.console.toy.simp.MicroExample.main
» % com.ibm.wala (1)
v 3 edu.kit.joana.ui.ifc.wala.console.toy.simp (1) [sources: 1 , sinks: 1]
v @ edu.kit.joana.ui.ifc.wala.console.toy.simp.MicroExample [sources: 1 , sinks: 1]
Attributes (0)
v Methods (2) [sources: 1 , sinks: 1]
v @ edu.kit.joana.ul.ifc.wala.console.toy.simp.MicroExample.main([Ljava/lang/String;)V(so
v Parameters (1) [sources: 1]
param 1: j
exit
PHI Nodes (0)
» Instructions (2)
v @ edu.kit.joana.ul.ifc.wala.console.toy.simp.MicroExample.foo(II)I[sinks: 1]
v Parameters (2)
param 1: 1int
param 2: 1int
exit
» PHI Nodes (1)
v Instructions (5) [sinks: 1]
0001: if (pl >= #(0)) goto 13
0006: v6 = pl - p2
0008: goto 16
0013: vS = pl + p2

» f# java.lang (2)
‘ N

Source | |Sink | | Clear Clear All

Figure 6: The annotation tab of the IFC Console.

cannot interfere with another thread before it was started or after it has been joined. The
user can also choose between stubs for different Java runtime environments. Basically,
these stubs include predefined models of native methods deep down in the Java standard
library. We strongly suggest to analyze JRE 1.4 programs, as later versions of the JRE are
far bigger, which leads to an increased runtime of the analysis. When the configuration of
the SDG building options is finished, a click on “build” starts the SDG building process.

There is also the possibility to save and load a previously built SDG. The option “auto-save”
stores the SDG directly after it has been built to a file with an auto-generated name in the
current working directory.

The IFC part of JOANA supports multiple security levels which are arranged in a lattice.
The graphical user interface offers three simple lattices, which should suffice for simple
cases, the default is the two-valued lattice low < high.

Annotation Tab The annotation tab in figure 6] provides a tree-like view of the program
under analysis. On the top-level the different packages of the program are shown. Unfolding
a package shows the classes it contains, unfolding a class shows the attributes and methods
it contains and unfolding a method shows its parameters and instructions. Note that not
the whole program is shown, but only those parts which are reachable from the selected
entry method. A node of the program tree can be turned into an information source or an
information sink and annotate it with a selectable security level.

Configuration | Annotate| Run

sdg = unsaved SDG with entry method: void edu.kit.joana.ui.ifc.wala.console.toy.simp.MicroExample.
number of nodes: 40
number of edges: 183

lattice = [preset: BINARY]

Sources:

parameter param 1 of method void edu.kit.joana.ui.ifc.wala.console.toy.simp. MicroEx
Sinks

(int edu.kit.joana.ui.ifc.wala.console.toy.simp.MicroExample.foo(int, int):16) return v7
analysis type: |possibilistic v avoid time-travel Run IFC Analysis

Figure 7: The analysis tab of the IFC Console.

Analysis Tab The analysis tab in figure [7]displays a summary of the analysis options: It
shows the size of the SDG, the selected lattice and all annotated sources and sinks. Also
it offers to choose between a “possibilistic” and a “probabilistic” IFC algorithm. This
is only relevant for multi-threaded programs, for single-threaded programs the default
option “possibilistic” is fine. The probabilistic algorithm detects the same leaks as the
possibilistic approach and it includes additional probabilistic leaks, which can only occur
in multi-threaded programs. Apart from selecting the IFC type, the user can also choose
to improve precision by disallowing time-travels ([Kri03} |Gif12]]). This affects both the
possibilistic and the probabilistic types. Disallowing time-travels essentially means that the
algorithm will discard security leaks made possible only by inconsistent program runs.

The user starts the IFC analysis with the “run” button. When finished, the console part of
the GUI shows a report of the detected leaks. Additionally a green light flashes up, if there
are no security leaks and the program is guaranteed to be noninterferent. Otherwise a red
light signals that potential leaks were detected.

4 Examples
4.1 Sequential IFC - Praktomat

We use a simplified version of the Praktomat system to show how JOANA can be applied to
guarantee integrity. Praktomat is a browser based application that allows students to submit
their solutions to a given programming task. Then Praktomat runs predefined checks on the
submitted solution, e.g. it checks if the code compiles or if the Java Code Conventions are
violated. On the one hand this information helps the student to improve his solution and on
the other hand these results are also used by the tutor that evaluates the solution later on.

For this example we focus on the way the predefined checks should operate. Their results

are often crucial for the evaluation of the submissions, as manual checks are not feasible
for large amounts of submissions and they can also not provide instant feedback to the
submitting student. As tutors rely on their results, these checks need to produce fair and
reproducible results. A malicious check for example may treat submissions from a specific
student in different way then all other submissions - not showing detected failures of this
special student.

1 public class Praktomat { 2 public static Review runChecks(Submission sub) {
> public static class Submission { 27 int failures = 0;

3 3

4 public int matrNr; 29 if (sub.code.contains("System.err.println")) {
5 public String code; 30 failures++;

6 31

7 public Submission(int matrNr, 2 if (sub.code.contains("catch IOException')) {
8 String code) { 3 failures += 2;

9 this.code= code; 3

10 this.matrNr = matrNr; 35 if (sub.matrNr = 4711) {

n } 36 failures = 0;

12 } —

s 37 l

14 public static class Review { 38

I 39 return new Review(sub, failures);

16 public Submission sub; 40 }

17 public int failures; 4

18 # public static void main(String argv[]) {

19 public Review(Submission sub, 3 Submission sub = new Submission(2331,

20 int failures) { 4“4 "System.out.printIn(\"Hello_world.\");");
2 this.sub = sub; 45 Review r = Praktomat.runChecks(sub);

» this. failures = failures; 4% System.out.printIn(r.failures);

23 } a)

% } 4}

Figure 8: A simplified version of the automated program submission system Praktomat. It auto-
matically checks submitted programs for predefined failures and helps the tutor to review student
submissions. The underlined code violates the security property, as it hides detected failures for a
specific student.

We can detect these kind of malicious checkers with the help of JOANA. To achieve this,
we specify the information flow property all checkers need to guarantee as follows: The
number of detected program failures must not depend on the identity of the submitting
student. The code in figure[§|shows a simplified version of the Praktomat system. It contains
a class Submission to model student submissions and a class Review to model the result of
the submission checker. The code of the checker is in method runChecks in lines It
is called once from main method to perform checks for a single submission. The attribute
matrNr of class Submission stores the identity of the submitting student. We classify this
information as secret and the failure counter in class Review as public. Then we can
use JOANA to verify if the given program is noninterferent[GM82]] and thus the number
of detected failures does not depend on the id of the submitting student. For the given
program this is not the case, as lines [35}{37|contains a special treatment for the student with
the id 4711. JOANA is able to detect this leak. Also when these lines are removed from
the program, the checker result no longer depends on the student id and JOANA can verify
noninterference for this example.

Using IFC Console We now describe briefly the necessary steps to analyze this example.
Specify the appropriate class path, click on the “update” button and select the main method
of the class Praktomat as entry method. The SDG building options do not have to be
changed, so that you can directly build the SDG by clicking on the “build” button. Switch
to the annotation tab. Select the attribute matrNr of the inner class Submission as high
source and the attribute failures of the inner class Review as low sink. In the analysis
tab, nothing needs to be configured, since the given program is not multi-threaded, so you
can simply run the analysis. As explained before, the analysis finds several leaks. If you
remove lines you should get no leaks.

4.2 Concurrent IFC - EuroStoxx

Figure E] shows a program that manages a stock portfolio of Euro Stoxx 50 entriesﬂ The
program consists of four threads, coordinated by an additional main thread. The program
first starts the Portfolio and EuroStoxx50 threads concurrently, where Portfolio reads
the user’s stock portfolio from storage and EuroStoxx50 retrieves the current stock rates.
When these threads have finished, threads Statistics and Output are run concurrently,
where Statistics calculates the current profits and Output incrementally prepares a statis-
tics output. After these threads have finished, the statistics are displayed, together with
a pay-per-click commercial. An ID of that commercial is sent back to the commercials
provider to avoid receiving the same commercial twice. The portfolio data, pfNames and
pfNums, is secret, hence the Euro Stoxx request by EuroStoxx50 and the message sent
to the commercials provider should not contain any information about the portfolio. As
Portfolio and EuroStoxx50 do not interfere, the Euro Stoxx request does not leak infor-
mation about the portfolio. The message sent to the commercials provider is not influenced
by the values of the portfolio, too, because there is no explicit or implicit flow from the
secret portfolio values to the sent message. Furthermore, the two outputs have a fixed
relative ordering, as EuroStoxx50 is joined before Output is started. Hence, the program
is considered secure.

Using IFC Console Analyzing the concurrent example introduced in 4.2 requires differ-
ent options because it is multi-threaded. After selecting the appropriate class path and entry
method, you have to check “compute interference edges” and choose a MHP analysis. Use
the precise MHP analysis, otherwise you will get many false alarms simply because joins
are not taken into account.

As mentioned in the example, the portfolio data is secret, so calls to getPFNames() and
getPFNums () in the run method of the class Mantel®®Pagel®$Portfolio have to be anno-
tated as high sources. To verify that the secret data cannot influence the commercial mes-
sages, which are written into the output referenced by the attribute Mantel®9Pagel®.nwOutBuf,
it suffices to annotate the calls to its flush methods. These are located in the run method of the
class Mantel®9Pagel®$EuroStoxx50 and in the main method of the class Mantel00Page10,

3The description of this program has been taken from [Gif12]

1 public class Mantel®OPagel® {

2 static class Portfolio extends Thread { 60
3 int[] esOldPrices; 61
4 String[] pfNames; (]
5 int[] pfNums; 63
6 String pfTabPrint; 64
7 65
8 public void run() { 66
9 pfNames = getPFNames(Q); // high e
10 pfNums = getPFNums(Q); // high es
1 for (int i = 0; i < pfNames.length; i++) { &
12 pfTabPrint += pfNames[i]+"|"+pfNums[i]; 70
13 } 71
14 } 72
15 7
16 int locPF(String name) { 7
17 for (int i = 0; i < pfNames.length; i++) { 7
18 if (pfNames[i].equals(name)) {return i;} 7
19 7
20 return -1; 78
21 } 79
» } 30
23 81
24 static class EuroStoxx50 extends Thread { 82
25 String[] esName = new String[50]; 83
2 int[] esPrice = new int[50]; 84
27 String coShort; 85
28 String coFull; 86
29 String co0ld; 87
30 88
31 public void run() { 89
2 try { %0
3 nwOutBuf. append ("getES50") ; 91
34 nwOutBuf. flushQ); // low o9
35 String nwIn = nwInBuf.readLine(); 93
36 String[] strArr = nwIn.split(":"); o
37 for (int j = 0; j < 50; j++) { 95
38 esName[j] = strArr[2 * j]; 9%
39 esPrice[j] = 97
40 Integer.parseInt(strArr[2 * j + 1]); %
41 } %
2 // commercials 100
3 coShort = strArr[100]; 101
P coFull = strArr[101]; 102
45 coOld = strArr[102]; 103
46 } catch (IOException ex) {} 104
47 } 105
4} 106
49 107
50 static class Output extends Thread { 108
51 public void run() { 109
52 for (int m = 0; m < 50; m++) { 110
53 while (s.k <= m); // busy-wait sync 111
54 output[m] =m + "|" + e.esName[m] + "|" 112
55 + e.esPrice[m] + "|" + s.get(m); 113
56 3 114
57 } 115
58 } 16 }

static class Statistics extends Thread {
int[] st = new int[50];
volatile int k = 0;

public void run() {
k =0;
while (k < 50) {
int ipf = p.locPF(e.esName[k]);
if @pf > ® {
set(k, (p.esOldPrices[k] - e.esPrice[k])
* p.pfNums[ipf]);
} else {
set(k, 0);

k++;

}

ized void set(int k, int value) {
st[k] = value;

}
synchronized int get(int k) {
return st[k];

}

static
static
static
static

Portfolio p = new Portfolio();

EuroStoxx50 e = new EuroStoxx50();

Statistics s = new StatisticsQ);

Output o = new Output(Q;

static String[] output = new String[50];

static BufferedWriter nwOutBuf = new Bufferediriter(
new OutputStreamiriter(System.out));

static BufferedReader nwInBuf = new BufferedReader(
new InputStreamReader(System.in));

public static void main(String[] args)

throws Exception {

// get portfolio and eurostoxx50

p.start(Q; e.startQ;

p.joinQ); e.joinQ;

// compute statistics and generate output

s.start(); o.start(Q;

s.join(); o0.joinQ;

// display output

stTabPrint ("No.\t.|_Name\t.|_Price\t.| _Profit");

for (int n = 0; n < 50; n++) {
stTabPrint (output [n]);

// show commercials

stTabPrint(e.coShort + "Press_#_to_get_info");

char key = (char) System.in.read();

if (key = "#) {
System.out.println(e.coFull);
nwOutBuf. append ("shownCorm:" + e.coOld);
nwOutBuf. flushQ); // low

}

}

Figure 9: A possibilistic and probabilisitic secure program from Mantel et al. [MSKOQ7|], adapted to
Java in [Gif12]. JOANA is the first tool able to automatically proof the absence of probabilistic leaks

for this example.

respectively.

In the analysis tab, choose “probabilistic (with precise mhp)” as analysis type. Running the
IFC checker yields no violations.

Note, that it is crucial to select “probabilistic (with precise mhp)” as analysis type. If you
select “probabilistic (with simple mhp)”, lots of leaks will be found due to many spurious
interference edges. Since direct and indirect leaks are included in the probabilistic IFC
checker, possibilistic IFC also accepts the program.

5 Related work

Tools for language based IFC and dependence analysis Several other tools for infor-
mation flow control and dependence analysis of Java programs are available. These tools
differ in how much user guidance they require, and which language features they support.
Tools like Jif[Mye99, MZZ*01]] extend Java with security types. In addition to their stan-
dard Java type such as int, the user annotates variables, fields and method signatures
with labels that restrict how information may flow. Jif then checks if these security type
annotations are valid and hence if the program is secure. Since Jif supports security type
inference only for local variables, in order to check any information flow property, the user
is usually required to annotate the whole program with security types. It is not enough to
only mark those program points where information is read in / written out. For this reason,
and since Jif does not support Java features such as concurrency, it is impractical to use Jif
or approaches based on Jif[CVMO07] with existing code bases.

To alleviate the effort of manually annotating large parts of the program with security type
annotations, more elaborate type inference algorithms have been proposed[STO07], but as of
yet, there is no practical implementation for full Java.

Similarly to JOANA, the Indus[RHO7] tool utilizes several auxiliary analyses to provide
SDGs for concurrent Java. These can be used for slicing[Wei81]], which in turn is used in
order to reduce the state space in model checking applications. Unlike JOANA, no explicit
support for IFC is provided.

Commercial security scanners like AppScarﬂ scan the code of web applications for security
vulnerabilities and detect many bugs like, SQL injection, error prone coding practices
and other security leaks. Tripp et al.[TPE*09] integrate a taint analysis for javascript into
AppScan. Their approach is based on the WALA framework and applies hybrid thin-slicing.
Their tool scales well and can detect many security leaks in almost arbitrarily large programs
with only few false alarms. Due to thin-slicing they miss indirect information leaks and
thus cannot guarantee noninterference.

Bodden [Bod12] presents an IFC tool tailored for software production lines that applies
the new IFDS/IDE implementation of the SOOT program analysis frameworkﬂ It can deal
with conditionally compiled code in an efficient way and includes a nice GUL. However this
tool can only detect a very specific kind of information flow, namely direct leaks through

4http ://www.ibm.com/software/awdtools/appscan/developer
5http ://www.sable.mcgill.ca/soot/

http://www.ibm.com/software/awdtools/appscan/developer
http://www.sable.mcgill.ca/soot/

data flow in variables. At this time it cannot detect indirect flow through branches, data
flow through heap allocated objects or any kind of concurrency related leaks.

Guarnieri et al. [GPT"11] use a demand-driven taint analysis based on access paths that
detects security leaks in javascript websites. They detect direct as well as indirect leaks
but lack support for probabilistic leaks. Their approach scales well and can be applied in
real world scenarios, but it lacks a sound approximation of the effects of the eval function,
which is inherently difficult for a static approach.

Therefore Seth et al. [JCSH11] propose a combination of static and dynamic analysis for
javascript that can detect illegal information flow in programs with a sound approximation
of the eval function.

Aside from type-system and SDG based IFC analyses, in [[GS05] an abstract interpretation
approach to information flow analysis for Java bytecode is proposed. Each bytecode
instruction is abstractly interpreted by its direct information flow. Together with the
instruction’s scope (which is similar to control dependencies in SDGs), this is sufficient to
obtain a program’s information flow. The proposed analysis is not object sensitive and does
not handle concurrency.

1 if (secret %2 = 0) { 1 secret = Math.abs(...); 1 if (secret > 17 && secret < 17) {
2 public = 42; 2 if (secret % 2 = 0) { 2 public = 42;
3 } else { 3 public = (secret % 2); 3}
4 public = 42; 4 } else {
5 } 5 public = (secret % 2) - 1;
6 (©)
(@)

()

Figure 10: Semantically secure program fragments

Non-interference and verification of semantic properties Just like JOANA, the tools
mentioned so far are imprecise in the sense that they employ a syntactic approximation
of information flow. Specifically, they will all deem the programs in figure |10|insecure
since syntactically the assignments to public are dependent on secret. Semantically
these programs are secure since the value of public will not change for different values of
secret. An attacker who can only observe the value of public variables at the end of the
program cannot infer information about the value of secret variables. This base-line notion
of security, called noninterference[GMS2], applies only to non-interactive, terminating pro-
grams, covers no kind of declassification and is overly restrictive for concurrent programs.
Hence, a wide variety of security notions have been proposed (cf. e.g. [HS11]).

The analyses described here can be enhanced to infer semantic properties and use these to
remove spurious information leak warnings. Such techniques may, however, be computa-
tionally expensive and can, in principle, not detect all such properties. The KeY[ABB*05]
tool allows the user to manually specify and verify arbitrary semantic properties of se-
quential Java programs and use them to verify information flow security[BBK™12|]. This
generally requires a considerable amount of manually provided JML[BCCT05]] annotations
in the program’s source code.

6 Conclusion and future work

We have shown how to conduct information flow analyses on Java bytecode programs using
the JOANA IFC Console. To specify an analysis goal, only a minimum of user interaction
and no knowledge about the structure of the underlying SDG is required. In the future,
we will improve on and streamline the IFC Console usability based on user feedback and
experience gathered in the RS3 as well as the KASTEL research program. We are going to
offer an API that allows tools such as KeY to employ JOANA as backend for IFC queries
that can be answered automatically. In order to deal with large programs, we developed
a method for modular SDG computation which helps to analyze isolated components in
an unknown context. Within the RS3 priority program, we collaborate with the Software
Construction and Verification Group at the WWU Miinster in order to improve precision for
concurrent programs with synchronized methods, e.g. using lock-sensitive interference
detection with dynamic pushdown networks|GHMN13].

Acknowledgments. This work was funded by the DFG under the project in the priority
program RS3 (SPP 1496) and by the BMBF under the KASTEL competence center for
applied IT security technology.

References

[ABB*05] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, P. H. Schmitt, et al. The KeY Tool. Software
and System Modeling, 2005.

[BBK*12] B. Beckert, D. Bruns, R. Kiisters, C. Scheben, P. H. Schmitt, and T. Truderung. The KeY
Approach for the Cryptographic Verification of Java Programs: A Case Study. Technical
Report 2012-8, Department of Informatics, Karlsruhe Institute of Technology, 2012.

[BCC*05] L. Burdy, Y. Cheon, D. Cok, et al. An overview of JML tools and applications. Interna-
tional Journal on Software Tools for Technology Transfer, 2005.

[Bod12] Eric Bodden. Static flow-sensitive & context-sensitive information-flow analysis for
software product lines: position paper. PLAS "12, New York, NY, USA, 2012. ACM.

[CVMO7] S. Chong, K. Vikram, and A. Myers. SIF: enforcing confidentiality and integrity in web
applications. In Proceedings of 16th USENIX Security Symposium, 2007.

[GHMN13] J. Graf, M. Hecker, M. Mohr, and B. Nordhoff. Lock-sensitive Interference Analysis for
Java: Combining Program Dependence Graphs with Dynamic Pushdown Networks. 1st
International Workshop on Interference and Dependence, 2013.

[Gifl1] Dennis Giffhorn. Advanced chopping of sequential and concurrent programs. Software
Quality Journal, 19(2):239-294, 2011.

[Gif12] Dennis Gifthorn. Slicing of Concurrent Programs and its Application to Information
Flow Control. PhD thesis, Karlsruher Institut fiir Technologie, 2012.

[GMS82] J. A. Goguen and J. Meseguer. Security Policies and Security Models. Security and
Privacy, IEEE Symposium on, 1982.

[GPT*11] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg. Saving the world
wide web from vulnerable JavaScript. ISSTA *11, New York, NY, USA, 2011. ACM.

[Gra09]

[GralO]

[GS05]

[GS12]

[Ham10]

[HS09]

[HS11]

[JCSHI11]

[Koc96]

[Kri03]

[MSKO7]

[Mye99]

[MZZ+01]

[RHO7]

[RHSRY94]

[RRI5]

[STO7]

[TPF*09]

[Wei81]

[WL10]

[WLS09]

J. Graf. Improving and Evaluating the Scalability of Precise System Dependence Graphs
for Objectoriented Languages. Technical report, Universitéit Karlsruhe (TH), 2009.

J. Graf. Speeding up context-, object- and field-sensitive SDG generation. In 9th [EEE
Working Conference on Source Code Analysis and Manipulation, 2010.

S. Genaim and F. Spoto. Information flow analysis for java bytecode. VMCAI’05.
Springer-Verlag, 2005.

D. Giffhorn and G. Snelting. Probabilistic Noninterference Based on Program Depen-
dence Graphs. Technical report, Karlsruhe Institute of Technology, 2012.

C. Hammer. Experiences with PDG-based IFC. In International Symposium on Engi-
neering Secure Software and Systems (ESSoS’10). Springer-Verlag, 2010.

C. Hammer and G. Snelting. Flow-Sensitive, Context-Sensitive, and Object-sensitive
Information Flow Control Based on Program Dependence Graphs. 1JIS, 2009.

D. Hedin and A. Sabelfeld. A Perspective on Information-Flow Control. In Proceedings
of the 2011 Marktoberdorf Summer School. 10S Press, 2011.

Seth Just, Alan Cleary, Brandon Shirley, and Christian Hammer. Information flow
analysis for javascript. PLASTIC *11, New York, NY, USA, 2011. ACM.

Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In CRYPTO, LNCS. Springer, 1996.

Jens Krinke. Advanced Slicing of Sequential and Concurrent Programs. PhD thesis,
Universitit Passau, April 2003.

H. Mantel, H. Sudbrock, and T. Krauler. Combining different proof techniques for
verifying information flow security. LOPSTR’06. Springer-Verlag, 2007.

Andrew C. Myers. JFlow: practical mostly-static information flow control. POPL °99.
ACM, 1999.

Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel
Nystrom. Jif: Java information flow, July 2001.

V. Ranganath and J. Hatcliff. Slicing concurrent Java programs using Indus and Kaveri.
International Journal on Software Tools for Technology Transfer, 2007.

Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up slicing.
In Proc. FSE, SIGSOFT *94, pages 11-20, New York, NY, USA, 1994. ACM.

Thomas Reps and Genevieve Rosay. Precise interprocedural chopping. SIGSOFT Softw.
Eng. Notes, 20(4):41-52, October 1995.

S. Smith and M. Thober. Improving usability of information flow security in java. PLAS
’07. ACM, 2007.

Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. TAJ:
effective taint analysis of web applications. SIGPLAN Not., 44(6):87-97, 2009.

Mark Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, ICSE "81. IEEE Press, 1981.

D. Wasserrab and D. Lohner. Proving Information Flow Noninterference by Reusing a
Machine-Checked Correctness Proof for Slicing. In VERIFY, 2010.

D. Wasserrab, D. Lohner, and G. Snelting. On PDG-Based Noninterference and its
Modular Proof. In PLAS. ACM, June 2009.

	Introduction
	Information flow control
	Sequential IFC with dependency graphs
	IFC for concurrent programs

	IFC Console
	A Quick tour through the interface

	Examples
	Sequential IFC - Praktomat
	Concurrent IFC - EuroStoxx

	Related work
	Conclusion and future work

