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Abstract A novel paradigm for designing and programming future parallel com-

puting systems called invasive computing is proposed. The main idea and novelty

of invasive computing is to introduce resource-aware programming support in the

sense that a given program gets the ability to explore and dynamically spread its

computations to neighbour processors in a phase called invasion, then to execute

portions of code of high parallelism degree in parallel based on the available inva-

sible region on a given multi-processor architecture. Afterwards, once the program

terminates or if the degree of parallelism should be lower again, the program may

enter a retreat phase, deallocate resources and resume execution again, for exam-

ple, sequentially on a single processor. In order to support this idea of self-adaptive

and resource-aware programming, not only new programming concepts, languages,

compilers and operating systems are necessary but also revolutionary architectural

changes in the design of MPSoCs (Multi-Processor Systems-on-a-Chip) must be

provided so to efficiently support invasion, infection and retreat operations involv-

ing concepts for dynamic processor, interconnect and memory reconfiguration. This

contribution reveals the main ideas, potential benefits, and challenges for support-

ing invasive computing at the architectural, programming and compiler level in the

future. It serves to give an overview of required research topics rather than being

able to present mature solutions yet.

Jürgen Teich

Lehrstuhl für Informatik 12, FAU, Am Weichselgarten 3, 91058 Erlangen, Germany

e-mail: teich@informatik.uni-erlangen.de

Jörg Henkel

Institut für Technische Informatik, KIT, Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

e-mail: henkel@kit.edu

Andreas Herkersdorf

Lehrstuhl für Integrierte Systeme, TUM, Arcisstr. 21, 80290 München, Germany

e-mail: herkersdorf@tum.de

Doris Schmitt-Landsiedel

Lehrstuhl für Technische Elektronik, TUM, Arcisstr. 21, 80333 München, Germany

e-mail: dsl@tum.de

Wolfgang Schröder-Preikschat
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Introduction

Decreasing feature sizes have already led to a rethinking of how to design multi-

million transistor system-on-a-chip architectures envisioning dramatically increas-

ing rates of temporary and permanent faults as well as feature variations. The major

question will thus be how to deal with this imperfect world [11] in which compo-

nents will become more and more unreliable. As we can foresee SoCs with 1000 or

more processors on a single chip in the year 2020, static and central management

concepts to control the execution of all resources might have met their limits long

before and are therefore not appropriate. Invasion might provide the required self-

organising behaviour to conventional programs for being able not only to tolerate

certain types of faults and cope with feature variations, but also to provide scalabil-

ity, higher resource utilisation numbers and, hopefully, also performance gains by

adjusting the amount of allocated resources to the temporal needs of a running ap-

plication. This thought might open a new way of thinking about parallel algorithm

design as well. Based on algorithms utilising invasion and negotiating resources

with others, we can imagine that corresponding programs become personalised ob-

jects, competing with other applications running simultaneously on an MPSoC.

Parallel Processing has Become Mainstream

Miniaturisation in the nano era makes it possible already now to implement bil-

lions of transistors, and hence, massively parallel computers on a single chip with

typically 100s of processing elements.

Whereas parallel computing tended to be only possible in huge high performance

computing centres some years ago, we see parallel processor technology already

in home PCs, but interestingly also in domain-specific products such as computer

graphics and gaming devices. In the following description, we picked out just four

representative instances out of many domain-specific examples of massively parallel

computing devices using MPSoC technology that have already found their way into

our homes:

• Visual Computing and Computer Graphics: As an example, the Fermi CUDA

architecture [3], as it is implemented on NVIDIA graphics processing units

(GPUs) is equipped with 512 thread processors which provide more comput-

ing power than 1 TFLOPS as well as 6 GB GDDR5 (Graphics Double Data

Rate, version 5) RAM. To enable flexible, programmable graphics and high-

performance computing, NVIDIA has developed the CUDA scalable unified

graphics and parallel computing architecture [9]. Its scalable parallel array of

processors is massively multithreaded and programmable in C or via graphics

APIs. Another brand-new platform for visual computing is Intel’s Larrabee [15].

Although the platform will not yet be commercially available in its first version in

2010, Larrabee introduces a new software rendering pipeline, a many-core pro-

gramming model and uses multiple in-order x86 CPU cores that are enhanced
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by a wide vector processor unit, as well as several fixed function logic blocks.

This provides dramatically higher performance per Watt and per unit of area than

out-of-order CPUs in case of highly parallel workloads. It also greatly increases

the flexibility and programmability of the architecture as compared to standard

GPUs. A coherent on-die 2nd level cache allows efficient inter-processor commu-

nication and high-bandwidth local data access by CPU cores. Task scheduling is

performed entirely with software in Larrabee, rather than in fixed function logic.

• Gaming: The Cell processor [10] such as part of Sony’s PLAYSTATION 3 con-

sists of a 64-bit Power Architecture processor coupled with multiple synergistic

processors, a flexible I/O interface and a memory interface controller that sup-

ports multiple operating systems. This multi-core SoC, implemented in 65 nm

SOI (Silicon On Insulator) technology, achieves a high clock rate by maximising

custom circuit design while maintaining reasonable complexity through design

modularity and reuse.

• Signal Processing: Application-specific tightly-coupled processor arrays (TC-

PAs). For applications such as 1D or 2D signal processing, linear algebra and

image processing tasks, Figure 2 shows an example of an MPSoC integrating 25

VLIW processors designed in Erlangen with more than one million transistors

on a single chip of size about 2 mm2. Contrary to the previous architectures, this

architecture is customisable with respect to instruction set, processor types and

interconnect [6, 8]. For such applications, the overhead and bottlenecks of pro-

gram and data memory including caches can often be avoided giving more chip

area for computations than for storage and management functions. Due to the fact

that the instruction set, word precisions, number of functional units and many

other parameters of the architecture may be customised for a set of dedicated ap-

plication programs to run, we call such architectures weakly-programmable. It is

unique that the inter-processor interconnect topology may be reconfigured at run-

time within a few clock cycles time by means of hardware reconfiguration. Also,

the chip features ultra-low power consumption of about 130 mW when operating

at 200 MHz.

• NoC: In [18], Intel demonstrates the feasibility of packing 80 tile processors

on a single chip by introducing a 275 mm2 network-on-a-chip (NoC) architec-

ture where each tile processor is arranged as a 10 × 8 2D array of floating-

point cores and packet-switched routers, operating at 4 GHz. The design employs

mesochronous clocking, fine-grained clock gating, dynamic sleep transistors and

body-bias techniques. The 65 nm 100 M transistor die is designed to achieve a

peak performance of 1.0 TFLOPS at 1 V while dissipating 98 W. Very recently,

Intel announced a successor chip, called Single-chip Cloud Computer (SCC),

with 48 fully programmable processing cores manufactured in 45 nm technology.

In contrast to the 80 core prototype, Intel plans to build 100 or more experimental

SCC chips for use by industrial and academic research collaborators.

Note that there exists a multitude of other typically domain-specific massively

parallel MPSoCs that cannot be listed here. Different domains of applications have

also brought up completely different types of architectures. One major distinguish-

ing factor is that concurrency is typically exploited at different levels of granularity
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Fig. 1 Levels of parallelism including process-level, thread-level, loop-level, instruction-level as

well as word-level and bit-level. The architectural correspondence is shown on the right side in-

cluding parallel computers, heterogeneous MPSoCs and tightly-coupled processor array architec-

tures, finally VLIW and bit-level parallel computing. Invasive computing shall be investigated on

all shown levels.

and levels of architectural parallelism as shown, for example, in Figure 1. Starting

with process- and thread-level applications running on high performance computing

(HPC) machines or heterogeneous Multi-Processor System-on-a-Chip architectures

(MPSoCs) down to the loop-level for which tightly-coupled processor arrays match

well, and finally instruction and bit-level type of operations.

Obstacles and Pitfalls in the Years 2020 and Beyond

Already now can be foreseen that MPSoCs in the years 2020 and beyond will allow

to incorporate about 1000 and more processors on a single chip. However, we can

anticipate several major bottlenecks and shortcomings when obeying existing and

common principles of designing and programming MPSoCs. The challenges related

to these problems have motivated our idea of invasive computing:

• Programmability: How to map algorithms and programs to 1000 processors or

more in space and time to benefit from the massive parallelism available and by

tolerating defects and manufacturing variations concerning memory, communi-

cation and processor resources properly?

• Adaptivity: The computing requirements of emerging applications to run on an

MPSoC may not be known at compile-time. Furthermore, there is the problem
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Fig. 2 Architecture of a 5×5 processor MPSoC customised for image filtering type of operations

Technology: CMOS 1.0 V supply voltage, 9 metal layers, 90 nm standard cell design. VLIW mem-

ory/PE: 16 times 128, FUs/PE: 2 times Add, 2 times Mul, 1 times Shift, 1 times DPU. Registers/PE:

15. Register file/PE: 11 read and 12 write ports. Configuration Memory: 1024 times 32 = 4 kByte.

Operating frequency: 200 MHz. Peak Performance: 24 GOPS. Power consumption: 132.7 mW @

200 MHz (hybrid clock gating). Power efficiency: 0.6 mW/MHz. Chair for Hardware/Software Co-

Design, Erlangen, 2009.

of how to dynamically control and distribute resources among different appli-

cations running on a single chip, in order to satisfy high resource utilisation and

high performance constraints. How and to what degree should MPSoCs therefore

be equipped with support for adaptivity, for example, reconfigurability, and to

what degree (hardware/software, bit, word, loop, thread, process-level)? Which

gains in resource utilisation may be expected through run-time adaptivity and

temporary resource occupancy?

• Scalability: How to specify algorithms and programs and generate executable

programs that run efficiently without change on either 1, 2, or N processors? Is

this possible at all?

• Physical Constraints: Heat dissipation will be another bottleneck. We need

sophisticated methods and architectural support to run algorithms at different

speeds, to exploit parallelism for power reduction and to manage the chip area in

a decentralised manner.

• Reliability and Fault-Tolerance: The continuous decrease of feature sizes will

not only inevitably lead to higher variances of physical parameters, but also af-

fect reliability, which is impaired by degradation effects [11]. In consequence,

techniques must be developed to compensate and tolerate such variations as well

as temporal and permanent faults, that is, the execution of applications shall be

immune against these. Hence, conventional and centralised control will fall off

this requirement, see, for example, [11]. Furthermore,the control of such a par-

allel computer with 100s to 1000s of processors would also become a major

performance bottleneck if centrally controlled.
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Finally, whereas for a single application the optimal mapping onto a set of pro-

cessors may be computed and optimised often at compile-time which holds in par-

ticular for loop-level parallelism and corresponding programs [5, 6, 7], a static map-

ping might not be feasible for execution at run-time because of time-variant resource

constraints or dynamic load changes. Ideally, the interconnect structure should be

flexible enough to dynamically reconfigure different topologies between compo-

nents with little reconfiguration and area overheads.

With the above problems in mind, we propose a new programming paradigm

called invasive computing. In order for this kind of resource-aware programming

concept become reality and main stream, new processor, interconnect and memory

architectures, exploiting dynamic hardware reconfiguration will be required. Inva-

sive computing distinguishes itself from common mainstream principles of algo-

rithm and architecture design in industry on multiple (for example, dual, quadruple)

and many-core architectures, as these will still be programmed more or less using

conventional languages and programming concepts. In order to increase the scope

and applicability, however, we do require that legacy programs shall still be exe-

cutable within an invasive processor architecture. To achieve this, a migration path

from traditional programming to the new invasive programming paradigm needs to

be established.

Principles and Challenges of Invasive Computing

In vision of the above capabilities of todays hardware technology, we would like to

propose a completely new paradigm of parallel computing called invasive comput-

ing in the following.

One way of how to manage the control of parallel execution in MPSoCs with

100s of processors in the future would obviously be to give the power to manage

resources, that is, link configurations and processing elements to the programs them-

selves and thus, have the running programs manage and coordinate the processing

resources themselves to a certain degree and in context of the state of the underly-

ing compute hardware. This cries for the notion of a self-organising parallel program

behaviour called invasive programming.

Definition: Invasive Programming denotes the capability of a program running

on a parallel computer to request and temporarily claim processor, communication

and memory resources in the neighbourhood of its actual computing environment,

to then execute in parallel the given program using these claimed resources, and to

be capable to subsequently free these resources again.

We shall show next what challenges will need to be solved in order to support

invasive computing on the architectural, on the notational and on the algorithmic

and programming language sides.
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Architectural Challenges for the Support of Invasive Computing

Figure 3 shows how a generic invasive multi-processor architecture including loosely-

coupled processors as well as tightly-coupled co-processor arrays may look like.

Mem

CPU CPU

iCore iCore

Mem

CPU CPU

CPU CPU

Mem

CPU CPU

CPU CPU

Mem

CPU CPU

CPU CPU

Mem

CPU CPU

CPU CPU

TCPA

TCPA

Mem

Mem

Ctl

I/O

Fig. 3 Generic invasive multi-processor architecture including several loosely-coupled processors

(standard RISC CPUs and invasive cores, so-called i-Cores) as well as tightly-coupled processor

arrays (TCPAs).

In order to present the possible operational principles of invasive computing,

we shall provide an example scenario each for a) tightly-coupled processor arrays

(TCPAs), b) loosely-coupled, heterogeneous systems and c) HPC systems.

An example of how invasion might operate at the level of loop programs for

a tightly-coupled processor array (TCPA) as part of a heterogeneous architecture

shown in Figure 3 is demonstrated in Figure 4. There, two programs A1 and A2

are running in parallel and a third program A3 starting its execution on a single

processor in the upper right corner.

In a phase of invasion, A3 tries to claim all of its neighbour processors to the west

to contribute their resources (memory, wiring harness and processing elements) to

a joint parallel execution. Once having reached borders of invasion, for example,

given by resources allocated already to running applications, or, in case the degree

of invasion is optimally matching the degree of available parallelism, the invasive

program starts to copy its own or a different program into all claimed cells and then

starts executing in parallel, see, for example, Figure 5.
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TCPA with the two programs A1 and A2 running 

and incoming application A3 before invasion in west direction
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Fig. 4 Case study showing a signal processing application (A3) invading a tightly-coupled proces-

sor array (TCPA) on which two programs A1 and A2 are already executing. Program A3 invades

its neighbour processors to the west, infects claimed resources by implanting its program into

these claimed cells and then executes in parallel until termination. Subsequently, it may free used

resources again (retreat) by allowing other neighbour cells to invade.

In case the program terminates or does not need all acquired resources any more,

the program could collectively execute a retreat operation and free all processor

resources again. An example of a retreat phase is shown in Figure 6. Please note that

invade and retreat phases may evolve concurrently in a massively parallel system,

either iteratively or recursively.

Technically speaking, at least three basic operations to support invasive program-

ming will be needed, namely invade, infect and retreat. It will be explained next that

these can be implemented with very little overhead on reconfigurable MPSoC archi-

tectures such as a tightly-coupled processor array like a WPPA [8] or the AMURHA

[17] architecture in a few steps by issuing reconfiguration commands that are able to

reconfigure subdomains of interconnect and cell programs collectively in just a few

clock cycles, hence with very low overhead. In [6], for example, we have presented

a masking scheme such that a single processor program of size L can be copied
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Fig. 5 TCPA hosting a signal processing application (A3) together with two other programs A1

and A2 (after invasion).

in O(L) clock cycles into an arbitrarily sized rectangular processor region of size

N ×M.

Hence, the time overhead for an infection phase, comparable to the infection of a

cell of a living being by a virus, can be implemented in linear time with respect to the

size of a given binary program memory image L. In case of a tightly-coupled proces-

sor array running typically in a clock-synchronous manner, we intend to prove that

invasion requires only O(max{N,M}) clock cycles where N ×M denotes the max-

imally claimable or claimed rectangular processor region. Before subsequent cell

infection, an invasion hardware flag might be introduced to signal that a cell is im-

mune against subsequent invasion requests until this flag is reset in the retreat phase.

In contrast to the initial invasion phase, the retreat phase serves to free claimed re-

sources after parallel execution. As for invasion, we intend to show that retreat can

be performed decentrally in time O(max{N,M}) [16].

The principles of invasion apply similarly to heterogeneous MPSoC architec-

tures, as shown in Figure 1. Here, invasion might be explored at the thread-level

and implemented, for example, by using an agent-based approach that distributes

programs or program threads over processor resources of different kinds.
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Fig. 6 Options for invasion (uni- vs. multi-directional) and retreat phases.

At this level, dynamic load-balancing techniques might be applied to imple-

ment invasion. For example, diffusion-based load balancing methods [4, 1, 12] are

a simple and robust distributed approach for this purpose. Even centralised algo-

rithms based on global prioritisation can be made scalable using distributed priority

queues [13]. Very good load balancing can be achieved by a combination of ran-

domisation and redundancy, using fully distributed and fast algorithms (for example,

[14]).

Figure 7 shows by example how invasive computing for loosely-coupled multi-

core architectures consisting of standard RISC processors could work. These cores

may—together with local memory blocks or hardware accelerators (not shown in

the figure)—be clustered in compute tiles, which are connected through a flexible

high-speed NoC interconnect. In general, an operating system is expected to run

in a distributed or multi-instance way on several cores and may be supported by a

run-time environment.

To enable invasive computing on such MPSoCs, an efficient, dynamic assignment

of processing requests to processor cores is required. Time constants for starting

processing on newly claimed CPUs is expected to be considerably longer than in

the case of tightly-coupled processors. Therefore, we envision the corresponding
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Fig. 7 Invasive computing on a loosely-coupled MPSoC architecture

mechanisms to be implemented in a hardware-based support infrastructure using

Dynamic Many-Core i-let1 Controllers (CIC), which help to limit the impairments

of any overhead associated with the invasion/infection process.

Invasive operating and run-time support services invade processing resources

when new processing requirements have to be fulfilled. The invasion process con-

siders monitoring information on the status of the hardware platform received via

the CICs, which are contained in each compute and I/O tile. As a result of invasion,

CICs are configured for the appropriate forwarding of the associated processing

requests. This forwarding actually corresponds to the infection of the invaded pro-

cessor cores. The final assignment may be based on a set of rules that implement

an overall optimisation strategy given by the invasive operating system. Criteria to

be taken into account in this context may, for example, be the load situation of

processing or communication resources, the reliability profiles of the cores or the

temperature profile of the die.

The CICs dynamically map processing requests to processor cores under the con-

trol of the operating system and the run-time environment (iRTSS). These requests

may either be generated when

• an application wants to spawn additional parallel processes or threads, for exam-

ple, depending on interim processing results (shown in the right part of Figure 7,

dashed-dotted line), or when

• data arriving via external interfaces (for example, sensor or video data, network

packets), which represent processing requests, have to be distributed to the ap-

propriate processing resources (shown in the left part of Figure 7, straight and

dashed arrows).

1 For the explanation of the i-let concept see paragraph “units of invasion” below.
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In the first case, a so-called i-let will be created for a new thread to be spawned

and sent towards the invaded resource. The CIC in the target compute tile will dis-

tribute the i-let to one of the cores depending on the rules given by the operating

system/iRTSS, which take into account the actual load situation and other status

information. In case there is not enough processing capacity available locally, the

rules may also indicate to forward the i-let to the CIC of a compute tile with free

resources in the neighbourhood, as shown in Figure 7 for the bottom right compute

tile.

For the second case, if more traffic arrives from external senders than can be

processed by the left compute tile, the invasive operating system or even the CIC

itself—if authorised by the operating system—shall invade a further CPU cluster.

In case of success, the CIC rules would be updated and in consequence excess re-

quests (designated as i-data—invasive data—in Figure 7) would be distributed to

the newly invaded resources to cope with the increased processing requirements. In

order to avoid latencies in the invasion triggered by the operating system, resources

may already have been invaded earlier, for example, when a threshold below the

acceptable load is exceeded.

In this way, MPSoCs built out of legacy IP cores can be enabled for invasion and

thus provide applications with the required processing resources at system run-time,

which helps to meet performance requirements and at the same time to facilitate

efficient concurrent use of the platform. As applications can expand and contract on

the MPSoC dynamically, we also expect that less resources are required in total to

provide the same performance as would be needed if resource assignment is done at

compile-time.

Finally, the paradigm of invasion offers even a new perspective for programming

large scale HPC computers according to Figure 1 with respect to the problem classes

of space partitioning and adaptive resource management.

Today, resource management on large scale parallel systems is done using space

partitioning: The available processors and memories are statically partitioned among

parallel jobs. Once a job is started on these resources, it has exclusive access for its

entire life-time. This strategy becomes inadequate if more and more parallelism has

to be exploited to obtain high performance on future petascale systems. As the cores

will most likely not be getting much faster (in terms of clock rates) in the future,

applications will benefit from a maximum number of processors only during certain

phases of their life-time, and can run efficiently during the rest of their life-time

using a smaller number of processors.

Moreover, there exist applications that have inherently variable requirements for

resources. For example, multi-grid applications work on multiple grid levels ranging

from fine to coarse grids. On fine grids, many processors can work efficiently in

parallel while only a few a able to do so on coarse grids. Thus, processors can

be freed during coarse grid computation and assigned to other jobs. Another class

of applications is that of adaptive grid applications, where the grid is dynamically

refined according to the current solution. Applications may also proceed through

different phases in which different amount of parallelism might be available. For
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example, while in one phase, a pipeline structure with four stages can be used, two

different functions can be computed in parallel in another phase.

Notational Issues for the Support of Invasive Computing

Obviously, in order to enable a program to distribute its computations for parallel

execution through the concept of invasion, we need to establish a new programming

paradigm and program notation to express the mentioned phases of a) invasion, b)

infection and c) retreat. Either existing parallel program notations and languages

might be extended or pragma and special compiler modifications might be estab-

lished to allow the specification of invasive programs.

In the following, we propose a minimal set of required commands to support

resource-aware programming, independent of the level of concurrency and archi-

tectural abstraction. This informal and minimal notation only serves to give an idea

of what kind of basic commands will be needed to support invasive programming

and how such programs could be structured.

Invade. In order to explore and claim resources in the (logical) neighbourhood of a

processor running a given program, the invade instruction is needed. This com-

mand could have the following syntax:

P = invade(sender id, direction, constraints)

where sender id is the identifier, for example, coordinate of the processor start-

ing the invasion, and direction encodes the direction on the MPSoC to invade,

for example, North, South, West, East or All in which case the invasion is

carried out in all directions of its neighbourhood. For heterogeneous MPSoC archi-

tectures, the neighbourhood could be defined differently, for example, by the number

of hops in a NoC. Other parameters not shown here are constraints that could

specify whether and how not only program memory, but also data memory and in-

terconnect structures should be claimed during invasion. Further, invasion might

be restricted to certain types of processors and resources. During invasion, each

claimed resource is immediately immunised against invasion by other applications

and until they are freed explicitly in the final retreat phase. Hence, the operational

semantics of the invade command is resource reservation.

Now, a typical behaviour of an invasive program could be to claim as many re-

sources in its neighbourhood as possible. Using the invade command, a program

could determine the largest set of resources to run on in a fully decentralised man-

ner. The return parameter P could, for example, encode either the number of proces-

sors or the size of the region it was able to successfully invade. Another variant of

invade could be to claim only a fixed number of processors in each direction. For

example, Figure 4 illustrates the case of a signal processing application A3 running

concurrently with two applications A1 and A2. Here, the signal processing applica-

tion is issuing an invade command to all processors to its west. Figure 5 shows the
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running algorithm A3 after successful invasion.

Infect. Once the borders of invasion are determined and corresponding resources

reserved, the initial single-processor program could issue an infect command

that copies the program like a virus into all claimed processors. In case of a tightly-

coupled processor array (TCPA) architecture, we anticipate to be able to show how

to implement this operation for a rectangular domain of processors in time O(L)
where L is the size of the initial program. Also, the interconnect reconfiguration

may be initialised for subsequent parallel execution. As for the invade command,

infect could have several more parameters considering modifications to apply to

the copied programs such as parameter settings, and of course also the reconfigura-

tion of interconnect and memory resource settings. Note that the infect command in

its most general form might also allow a program to copy not only its own, but also

foreign code to other processors. After infection, the parallel execution of the initial

and all infected resources may start.

Retreat. Once the parallel execution is finished, each program may terminate or

just allow the invasion of its invaded resources by other programs. Using a spe-

cial command called retreat, a processor can, for example, in the simplest case

just initiate to reset flags that subsequently would allow other invaders to succeed.

Again, this retreat procedure may hold for interconnect as well as processing and

memory resources and is therefore typically parametrised. Different possible op-

tions of typical invade and retreat commands for tightly-coupled processor arrays

(TCPAs) are shown in Figure 6.

Algorithmic and Language Challenges for the Support of Invasive Computing

We have stated that resource-awareness will be central to invasive computing. Ac-

cordingly, not only the programmer, but already the algorithm designers should re-

flect and incorporate this idea that algorithms may interact and react to the temporal

availability and state of processing resources and possible external conditions.

However, this invasive computing paradigm raises interesting questions for al-

gorithm design and complexity analysis. It will also generate questions concerning

programming languages, such as semantic properties of a core invasive language

with explicit resource-awareness.

We would like to mention, however, that the idea of invasion is not tightly re-

lated or restricted to a certain programming notation or language. We plan to define

fundamental language constructs for invasion and resource-awareness, and then em-

bed these constructs into existing languages such as C++ or X10. In fact, accord-

ing to preliminary studies it seems that X10 [2] is the only available parallel lan-

guage which already offers a fundamental concept necessary for invasive comput-

ing: X10 supports distributed, heterogeneous processor/memory architectures. Also,

we would like to show how invasion can be supported in current programming mod-

els such as OpenMP and MPI.
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What is essential and novel in the presented idea of invasive algorithms is that in

order to support the concept of invasion properly, a program must be able to issue

instructions, commands, statements, function calls or process creation and termina-

tion commands that allow itself to explore and claim hardware resources. There is

a need to study architectural changes with respect to existing MPSoC architectures

in order to support these concepts properly.

Resource-aware Programming. Invade, infect and retreat constitute the basic op-

erations that shall help a programmer to manipulate the execution behaviour of a

program on the underlying parallel hardware platform.

On the other hand, invasive computing shall provide and help the programmer to

decide whether to invade at a certain point of program execution in dependence of

the state of the underlying machine. For example, such a decision might be influ-

enced by the local temperature profile of a processor, by the current load, by certain

permissions to invade resources and, most importantly, also by the correct function-

ing of the resources. Taking into account such information from the hardware up

to the application-level provides an interesting feedback-loop as shown in Figure 8

that enables resource-aware programming.

i-let

- invade

- infect

- retreat

- …

- permission

- speed

- utilization

- power/

temp

- fault/error

- permission

- speed

- utilization

- power/

temp

- fault/error

Fig. 8 Resource-aware programming is a main feature of invasive computing. By providing

a feedback-loop between application and underlying hardware platform, an application pro-

gram/thread, called i-let, may decide if and which resources to invade, infect, or retreat at run-time;

depending on the current state of the underlying parallel hardware platform. Examples of proper-

ties that need to be exploited are permissions, speed/performance as well as utilisation monitor

information, but also power and temperature information and, most importantly, also information

about faults and errors.

For example, the decision to invade a set of processors may be taken condition-

ally at a certain point within a given invasive program depending on whether the

temperature of a processor is exceeding 85 ◦C and if there are processors around
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with permission to be invaded and average load under 50 %. More complex scenar-

ios may be defined as well.

Such information provided from the hardware to the application program could

thus lead to program executions that take the dynamic situation of the underlying

hardware platform into account and permits to dynamically exploit the major bene-

fits of invasive computing, namely increase of fault-tolerance, performance, utilisa-

tion and reliability.

Units of Invasion. In the following, a piece of program subjected to invasive-

parallel execution is referred to as an “invasive-let”: in short, i-let.2 An i-let is the

fundamental abstraction of a program section being aware of potential concurrent

execution. Potential because of the semantics of an invade command, which may

indicate allocation of only one processing unit, for example, although plenty of these

might have been requested. Concurrent, instead of parallel, because of the possi-

bility that an allocated processing element will have to be multiplexed (in time)

amongst several threads of control in order to make available the grade of “paral-

lelism” as demanded by the respective application.

Such an abstraction becomes indispensable as a consequence of resource-aware

programming, in which the program structure and organisation must allow for exe-

cution patterns independently of the actual number of processing elements available

at a time. By matching the result of an invade command, an i-let “entity” will then

be handed over to infect in order to deploy the program snippet to be run con-

currently. Similarly, retreat cleans processing elements up from the i-let entities

that have been setup by infect.

Depending on the considered level of abstraction, different i-let entities are dis-

tinguished: candidate, instance, incarnation and execution. An i-let candidate rep-

resents an occurrence of a parallel program section that might result in different

samples. These samples discriminate in the grade of parallelism as, for example,

specified by a set of algorithms given the same problem to be solved. In such a set-

ting, each of these algorithms is considered to be optimal only for a certain range in

the exploration space.

In general, i-let candidates will be identified at compilation-time based on ded-

icated concepts/constructs of the programming language (for example, async in

X10 [2]), assisted by the programmer. Technically, a candidate is made up of a spe-

cific composition of code and data. This composition is dealt with as a single unit of

potential concurrent processing. Each of these unit descriptions is referred to as an

i-let instance. Given that an i-let candidate possibly comes in different samples, as

explained above, within a single invasive-parallel program, the existence of different

i-let instances will be a logical consequence. However, this is not confined to a cate-

gorically one-to-one mapping between i-let candidate and instance. A one-to-many

mapping is conceivable as well. Cases of the latter are, for example, invasive-parallel

program patterns whose i-let candidates arrange for different granularity in terms of

program text and data sections, depending on the characteristics of the hardware

2 This conception goes back to the notion of a “servlet”, which is a (Java) application program

snippet targeted for execution within a web server.
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resources (logically, virtually) available for parallel processing. Each of these will

then make up an i-let instance. Options include, for a single i-let candidate, a set of

i-let instances likewise tailor-made for a TCPA, ASIP, dual-, quad-, hexa-, octa- and

even many-core RISC or CISC.

An i-let instance will be the actual parameter to the infect command. Upon

execution of infect, the specified instance becomes an i-let incarnation; that is,

an i-let entity bound to (physical) resources and set ready for execution. Depending

on these resources as well as on the operating mode subjected to a particular pro-

cessing element, an i-let incarnation technically represents a thread of control of a

different “weight class”. In case of a TCPA, for example, each of these incarnations

will hold its own processing elements. In contrast, several incarnations of the same

or different i-let instances may share a single processing element in case of a con-

ventional (multi-core) processor. The latter mode of operation typically assumes the

implementation of a thread concept as a technical means for processor multiplex-

ing. The need for processor multiplexing may be a temporary demand, depending

on the actual load of the computing machine and the respective user profile of an

application program.

In order to be able to abstract from the actual mode of operation of some pro-

cessing element, an i-let incarnation does not yet make assumptions about a specific

“medium of activity”, but it only knows about the type of its dedicated process-

ing element. It will be the occurrence as an i-let execution that manifests that very

medium. Thus, at different points in time, an i-let incarnation for the same process-

ing element may result in different sorts of i-let executions: The binding between

incarnation and execution of the same i-let may be dynamic and may change be-

tween periods of dispatching.

Behind this approach stands the idea of an integrated cooperation of different

domains at different levels of abstraction. At the bottom, the operating system takes

care of i-let incarnation/execution management; in the middle, the language-level

run-time system does so for i-let instances; and at the top, the compiler, assisted

by the programmers, provides for the i-let candidates. Altogether, this establishes

an application-centric environment for resource-aware programming and invasive-

parallel execution of concurrent processes.

Operating System Issues of Invasive Computing

The concept of resource-aware programming calls for operating-system functions

by means of which the use of hardware as well as software resources becomes pos-

sible in a way that allows applications to make controlled progress depending on the

actual state of the underlying machine. Resources must be related to invading execu-

tion threads in an application-oriented manner. If necessary, a certain resource needs

to be bound, for example, exclusively to a particular thread or it has to be shareable

by a specific group of threads, physically or virtually. Optionally, the binding may

be static or dynamic, possibly accompanied by a signalling mechanism, likewise
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to asynchronously communicate resource-related events (for example, demand, re-

lease, consumption, or contention) from system to user level.

In order to support resource-aware execution of invasive-parallel programs as

indicated above, two fundamental operating system abstractions are being consid-

ered: the claim and the team. A claim represents a particular set of hardware re-

sources made available to an invading application. Typically, a claim is a set of

(tightly- or loosely-coupled) processing elements, but it may also describe memory

or communication resources. Claims are hierarchically structured as (1) each of its

constituents is already a (single-element) claim and (2) a claim consists of a set of

claims. This shall allow for the marshalling of homogeneous or heterogeneous clus-

ters of processing elements. More specifically, a claim of processing elements also

provides means for implementing a place, which is the concept of the programming

language X10 [2] to support a partitioned global address space. However, unlike

places, claims do not only define a shared memory domain but also aim at provid-

ing a distributed-memory dimension.

In contrast, a team is the means of abstraction from a specific use of a particular

claim in order to model some run-time behaviour as intended by a given applica-

tion. Similar to conventional computing, where a process represents a program in

execution, a team represents an invasive-parallel program in execution. More specif-

ically, a team is a set of i-let entities and may be hierarchically structured as well:

(1) every i-let already makes up a (single-element) team and (2) a team consists of a

set of teams. Teams provide means for the clustering or arrangement of interrelated

threads of execution of an invasive-parallel program. In this setting, an execution

thread may characterise an i-let instance, incarnation, or execution, depending on

whether that thread has been marshalled only, already deployed, or dispatched.

Application-oriented Run-Time Executive. A team needs to be made fit to its

claim. Reconsidering the three fundamental primitives for invasive computing,

invade allocates and returns a claim, which, in addition to a team, will be handed

over to infect in order to deploy i-let instances in accordance with the claim

properties. For deallocation (invade unaccompanied by infect) or depollution

(invade accompanied by infect), retreat is provided with the claim (set-out

by invade) to be released or cleaned up, respectively.

Asserting a claim using invade will entail local and global resource allocation

decisions to be made by the operating system. Depending on the invading applica-

tion, different criteria with respect to performance and efficiency need to be taken

into account and brought in line. In such a setting of possibly conflicting resource

allocation demands, teams are considered as the kind of mechanism that enables the

operating system to let the computing machine work for applications in a flexible

and optimal manner. Teams will be dispatched on their claims according to a sched-

ule that aims at satisfying the application demands. In order to improve application

performance, for example, this may result in a team schedule that prevents or avoids

contention in case a particular claim is being multiplexed by otherwise unrelated

teams. As a consequence—and to come full circle—resource-aware programming

also means to pass (statically or dynamically derived) a priori knowledge about
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prospective run-time behaviour from user to system level in order to aid or direct

the operating system in the process of conflict resolution and negotiating compro-

mises.

Integrated Cooperative Execution. In order to achieve high performance and ef-

ficiency in the execution of thread-parallel invasive programs, various functions re-

lated to different levels of abstractions of the computing system need to cooperate.

Figure 9 exemplifies such an interaction by roughly sketching major activities asso-

ciated with the release and execution of invade, infect and retreat. As in

Parallel Execution

Allocation

Deallocation

Application / X10 Compiler / RTS iRTSS Hardware

PlaceFactory.create()

invade

claimPlace

Code-Analysis

Team Attributes

Attributes

async

Place

i-let

Candidate

assort

execute in

paral lel

infect

i-let execution

finish }

await

Place.destroy

claim

team

i-let instance

i-let incarnation

i-let incarnation

Claim Attributes

Place claim retreat

Fig. 9 Possible levels (“columns”) of abstraction for achieving an integrated cooperative execu-

tion of invasive-parallel programs. The activity diagram sketches the flow of control in the use

of invade, infect and retreat and shows three different phases of processing: resource

allocation, parallel execution and resource deallocation.

conventional computing systems, developers are free to choose the proper level of

abstraction for application programming and thus, may directly employ invade,

infect and retreat in their programs. One of the ideas of invasive comput-

ing, however, is to also let a compiler (semi-) automatically derive these primitives

from programs written in a problem-oriented programming language. The displayed

nuance of abstraction interrelates a problem-oriented programming language level

(application, X10), an assembly level (compiler, run-time system), a machine pro-
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gramming level (run-time support system, operating system) and the hardware level.

In Figure 9, these levels are vertically arranged, in terms of columns from left to

right. In this setting, the hardware level implements the real machine of the comput-

ing system, while the other three levels implement abstract machines. The functions

(that is, operations) provided by each of these machines are dedicated to the purpose

of supporting invasive-parallel resource-aware programming.

Examples of Invasive Programs

In order to illustrate resource-aware programming and invasive computing, we shall

present four preliminary, but representative examples of invasive programs. Note

that these examples are pseudocode and are designed to demonstrate fundamental

invasive techniques. They should not be interpreted as examples for a new invasive

programming language.

The first example (Figure 10) is a simple invasive ray tracer. Note that the goal of

this fragment of an invasive ray tracer is not ultimate performance, but maximal flex-

ibility and portability of code between different platforms. In the figure, the lower

implementation of the function shade() belongs to an invasive ray tracer which

first tries to obtain a SIMD array of processors for the computation of the shadow

rays and, if successful, runs all intersect computations in parallel on the invaded and

then infected array. Note how the invade command specifies the processor type and

the number of processors, and the infect command uses higher-oder programming3

by providing a method name as parameter, which is to be applied to all elements of

the second parameter, namely the array of data. In case an SIMD processor cannot

be obtained, the algorithm tries to obtain another ordinary processor, and uses it for

the intersection computation. If this fails also, a sequential loop is executed on the

current processor. Note that resource-aware programming here means that the ap-

plication asks for the availability of processors of a specific type. For the reflected

rays, a similar resource-aware computation is shown.

The second example (Figure 11) goes one step further into resource-aware pro-

gramming. The example is a traversal of a quadtree, where the coordinates of the

current cell’s vertices are parameters to a standard recursive tree traversal method.

Leafs, that is, the last recursions are always processed on the current processor. If,

however, the tree is “big enough,” the first three recursive calls are done in parallel,

if processors are available. If not enough processors can be infected, recursive calls

are done on the current processor.

Note that the algorithm adapts dynamically to its own workload, as well as to the

available resources. Whether a tree is “big enough” to make invasion useful, not only

depends on the tree size, but also on system parameters such as cost of invasion or

communication overhead. Resource-aware programming must take such overhead

3 Actually a map construct.
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// common code:

trace(Ray ray)

{

// shoot ray

hit = ray.intersect();

// determine color for hitpoint

return shade(hit);

}

// shade() without invasion:

shade(Hit hit)

{

// determine shadow rays

Ray shadowRays[] = computeShadowRays();

boolean occluded[];

for (int i = 0; i < shadowRays.length; i++)

occluded[i] = shadowRays[i].intersect();

// determine reflected rays

Ray reflRays[] = computeReflRays();

Color refl[];

for (int i = 0; i < reflRays.length; i++)

refl[i] = reflRays[i].trace();

// determine colors

return avgOcclusion(occlusion)

*avgColor(refl);

}

// shade() using invasion:

shade(Hit hit)

{

// shadow rays: coherent computation

Ray shadowRays[] = computeShadowRays();

boolean occluded[];

// try to do it SIMD-style

if ((ret = invade(SIMD,shadowRays.length))

== success)

occluded = infect(intersect,shadowRays);

// otherwise give me an extra core ?

else if ((ret = invade(MIMD,1)) == success)

occluded = infect(intersect,shadowRays);

// otherwise, I must do it on my own

else

for (int i = 0; i < shadowRays.length; i++)

occluded[i] = shadowRays[i].intersect();

// reflection rays: non coherent,

// SIMD doesn’t make sense

Ray reflRays[] = computeReflRays();

Color refl[];

// potentially we can use

// nrOfReflectionRays processors

ret = invade(MIMD,reflRays.length);

if (ret == success)

refl[] = infect(trace,reflRays);

else

// do it on my own

for (int i = 0; i < reflRays.length; i++)

refl[i] = reflRays[i].trace();

return avgOcclusion(occlusion)*avgColor(refl);

}

Fig. 10 Pseudocode for an invasive ray tracer. The upper code of the shader shows a simple

sequential code. The lower code is invasive and relies on resource-aware programming.

into account when deciding about invasions. Notably, invasion also adds flexibility

and fault-tolerance.
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quadtreeTraversal(v1, v2, v3, v4) {

if (isQuadtreeLeaf(v1, v2, v3, v4}) {

processLeaf(v1, v2, v3, v4);

} else {

if (isSmallTree(v1,v2,v3,v4))

numCores = 0

else {

claim = invade(3);

numCores = claim.length;

}

vctr = (v1+v2+v3+v4)/4;

// last recursive call is

// always on current processor

// other recursive calls infect,

// if processors available

// and tree big enough

if (numCores>0) {

infect(claim[1], quadTreeTraversal(

(v1+v2)/2, v2, (v2+v3)/3, vctr));

numCores--;

}

else quadTreeTraversal((v1+v2)/2, v2,

(v2+v3)/3, vctr);

if (numCores>0) {

infect(claim[2], quadTreeTraversal(

vctr, (v2+v3)/2, v3, (v3+v4)/2));

numCores--;

}

else quadTreeTraversal(vctr, (v2+v3)/2,

v3, (v3+v4)/2);

if (numCores>0) {

infect(claim[3], quadTreeTraversal(

(v3+v4)/2, vctr, (v1+v4)/2, v4));

numCores--;

}

else quadTreeTraversal((v3+v4)/2, vctr,

(v1+v4)/2, v4);

quadTreeTraversal(v1, (v1+v4)/2,

vctr, (v1+v2)/2);

}

}

Fig. 11 Invasive quadtree traversal. The algorithm dynamically adapts to the available resources

and the subtree size.

The next example is an invasive version of the Shearsort algorithm (Fig. 12).

Shearsort is a parallel sorting algorithm that works on n×m-grids, for any n (width)

and m (height). It performs (n+m) ·(⌈logm⌉+1) steps. An invasive implementation

will try to invade an n×m grid of processors, but will not necessarily obtain all these

processors. If it gets an n′×m′-grid, n′ ≤ n, m′ ≤ m, it adapts to these values. Most

significantly, it may choose to use the received grid as an m′× n′-grid, rather than

an n′×m′-grid.

The pseudocode thus uses invade to obtain an initial row of m′ processors, and

for each row processor a column of n′ additional processors. Note that the invade

command specifies the direction of invasion: in the example, SOUTH and EAST.

For coarse-grained invasion such as in case of the ray-tracing example, the direction

of invasion is usually irrelevant, but for medium-grained or loop-level invasion, it

may be very relevant. Thus, a so-called invasive command space needs to be defined

and include a variety of options for invade and infect.

Next, the rows are infected with a transposition sort algorithm, which is used to

do a parallel sort in the rows first and then a parallel sort in the columns. These row

and column sort phases constitute a round. Rounds are performed logm′ + 1 times,

and an appropriate subspace of the key space is sorted in parallel in each sequential

iteration. In this example, invasion is more fine-grained than in the previous one;

here, resource-awareness means that the algorithm adapts to the available grid size,

where the initial invasion is based on the problem size.

Invasion can not only be used to receive the n′×m′-grid. It is also possible to

check after every loop execution, i. e., after every round, whether the resources re-

quested in the beginning, became available in the meantime such that by a further
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Shearsort:

– determine optimal values for n and m;

(estimation of free resources)

– Invasion to the south n;

– obtain n′ processing elements (PE);

– Invasion from every PE to the east m;

– obtain minimal number of m′ PEs;

– unused PEs are freed;

– PEs will handle a total of

⌈n ·m/(n′ ·m′⌉ keys;

– if n′ > m′

then

do Shearsort on the m′×n′ grid

else

do Shearsort on the n′×m′ grid

program InvasiveShearSorter

/* Variable declarations */

int Pinv[M];

int N prime, M prime;

int keys[N*M];

/* Parameter declarations */

parameter M;

parameter N;

/* Program blocks */

M prime = invade(PE(1,1), SOUTH,

M);

seq {
par (i >= 1 and i <= M prime)

{
Pinv[i] = invade(PE(i,1),

EAST, N);

}
N prime

= MIN[1 <= i <= M]

Pinv[i];

/* Free PEs again such that all

arrays have

same size N prime */

par (i >= 1 and i <= M) {
retreat(PE(i,1), N prime+1,

Pinv[i]);

}
if N prime > M prime

swap(N prime, M prime)

infect columns and rows with Odd-Even

Transposition Sort

repeat ⌈log M prime⌉+1 times

{
par (i >= 1 and i <= M prime) {

if odd(i) {
sort in row i the keys

2*N prime*(i-1)+1, ...,

2*N prime*i

into ascending order }
else {

sort in row i the keys

2*N prime*(i-1)+1, ...,

2*N prime*i

into descending order }
}

par (j >= 1 and j <= N prime) {
sort in column j the keys

j, j+2*N prime, j+4*N prime, j+6*N prime ...

into ascending order }
par (j >= 1 and j <= N prime) {

sort in column j the keys

N prime+j, j+3*N prime, j+5*N prime,

j+7*N prime ...

into ascending order }
}/* Here, more invasion is possible:

Check

whether more resources are available in

the meanwhile and act appropriately */

}
}

Fig. 12 Pseudocode for invasive Shearsort.

invasion phase the execution can be sped up, as noted in the pseudocode of Fig-

ure 12.

While the previous examples demonstrated coarse-grained and medium-grained

invasion, the last example (Figure 13) demonstrates fine-grained invasion at the loop

level. For every iteration of a parallelised loop, a separate processor element may be

invaded. To avoid the overhead of i-let incarnation, there is just one controller i-let

which synchronises all the invaded processor elements of a tightly-coupled proces-

sor array (TCPA) at a maximal invasion speed of a single clock cycle/processor.

Each processor element is infected with “code 2” (Figure 13, right column) and ex-

ecutes the initial loop program in parallel. This kind of invasion is particularly suited

for a myriad of nested loop algorithms (loop-level parallelism).

All examples follow a more generic scheme and are presented here to give a bet-

ter idea of the invasive process (cf. Figure 14). In particular, invade, infect and

retreat operate on sets of resources and processes, called “claims” and “teams.”
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Sequential C code:

for (i=0; i<T; i++)

for (j=0; j<N; j++)

y[i] += a[j] * u[i-j];

Code 1 (sequential assembler code):

; write input to feedback FIFO of

depth N

1: mov ffo, in0

; set the number of Taps

2: mov r0, N

3: mov r2, 0

; filter coefficient a

4: mul r1, ffo, a

5: add r2, r2, r1

; decrement the tap

6: sub r0, r0,1

; loop N times

7: if zeroflag!=true jmp 4

; get the output

8: mov out1, r2

9: jmp 1

Control code (pseudo notation):

while (stop!=1) do

P = invade(N)

if (P>0) then

// execute code on P processors

infect(P, ProgID)

for (i=0; i<T; i++) do

Code 2

end for

retreat()

else

// execute code on one processor

for (i=0; i<T; i++) do

Code 1

end for

end if

end while

Code 2 (VLIW program):

add out1 r0 in1, mul r0 in0 a, mov out0 in0

Fig. 13 FIR filter exploiting loop-level invasion. Sequential C and assembler code is shown left.

To the right, the i-let code controlling an invaded TCPA is shown, as well as the assembler code

(VLIW) executed on each invaded processing element.

claim = invade(type, quantity, properties);

if (!useful(claim)) /* unrealisable claim request */

raise(IMPROPER_CLAIM);

team = assort(claim, code, data);

if (!viable(team)) /* inadmissible team assembly */

raise(UNVIABLE_TEAM);

infect(claim, team); /* employ resource(s) */

retreat(claim); /* clean-up of resource(s) */

Fig. 14 Pattern of invasive programming (in the programming language C) by adopting an operat-

ing system machine level of abstraction. Imagine requests of invade, infect and retreat as

“system calls” to an abstract machine, for example, an operating system, while all other primitives

execute as part of a run-time system or even an application program by using that machine.

This example also demonstrates the optional integration of exception handling con-

cepts by means of which resource-aware application programs are enabled to reflect

on the outcome of claim and team assembly. Handling an “invasion exception” may

result in reissuing invade with alternate parameter values. Similar concepts hold

with respect to the marshalling of a team (that is, assembly of code and data sections)

to fit a selected claim. Note that further origins of invasion exceptions may be the

implementations of invade, infect and retreat. At the level of abstraction

assumed in Figure 14, this eventually implies that the operating system will be in
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charge of raising exceptions. Adequate linguistic support for robust resource-aware

programming like this comes with the exception handling concept of X10 [2].

Let us conclude with the important remark that true resource-aware program-

ming will not just check the availability of processors. A resource-aware applica-

tion in general will first of all determine its own needs based on the dynamic work

load, then check for available resources of a specific kind and finally infect the

obtained resources. The “kind of resource” may include parameters such as per-

mission, speed, or even processor temperature. In the background, the operating

system and the reconfigurable hardware cooperate to give the application its desired

resources in the most efficient and appropriate way.

Expected Impact and Risks

In the following, we summarise the expected benefits and impact factors we see

for a broad and multi-disciplinary research in invasive computing but also potential

risks.

Impact. We have motivated invasive computing as a means to cope with the explod-

ing complexity of future massively parallel MPSoCs with the major call to provide

scalability, higher resource utilisation higher efficiency and also higher speed as

compared to applications with statically partitioned allocation of resources. We in-

tend to achieve these goals on the basis of resource-aware programming and new

reconfigurable MPSoC architecture inventions. Both revolutionary architectures as

well as new programming concepts in synergy shall provide a boost in efficiency

and usability of future MPSoC platforms that are expected to contain 1000 and

more processors.

The areas in which research in invasive computing might create a substantial

impact are summarized as follows:

• Processor Architecture of Future Multi-Core Systems: Even if we will not be

able to compete in our design concepts and demonstrators with high-end pro-

cessor designs as developed by teams of 100 and more designers at processor

companies such as Intel and AMD, we believe that some of our architectural in-

ventions will influence their way of how to design large processor systems in the

future. For example, without research and inventions on previously non-common

RISC architectures performed at universities such as by Hennessy and Patterson,

the chip design companies might still produce other types of processors.

• Design Environments for Programming Parallel Many-Processor Systems:

Similarly, our paradigm of invasive programs and resource-aware programming

will have an impact on future programming languages and programming envi-

ronments for the development of parallel programs.

• Design of Parallel Algorithms: Even more, the idea of invasive algorithm de-

sign will influence the development of parallel algorithms as well. Never before

algorithm designers had the opportunity to dynamically adapt an algorithm’s be-
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haviour and parallelism to the dynamic work load and the dynamic availability

of resources.

Risks. Nevertheless, we do not conceal that our challenging goals might also hide

some risks:

• Acceptance of Resource-aware Programming: At a first look, resource-aware

programming seems questionable and counter-productive when looking at mod-

ern software-technological principles: High level-languages as well as operating

systems have, for good reason, more and more abstracted away from specific

hardware details or resource politics. Instead of offering progress, resource-aware

programming thus sounds contradictory and a step back into the past when look-

ing at the achievements of modern programming languages, which abstract away

from specific architectural details.

• Cost in Terms of Time and Area: Increasing the non-determinism by self-

organised algorithm execution when allowing programs to control hardware re-

sources directly might naturally lead to cases with lower performance and worse

resource utilisation than statically mapped and scheduled applications, of course

as the time to invade and retreat from resource occupations produces overhead.

Any comparison of cost and speed-up against a statically mapped non-invasive

algorithm must therefore be done carefully and, in order to be fair, consider the

case of overload situations: Here, due to invasion, resources will be freed which

enables other applications to dynamically claim more resources than in a stat-

ically partitioned case between several competing applications. If the degree of

parallelism of considered applications is varying in time, also speed-up will result

naturally over static processor partitions apart from higher resource utilisation,

savings of power and fault-tolerance. A natural scenario of invasive computing

is therefore that not only one but several programs are simultaneously trying to

invade a common pool of resources.

In summary, it is evident that there is a price to pay in order to exploit the ben-

efits of invasive computing. Therefore, it needs to be investigated carefully where

the border of centralised control versus invasive control reaches its greatest bene-

fit and how a maximum of abstraction can be maintained even for resource-aware

computing. The goal of this survey was to give an overview into the fascinating

emerging paradigm of invasive computing that might solve many problems of MP-

SoC architectures and their programming with more than 1000 cores for the years

2020 and beyond. Here, only the basic principles and fields of required research

could be drafted.
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