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Abstract
Information flow control (IFC) is the process of analyzing whether an attacker can
gain information about sensitive data by observing the outputs of a program. The
traditional approach to IFC is qualitative. The focus is on whether the program leaks
any information. More relevant for practical purposes is the quantitative approach to
IFC, where the aim is to measure how much information the program can leak.

Quantitative approaches to IFC are usually classed into one of two categories. Static
analyses and dynamic analyses. We present an approach to quantitative information
flow control that combines both. Our tool performs a SAT-based analysis of the program,
that converts all information flows into propositional formulas. We combine this with
a static quantitative IFC tool that is applied to parts of the program, where analyzing
every program path is infeasible.

We show that the combination of the two approaches can improve the results of the
quantitative analysis, compared to purely static or purely dynamic tools.





Zusammenfassung
Informationsflusskontrolle ist die Analyse von Programmen, mit dem Ziel zu über-
prüfen, ob es für einen Angreifer möglich ist, geheime Informationen zu erlangen,
indem er die Ausgaben des Programms beobachtet. Traditionellerweise handelt es sich
dabei um eine qualitative Analyse. Es wird bewertet ob Informationen zum Angreifer
gelangen können. Für praktische Zwecke wichtiger ist allerdings die quantitative In-
formationsflusskontrolle. Hierbei wird gemessen, wie viel Information der Angreifer
erlangen kann.

Verschiedene Ansätze zur quantitativen Informationsflusskontrolle werden üblicher-
weise in eine von zwei Kategorien eingeteilt: statische Analysen und dynamische Analy-
sen. Wir präsentieren ein Verfahren zur quantitativen Informationsflusskontrolle, das
Elemente aus statischen und dynamischen Analysen kombiniert. Wir wenden eine
SAT-basierte Analyse auf das Eingabeprogramm an, die sämtliche Informationsflüsse in
logische Formeln umwandelt. Dieser Ansatz wird kombiniert mit einer statischen quan-
titativen IFC Analyse, die auf Teile des Programms angewendet wird, wo das Analysieren
eines jeden möglichen Ausführungspfades nicht effizient möglich ist.

Wir werden zeigen, dass die Kombination der beiden Ansätze die Ergebnisse der
quantitativen Analyse verbessern kann im Vergleich zu Analysen, die rein statisch bzw.
rein dynamisch arbeiten.
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1. Introduction

1.1. Motivation
In February 2017, the American web services and web security company Cloudflare
made headlines when a security bug was discovered in an HTML parser. A buffer overrun
caused the servers to leak sensitive data, such as browser cookies, authentication tokens,
or HTTP post bodies. The so-called “Cloudbleed” bug is one of many examples of
software revealing sensitive data to unauthorized users. Such security threats have
become more prominent, as more and more software is used in the handling of sensitive
data [1, 2].

Qualitative Information Flow Control Qualitative information flow control aims to
guarantee that a program’s secret inputs do not influence its public outputs. Thus, a
malicious attacker has no possibility of obtaining secret information simply by observing
the program’s outputs. This property is called non-interference.

For non-interferent programs, the secret inputs are guaranteed to not influence the
public outputs. Unintentional data leaks are impossible. However, often this require-
ment is too strict for practical use. Consider the program shown in figure 1.1. While the
secret password is not leaked in its entirety, an attacker can gather some information
by observing whether their guess was correct. Hence, the non-interference property
is violated. However, for most practical purposes, some information leakage is fully
acceptable or even inevitable for the program’s intended usage, like in the password
checker example.

Quantitative Information Flow Control The desire to make information flow con-
trol applicable to more practical use cases gave rise to the notion of quantitative in-
formation flow control (QIFC). QIFC measures the amount of information leaked by a
program in bits and, if required, compares it to a predetermined limit. The amount of
leakage in the password checker example is one bit.

QIFC analyses are typically divided into two categories:
Static analyses are performed without executing the program and rely solely on exami-

nation of the source code. Such analyses usually deliver an upper bound for the amount
of information a program might leak. However, this upper bound might be much larger
than the actual leakage, due to the lack of knowledge about concrete control and data
flows in the program.

Contrarily, dynamic analyses compute a program’s leakage by simulating one or more
program executions. For these executions, dynamic analyses might be able to deliver a
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Input password, guess: int
Output match: int

1: if g uess == passwor d then
2: match ← 1
3: else
4: match ← 0
5: end if

Figure 1.1.: Program that checks if the public input guess matches the secret
input password and reveals the result of the check to the user.

more precise estimate of the leakage than static analyses. However, these estimates are
not guaranteed to be a sound upper bound, since it is often infeasible to analyze every
possible execution of the program.

1.2. Related Work
While early mentions of quantifying information flow have been made, for example
by Denning [3], a formal definition and theoretical groundwork for the QIFC problem
are given more recently by Lowe [4] and Smith [5]. A recent publication by Alvim et al.
[6] gives a comprehensive overview of the theory behind quantitative information flow
control.

Numerous QIFC analyses based on model counting have previously been introduced.
Newsome, McCamant, and Song [7] transform their programs into boolean predicates

that accurately model the programs’ semantics. Using SAT-based techniques they then
measure the program’s channel capacity. The results are used to find false positives in
a dynamic taint analysis to more accurately determine the amount of influence of an
attacker on the program.

Klebanov, Manthey, and Muise [8] use the bounded model checker CBMC [9] to
generate a boolean predicate and the d-DNNF-based #SAT tools SHARPSAT [10] and
DSHARP [11] to find the number of models of these predicates. A similar approach
is used by Biondi et al. in [12]. To address scalability issues with overly complex SAT
formulas, they use an approximate model counter (in this case ApproxMC [13]). All
these model-counting-based tools compute the channel capacity of the input program.

Chu and Hashimoto in [14] also combine the CBMC framework with an approximate
model counter to estimate the pre-image size of a program input.

A static analysis based on constant bit analysis is presented in [15]. By analyzing
bit-level dependencies on a PDG, the amount of leaked information can be estimated
by calculating a minimal vertex cut.

A previous attempt at combining static and dynamic techniques has been made by
McCamant and Ernst [16]. They transform programs into network graphs with edge
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capacities corresponding to the amount of information that might flow between the
corresponding program parts. Thus, the maximum leak of information corresponds
to the maximum flow in the created network. They use this approach to estimate
the leakage of the input program. However, their analysis is not sound and might
underestimate leakage.

Dynamic techniques such as multi execution [17] or faceted values [18] offer the
possibility of executing the program safely: Multiple executions are simulated simulta-
neously for different security levels. The true program outputs are only produced in the
execution linked to their security. All other outputs are substituted by default values.

The analysis presented in [19] extends the dynamic permissive upgrade strategy to
include a quantification of the information leakage to bound the amount of information
leaked at run time.

1.3. Contributions and Overview
In this thesis, we define and compare two different measures for information leakage:
the first is one based on min-entropy and is used by many of the QIFC tools mentioned
above. The second one is based on the notion of dynamic leakage during a single
program execution. We will present a model-counting-based analysis that can provide
estimations for both quantities.

Additionally, we present an integration of static QIFC methods into our analysis to
mitigate the difficulties that other model-counting-based tools have.

The analysis will be integrated into an interpreter that provides the possibility of
executing a program while simultaneously providing the user with bounds on the
information that is leaked by the program and the current execution.

This thesis will be structured as follows: We begin by introducing the theoretical
concepts that our work is based on in section 2. In section 3, we introduce the basic
design and theoretical foundations of the interpreter. The following section 4 extends
the analysis to more advanced control flow structures.

In section 7 we benchmark our tool regarding aspects like precision and scalability
and evaluate the results in comparison to other analyses.
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2. Theoretical Background
This chapter presents the theoretical background of this thesis. We will explain the
foundations of quantitative information flow control and the different measures used
to quantify information leakage. Furthermore, we will outline important aspects of
(approximate) model counting, as well as basic principles used in static (Q)IFC analyses
Nildumu and JOANA, as both are used in our hybrid QIFC tool.

2.1. Quantitative Information Flow Control
Information flow control aims to guarantee the confidentiality of the secret input data of
a program, by examining the flow of information through the program to public output
channels, where the information becomes accessible to an attacker.

There are different ways in which such information leakage might happen: Explicit
information flows are a consequence of data dependencies. They occur for example
when a secret value is written to a public channel or the information is copied to another
variable that is later leaked to a public channel. An example of a program is shown in
figure 2.1. Implicit information flows are caused by control dependencies. Leaks through
implicit flows happen when secret values affect the program’s output by influencing the
execution path. Figure 2.2 shows a program that contains an implicit flow. The program
never assigns a secret value to an output variable. However, through the condition of
the if-statement, the secret still influences the output value. Additional to explicit and
implicit flows, an attacker could gain information through covert channels by observing
a program’s usage of different resources, such as time or memory [20].

The aim of qualitative information flow control is to prove the absence of explicit
and implicit information flows, a property called non-interference. For real-world
applications, leaking a certain amount of information is often required to build useful
programs. In this case, the non-interference property is too strict. Instead, we wish to
limit the amount of information that is leaked. Quantitative information flow control
provides tools to measure how much information can be learned by an attacker about a
program’s secret inputs [5].

The central question of QIFC is: Given a program p that accepts some input H and
produces some output L, how much information can an adversary A learn about H , if
he knows the program p and observes L?

We will use the following assumptions for p and A :

Input program We assume p to be a sequential, deterministic program that receives
an input H and produces an output L. Both the input and output can be tuples that

13
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Input H : int
Output L: int

1: L : i nt ← H % 10

Figure 2.1.: Example for information leakage through explicit flows, caused by a
data dependency in line 1

Input H : int
Output L: int

1: L : i nt ← 0
2: if H== 42 then
3: L← 1
4: end if

Figure 2.2.: Example for information leakage through implicit flows, caused by a
control dependency from line 2 to line 3

consist of multiple values. The concrete input and output values of a single execution
are called h and l . The input h is an element of the set H of all possible inputs for a
program. We assume that all program executions terminate.

Because the programs we consider are deterministic, each program p and input
value h induces a mapping from the input value to the output value of the program.
We write �p�h(L) for the output value from the execution with h. L is the set of all
possible outputs of the program. The set L is determined by p and H via the equation
L := {�p�h(L) |h ∈H }

For a more detailed description of the input language we use, we refer to 3.1.

Security Lattice Input and output variables are associated with an element of a
security lattice, describing its confidentiality level. We use a lattice with two elements:
l̂ for public values and ĥ for secret values. If not otherwise specified, we consider all
inputs to be secret and all outputs to be public.

Attacker Model We consider an adversary A that knows the source code of the pro-
gram p and observes all outputs with a security level l̂ after the execution has finished.
The input value for an execution is chosen based on an underlying probability distribu-
tion. The distribution is known to the adversary.

We assume that the attacker is not able to extract any information through covert
channels. The goal of the attacker is to guess the secret input of the program, using the
information he can extract through observing the program’s output.

14
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Information Flow Measures Smith [5] characterizes information leakage with the
following informal equation:

Initial uncertainty = information leaked+ remaining uncertainty (2.1)

In our scenario, the unknown value H is the initial uncertainty, measured by some
entropy measure. The remaining uncertainty is the entropy of H after observing L.

Measuring Leakage with Vulnerability A widely used measure for information
leakage is min-entropy, which is based on vulnerability. The vulnerability of a value X
describes “the worst case probability that an adversary could guess the value of X in
one try” [5]. If no other references are given, we follow the definitions from [5] in this
section.

Definition 2.1.1 (Vulnerability and Min-Entropy)
Let X be a random variable and X the set of possible values for X . The vulnerability
V (X ) is defined as

V (X ) := max
x∈X

P [X = x]

The min-entropy of X is given by

H∞(X ) := log2
1

V (X )

Definition 2.1.2 (Conditional Entropy)
Given two random variables X and Y that are jointly distributed, the conditional entropy
H(X |Y ) describes the uncertainty about X given Y . H(X |Y ) is defined as

H(X |Y ) := ∑
y∈Y

P [Y = y]H(X |Y = y)

where

H(X |Y = y) := ∑
x∈X

P [X = x|Y = y] log
1

P [X = x|Y = y]
(2.2)

Using these definitions, Smith [5] proposes the following definitions for the leakage
equation in 2.1:

The initial uncertainty is given by the min-entropy of the input value H∞(H) and the
remaining uncertainty is given by the conditional min-entropy H∞(H|L) of H after having
observed L as the output. Thus the information leaked by a program is H∞(H)−H∞(H|L).
This quantity can be determined easily with the following definition and theorem:

15



2.1. QUANTITATIVE INFORMATION FLOW CONTROL

Definition 2.1.3 (Channel Capacity)
Given a program p, the channel capacity of p is the logarithm of the number of distinct
outputs than can be produced by p.

cc(p) := log2 |L |
For deterministic programs, the channel capacity is the maximum entropy of L over all
distributions of H [5].

Theorem 2.1 (Measuring Min-entropy through Channel Capacity)
For deterministic programs p, with H being uniformly distributed, the information
leaked is equal to the channel capacity of p.

Measuring Leakage for Individual Program Executions While the vulnerability-
based approach is appropriate to assess the risk of inadvertent information leakage for
the program as a whole, it fails to give realistic measures in the dynamic case. If we
consider the output of a single program run, the information an attacker may obtain
from the output can be significantly greater than what the channel capacity of the
program tells us [21].

We demonstrate this using the example program from 2.2. The possible outputs of
the program are 0 and 1, so the leakage, measured in bits, using the channel capacity
formula is log2 2 = 1. Assuming integers are 64 bit wide, leaking a single bit seems
acceptable in most cases.

Now, let’s assume we run the program with the input h := 42. The output of the
program will be 1. An attacker that observes this output and has access to the program
code will now know that the secret input was 42. Instead of one single bit, the attacker
has gained knowledge about all 64 bits of the secret input. For every other input, the
attacker can only conclude that H 6= 42. That leaves 264 − 1 possible inputs that are
indistinguishable for the attacker.

This example shows that relying on min-entropy and channel capacity as a measure
of information leakage can be dangerous if we care about the confidentiality of the
secret inputs in every run of the program. Therefore, we now introduce measures that
are more suited for the dynamic case.

We define an equivalence relation called the indistinguishability relation as shown in
definition 2.1.4, where two inputs are related iff they produce the same program output.
The equivalence class of this relation are pre-images of the possible program outputs
(see definition 2.1.5). When the adversary observes the value l , he knows that the secret
input must be an element of H l . Thus, the bigger the size of H l , the less likely the
adversary is to guess the secret input in a single try [22, 5, 6].

Definition 2.1.4 (Indistinguishability Relation)
For each program p, we define the indistinguishability relation ∼ over H as:

∀h,h′ ∈H : h ∼ h′ ⇐⇒ �p�h(L) = �p�h′(L)

Definition 2.1.5 (Indistinguishability Set)
The indistinguishability set of a public output l ∈L of a program p is given as:

16



2.1. QUANTITATIVE INFORMATION FLOW CONTROL

observed output channel capacity dynamic leakage
L= 1 2 64
L= 0 2 7.8∗10−20

Figure 2.3.: Comparison of the two leakage measures for example 2.1. The quanti-
ties are measured in bit.

H l := {h ∈H | �p�h(L) = l }

Consequently, in the dynamic case, the probability of an attacker guessing the secret
in a single try depends on the size of the indistinguishability set for the output for the
specific execution that is analyzed.

To reflect this notion in the leakage measure of our analysis, we redefine the remaining
uncertainty in equation 2.1 as the conditional entropy of H, given the outcome L = l .
The formula of this quantity is given in equation 2.2.

As mentioned above, the possible values for H are restricted to the elements of H l , so
the probability P [H = h|L = l ] = 0 for all h ∈H \H l . Assuming a uniform distribution
for the secret input values, we obtain the following leakage measure:

H(H|L= l ) := ∑
h∈H

P [H= h|L= l ] log2
1

P [H= h|L= l ]

= ∑
h∈H l

1

|H l |
log2 |H l |

= log2 |H l |
Theorem 2.2 (Dynamic leakage)
Assuming a uniform distribution of the inputs, the dynamic leakage of a single program
run of a program p with a resulting output l is given by

Ld yn(p, l ) := H∞(H)−H(H|L= l )

= log2 |H |− log2 |H l |
The table in figure 2.3 compares the two leakage measures defined in this section.
The relationship between dynamic leakage and min-entropy is shown in equation 2.3:

The channel capacity of a program corresponds to the expected value of the dynamic
leakage. The proof for the equation is given in the appendix B.

cc(p) = E(Ld yn(p, l )) (2.3)

In this thesis, we develop an analysis that can calculate both, the channel capacity of
a program and the dynamic leakage of a single execution.

17



2.2. PROGRAM REPRESENTATION

2.2. Program Representation

Control Flow Graph A control flow graph (CFG) is a program representation that
highlights the control flows and possible execution paths in the program [23]. CFGs
are widely used in compiler optimizations and static program analyses. The nodes of a
CFG are a function’s basic blocks, plus two special blocks start and end, that mark the
single entry- and exit point of the function. An edge is inserted for every possible jump
from one block to another. An example graph for the program from figure 2.2 can be
seen in 2.4a.

We use BBp for the set of all basic blocks of a program p and b1,b2, ... for the blocks
themselves. With exception of the start- and end-block, every block in the CFG has at
minimum one predecessor and one successor.

Static Single Assignment Static single assignment (SSA) is a representation of the
program, where every variable is assigned exactly once. If in the original program, a
variable is written to more than once, a copy of the variable is created that replaces the
original one from that point in the program [24].

To decide which copy of a variable reaches a statement that uses the value of that
variable, φ-functions are used. φ-functions are placed at points in the program at which
multiple control flow paths merge. In a CFG these points are basic blocks that have more
than one predecessor. For each control flow path, the variable copy used on that path is
given as an argument to the φ-function. During execution, the φ-function evaluates to
the argument that belongs to the control flow path that was executed. The CFG in figure
2.4a contains a φ-function in block b3. The value L defined in b3 is assigned the value
L1 if block b2 is executed, otherwise L0 will be assigned to L.

All data structures we use to represent the input program, are built using the SSA-form
of the program.

Program Dependence Graph A program dependence graph (PDG) is an intermedi-
ate representation of a program that makes the program’s data and control dependencies
explicit. Its nodes are the program’s operations and expressions and the edges represent
the dependencies that exist between those [25]. The Program Dependence Graph of the
program 2.2 is shown in figure 2.4b.

A data dependency edge from node x to node y exists, if the operation of the node y
depends on a value that is defined in the node x.

A control dependency edge from node x to node y exists, if the outcome of x has an
influence on whether node y will be executed.

Thus, a path x
∗
 y between two nodes exists, if information might flow in the program

from location x to location y . Consequently, if there is no path, no information can flow
between the two statements. This property makes PDGs a popular data structure for
information flow analysis [26, 27].

18
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Entry

b0

int L0 = 0;
if (H == 42)

b1

L1 = 1;
b2

L=φ(L1,L0)

b3

Exit

b4

(a) Control Flow Graph

int L0 = 0;

H == 42

L1 = 1;

L=φ(L1,L0)

(b) Program Dependence Graph
The black edges are data dependencies,
while blue edges show control depen-
dencies

Figure 2.4.: Different graph representations for the program in 2.2

2.3. Program Slicing

Slicing is a technique used to find those sections of a program that are influenced by
(forward slice) or influence (backward slice) a given location in the program [28]. This
location is called the slicing criterion and is a tuple 〈s, v〉 of a program statement s and a
variable v . The backward slice with respect to the criterion 〈s, v〉 contains all statements
that influence the value of v at point s in the program. A forward slice for the criterion
〈s, v〉 contains all statements that are influenced by the value of v assigned at point s in
the program.

Computing a program slice can be efficiently done using the PDG of the given program.
Since all dependencies are explicitly represented as edges, the computation of a program
slice is reduced to a reachability problem [29]:

The backward slice for a node v is given as the set of all nodes v ′, for which a path
v ′ ∗
 v exists. The forward slice of node v is given as the set of all nodes v ′, for which a

path v
∗
 v ′ exists.

Horwitz [30] noted that interprocedural slices could be computed similarly using
system dependence graphs.

Tools like JOANA use slicing techniques on system dependence graphs to analyze
the information flow in programs and give non-interference guarantees where possible
[31].
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2.4. MODEL COUNTING

Input H : int
Output sum: int

i : i nt ← 0
sum : i nt ← 0
pr oduct : i nt ← 1
while i ≤ H do

sum ← sum + i
pr oduct ← pr oduct ∗ i
i ++

end while
return

Input H : int
Output sum: int

i : i nt ← 0
sum : i nt ← 0
pr oduct : i nt ← 1
while i ≤ H do

sum ← sum + i
pr oduct ← pr oduct ∗ i
i ++

end while
return

Figure 2.5.: The right side shows a backward slice of the function on the left for
the slicing criterion 〈return, sum 〉

2.4. Model Counting

Given a propositional formula F , the model counting problem (#SAT) is the problem of
finding the number of distinct variable assignments for F , for which F evaluates to true
[32]. So the solution for the formula shown in 2.6 is #F = 3, with the fulfilling variable as-
signments being {x = true, y = false}, {x = true, y = true} and {x = false, y = false}.
We will denote the model count of a propositional formula f as mc( f ).

#SAT is a generalization of the SAT problem and falls into the #P-complete complexity
class, as demonstrated by Valiant in [33].

Early exact model counting techniques, such as [34], or the well-known tool sharpSAT
[10] use a DPLL-style exploration of the solution space. Another class of model counters
instead employ complex transformations to turn the given CNF formula into a different
representation, which makes model counting a far easier problem. Common are trans-
formations into binary decision diagrams [35] or deterministic, decomposable negation
normal form [36]. An example of such a model counter is the c2d tool by Darwiche [37].

Approximate Model Counting State-of-the-art exact model counters scale to a cou-
ple of hundred variables. This limit can be pushed to around 1,000 variables if we allow
approximate solutions [32]. The first approximate #SAT algorithm for DNF formulas was
introduced by Luby and Karp in [38] used Monte-Carlo techniques. This approach was
extended to work on CNF formulas by Chakraborty, Meel and Vardi in [13]. Both proce-
dures fall under category of (ε,δ)-counters: for 0 < ε,δ≤ 1, the approximated solution
#Fappr ox to the true solution of the problem #F, lies in the interval [(1+ε)−1#F, (1+ε)#F ]
with a probability of 1−δ [38, 13].
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2.4. MODEL COUNTING

F := x ∨¬y

Figure 2.6.: Propositional formula with 2 variables

Projected Model Counting Given a set of propositional variables V and a proposi-
tional formula F over V , projected model counting (#∃SAT) is the problem of finding the
number of assignments to a set of priority variables P ⊆ V , such that the assignment
can be extended to an assignment over V that fulfills F . Considering the example from
2.6 and a priority set P = {x}, the number of projected models is 2, with both possible
assignments of x being extendable to a fulfilling assignment over all variables by setting
y = false. We will denote the projected model count of a propositional formula f over
the set of priority variables P as mcP ( f ).

The problem is introduced by Aziz et al. in [39]. Solving projected model counting
is usually done using modified algorithms for the #SAT problem. Aziz et al. introduce
approaches based on the DPLL strategy, where search decisions are first made on
non-priority variables, and on the d-DNNF strategy, where non-priority variables are
“forgotten” by replacing them with the value true.
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3. Basic Analysis Design
The analysis we will present in this thesis combines static and dynamic approaches to
the QIFC problem. It runs in several stages:

First is a static pre-processing stage. It identifies program parts that are critical to the
flow of information and restricts the subsequent analysis to those parts.

Following the pre-processing, a dependency analysis examines possible program exe-
cutions and evaluates the explicit and implicit information flow along these execution
paths. We encode these information flows in propositional formulas and evaluate them
using an approximate model counter. The generated boolean predicates can be used to
estimate both the channel capacity of the input program as well as the dynamic leakage
for a specific execution.

During the evaluation of the channel capacity, the generated boolean predicates
might prove to be too complex to be evaluated by a model counter. In this case, our
tool will split the program into segments. The segments are analyzed separately and
the results are combined for an overall estimation of the program’s channel capacity.
The analysis of the segments will either be done using the previously generated boolean
formulas or by the static QIFC tool Nildumu.

The analysis is integrated into an interpreter that will execute the program for a given
input and, additionally to the channel capacity, will give an estimation for the dynamic
leakage of the execution.

This chapter will focus on the basic principles of the dependency analysis: The
generation of the boolean predicates and the relation between those predicates and the
amount of information leaked by the program. For this, we assume that input programs
have no loops and no function calls. How these structures can be handled is discussed
in section 4.

3.1. Input Programs
Input programs are written in a variant of the while-language with functions. The
language contains the following control structures, using their standard semantics:

• sequential composition

• assignments

• if-statements

• while-statements

• break-statements

• (recursive) function calls

The right-hand side of an assignment is an expression that uses the standard arith-
metic and bitwise boolean operators. Boolean expressions used in while- and if-
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3.1. INPUT PROGRAMS

statements are defined in the standard way. The output value of the program is revealed
at the end of the execution. In particular, we assume that the leak of the value happens
outside any control flow structures, such as loops or branches of of-statements.

As already mentioned, we disallow loops and function calls in our input programs for
now.

We continue to use the notations introduced in section 2.1 for the input program. Fur-
thermore, we denote the set of all statements (expressions) that are part of the language
as Stmts (Expr). Subscripts, such as Stmtsq (Exprq ) indicate the set of statements
(expressions) that belong to the program part q , where q could be a loop, a function, or
the program as a whole.

In our analysis, we work with the input’s CFG as well as the PDG, both in SSA form. To
further navigate the data structures, we use the following definitions:

Definition 3.1.1 (CFG Predecessors and Successors)
The functions will return the set of predecessor and successor blocks respectively for
the given basic block.

pr ed : BBp → 2BBp

succ : BBp → 2BBp

We assume for pr ed(b) that the returned set of predecessors for b is ordered and that
the order corresponds to the arguments of any φ-functions that might be present in b.

In our analysis, we view all values as bit vectors. All values are signed integers of a
fixed width w . We represent the numerical value of an integer as a bit vector using the
following map:

Definition 3.1.2 (Bit Vector)
The function

bv : Z→ {0,1}w

maps integers to bit vectors of length w , where bv(n) is the two’s complement rep-
resentation of the integer n. The returned value bv(n) is subject to possible over- or
underflows, should the number n not be representable as a w-bit two’s complement
number.

Execution Value We alter the definition of �p�h : {L} →L to a function

�p�h : VALp → {0,1}w ∪ {⊥}

that takes a program value as an argument and returns the numerical value that was
assigned during the execution with input h. The numerical value is given as a bit vector
of the number’s two’s complement. If in this execution, the value remains undefined,
because the corresponding assignment instruction wasn’t executed, the function will
return⊥. Because the program p does not contain loops or function calls, no assignment
can be executed more than once. Thus, �p�·(·) is well-defined.
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3.2. FOUNDATIONS OF DEPENDENCY ANALYSIS

Input H := (H2H1H0): int
Output L1: int

1: L0 ← H & 1102 [H 2 H 1 0]
2: L1 ← L0 | 0102 [H 2 1 0]

Figure 3.1.: Introductory example program. Behind each line of code, we have
written the propositional vector that represents the assigned value

3.2. Foundations of Dependency Analysis
The aim of the dependency analysis is to generate a vector of propositional formulas for
each program value that we call the dependency vector. This vector contains a formula
for each bit of the value, that encodes the state of the bit depending on the bits of
the input value. More specifically, the formula contains variables that represent the
bits of the input value and if we initialize these variables with the bits of an input, the
dependency vector of a value will evaluate to its execution value.

Introductory Example Before giving a detailed explanation of our analysis, we will
demonstrate the basic principles in a short example. The program we want to analyze is
shown in figure 3.1. The program takes an input value, performs two bitwise operations
on the value, and then leaks the result.

Analyzing the program line by line, we can formulate conditions for the assigned
values that depend on the values and operations used in the assignment expression:

• On line 1, the program assigns to the value L0 the result of a bitwise &-operation.
The right-hand operand is a constant. Because the least significant bit of this
constant is 0, the least significant bit of L0 must also be 0. The two left-hand bits
of L0 are identical to the corresponding bits in H . Thus, we can describe the value
L0 by the vector [H 2 H 2 0].

• On line 2, using the same approach as above, we can ascribe to the value L1 the
vector [H 2 1 0]

The dependency vector [H 2 10] which we computed for the output value L1, describes
all possible output values of the example program. The vector shows that the last two
bit of the output are constant and that the most significant bit is equal to the most
significant bit of the input. From this information, we can conclude the following:

• The channel capacity of the example program is log2(2) = 1, because the program
has only two possible outputs: 1102 iff the most significant bit of H is 1 and 0102

iff the most significant bit of H is 0.

• Given the value of L1 after an execution, we can infer the value of the most sig-
nificant bit of H. We have no information about the other two bits. For any pos-

25



3.2. FOUNDATIONS OF DEPENDENCY ANALYSIS

sible output l = (l 2l 1l 0), its indistinguishability set is given by H l := {(h2h1h0) ∈
{0,1}3 |l 2 = h2}. The dynamic leakage of a single execution is log2(23)− log2(22) = 1.

Basic Definitions and Notation Propositional formulas are made up of boolean
constants B = {true,false}, boolean variables bi ∈ VARB and the standard boolean
operators {¬,∧,∨, =⇒ , ⇐⇒ }. F is the set of all boolean formulas over VARB.

In order to relate bit-vectors and propositional formulas to each other, we use the
following definitions:

Definition 3.2.1 (Mapping Bits to Boolean Constants)
The bijective map B : {0,1} →F maps a bit to a boolean constant.

B : {0,1} →F

0 7→ false
1 7→ true

Throughout this thesis, we will apply B(·) and B−1(·) implicitly where needed.

Definition 3.2.2 (Mapping Values to Vectors of Boolean Variables)
The map

V ar : VALp →F w

assigns a vector of fresh propositional variables to a program value. Each boolean
variable is used to represent a bit of the value. A boolean variable is fresh if it is not
yet used to represent any other bit. This means that for values v0 6= v1 ∈ VALp we have
V ar (v0)∩V ar (v1) =;.

We will later use the function V ar (·) to instantiate propositional variable vectors
that represent the input value(s) of the program we are analyzing. The dependency
vectors we compute are based on the variable set of these variable vectors. They form
the so-called independent set:

Definition 3.2.3 (Independent Set)
Let {H0, ...,Hm} be the set of input values of p. The set of boolean variables

V arp := ⋃
i∈{1,...,m}

V ar (Hi )

is called the independent set. The independent set defines the variables that are used in
propositional formulas during the analysis.
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Dependency Analysis for Explicit Information Flow In the introductory example,
we introduced the idea of the dependency vector: A vector of propositional formulas
that represents the state of the value’s bits in terms of the bits of the input value. In this
section, we will explain how the dependency vector can be computed.

Definition 3.2.4 (Expression Evaluation and Dependency Vectors)
The function

E : Expr→F w

evaluates program expressions and computes a vector of propositional formulas that
represent the expression result. The computation of E (e) is shown in figure 3.2.

Definition 3.2.5 (Dependency Vector)
The dependency vector function maps each value to a vector of propositional formulas.
For a value v that is defined in a statement as v := e, we define:

dV ec : VALp →F w ,
dV ec(v) := E (e)

The map is well-defined since p is given in SSA-form which means that each value is
defined exactly once. We use dV ec(v)i to mean the i-th entry of the vector dV ec(v).

To assign each value its dependency vector, we compute E (e), for the expression
e that defines the value in question. For accesses to input variables and constants,
the evaluation of E (·) is straightforward. For other expressions, the evaluation of E (e)
usually depends on the dependency vectors of use-values of e. We can guarantee
that the needed dependency values have previously been computed if we evaluate the
dependency vectors of program values in the order in which the values are defined in
the program.

3.3. Measuring Information Leakage with
Dependency Vectors

The entries of a value’s dependency vector describe on a bit level, which execution value
will be assigned to the value for a certain input value. They take into account all data
dependencies in the program. Therefore, we can capture all explicit information flows
using the dependency vectors.

To demonstrate the connection between a value’s dependency vector and its execution
value for a particular program run, we evaluate the propositional formulas using the
following truth assignment:

Definition 3.3.1 (Evaluation of Dependency Vectors)
Every concrete input h ∈ H for the input value H induces a truth assignment: Given
the concrete input value h for the input variable H, we assign the boolean variables in
V ar (H) the values of the bits in h. The evaluation of a propositional formula f with
respect to the truth assignment induced by the input h will be denoted by Vh( f ).
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3.3. MEASURING INFORMATION LEAKAGE WITH DEPENDENCY VECTORS

Let e := n, n ∈Z
E (e) :=B(bv(n))

(a) Constant Values are represented by dependency vectors that contain boolean constants.
The vector entries correspond to the two’s complement representation of the constant’s
numerical value.

Let e := H
E (e) := V ar (H)

(b) Input parameters are represented by a vector of boolean variables. The variables are part of
the independent set V arp of p and dependency vectors of non-input variables are defined
as a function of these variables.

Let e := v, v ∈ VALp

E (e) := dV ec(v)

(c) Variable accesses are evaluated to the dependency vector of the accessed variable.

Let e := e0 ⊕e1 or e :=⊕e0

(d) Dependency vectors of unary or binary arithmetic expressions and unary or binary bitwise
boolean expressions are computed using the combinatorial logic of the two’s complement.
Even though this logic normally operates on bits (either 0 or 1), we can apply the boolean
operations also to propositional formulas, without changing their semantics.

Figure 3.2.: Definition of E (e) for different types of expressions e
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3.3. MEASURING INFORMATION LEAKAGE WITH DEPENDENCY VECTORS

Using the truth assignment induced by a particular input h ∈ H , the dependency
vectors fulfill the following theorem:

Theorem 3.1 (Equivalence Theorem)
Given an input value h ∈H for the program p, let v be an arbitrary value in the program
p for which �p�h(v) 6= ⊥. The relation between the dependency vector and the execution
value of v is given by:

∀0 ≤ i < w : Vh(dV ec(v)i ) ⇐⇒ �p�h(v)i

At this stage, we have not yet introduced the analysis of programs with diverging control
flow. For now, the theorem can only be applied to programs with linear control flow. A
proof for the theorem is given in appendix B.

Using theorem 3.1, we can compute both leakage measures with the following lem-
mata:

Lemma 3.2 (Dynamic Leakage)
Let p be a program with the concrete value l of the output variable L being leaked
to a public output channel during the execution of p with input h. The size of l ’s
indistinguishability set H l is given by the number of models of the formula:

Fd yn :
∧

0≤i<w

(�p�h(L)i ⇐⇒ Vh(dV ec(L))i
)

The formula Fd yn contains only the boolean variables from the set V arp . Each model
of Fd yn thus is a truth assignment β : V arp →B. If for a truth assignment β the formula
Fd yn is fulfilled, the dependency vector of the output, evaluated with respect to this
truth assignment, is equivalent to the bit vector l . From theorem3.1, it follows that the
execution of p with the input h induced by β will result in the output l .

Assuming a uniform distribution of H , the dynamic leakage of the execution of p
with the input h is given by

Ld yn(p,h) = log2(|H |)− log2(mc(Fd yn))

Lemma 3.3 (Channel Capacity)
Let p be a program with an output value L. Let o := [o0...ow ] be a vector of boolean
variables with o ∩V arp =;.

The number of distinct outputs of p is given by the projected model count of the
formula

Fcc :
∧

0≤i<w

(
oi ⇐⇒ dV ec(L)i

)
with the variables in o = [o0, ...,ow ] as the set of priority variables. Assuming a uniform
distribution of H , the channel capacity is given by

cc(p) = log2(mco(Fcc ))
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Input H : int
Output L: int

1: if H< 0 then
2: L← 0
3: else
4: H← H−1
5: if H< 0 then
6: L← 1
7: else
8: L← 2
9: end if

10: end if

Entry

if H0 < 0

b0

L0 ← 0

b1

H1 = H0 −1
if H1 < 0

b2

L1 ← 1

b3

L2 ← 2

b4

L3 ←φ(L1,L2)
b5

L4 ←φ(L0,L3)
b6

Exit

Figure 3.3.: Program text and CFG of a short example program. The program
returns 0 if H< 0, 1 if H== 0 and 2 otherwise. The CFG is in SSA-form.

3.4. Dependency Analysis for Implicit Information
Flow

Implicit information flow occurs when an attacker can draw conclusions about the
secret inputs by observing the values of the public outputs and then reconstructing the
execution path of a program execution. In this section we will extend the dependency
analysis from before to include implicit information flows caused by if-statements.
Implicit information flows from more complex control flow structures, such as loops
and function calls, are discussed in chapter 4. Throughout this section, we use the
program shown in figure 3.3 as an example to demonstrate the individual steps of the
analysis.

To include implicit information flow in the analysis, we develop the function exec :
BBp →F that assigns each basic block b of a program a propositional formula exec(b)
that is fulfilled by the inputs iff the block b is executed.

In a CFG, the edges represent the jumps between basic blocks. We define the edge
condition function f ol l ow : BBp×BBp →F to annotate CFG edges with expressions
that describe when the jump between the two blocks is taken during an execution. The
edge annotations are given as propositional formulas, that already take into account the
dependency vectors that were computed for the operands. Figure 3.4 shows the CFG of
the example program 3.3 with edges being annotated with their edge conditions.
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Entry

if H0 < 0b0

L0 ← 0b1

H1 = H0 −1
if H1 < 0

b2

L1 ← 1b3 L2 ← 2b4

L3 ←φ(L1,L2)b5

L4 ←φ(L0,L3)b6

Exit

true

H0 < 0

H0 ≥ 0

true

H0 −1 < 0 H0 −1 ≥ 0

true true

true

true

Figure 3.4.: CFG from figure 3.4 with annotated edges. The annotations represent
the formulas f ol l ow(e). For easier reading the formulas are given
as propositional formulas with linear integer arithmetic instead of bit
vector logic.
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Execution Conditions for Basic Blocks A basic block b in a program is executed,
iff one of its predecessor blocks is executed and the condition for execution to jump
from said predecessor to the block b is fulfilled. A special case is a program’s entry block,
which is executed in every run. This leads to the following definition:

Definition 3.4.1 (Execution Condition)
For every basic block b ∈BBp , we define its execution condition as:

exec : BBp → F

b 7→
true b = entry∨

p ∈pr ed(b)

(
f ol l ow(p,b)∧exec(p)

)
otherwise

Lemma 3.4 (Correctness of exec(·))
For every basic block b ∈BBp and its execution condition exec(b),
Vh(exec(b)) = true ⇐⇒ basic block b is executed in a program run with input h.

The proof for the lemma is given in appendix B in conjunction with the proof for
theorem 3.1.

Example Computation Table 3.5 shows the execution conditions of all the basic
blocks of example 3.3. We show how these results were computed in detail for blocks b3

and b5:

• Basic block b3 has one predecessor b2 with exec(b2) = H0 ≥ 0. The edge (b2,b3)
represents a conditional jump that is taken iff the condition f ol l ow((b2,b3)) :=
H0 −1 < 0 is fulfilled.

exec(b3) := f ol low((b2,b3)) ∧ exec(b2)

= H0 ≥ 0 ∧ H0 −1 < 0

• Basic block b5 has two predecessors b3 and b4. Their execution conditions are
given in table 3.5. Both incoming edges of b5 represent unconditional jumps, thus
their edge conditions evaluate to true.

exec(b5) := f ol low((b3,b5))∧exec(b3) ∨ f ol l ow((b4,b5))∧exec(b4)

= true∧ (H0 ≥ 0∧H0 −1 < 0) ∨ true∧ (H0 ≥ 0∧H0 −1 ≥ 0)

= H0 ≥ 0∧ (H0 −1 < 0∨H0 −1 ≥ 0)

= H0 ≥ 0
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b exec(b)
entry true

b0 true
b1 H0 < 0
b2 H0 ≥ 0
b3 H0 ≥ 0∧H0 −1 < 0
b4 H0 ≥ 0∧H0 −1 ≥ 0
b5 H0 ≥ 0
b6 true

exit true

Figure 3.5.: Evaluation of exec(·) for the basic blocks of program 3.3

Combining Implicit and Explicit Information Flows in φ-functions The execu-
tion conditions introduced in the previous section can be used to evaluate which basic
blocks will be executed depending on the inputs. They contain all control flow depen-
dencies that are present in the program. The formulas describing the implicit flows
are integrated into the dependency vectors when a value is assigned the result of a
φ-function. Let the value v2 be defined via v2 :=φ(v0, v1), v0, v1 ∈ VALp . The assignment
expression is part of basic block b2 with predecessors {b0,b1}. The situation is shown in
figure 3.6a.

To evaluate the φ-expression and compute the dependency vector for value v2, we
use the ternary operator IF(·, ·, ·):

Definition 3.4.2 (Ternary Operator)
We define the ternary operator IF(·, ·, ·) as:

IF : F ×F ×F →F

IF(c, x, y) := (c =⇒ x)∧ (¬c =⇒ y)

We canonically extend the definition to include propositional vectors:

IF : F ×F k ×F k →F k

IF(c, x, y) := [IF(c, xi , y i )]k
i=0

The dependency vector of the value v2 can then be computed using the definition of
E (·) for φ-functions given in figure 3.6b. The correctness of this definition follows from
the following considerations:

If we compute the dependency vector dV ec(v2) := E (φ(v0, v1)) of the value v2, we can
assume that the basic block b2 is executed. Otherwise, any assignment to v2 and the
information contained in the assignment is irrelevant for the leakage analysis of the
execution in question.

If the basic block b2 is executed, at least one of its predecessors b0, b1 must have
been executed as well for the execution to reach b2. Furthermore, it is impossible for
both of b2’s predecessors to have been executed since so far we only consider loop-
free programs, which have no back-edges in their CFG. It follows that the condition
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b0 b1

b2

v2 ←φ(v0, v1)

(a) Section of a CFG that contains a
φ-function.

E (φ(v0, v1)) :=
IF(exec(b0),dV ec(v0),dV ec(v1))

(b) Extension of the definition of E (·) in 3.2 for
the evaluation of φ-functions.

Figure 3.6.: Handling of φ-functions during the dependency analysis

exec(b0)Yexec(b1) must hold for any input value. It is therefore sufficient to check the
execution condition of b0 in the definition of E (φ(v0, v1)).

Example (cont’d) We complete the dependency analysis of the example program 3.3
using the algorithm shown in figure 3.7. The algorithm returns the dependency vector
of the leaked value. Figure 3.8 shows the dependency vectors of all program values.
In SSA-form, L4 is the value that corresponds to the program’s output. The algorithm
returns:

dV ec(L4) = IF(H0 < 0,dV ec(L0),dV ec(L3))

= IF(H0 < 0,0, IF(H0 ≥ 0∧ (H0 −1) < 0,dV ec(L1),dV ec(L2)))

= IF(H0 < 0,0, IF(H0 ≥ 0∧ (H0 −1) < 0,1,2))
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Algorithm 3.1 Dependency Analysis
Input C FG(p) = (BBp , E) : CFG of input program p in SSA form.
Output leaked : F w

1: bl ocks : (BBp →F )
2: dV ec : (VALp →F w )
3: for b ∈BBp in topological order do
4: bl ocks(b) ← exec(b)
5: for v := e ∈ St atement s(b) do
6: dV ec(v) ← E (e)
7: end for
8: end for
9: l eaked ← dV ec(L)

Figure 3.7.: Algorithm for the dependency analysis of call-free, loop-free programs
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Entry

if H0 < 0

b0

L0 ← 0 dV ec(L0) = 0

b1

H1 = H0 −1 dV ec(H1) = H0 −1
if H1 < 0

b2

L1 ← 1 dV ec(L1) = 1

b3

L2 ← 2 dV ec(L2) = 2

b4

L3 ←φ(L1,L2)
dV ec(L3) = IF(H0 ≥ 0∧ (H0 −1) < 0,dV ec(L1),dV ec(L2))

b5

L4 ←φ(L0,L3)
dV ec(L4) = IF(H0 < 0,dV ec(L0),dV ec(L3))

b6

Exit

Figure 3.8.: CFG of program 3.3 annotated with the dependency vectors of each
program value
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4. Extended Dependency Analysis
Chapter 3 introduced the basic principles of the dependency analysis and how the
results of the dependency analysis can be used to measure the amount of leaked infor-
mation for a given program. In this chapter, we will extend the dependency analysis to
include the handling of arrays and more complex control flow structures, such as loops
and function calls.

Sequential Execution Value So far, we used the execution value �p�h(v) to get the
actual value of v during the execution with input h. Allowing loops and function calls
in our input programs means that it is possible for statements to be executed multiple
times. A value v can thereby have more than one execution value during an execution.
To ensure that the execution value of a value is still well defined, we add a parameter i
that signifies, which of the possible execution values we want to refer to.

Definition 4.0.1 (Sequential Execution Value)
For a program p and an input value h, we define the sequential execution value function
as

�p�h : VALp ×N→ {0,1}w ∪ {⊥}.

For a value v , �p�h(v, i ) is the numerical value of the i -th assignment of v during the
execution. If there is no i -th assignment of the value, the function returns ⊥.

Execution Condition exec(·) in Loops In our analysis, we treat loops as if they were
separate functions. Therefore, when computing the execution condition exec(·) for the
basic blocks of a program, we need special handling of the blocks inside a loop:

The execution condition for the loop header will be computed in the standard way.
For the blocks inside the loop, we assume they form a separate function with the loop

header being the entry block. We compute the execution condition for those blocks in
the standard way, but under the assumption that exec(b) = true for the loop header b.

Since we treat loops as a function rather than a control flow structure, we annotate
the edge between the loop head b and the block following the loop header after the loop
b̂ with f ol l ow((b, b̂)) = true. The execution condition exec(b̂) is computed using this
annotation.

4.1. Loops
Loops are handled during the dependency analysis with the following steps:
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Input ;
Output L: int

1: L : i nt ← 0
2: j : i nt ← 1
3: while j 6= 0 do
4: L← L | j
5: j ← j << 1
6: end while

(a) Program code before SSA-transformation

Entry

L0 ← 0
j0 ← 1

L1 ←φ(L0,L2)
j1 ←φ( j0, j2)

if( j1 6= 0)

L2 ← L1 | j1

j2 ← j1 << 1

Exit

(b) CFG of the example program in
SSA-form

Figure 4.1.: Example program for Loop Analysis. The program doesn’t have a
secret input and always returns 1112.

First, we isolate the loop from the rest of the program and analyze the loop body
as a separate function. Second, we generate the dependency vectors for loop output
values. These dependency vectors act as a map from the loop inputs to the loop outputs.
We compute the outputs of specific iterations using this map. Finally, we combine the
iteration results into dependency vectors that represent the effect of the loop during the
execution as a whole.

Because all three steps refer to the same program values in a different context, we use
different notations to differentiate between them. The notations represent the value as
an element of VALp and are used as alternative names for the values during different
stages of the analysis. For a program value v that is defined inside a loop l :

• v[l ] is used instead of v during the general loop body analysis, which is the analysis
of the loop separate from the rest of the program.

• v[l , i ] refers to the value v in the i-th iteration of the loop l .

• v is the value v in its state after the execution of the loop is finished

General Loop Body Analysis We begin the analysis by defining input and output
values for a single loop iteration.

The set of values that are used inside a loop can be divided into two categories:

38



4.1. LOOPS

1. Values that might change with each iteration. These are values that are defined
inside the loop (or before the loop in the case of the first loop iteration) and then
get passed to the next iteration via a φ-function in the loop header.

2. Values that are constant for every loop iteration.

The first group of values represents the inputs and outputs of a loop iteration, while
the second group can be treated as constants in the loop analysis, even if their concrete
value is unknown.

Definition 4.1.1 (Loop Inputs and Outputs)
Let l be a loop in program p.

(a) We define the set i n[l ] of inputs of the loop as the set of values defined by φ-
functions in the header of the loop l .

(b) We define the set out [l ] of outputs of the loop as the set of values that are defined
inside the loop and appear as arguments in a φ-function in the loop header of l .

Analogous to the notation for values, i n[l ] and out [l ] refer to the input and output
sets during the general loop body analysis. The input and output sets for the i -th
iteration are called i n[l , i ] and out [l , i ].

Using the inputs and outputs, we can apply the principles of the basic dependency
analysis to the loop l . We represent the values of the inputs as vectors of fresh boolean
variables by setting dV ec(v[l ]) = V ar (v[l ]) for v[l ] ∈ i n[l ]. Next, we compute the
dependency vectors of all values defined inside the loop.

The dependency vectors of the loop outputs out [l ] are made up of formulas that
depend on

1. Variables that represent loop input bits

2. Variables that represent program input bits

3. Variables that represent loop input bits from enclosing loops

Additional to the inputs and outputs, we define a propositional formula exi t [l ] for
the loop l , which represents the condition that must be fulfilled to jump out of the loop.
Like the formulas for values in out [l ], exi t [l ] depends on variables from the loop inputs,
the program inputs, and enclosing loop inputs.

Example Figure 4.1 shows an example of a program containing a loop l . The inputs of
the loop are the values L1[l ] and j1[l ]. The outputs of the loop are the values L2[l ] and
j2[l ].
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The dependency vectors of those values are:

dV ec(L1[l ]) = [L2
1,L1

1,L0
1]

dV ec( j1[l ]) = [ j 2
1 , j 1

1 , j 0
1 ]

dV ec(L2[l ]) = [L2
1 ∨ j 2

1 ,L1
1 ∨ j 1

1 ,L0
1 ∨ j 0

1 ]

dV ec( j2[l ]) = [ j 1
1 , j 0

1 ,0]

The loop condition is exi t [l ] = (
[ j 2

1 , j 1
1 , j 0

1 ] == [0,0,0]
)
.

Computing Iterations We use the dependency vectors from the general loop body
analysis, to obtain dependency vectors that represent the loop outputs after a specific
iteration. The formulas in these vectors will then only depend on the program input
variables and not the loop variables.

Input and output values of specific loop iterations are collected in the sets i n[l , i ]
and out [l , i ], where i is the iteration count. The special case i = 0 refers to the program
state before the loop is entered. We leave i n[l ,0] undefined and use out [l , i ] as the
values that are computed before the loop and then used inside the loop during the first
iteration. For i > 0 we have i n[l , i +1] = out [l , i ].

Given the dependency vectors for values in i n[l , i ] for some value of i , we can compute
the dependency vectors for values in out [l , i ], by substituting the variables representing
values in i n[l ] by the corresponding formula of the value in i n[l , i ].

Definition 4.1.2 (Iteration Substitution)
Let p be a program with a loop starting at block l . We are given dependency vectors for
values in i n[l , i ]. To compute the dependency vectors for values in out [l , i ], we use the
substitution

σl ,i := {h[l ] j 7→ dV ec(h[l , i ]) j | h[l ] ∈ i n[l ]}

and apply it to the dependency vectors of out [l ].

The substitution σl ,i can be applied to exi t [l ] to obtain a formula exi t [l , i ] that
represents the condition of whether the loop is exited after the i-th loop iteration.

Example (cont’d) The dependency vectors of the input and output values, as well
as the loop condition, for the first iterations for the example program are presented in
table 4.1. The construction of the substitution for i = 1 is shown below:
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Iteration Inputs Outputs Exit Condition
L1[l , i ] j1[l , i ] L2[l , i ] j2[l , i ] exi t [l , i ]

i = 0 - - [000] [001] [001] == [000]
i = 1 [000] [001] [001] [010] [010] == [000]
i = 2 [001] [010] [011] [100] [100] == [000]
i = 3 [011] [100] [111] [000] [000] == [000]

Table 4.1.: Dependency Vectors for the values of the sets i n[l , i ] and out [l , i ] for
the example program 4.1b.

dV ec(L1[l ]) := [ L2
1 L1

1 L0
1 ]

dV ec(L1[l ,0]) := [ 0 0 0 ]

σl ,1,L := { L2
1 7→ 0 L2

1 7→ 0 L0
1 7→ 0 }

dV ec( j1[l ]) := [ j 2
1 j 1

1 j 0
1 ]

dV ec( j1[l ,0]) := [ 0 0 1 ]

σl ,1,i := { j 2
1 7→ 0 j 2

1 7→ 0 j 0
1 7→ 1 }

σl ,1 := σl ,1,L ∪σl ,1,i

The dependency vectors for the values j2[l ,1] and L2[l ,1] are the result of applying
the substitution σl ,1 to the vectors dV ec( j2[l ]) and dV ec(L2[l ]).

Combining Iterations for Overall Loop Result To complete the loop analysis, we
compute dependency vectors for the output values, that represent the loop execution
as a whole.

The result values of the loop depend on the number of iterations that are executed.
The case that the loop is executed exactly i times is represented by the condition
i ter ati ons[l , i ]:

Definition 4.1.3 (Loop Iterations)
Let p be a program with a loop beginning with basic block l . The propositional formula

i ter ati ons[l , i ] :

( ∧
0≤ j<i

¬exi t [l , i ]

)
∧exi t [l , i ]

is a propositional formula that evaluates to true, iff for a program input h the loop is
executed exactly i times. IT contains variables from V arp and variables representing
inputs from enclosing loops where applicable.

The formula i ter ati ons[l , i ] encodes the following intuition: For every j < i ,
exi t [l , j ] must be false, otherwise the loop execution would have been aborted before
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Algorithm 4.1 Loop Result Computation
Input Iteration results v[l , i ] for the loop output value v and
iteration conditions i ter ati ons[l , i ]
Output dV ec(v) : Dependency vector that represents the overall computation result

of the loop for the value v .

1: dV ec(v) ←⊥ // initialize with placeholder value
2: i : i nt ← 0
3: while i < maxI ter do
4: dV ec(v) ← dV ec(v).r epl ace(⊥, IF(i ter ati ons[l , i ], dV ec(v[l , i ]),⊥))
5: i ++
6: end while

Figure 4.2.: Algorithm for the computation of loop output values. The function
o.replace(x, y)) replaces occurrences of x in expression o with y

the i -th iteration. The condition exi t [l , i ]) must be true, otherwise, the loop would have
been executed more than i times.

For the loop output values, we make the following observations:
We can check whether the loop is executed exactly i times or not via the condition

i ter ati ons[l , i ]. If the loop is executed exactly i times, the results are then equal
to the outputs out [l , i ]. Continuing this observation for more iterations leads to the
definition of algorithm 4.1that computes the dependency vector for a loop output
value. To ensure the termination of the algorithm, we have to limit the number of loop
iterations it computes to an upper bound maxI ter . The following paragraph discusses
the soundness of this approximation.

Approximation: Limiting Loop Iterations Limiting the number of loop iterations
means, that we exclude certain program inputs h from the analysis, namely those
that require more than maxI ter iterations. If such an input is used to evaluate the
dependency vector of a loop output value v , dV ec(v) will evaluate to ⊥. We interpret
⊥ as an invalid execution and disregard the value in the following analysis. If the
dependency vector dV ec(v) =⊥ is used in the computation of the dependency vector
for another value v ′, dV ec(v ′) will also be set to ⊥.

The exclusion of certain input values means, we have to adjust the equivalence from
theorem 3.1:

Theorem 4.1 (Weakened Equivalence Theorem)
Given a program p, a program input value h and a program value v that is defined
outside any loops and for which �p�h(v) 6= ⊥. The dependency vector of the value v
fulfills the following condition:
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Vh(dV ec(v)) 6= ⊥ =⇒ (∀0 ≤ i < w : Vh(dV ec(v)i ) ⇐⇒ �p�h(v)i )

The correctness of this theorem can be proven similarly to the proof given in appendix
B. The premise Vh(dV ec(v)) 6= ⊥ implies, that the execution path for the input h until
the definition of the value v was completely analyzed and the input h is not part of the
inputs that are excluded from the analysis by the loop iteration limit.

To compute the dynamic leakage of the execution and the channel capacity, we must
adjust the method from section 3.3 to take into account the weakened equivalence
theorem. Let p be a program that contains a loop. We consider an execution that
produces the output value l .

Dynamic Leakage Any input value h for which Vh(dV ec(L)) doesn’t evaluate to ⊥ still
fulfills theorem 3.1. That means we can correctly decide if h ∈H l . If we have an input
value h′ for which Vh′(dV ec(L)) =⊥, our analysis is not able to decide whether h′ ∈H l .
However, we can safely approximate the set H l , by not adding any inputs with invalid
executions to H l . Under-approximation is sound because the knowledge gained by the
attacker increases as the size of H l decreases. Therefore the approximated dynamic
leakage is a safe upper bound for the information leaked by the execution.

Channel Capacity The channel capacity analysis tries to find all possible outputs l . If
we restrict the set H from which the inputs are taken, we possibly also restrict the set of
possible outputs L . To safely approximate the size of the set L , we must assume that
every input h with Vh(dV ec(L)) =⊥ produces a distinct output l that is not the result of
any other program execution. Over-estimating the size of L means over-estimating the
amount of information an attacker might gain and is therefore sound.

Example (cont’d) Applying algorithm 4.1 to the value L2 from example 4.1b, gives
the following results:

dV ec(L2) = IF(([001] == [000]), [000],

IF(([010] == [000]), [001],

IF(([100] == [000]), [011],

IF(([000] == [000]), [111], ⊥))))

= IF((false), [000],

IF((false), [001],

IF((false), [011],

IF((true), [111], ⊥))))

= [111]
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4.2. Functions
We assume that all functions that are part of the input program are pure, i.e. they have
no side effects. This means the only way for information to flow into and out of the
function is through the input parameters and the return value.

We write Funcp for the set of functions that belong to a program p. For the analysis of
the function f , we treat f as its own program, where the parameters correspond to the
input H and the return value corresponds to the output L.

Function Analysis In the following, we first consider the analysis of non-recursive
functions with a single return statement. Independent of any call sites of the function,
we use the standard dependency analysis algorithm to compute dependency vectors for
all values inside the function.

The dependency vectors computed for values of this function are defined over the
variables created to represent the function’s parameters. They do not contain variables
representing bits of values from outside the function.

Dependency Analysis for call-Statements The statement v ← call f (a) calls the
function f with the arguments a := (a0, ..., am) and assigns the return value of the call to
the value v . To compute the dependency vector dV ec(v), we substitute the variables in
V ar f with the dependency vectors of the arguments:

Definition 4.2.1 (Call Site Substitution)
Let f ∈ Funcp be a function in p that has input parameters P := (P0, ...,Pm) and re-
turn value r f and let the expression call f (a) be a call to f with the arguments a :=
(a0, ..., am).

The substitution σ f (a), defined as

σ f (a) := {dV ec(Pi ) j 7→ dV ec(ai ) j |Pi ∈ P}

is called the call site substitution of the expr call f (a) and substitutes the variables in
dV ec(Pi ) representing the input parameters Pi by the corresponding boolean predicates
of the dependency vectors belonging to the call site’s arguments (note that dV ec(Pi )
contains only variables that represent the bits of the function parameter Pi ).

The definition of E : Expr→F for function call expressions is then given as:

E (call f (a)) :=σ f (a)(dV ec(r f ))

Lemma 4.2
Using the extended definition of E including call-expressions, theorem 3.1 (theorem 4.1
in case of loop approximation) is still fulfilled.
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4.3. Functions with Multiple Return Statements

A function f may have more than one return statement. Those statements in general
return different values v1, ...vk . Thus it is necessary to combine the dependency vectors
of these values into a single vector r f that accurately represents the returned value
based on the arguments of this function. We assume that return statements are not
contained in a loop.

The combining of multiple return values requires the following observation: If b1,b2 ∈
BB f are basic blocks that each contain a return statement and b1 6= b2, then exec(b1)∧
exec(b2) is unsatisfiable. If this were not true, and exec(b1)∧exec(b2) was satisfiable,
then lemma 3.4 tells us, that there must be a set of function arguments for f, for which
both b1 and b2 are executed. This would mean the execution of f has multiple return
values, which is an obvious contradiction. Thus, exec(b1)∧exec(b2) must be unsatisfi-
able.

It follows directly from this observation that if a function has k return statements
which appear in the blocks b1, ...,bk , at most one of the conditions exec(b1), ...,exec(bk )
can be fulfilled for any truth assignment. Simultaneously, every execution of a func-
tion with a return value includes a return statement. Hence exactly of the conditions
exec(b1), ...exec(bk ) must be fulfilled for any truth assignment.

Let v1, ...vk be the values that are possibly returned by a function. The return state-
ments are located in b1, ..,bk respectively. We compute the vector r f in such a way that,
if for a function argument a the condition Va(exec(bi )) is true, Va(r f ) will be equiva-
lent to Va(dV ec(vi )). We define the function sel ect : 2VAL f ×BB f →F w that fulfills this
condition:

Definition 4.3.1 (Value Selection)
Let s = {s0, ..., sk } ∈ 2VAL f ×BB f be a set of tuples where si = (vi ,bi ). We define

sel ect : 2VAL f ×BB f →F w

sel ect (s) =
{

dV ec(v) |s| = 1 and s = (v,b)

IF (exec(bi ),dV ec(vi ), sel ect (s \ si )) |s| > 1, si = (vi ,bi ) ∈ s arbitrary

sel ect (s) corresponds to a sequential application of IF(·, ·, ·)

Example Figure 4.3 shows a program that contains a function with three return state-
ments. The possible return values in the example program are 0 in block b1, 1 in block
b3 and 2 in block b4. The dependency vectors and execution conditions for the function
ISEVENGREATERZERO() are:
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dV ec(x) = [x2x1x0]

dV ec(0) = [000]

dV ec(1) = [001]

dV ec(2) = [010]

exec(b1) = x2 ⇐⇒ false

exec(b3) = x2 6⇐⇒ false ∧ x0 ⇐⇒ false

exec(b4) = x2 6⇐⇒ false ∧ x0 6⇐⇒ false
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The return vector of the function ISEVENGREATERZERO() is given by:

sel ect ((0,b1), (1,b2), (2,b3)) = IF(exec(b1),0, sel ect ((1,b2), (2,b3))

= IF(exec(b1),0, IF(exec(b2),1, sel ect ((2,b3)))

= IF(exec(b1),0, IF(exec(b2),1, 2)

4.4. Recursion
We restrict the analysis of recursive functions in this section to functions that contain at
most one recursive call. The analysis we present can be extended to functions with an
arbitrary number of recursive calls.

To analyze recursive functions, we begin by applying the standard function analysis
described in 4.2 and 4.3. However, call statements that recursively invoke the function
that they are part of, are not handled in the standard way. Instead, we use placeholder
variables rr ec := [r w−1

r ec ,r w−2
r ec , ...,r 0

r ec ] as the return value of the call.

Simulating Recursive Calls The analysis of a recursive function f yields a depen-
dency vector for the return value r f of f , which depends on the variables representing
the input bits and contains placeholder variables from the vector rr ec . These variables
represent the return value r f of the recursive call inside the function.

Under our assumption that all program executions terminate, the vector dV ec(r f )
will not contain variables from rr ec for at least one function argument. If this wasn’t the
case, then there would be no way to end the recursion during the execution.

For notation, we use r f [i ] to mean the value r f after the function f was executed
with a maximum recursion depth i . The return value we have computed so far is
r f [0]. We analyse recursive calls up until a recursion bound r ecBound and write r f for
r f [r ecBound ].

To simulate the information flow of the recursive function call in the function f ,
we replace the placeholder value rr ec with σ f (a)(dV ec(r f )), where σ f (a) is the call site
substitution defined in 4.2.1 for the recursive call of f with arguments a. The result
vector of the replacement operation represents the execution of function f including
one recursive call and the placeholder value rr ec for any further recursive calls.

To simulate more than one recursive call, we repeat the same replacement operation
until we reach a predefined recursion bound r ecBound . The algorithm to compute the
final dependency vector of the return value of a recursive function is shown in figure 4.4.

Approximation: Limiting Recursion Depth By limiting the recursion depth to
r ecBound , we may exclude inputs h ∈H from the analysis, if the execution of p with
input h requires more than r ecBound recursive calls. The effects of this approximation
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Input H : i nt
Output L : i nt

1: L← ISEVENGREATERZERO(H)

2: procedure ISEVENGREATERZERO(x : i nt ): int
3: if x < 0 then
4: return 0
5: else
6: if x % 2 == 0 then
7: return 1
8: else
9: return 2

10: end if
11: end if
12: end procedure

(a) Source code of the example

Entry

if (x < 0)

b0

return 0

b1

if (x % 2 == 0)

b2

return 2

b4

return 1

b3

Exit

(b) CFG for the function isEvenGreaterZero(·)

Figure 4.3.: Example program containing a function with multiple return statements
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Algorithm 4.2 Recursive Function Return Value Computation
Input dV ec(r f [0]) : Dependency vector of f ’s return value,

containing rr ec as a placeholder.
σ f (a) :Call site substitution for recursive call call f (a)

Output dV ec(r f ) : Dependency vector of f ’s return value.

1: i : i nt ← 0
2: while i < r ecBound do
3: dV ec(r f [i +1]) ← dV ec(r f [i ]).r epl ace(rr ec , σ f (a)(dV ec(r f [0])))
4: i ++
5: end while

Figure 4.4.: Algorithm for the computation of return values of recursive functions.
The function o.replace(x, y)) replaces the elements of the vector
x in expression o with the elements of the vector y that have the same
index.

on the computation of the information leakage of p are the same as for the approxima-
tion in the loop analysis described in 4.1. We treat the approximations of the dynamic
leakage and the channel capacity in the same manner as in the approximation for loop
iterations.

4.5. Break-Statements
To analyze loops that contain break statements, the loop analysis from section 4.1 has
to be adapted at two points:

1. Which values act as the output values of the loop now depends on the point at
which the loop is exited: At the end of the loop body or a break point?

2. When the loop is exited is now also determined by whether or not a break state-
ment is executed.

Loop Output Values The identification of the loop output values happens during
the general loop body analysis, where we analyze the loop body independent of the rest
of the program. The goal is to identify values, that represent the output of a single loop
iteration. We continue to use the notations from section 4.1.

Previously we identified the output values of a loop by analyzing the arguments of the
φ-functions inside the loop header. For every input value, an output value is identified.
The input value is mapped to this output value. The mapping represents the execution
of the loop. When the loop contains a break statement, the output value depends
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Input H : i nt
Output L: int

1: L : i nt ← 0
2: j : i nt ← 1
3: while j 6= 0 do
4: L← L | j
5: if H< 0 then
6: break
7: end if
8: j ← j << 1
9: end while

(a) Program code before SSA-transformation

Entry

L0 ← 0
j0 ← 1

b0

L1 ←φ(L0,L2)
j1 ←φ( j0, j2)

if( j 6= 0)

b1

L2 ← L1 | j1

b2

if(H< 0)

b3

break

b4

j2 ← j1 << 1

b5

L3 ←φ(L1,L2)

b6

Exit

(b) CFG of the example program

Figure 4.5.: Example program for Loop Analysis. The program returns 0012 if H< 0,
otherwise 1112.
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on whether the execution of the loop body is completed or exited early via a break
statement.

Let v[l ] be an input value to a loop. If the loop is without break statements we can
map v[l ] to a single loop output value v ′[l ]. If the loop does contain break statements,
we first collect the set of possible output values for v[l ]: For each location, the loop
could be exited at, the set contains the value that v ′[l ] should be mapped to if the exit is
taken. This value can be found by analyzing whether the block following the loop exit
contains a φ-function for this value and if yes, which arguments the φ-function has.

If noφ-function is present, the output value at this point is the same as the input value
of the loop. If a φ-function is present, the output value at this point is the argument that
belongs to the control flow of the basic block containing the break statement.

After having collected all possible output values for a loop input value, we combine
the dependency vectors of those values into a single propositional vector that represents
the overall output value for the aforementioned input value. The method for combining
the dependency vectors is the same as for the combination of return values during the
function analysis. When applying the sel ect (·) function, we arrange the values in such
a way, that this output value is chosen iff all execution conditions of the break blocks
evaluate to false.

Example An example program containing a break-statement is given in figure 4.5.
The loop in the example program has the input values L1 and j1. For each of those, there
are two possible output values: one value for exiting the loop via the break statement
and one value for exiting the loop normally. For the value L1 both of those output values
are equal. L1 is mapped to the output value L2. The input value j1 is mapped to itself, if
the loop is exited via the break and to j2 otherwise.

The execution condition exec(b4) of the block containing the break is given by
exec(b4) := H< 0. Not that the execution conditions for blocks inside a loop are com-
puted separately from the rest of the program.

The propositional vectors for the output values of the loop are finally given by:

Output value for input L1: IF(H< 0,L2,L2) = L2

Output value for input j1: IF(H< 0, j1, j2)

Exiting the Loop A loop that contains break statements is exited if the loop condition
in the header is unfulfilled or if a break statement is executed. A break statement is
executed if the condition exec(b) for the block b that contains the break statement is
fulfilled. If b0, ...,bk are all blocks in the loop that contain a break statement, the loop is

exited if exi t [l ]∨
( ∨

0≤i≤k
exec(bi )

)
is fulfilled. This extended exit condition replaces the

simple exit condition exi t [l ] during the loop analysis.
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4.6. Arrays
The analysis can support fixed-size arrays with value semantics. For fixed-size arrays,
the length must be known at compile time.

Before the dependency analysis begins, arrays are turned into a set of values that each
represent an array element. The values have to be transformed into SSA-form. New
array value copies are introduced at the instantiation of the array as well at every write
instruction. Even though a write only modifies a single array element, we generate
new value copies for all array elements. This is necessary because in general, it is not
possible to know which array element is modified.

For notation, we use superscript indices (a0, a1, ...) for the values representing the ele-
ments of the array a. Subscript indices (a0

0, a0
1, ...) indicate the copies of those variables

created during the SSA transformation.
The new values represent array entries for which we compute dependency vectors

that describe the execution value of the array entry, analogous to the other values.

Array Instantiation If a new array is instantiated, all values are initialized with 0.
Their dependency vectors are constant vectors containing the value false.

Array Write Consider the expression a[k] ← e, where we write the result of the ex-
pression e to the k-th element of the array a. Let a be an array of length m. The values
for the array entries before the write instruction are called a0

i , a1
i , ..., am−1

i and the values
for the array entries after the write instruction are called a0

i+1, a1
i+1, ..., am−1

i+1 .
The dependency vectors of the values a0

i+1, a1
i+1, ..., am−1

i+1 are given by:

dV ec(a j
i+1) := IF( j == k,E (e), a j

i ), i = 0...m −1

The expression assigns the array entry value the propositional vector E (e) if the index j
of the entry corresponds to the write-index k. Otherwise, the array entry is not changed.

Array Read Consider the expression v ← a[i ], where we assign the value of the i-th
element of the array a to the value v . Let a := [a0, ..., am] be the array entry values that
represent the array a at the read instruction.

We define a function choose(·, ·) : N×2VALp → VALp that accepts an integer i and an
ordered set S of values as inputs and returns the i -th element of S. Using this function
we define the dependency vector for the value v as:

dV ec(v) := choose(i , a) a
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5. Hybrid Analysis
Using the methods from the previous chapters, we are able to measure a program’s
channel capacity, as well as the leakage of a single program run.

In this section, we will introduce techniques to integrate static analyses (Nildumu [15]
and JOANA [31]) into the algorithm in order to decrease the computational load that is
necessary to obtain the final leakage.

5.1. Static Pre-Processing
To keep the effort of computing the dependency formulas, as well as their evaluation
with the model counter, as low as possible, we statically pre-process the input program
to identify those statements that do not need to be included in the dependency analysis.

The pre-processing consists of the three stages shown in figure 5.1. In the following
section, we will use the program from figure 5.2 as a running example to demonstrate
the effects of the pre-processing.

Constant Bit Analysis We use Nildumu [15] to perform a constant bit analysis on
the input program. The goal is to identify values that are effectively constant. Effectively
constant values have the same execution value in every run of p, regardless of the inputs
that were used.

Definition 5.1.1 (Effectively Constant Value)
A program value v of the program p is called effectively constant iff:

∀h1,h2 ∈H : �p�h1 (v) = �p�h2 (v)

If a value is effectively constant, we can safely exclude it from any further analysis
and set its dependency vector to a vector of boolean constants that corresponds to its
execution value. For values that are not effectively constant, but contain constant bits,
we can also reduce the number of dependency formulas we need to compute to those
bits that are not constant.

PDG Pruning If a value is effectively constant, an observer cannot learn anything
about the secret inputs of a program by observing the behavior of that particular value.
Since we are only interested in information flow that will help an attacker in learning our
secret, the data dependencies of effectively constant values can safely be ignored. We
prune the PDG of the analyzed program by removing all incoming data edges of nodes
that define effectively constant values. Control dependency edges that start at a loop
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5.1. STATIC PRE-PROCESSING

Input

program

Constant Bit

Analysis
PDG

Pruning
Backward

Slicing

Pre-Processed

Program

Figure 5.1.: Stages of the pre-processing pipeline. The pre-processed program is
the input for the following dependency analysis.

Input H : int
Output L: int

1: if H< 0 then
2: L← f (−H,1)
3: else
4: L← f (H,1)
5: end if

Figure 5.2.: Assume that f (intx,int y) : int is a function, that returns the second
parameter y . The value L in this program is effectively constant, since
its execution value will always be 1 every input H.
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header (an if-statement header) can be removed if all values that result from the loop
(from the two branches) are effectively constant. This condition is easily verifiable in
JOANA, as JOANA adds an additional edge from the header of the control flow structure
to the block where the paths merge. Figure 5.3 shows the original and the pruned
version of the PDG of the program in figure 5.2.

Backward Slicing As the last step, we calculate a backward slice with the slicing
criterion 〈s, v〉 being the value v that is leaked to a public channel combined with the
statement s of the leak. For slicing, we use the pruned PDG from the previous stage.
In our analysis, we used a static inter-procedural backward slicing algorithm from the
JOANA framework. The resulting backward slice contains those statements, that are
needed for computing the dependency vector of the leaked value. Program statements
that are not part of the slice do not have to be analyzed. Control structures, such as loops
or conditional statements can be omitted if the head of the structure is not contained in
the backward slice: If the head is not part of the backward slice, the resulting output
value does not depend on the truth value of the expression. Therefore it also doesn’t
depend on any computations that are contained in the control structure. In this case,
we will also omit them from the computation of the path conditions that keep track of
implicit information flows.

Omitting certain statements from the dependency analysis is safe, as long as we can
guarantee, that we have enough information to determine the dependency vectors
of the values defined in the remaining statements. Enough information, in this case,
means that the dependency vectors of all used values of the expression defining the
value are known. Each use-value falls into one of the following categories:

1. Constants: The dependency vector is constant and corresponds to the constants
twos-complement representation.

2. Parameters: Parameters are unknown values whose dependency vectors are filled
with placeholder variables.

3. Effectively Constant Values: The dependency vector is constant and corresponds
to the twos-complement representation of the value determined by the constant
bit analysis.

4. Variable Values: Since an expression containing the value is part of the backward
slice, the definition of this value will also be included. Thus, we will have com-
puted the value’s dependency vector prior to analyzing the current expression.

Therefore it is indeed safe to omit statements in our analysis that were not included in
the final backward slice of the pre-processing.

By using this pre-processing method we can shrink the propositional formulas that
are produced by the dependency analysis. In the example program, the dependency
vector of the value L is reduced to dV ec(L) = [001], whereas without the pre-processing
it would include a ternary operator: dV ec(L) = IF(H < 0,[001], [001]). This helps to
increase efficiency in two ways: Firstly, the formulas the program needs to handle
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ifH< 0

L0 ← f (−H,1) L1 ← f (H,1)

L=φ(L0,L1)

(a) Before Pre-processing. The blue edges are control dependen-
cies, while the black edges are data dependencies.

ifH< 0

L0 ← f (−H,1) L1 ← f (H,1)

L=φ(L0,L1)

(b) After Pruning. The data edges were removed, because the
value L is effectively constant. The control dependencies were
removed, because the value L, which is the value resulting from
the conditional after the two branches merged, is effectively
final.

L=φ(L0,L1)

(c) After Slicing. The backward slice for the criterion 〈L =
φ(L0,L1), l〉 now only contains a single node and is the result
of the pre-processing.

Figure 5.3.: The PDG of the program in figure 5.2, at different stages during the
pre-processing.
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5.2. HYBRID ANALYSIS FOR CHANNEL CAPACITY

become smaller and thus take less time to process, and secondly, the computation
time of ApproxMC decreases with the decrease of the size of the input formula. A more
in-depth analysis of the effects of the pre-processing on the cost of the analysis as a
whole is given in 7.

5.2. Hybrid Analysis for Channel Capacity
The channel capacity measures the number of distinct program outputs. Measuring the
channel capacity exactly is, however, not always feasible. For example, if the program
contains a loop, there might be too many possible program paths for the analysis to
consider.

In this case, the analysis will disregard certain program paths estimate the channel
capacity based on the program paths it did consider.

With the goal of increasing the efficiency of the analysis in terms of computation time,
while maintaining or even increasing the precision of the channel capacity estimation,
we combine the static analysis of the tool Nildumu [15] with our dependency analysis.

The basic idea of this hybrid analysis is, to divide the program into segments. Each
segment’s channel capacity will be determined separately. For this purpose, we identify
those segments that are infeasible for a precise and efficient dependency analysis. These
segments will instead be analyzed by Nildumu. After every segment’s channel capacity
is analyzed, we combine the results for an overall estimation that applies to the whole
program.

Program Segmentation and Segment Analysis The program is divided according
to the control flow structures it contains. The structures that are isolated are:

• loops

• conditional statements together with their branches

• functions

• linear program segments.

For each segment, we compute its channel capacity. We begin by identifying the input
and output values of each segment. Input values are values that are used in at least one
expression but were not defined inside the segment. Output values are values that are
defined inside the segment and are used in locations outside the segment.

For each segment, the computation of the channel capacity is handled in one of the
following three ways:

1. The segment is analyzed using the dependency analysis from chapter 3.

2. The segment is analyzed using Nildumu.

3. The segment is recursively analyzed using the hybrid analysis.
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In general, using the dependency analysis yields the most precise results, however, it
is also the most costly approach in terms of computation time. The decision which anal-
ysis approach should be taken for a given program segment depends on the following
factors:

If the size of the propositional formulas becomes too large, they cannot be handled
in a timely fashion by the model counter. Large formulas are mainly the result of
loops, where many iterations have to be taken into account, or nested and/or recursive
function calls. Very long linear programs might become problematic even without loops
and function calls.

The second factor is the number of segments we divided the program into. Each
segment will incur a certain amount of overhead time needed to prepare the segment
for the analysis and invoke the tools used in the analysis (Nildumu, ApproxMC, further
dependencies).

Consolidation of Segment Results Assume we are given a program containing a
loop. We split the program into 3 segments: The part before the loop pb , the loop itself
pl and the part after the loop pa . We compute the channel capacities for all three parts
separately: kb ,kl ,ka .

In each segment analysis, we over-approximate the possible inputs for the program
section. Thus, the computed channel capacities are possibly larger than they actually
are. Because the attacker knowledge increases as the channel capacity increases, this is
a sound upper limit for the information leakage of the program segment.

Because the programs we examine are deterministic, the number of outputs is always
less or equal to the number of inputs of a program. Furthermore, the number of outputs
of a segment is equal to the number of possible inputs of the following segment. Thus,
we can obtain an overall estimation of the channel capacity for the program as a whole
by taking the minimum of kb ,kl ,ka .

The approach can be generalized to an arbitrary number of segments.

5.3. Hybrid Analysis for Dynamic Leakage
In 5.2, we presented an analysis that can combine the two different approaches of
our tool and Nildumu to compute the channel capacity. Naturally, the question arises
whether this approach can be used for computing the dynamic leakage as well. The
main idea of the approach is the segmentation of the program, which reduces the size
of the programs that have to be analyzed.

We have found it is not possible to efficiently compute the dynamic leakage with the
approach of dividing the program for the following reason:

While for the channel capacity it was enough to know how many different values could
potentially be transmitted between two adjacent segments, for the dynamic leakage it
is essential to know which values might be transmitted. Thus, we cannot separate the
segments from one another by treating the transmitted values as fresh inputs.
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6. Implementation
For the implementation, we integrated the analysis into an interpreter and built our tool
on top of JOANA [40]. JOANA is an IFC tool for Java programs that includes program anal-
ysis techniques that work on PDGs and SDGs. We used Java 8 for the implementation of
our tool.

Input Programs The tool deals with input programs written in Java syntax. The
programs can include the language features specified in sections 3 and 4.

The user can mark a function as the entry point of the analysis by calling it from the
main function of the Java file. The parameters of the entry point function are taken as
the secret inputs.

Variables can be leaked to a public output channel by using the special function
Out.print(·). The leak is assumed to be located outside any control flow structures.

Interpreter Integration One of the main ideas of our analysis is to compute the
dynamic leakage of a single program execution.

We integrated our analysis into an interpreter that executes the input program for an
input supplied by the user and simultaneously computes the channel capacity for the
input program and the dynamic leakage for the execution.

Analysis Pipeline The analysis is executed in a pipeline with different stages:

• The Build stage: The input program is first compiled using javac and then trans-
formed into the necessary program representations for the analysis.

• The pre-processing stage (PP): See section 5.1.

• The dependency analysis stage (DA): In this stage, the dependency vectors of the
program value are generated.

• The hybrid analysis stage (HA): This part of the analysis computes the channel
capacity of the program using the hybrid approach outlined in section 5.2. The
parameters for when the tool switches from a hybrid to a static analysis can be
chosen by the user.

• The execution stage (exec): The interpreter executes the input program using the
user-supplied arguments. This stage includes the computation of the dynamic
leakage at the point where a value is leaked during the execution.

Our tool allows the user to choose whether to use the static pre-processing and the
hybrid analysis or not.
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Tools Our analysis and interpreter uses three tools:
JOANA is used for the generation of the needed program representations (CFGs +

PDGs) as well as for the slicing operations during the pre-processing stage. The static
analysis used during the pre-processing and the hybrid analysis is done by Nildumu [15].
We used the stand-alone implementation. For the model counting, we use ApproxMC
[13].
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7. Evaluation
We evaluate the implementation of our analysis in two ways:

We compare the analysis using the hybrid method to the analysis using only the depen-
dency analysis to examine whether it is possible to achieve a decrease in computation
time and to determine the loss in precision of the results that might occur.

Secondly, we compare our tool to two other comparable tools: Nildumu [15], because
it is integrated into our tool as the static part of the hybrid analysis, and ApproxFlow [12]
because it uses a SAT-based analysis that is similar to our dependency analysis, however,
ApproxFlow doesn’t combine this with any other tools. We were not able to obtain a
working instance of Flowcheck [16] to include in the comparison.

7.1. Benchmarks
In this evaluation, we use synthetic benchmarks taken from [22], [15], [41] and [42] as
well as some benchmarks we created ourselves. The benchmark programs are described
in appendix C. To run the benchmarks with all four tools, we translated them into Java,
C, and Nildumu’s own language specification. As our tool and Nildumu don’t support
unsigned integers, we modified benchmarks where necessary with a condition h ≥ 0
(the modification was applied to the benchmarks for all tools).

7.2. Tools
QIFC Interpreter (QIFCI) We evaluated the benchmarks using three different con-
figurations:

• QIFCI: The dependency analysis is not combined with any static analysis.

• QIFCI-PP: The dependency analysis is combined with the static pre-processing

• QIFCI-H: The dependency analysis is combined with the static
pre-processing and the hybrid analysis. The hybrid analysis is applied to all loops
and function calls in the program.

Nildumu We use the stand-alone implementation of Nildumu (version 2caee6b) for
the evaluation. Apart from the recursion bound, we adopted the standard configurations
provided by Nildumu.
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ApproxFlow For our benchmark, we used an updated version of ApproxFlow1 that
includes a newer version of ApproxMC.

7.3. Evaluation Setup
Environment The evaluation was performed on a machine with a 4-core Intel Core
i7-7500U CPU and 24GiB of RAM, running a Manjaro Linux operating system.

Benchmarking For each tool, we ran each benchmark a total of 10 times and report
the average run time over all 10 executions. To minimize potential interferences of other
processes running in the background, we used the command line tool chrt to switch to
a FIFO scheduling policy and set the executions’ priority to the maximum value. We use
perf to analyze the performances of the executions.

For measuring the duration of the pipeline stages in QIFCI, we used timestamps from
the tool’s log files. Thus the overall run time might deviate from the run times measured
with perf.

For each tool, we used an integer width of 32 bits. For Nildumu, ApproxFlow, and our
own tool, we ran each benchmark twice: Once with a recursion and loop bound of 8
and once with a recursion and loop bound of 32.

For the tool comparison, we turned off the dynamic leakage computation of QIFCI,
since it is the only tool that computes this value. Thereby all tools only analyze the
channel capacity of the given input program.

7.4. Findings

Channel Capacity
The results of the benchmark runs are shown in tables 7.1 and 7.2. They show the
channel capacity that was computed by the tools as well as the average run time.

ApproxFlow ApproxFlow was able to precisely compute the channel capacity for all
simple benchmarks. However, the tool reports channel capacities that are too low in
most of the other benchmarks.

Wrong results occur if the loop bound is lower than the needed amount of loop
iterations. An example of this phenomenon is the Laundering Attack benchmark with
a loop bound of 32. The 32 iterations will each give a different output, leading to the
channel capacity estimation of l og2 32 = 5 instead of the actual channel capacity of 32.

In cases where the channel capacity cannot be accurately computed, the tool does
not approximate safely.

1The ApproxFlow version we used, can be found at https://github.com/parttimenerd/
approxflow
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The run time of ApproxFlow was below 0.3s for all benchmarks. The run times were
only minimally affected by the loop bound increase from 8 to 32. The complexity of
the benchmarks had a greater influence on the run time. The Sum Query benchmark
had the longest run time. We suspect this is due to the model counting process in the
analysis, as we saw the same effect in QIFCI.

The low accuracy of ApproxFlow in our analysis can be attributed to the loop bound
being too low. Increasing the bound will improve the leakage estimate. The run times
suggest that even with a significantly higher bound, the execution would remain in an
acceptable time frame.

Nildumu All channel capacities computed by Nildumu are equal or greater than the
exact channel capacity, with the exception of the Masked Copy benchmark, where
Nildumu underestimated the leakage by one bit2. For all other benchmarks, the approx-
imation by the tool is safe.

Inaccurate results occur for some benchmarks containing implicit flows: In the Im-
plicit Flow benchmark, the tool does not recognize that two of the branches output the
same value. The benchmarks Sanity Check and Sane Laundering show the same issues.

The run times of Nildumu were significantly higher than those of ApproxFlow. In-
creasing Nildumu’s inlining bound does not affect the run time significantly.

QIFCI QIFCI in the configuration without static pre-processing and without hybrid
analysis is able to accurately compute the channel capacity for the simple benchmarks.
Programs containing loops and functions are also accurately analyzed if the loop and
recursion bounds are high enough to include all possible executions. If this is not the
case (e.g. in Sane Laundering and Parity), the results may be inaccurate. In this case,
the actual channel capacity is safely over-approximated.

The run time of QIFCI is highly vulnerable to increases in the analysis bounds used,
especially for benchmarks including loops. For the Sane Laundering benchmark the
run time almost triples.

QIFCI-PP Adding the static pre-processing to the configuration of QIFCI does not
change the channel capacities that are computed.

Run times for the simple benchmarks were within a small range compared to the
QIFCI configuration with the exception of the Table Lookup benchmark, where the run
time increased significantly. Run times for loop benchmarks and function/recursion
benchmarks increased most of the time. The static bit analysis in the pre-processing
cannot assign many constant values to variables inside loops. This decreases the perfor-
mance gain during the later dependency analysis, while the overhead incurred by the
pre-processing does not change significantly.

The only decrease in run time in the loop benchmarks can be found in Shift and
Launder. This benchmark deliberately includes computations inside a loop that are
irrelevant to the output. Here the PDG Pruning based on the output’s backward slice

2In revision 49ebe88 of Nildumu the issue was fixed and Nildumu correctly reports a leak of 16 bits.
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leads to a performance gain that outweighs the additional run time required by the
pre-processing.

QIFCI-H The configuration of our tool including the pre-processing and the hybrid
analysis was able to produce almost identical results as the other two configurations.
The only change occurs in Sane Laundering, where the analysis of QIFCI-H accurately
returns a channel capacity of 4 for an iteration bound of 8. The other two QIFCI con-
figurations recognized that there are program executions that do not adhere to the
iteration bound of 8 and thus assumed that such executions could return arbitrary
values. During the hybrid analysis, the sanity check part and the laundering part of the
Sane Laundering are analyzed separately. The final channel capacity is 4, the channel
capacity of the sanity check part.

Run times for the simple benchmarks show no significant changes compared to the
QIFCI-PP evaluation. Run times for the loop benchmarks were reduced significantly
compared to QIFCI-PP run times, especially with a higher iteration bound. Since in
the hybrid analysis loops and recursive functions are only analyzed statically, the run
time cost of adding more loop iterations / more recursion depth is almost completely
eliminated. With the higher iteration bound, the QIFCI-H also executes faster than
QIFCI for all loop benchmarks and one of the recursion benchmarks. Increases in run
time from QIFCI to QIFCI-H are not significant compared to run time increases from
increased analysis bounds or more complex benchmarks.

Hybrid Analysis
Table 7.3 shows the changes in run time between QIFCI and QIFCI-H divided into the
tools’ different analysis stages. The stages are described in section 6.

Build Stage The Build stage is not affected by the hybrid analysis. As expected the
run times for both configurations are within a normal range of variance to each other.

Pre-Processing Stage and Dependency Analysis stage The evaluation of the
pre-processing stage shows that the loop benchmarks, as well as the Table Lookup
benchmark, need the most time. This corresponds with Nildumu having the longest run
time for these benchmarks. The only benchmark where this correlation doesn’t hold is
the Table Lookup benchmark.

The run time needed for the Dependency Analysis stage was decreased by the pre-
processing in every case, however, for most benchmarks, the decrease is not significant
and most likely due to normal variances in run time.

Hybrid Analysis Stage During the Hybrid Analysis stage simple benchmarks, that
contain no control flow structures that are handled by the hybrid analysis, are not
significantly affected in their run time by enabling the hybrid analysis. The computation
of the channel capacity is decreased significantly for the benchmarks Laundering, Shift
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ApproxFlow Nildumu
CC 8 32 8 32

Masked Copy
0.16 0.15 5.23 5.20

16 16 16 15 15

Sum Query
0.30 0.30 5.24 5.40

32 32 32 32 32

Sanity Check
0.11 0.12 5.29 5.27

4 4 4 32 32

Table Lookup
0.13 0.12 5.94 5.92

3 3 3 3 3

Implicit Flow
0.12 0.11 5.46 5.33

2.80 2.80 2.80 3 3

Parity error3 error3 6.72 6.63
1 1 1

Laundering Attack
0.11 0.13 6.50 6.40

32 3 5 32 32

Shift and Launder
0.11 0.19 7.66 7.01

32 3 5 32 32

Masked Laundering
0.14 0.17 7.57 8.49

314 2.31 4.08 32 32

Sane Laundering
0.16 0.20 7.82 7.61

4 2.32 4 32 32

Recursive Laundering
0.12 0.23 5.62 5.61

32 3.16 5.04 32 32

Call Mask
0.24 0.24 5.54 5.41

28 28 28 28 28

Dead Recursion
5 0.12 0.14 6.60 6.60

0 0 0 0 0

Table 7.1.: Results for ApproxFlow, Nildumu, and Flowcheck. The column CC
shows the channel capacity. For each benchmark, we show the calculated
channel capacity and the average run time.

3 ApproxFlow crashed when trying to execute the benchmark with the given loop unwinding bounds.

Increasing the bound to > 32 fixed the error.
4 The exact value of the channel capacity is log2(231 +1) ≈ 31.
5 ApproxFlow crashes after correctly recognizing that the leaked value is constant.
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QIFCI QIFCI-PP QIFCI-H
CC 8 32 8 32 8 32

Masked Copy
5.26 4.53 4.92 4.84 5.06 4.91

16 16 16 16 16 16 16

Sum Query
7.05 6.35 6.82 6.58 6.60 6.62

32 32 32 32 32 32 32

Sanity Check
6.04 5.25 5.29 5.09 5.65 5.72

4 4 4 4 4 4 4

Table Lookup
4.32 4.36 12.16 12.42 13.88 13.60

3 3 3 3 3 3 3

Implicit Flow
4.61 5.55 5.17 5.86 4.96 5.82

2.8 2.8 2.8 2.8 2.8 2.8 2.8

Parity
4.81 4.64 5.68 5.59 6.87 5.38

1 1 1 1 1 1 1

Laundering Attack
7.74 14.24 9.33 17.56 8.50 8.60

32 32 32 32 32 32 32

Shift and Launder
7.44 19.36 9.25 17.86 9.44 8.79

32 32 32 32 32 32 32

Masked Laundering
6.70 10.95 8.34 12.67 8.71 8.52

316 32 32 32 32 32 32

Sane Laundering
12.48 35.85 14.53 37.79 9.65 10.30

4 32 4 32 4 4 4

Recursive Laundering
6.01 10.36 7.76 12.08 7.88 7.80

32 32 32 32 32 32 32

Call Mask
4.69 4.65 5.24 5.28 5.70 5.63

28 28 28 28 28 28 28

Dead Recursion
4.74 4.66 5.39 5.09 5.89 5,63

0 0 0 0 0 0 0

Table 7.2.: Results for the 3 benchmarked configurations of QIFCI. The analysis
doesn’t include the execution of the program and the computation of
the dynamic leakage.

6 The exact value of the channel capacity is log2(231 +1) ≈ 31.

66



7.4. FINDINGS

and Launder, Masked Laundering and Sane Laundering. In part this is due to the
reduced run time of ApproxMC, the biggest decrease, however, is seen in the rest of the
Hybrid Analysis stage, where the formula for the model counter is generated from the
dependency vectors and turned into CNF.

Execution Stage The Execution stage for simple benchmarks is not greatly affected
by thy hybrid analysis. The loop benchmarks that benefited from the hybrid analysis
during the Hybrid Analysis stage show a drastic increase in run time during the Execution
stage. The analysis of the channel capacity and the dynamic leakage is based on the
same propositional formulas. The effort that was saved in earlier stages (loop unrolling,
recursive function inlining) has to be put into the formula generation for the dynamic
leakage computation. The benchmark Masked Laundering and Sane Laundering have
similar total run times for both configurations. The distribution of the run time is shifted
towards the Execution stage if the hybrid analysis is employed.

The benchmark Shift and Launder is the only benchmark with a significant overall
decrease in run time. This is due to this benchmark being the only one that contains
computations that don’t influence the output, thereby being the only benchmark that
considerably benefits from the PDG pruning in the pre-analysis.

Dynamic Leakage
Table 7.4 shows the dynamic leakage that we computed for the benchmarks with certain
selected inputs. We chose inputs that represent different equivalence classes regarding
the indistinguishability relation.

We used the QIFCI configuration to compute the dynamic leakages. The computed
leakages do not change with the other configurations. We ran each benchmark 4 times,
with changing quantities for integer width (8, 32) and loop iteration/recursion bound (8,
32).

For many benchmarked executions, the computed dynamic leakage by QIFCI is equal
to the true dynamic leakage of the given program and input. Cases, where the two
values differ, can be divided into two categories:

1. Differences due to approximated model counting:
The model counter ApproxMC is not able to compute a precise model count for
every benchmark execution. This case occurs for cases where the number of mod-
els is close to, but not equal to, the number of possible inputs. The approximation
by ApproxMC leads to an inaccurate dynamic leakage. Since ApproxMC does not
guarantee whether the result is an over- or an under-approximation, this could
lead to unsafe under-approximations of the leaked information. However, the
error in the computed dynamic leakage for these benchmarks is small enough to
not pose a safety risk.

2. Differences due to approximated loop and recursion formulas:
The propositional formulas generated during the analysis include restrictions for
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Build PP DA HA (MC) Exec (MC) Total

Masked Copy
4.13 - 0.01 0.06 0.07 0.05 0.05 4.25
3.85 0.31 0.01 0.07 0.05 0.05 0.05 4.30

Sum Query
4.82 - 0.04 2.03 0.58 0.01 time out7 time out
4.99 0.34 0.02 2.20 0.75 0.01 time out7 time out

Sanity Check
5.21 - 0.02 0.90 0.05 0.46 0.01 6.61
5.02 0.41 0.02 1.11 0.07 0.36 0.02 6.94

Table Lookup
4.70 - 0.08 0.83 0.16 0.14 0.03 5.75
4.22 8.52 0.04 0.56 0.12 0.09 0.02 13.44

Implicit Flow
4.17 - 0.07 0.11 0.02 0.02 0.01 4.38
4.09 0.39 0.00 0.09 0.01 0.03 0.01 4.61

Parity
4.54 - 0.54 0.15 0.01 0.40 0.32 5.65
4.11 0.83 0.38 0.78 0.24 0.34 0.23 6.47

Laundering
4.01 - 0.13 9.19 3.28 0.65 0.12 14.00
4.04 2.19 0.08 1.79 0.31 18.71 0.33 26.83

Shift and Launder
4.16 - 0.22 34.13 5.83 1.92 0.43 40.44
4.10 2.56 0.14 2.14 0.33 18.73 0.30 27.68

Masked Laundering
4.03 - 0.13 10.90 1.99 1.24 0.63 16.31
4.28 1.45 0.07 1.10 0.32 9.82 0.61 16.75

Sane Laundering
4.06 - 1.32 35.31 1.03 1.69 0.23 42.40
4.96 2.39 0.94 2.04 0.18 32.63 0.52 42.99

Recursive Laundering
4.09 - 0.61 4.98 1.49 0.45 0.02 10.14
4.03 1.63 0.46 6.27 1.64 0.40 0.02 12.81

Call Mask
4.14 - 0.02 0.18 0.15 0.03 0.01 4.38
4.16 0.57 0.01 0.48 0.19 0.02 0.01 5.25

Dead Recursion
4.10 - 0.10 0.04 0.02 0.00 0.00 4.26
4.19 0.63 0.01 0.42 0.17 0.01 0.00 5.27

Table 7.3.: The table shows the run times (in ms) for the individual pipeline stages
of QIFCI. For every benchmark, the upper row is the execution using no
pre-processing and no hybrid analysis, the bottom row is the execution
using pre-processing and hybrid analysis. The times given for the
hybrid analysis and the execution include the ApproxMC invocations.
Additionally, the run time of the model counter is listed separately. The
benchmark runs were executed with randomly chosen input arguments.
Changing the input arguments does not affect the run time of QIFCI
beyond the normal variance.

7 The tool could execute the analysis until the invocation of ApproxMC for the determination of the

dynamic analysis was completed. The ApproxMC output was written to a file in the output directory.

QIFCI timed out afterward due to buffering issues.
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the inputs values. Input values, that require more loop iterations/recursive calls
than the chosen bound allows, are generally treated as belonging to a different
indistinguishability set than the examined input. This leads to rather loose ap-
proximations where the number of loop iterations of a program execution is often
greater than the iteration bound. The effect is visible in the benchmark results of
the programs Parity and Masked Laundering.

Table 7.5 shows the average run time of the benchmark evaluations. The run times
are very sensitive to increases in bit width and analysis bounds. The results, however,
do not show a dependency of the run time on the specific input for which the dynamic
leakage is computed.

The benchmark executions for the Sum Query benchmark on 32-bit integers timed
out after 30min after the ApproxMC invocation finished. The time-out is most likely
the result of buffering issues. We assume the difficulty arises from the high number of
models (232) in combination with the long formulas that are necessary to represent two
additions with a total of 96 variables.

7.5. Conclusion
In our evaluation, QIFCI and Nildumu were the only tools that returned safe approxi-
mations of the channel capacity for all benchmarked programs. The accuracy of QIFCI
(in the configuration without pre-processing and without hybrid analysis) was hereby
generally better than Nildumu’s: We achieved a better approximation of the channel
capacity for the benchmarks Sanity Check, Implicit Flow and Sane Laundering (loop
bound = 32). The improvements stem from better handling of implicit flows in QIFCI
than in the static analysis that Nildumu uses.
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8 Bit Integers 32 Bit Integers
Args dyn Leak 8 32 dyn Leak 8 32

Masked Copy* 0 4 4 4 16 16 16
Sum Query 0, 1, 2 8 8 8 32 time out time out

Sanity Check*
3 0,04 8 8 5.03×10−9 32 32
1 8 8 8 32 32 32

17 0.04 0.045 0.045 5.03×10−9 0 0

Table Lookup
0 0.04 0.045 0.045 2.35×10−9 0 0
1 8 8 8 32 32 32

17 0.04 0.045 0.045 2.35×10−9 0 0

Implicit Flow
0 0.03 0.045 0.045 2.35×10−9 0 0
1 8 8 8 32 32 32

17 0.03 0.045 0.045 2.35×10−9 0 0

Parity* 0 1 1 1 1 32 0.99
Laundering 0 8 8 8 32 32 32

Shift and Launder 0 8 8 8 32 32 32

Masked Laundering
0 8 8 8 32 32 32
1 1 6 4 1 30 28

Sane Laundering*
0 0.04 0.045 0.045 5.03×10−9 0 0
1 8 8 8 32 32 32

Recursive Laundering 0 8 8 8 32 32 32
Call Mask 0 4 4 4 28 28 28

Dead Recursion 0 0 0 0 0 0 0

Table 7.4.: The table shows the calculated dynamic leakage for the input arguments
shown in the second column. We analyzed each benchmark with different
bit widths as well as with different loop and recursion bounds. The
column “dynLeak” shows the actual dynamic leakage of the execution.
The computations in benchmark programs marked with a * depend
on the integer width used in the execution. They have been modified
accordingly for the 8-bit integer benchmark runs.
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8 Bit Integers 32 Bit Integers
Args 8.00 32 8 32

Masked Copy 0 4.48 4.58 4.76 4.61
Sum Query 0, 1, 2 4.90 4.92 time out time out

Sanity Check
0 4.64 4.56 6.13 5.41
1 4.52 4.65 5.91 5.71

17 4.60 4.74 6.10 5.91

Table Lookup
0 4.76 4.78 5.98 5.68
1 4.72 4.74 5.44 5.30

17 4.75 4.76 5.95 5.79

Implicit Flow
0 4.69 4.69 5.21 4.73
1 4.62 4.67 4.78 4.63

17 4.62 5.00 4.94 4.67

Parity 0 4.78 4.86 5.17 5.39
Laundering 0 5.06 7.27 7.96 35.89

Shift and Launder 0 5.92 8.41 9.24 49.68

Masked Laundering
0 4.92 6.06 6.71 17.12
1 4.83 6.15 6.71 17.55

Sane Laundering
0 5.36 7.25 13.63 55.24
1 5.37 7.42 13.17 54.48

Rec Laundering 0 5.19 6.05 6.61 11.97
Call Mask 0 4.67 4.84 4.75 4.75

Dead Recursion 0 4.66 4.64 4.65 4.69

Table 7.5.: The table shows the average run times (in s) for the dynamic Leakage
analysis shown in table 7.4
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8. Conclusion and Future Work
The analysis we presented in this thesis can safely approximate the channel capacity
and the dynamic leakage of a while-program. We have shown that it is generally possible
to combine static analysis approaches with SAT-based approaches to improve the run
time as well as the accuracy of the analysis.

The effects of the hybrid analysis on the accuracy of the analysis are highly dependent
on the input program. While there are input programs that benefit from the hybrid
analysis, there are also programs for which the accuracy decreases. The hybrid analysis
had a positive effect on the computation time of the analysis, which leads to better
scalability of the analysis. Because we tested our analysis on small synthetic benchmarks,
it remains open how the hybrid analysis affects the analysis’ accuracy for real-world
programs.

Additionally to the hybrid analysis of the channel capacity, our tool is able to al-
most safely approximate the dynamic leakage of a single program execution (under-
approximations were minimal if they occurred). We believe this additional data point
about the program’s information flow is vital in judging the risk of information leakage.
It allows the user to identify executions that leak no significant amount of information
even if the program would have been deemed as insecure due to a high channel capacity.

Overall we were only able to find a way to combine dynamic and static approaches
that benefits a small set of input programs. However, this result can be used as proof
that generally, such a combination is possible. The results of this thesis can be used as a
basis for more in-depth examinations of the topic.

8.1. Future Work
The analysis and its implementation in their current form leave many areas open for
improvements and extensions of the work done so far.

Extending the Analysis Beyond while-Programs The input programs of our anal-
ysis are currently based on a minimal while-language. In particular, we currently
lack support for data types apart from integers as well as object-orientation. Memory
operations are only minimally supported through the array analysis.

Defining rules for representing these additional program operations as SAT formulas
is generally possible, as model checking tools that represent programs as propositional
formulas, such as CBMC, already offer support for these features.

Our tool as it is might currently not be scalable enough as especially object orientation
and heap operations would require large propositional formulas. Already with the
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language in its current scope, the implementation shows scalability issues for more
complex input programs and higher loop iteration/recursion bounds.

Easing Restrictions on Input Programs The current analysis expects input pro-
grams to adhere to certain restrictions, especially regarding the value that is leaked to
the public.

Currently, the program is expected to leak only a single value at the end of the exe-
cution. Moving the location of the leak statement to an earlier location in the program
does not require any additional work as long as the leak is not contained in a loop or
a function call. To handle leaks inside a branch of an if-statement, the formulas for
the channel capacity and dynamic leakage need to be conjuncted with the execution
condition of the block that contains the leak. Allowing a program to leak more than
a single value (this includes programs where the leak statement is inside a loop or a
function) requires the output to be modeled as a stream, where every location, where
the value may have been leaked is taken into consideration.

Increasing Efficiency through Improved Formula Handling The biggest drawback
of our implementation compared to the other tools we examined is its lack of scalability.
With the increasing size of the formulas that need to be handled, it suffers from major
increases in run time. One major reason for the bad scalability is the implementation of
the dependency analysis, which requires the program to deal with large formulas. The
handling of these large formulas slows down the process of the dependency analysis.
Breaking up the large formulas by factoring out individual terms and replacing them
with variables offers the possibility of major improvements in the run time.

Improving Accuracy Through Flow Bounds The hybrid approach in the analysis
cannot improve the accuracy for input programs where the relation between the differ-
ent input and output values of the program segments is unclear. An example of this is
the benchmark Masked Laundering, where the masking segment assumes an input of
33 secret bits. The program, however, only has 32 secret bits.

Flowcheck [16] uses a flow network with edge capacities to limit the flow of informa-
tion between segments. This prevents the multiplication of input bits as it happens in
our tool.

As of now, we were not able to find a way to represent these flow bound restrictions as
propositional formulas. It is worth exploring, whether a different way of representing
these restrictions (such as in a flow network like Flowcheck does) can be integrated into
the analysis.

Adapting Interpreter Actions to Leakage Results Our implementation includes
an interpreter that will execute the program and report the dynamic leakage of the
execution.

A logical extension would be to adapt the behavior of the interpreter to the calculated
leakage. Other tools presented in [17] and [18] adapt the outputs of a program execution
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based on the estimated leakage.
By adding a shadow execution with dummy values, whose outputs are used instead

of the real ones in cases where the leakage is too high, our tool could be used to execute
programs in a safe environment, where the information leakage is guaranteed to be
below a defined threshold.
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A. Proof for Equation 2.3
Let p be a deterministic program, with input H and output L. Let L be the set of possible
outputs.

cc(p) := H∞(H)−H∞(H |L)

= H∞(H)− ∑
l∈L

P [L = l ] H∞(H |L= l )

= H∞(H)− ∑
l∈L

P [L = l ] (−Ld yn(p, l )+H∞(H))

= H∞(H)− ∑
l∈L

P [L = l ] H∞(H)+ ∑
l∈L

P [L = l ] Ld yn(p, l )

= ∑
l∈L

P [L = l ] Ld yn(p, l )

= E(Ld yn(p, l ))

The equality in the second line results from the definition of H (H |L), which is given in
[5]. All other steps in the proof use the definitions given in chapter 2.1.
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B. Proof for Theorem 3.1 and
Lemma 3.4

We prove the equivalence theorem and the lemma for the correctness of the execution
condition. Both are introduced in section 3:

Theorem (Equivalence Theorem)
Given an input value h ∈H for the program p, let v be an arbitrary value in the program
p for which �p�h(v) 6= ⊥. The relation between the dependency vector and the execution
value of v is given by:

∀0 ≤ i < w : Vh(dV ec(v)i ) ⇐⇒ �p�h(v)i

Lemma (Correctness of exec(·))
For every basic block b ∈BBp and its execution condition exec(b),
Vh(exec(b)) = true ⇐⇒ basic block b is executed in a program run with input h.

Proof Structure We show that the theorem and the lemma are fulfilled for all loop-
free programs p that consist of a single function. The proof will be organized as an
induction over the basic blocks of the program p. We show the correctness for an
arbitrary but fixed input h ∈H .

In our induction, we will show that for each basic block of p the following three
statements are fulfilled:

H.1
(
b is executed in the execution with input h =⇒ Vh(exec(b)) = true

)∧(
b is not executed in the execution with input h =⇒ Vh(exec(b)) = false

)
H.2 For all values defined in b, theorem 3.1 is fulfilled

H.3 If the block b is executed, then for all outgoing edges e of b,
Vh( f ol low(e)) = true ⇐⇒ The execution with input h follows the edge e

Note that statement H.1 is equivalent to the statement made in lemma 3.4.

Assumptions We assume that all expressions in the program p contain at most one
operator. The operands of the operator are constant values or variable/parameter
accesses. Nested expressions are split: The inner expressions are assigned to new values
which in turn are used as the operands for the outer expression.
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Base Case
For the base case of the induction, we consider the basic block b = start.

Statement H.1 Per definition, exec(start) = true. Since the start block is always
executed, independent of the input h, H.1 holds.

Statement H.2 The basic block start does not contain any statements, hence H.2
holds trivially.

Statement H.3 Start has a single successor. For the edge e that connects start to
its successor, f ol l ow(e) = true. H.3 holds, since every execution follows the edge e.

Induction Hypothesis
We assume that for an arbitrary basic block b ∈BBp , all blocks b′, for which there exists
a path from b′ to b, fulfill the conditions H.1, H.2, and H.3.

Induction Step
We show that for the basic block b ∈BBp mentioned in the induction hypothesis, all
three conditions H.1, H.2 and H.3 are fulfilled. Remember, that we consider an execution
with a fixed input h. We differentiate two cases: (1) the control flow reaches the block b
during the execution with input h and (2) the control flow doesn’t reach the block b.

Case 1: b is not executed

Statement H.1 Because b is not executed, the first implication of the conjunction
is trivially fulfilled. It remains to show that Vh(exec(b)) = false. The formula exec(b)
is defined as exec(b) = ∨

b′ ∈pr ed(b)

(
f ol l ow(b′,b)∧exec(b′)

)
. Thus, exec(b) = false, iff

for all b′ ∈ pr ed(b) the condition f ol low(b′,b)∧ exec(b′) evaluates to false. This is
indeed the case, because for each predecessor b′ either

• b′ is not executed, therefore Vh(exec(b′)) = false per the induction hypothesis.

• b′ is executed therefore Vh(exec(b′)) = true per the induction hypothesis. Be-
cause b is not executed the control flow of the execution does not follow the
edge (b′,b). Per the induction hypothesis for condition H.3, f ol low(b′,b) must
evaluate to false.

Statement H.2 Since the block b is not executed, for all values v that are defined in
b, the execution value �p�h(v) is ⊥. Because statement H.2 only considers values, for
which �p�h(v) 6= ⊥, H.2 is trivially fulfilled.
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Statement H.3 The implication in statement H.3 holds trivially because the premise
is not fulfilled.

Case 2: b is executed

Statement H.1 Because b is executed, the second implication of the conjunction is
trivially fulfilled. It remains to show that Vh(exec(b)) = true. It suffices to show that
there exists at least one b′ ∈ pr ed(b) for which Vh( f ol l ow(b′,b)∧exec(b′)) is true.

We assume that b is executed. This can only be the case if one of b’s predecessors
is executed and then the control flow is transferred to b. Let b′ be this predecessor.
Because b′ is executed, Vh(exec(b′)) = true per the induction hypothesis. Additionally,
since the control flow is transferred along the edge (b′,b) and the condition H.3 for b′

holds (induction hypothesis), Vh( f ol l ow(b′,b)) = true.

Statement H.2 The dependency vectors for values in b are computed by evaluating
E (e) for the expression e that defines the value. We prove that statement H.2 holds for
all values defined in b by induction of the definition of E (·).

Let v ∈ VALp be an arbitrary value defined in b, that is defined by the statement v ← e
and let vh be the execution value of v .

Base Case

• e := n, n ∈Z =⇒ vh = bv(n)
Per definition E (e) = bv(n). Thus ∀0 ≤ i < w : Vh(E (e))i ⇐⇒ v i

h

• e := H =⇒ vh = bv(h)
Per definition E (e) = V ar (h) and Vh(V ar (h)) = bv(h). Thus
∀0 ≤ i < w : Vh(E (e))i ⇐⇒ v i

h

Induction Hypothesis Let theorem 3.1 be true for every value v ′ that appears in
the expression e.

Induction Step

• e := v ′, v ′ ∈ VALp =⇒ vh = �p�h(v ′)

For all inputs h ∈H , Vh(v) = Vh(v ′) I .H .= �p�h(v ′) v :=v ′
= �p�h(v)

• e := ê ⊕ ẽ or e :=⊕ê for a bitwise or arithmetic operator ⊕
The function E (·) is defined by the boolean algebra definitions of the operators.
The correctness of the theorem 3.1 follows from the equivalence of the evaluation
of boolean algebra and propositional logic.
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• e :=φ(v0, v1), v0, v1 ∈ VALp

If b contains aφ-function with two arguments, then b must have two predecessors.
Let b0 be the first predecessor and b1 be the second predecessor of b. Then E (e)
is defined as E (e) := IF(exec(b0),dV ec(v0),dV ec(v1)).

– Case Vh(exec(b0)) = true: From the induction hypothesis of the outer induc-
tion, we can conclude that the block b0 is executed. Thus, in the execution of
p, the expressionφ(v0, v1) in block b will evaluate to v0 (because b0 is the first
predecessor of b). Because we assume the program p to be correct, the value
v0 must have been assigned during the execution. Therefore �p�h(v0) 6= ⊥
and �p�h(v) = �p�h(v0). From the induction hypothesis of the inner in-
duction, we can conclude that ∀0 ≤ i < w : �p�h(v0)i ⇐⇒ Vh(dV ec(v0)i ).
From the definition of the ternary operator IF(·, ·, ·) and the assumption
Vh(exec(b0)) = true follows, that the theorem 3.1 is fulfilled for value v .

– Case Vh(exec(b0)) = false: From the induction hypothesis of the outer in-
duction, we can conclude that the block b0 is not executed. Since we assume
that b is executed and b only has two predecessors, the second predecessor
b1 must have been executed. We can show that in this case, theorem 3.1
holds using analogous argumentation as in the case Vh(exec(b0)) = true.

• In the programs we consider, other expressions (for example comparisons) cannot
be used to assign a value.

With this, we have shown that statement H.2 is fulfilled for the basic block b.

Statement H.3 In the programs we consider, a basic block can either have zero, one,
or two successors.

If the block b has no successors, the statement H .3 is trivially fulfilled. If the block
b has only one successor b′, then that successor is executed if b itself is executed. Per
definition f ol low(b,b′) = true, thus statement H.3 holds.

Consider the case that b has two successors b0 and b1. Let e be the expression that
decides to which successor the control flow is transferred. Let without loss of generality,
the control flow be transferred to b0 iff e evaluates to true during the execution.

From the induction hypothesis and the fact that H.2 holds for the block b, we can
conclude that all use-values of the expression e fulfill theorem 3.1. The edge annotations
f ol l ow(b,b0) and f ol low(b,b1) are created by replacing the use-values that appear in
e with their dependency vectors. The logical operators remain unchanged. Because the
dependency vectors evaluate to the execution values during the execution, the truth
value of e doesn’t change because of the replacement. Thus, statement H.3 is fulfilled.

We have shown that the conditions H.1, H.2, and H.3 hold for every basic block in the
program p if p is executed with the input value h. Since p and h were chosen arbitrarily,
the proof holds for every program and every input h ∈H . ä
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C. Benchmark Programs
The benchmarks follow the following conventions: Secret inputs are called h or h1, h2,...
if there is more than one input. Public outputs are called l. All public outputs are leaked
at the end of the execution.

Small Benchmarks
Masked Copy This benchmark is taken from [42] and modified slightly as the QIFCI
tool doesn’t support numerical values in binary format. Instead, we create the bitmask
using a shift operation. The program masks the 16 highest-value bits from the input
and outputs the rest. The channel capacity is 16.

int l = h & (−1 << 1 6 ) ;

Listing C.1: Masked Copy

Sum Query This benchmark is taken from [22]. The program adds together the three
secret input values and returns their sum. The channel capacity is 32 bit.

int l = h1 + h2 + h3 ;

Listing C.2: Sum Query

Sanity Check The benchmark was taken from [7]. Because QIFCI and Nildumu are
unable to process unsigned integers, we added the condition 0 ⇐ h to the conditional.
We initialized the value base with 3. The channel capacity is 4.

int l ;
i f (0 <= h && h < 16) {

l = 3 + h ;
} else {

l = 3 ;
}

Listing C.3: Sanity Check
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Table LookUp This is a variant of benchmark found in [7]. If the input is within the
right value range, a value from a pre-initialized array is returned. All other inputs return
0. The channel capacity is 3.

int [ ] table ;
table [ 0 ] = 0 ;
table [ 1 ] = 1 ;
table [ 2 ] = 2 ;
table [ 3 ] = 3 ;
table [ 4 ] = 4 ;
table [ 5 ] = 5 ;
table [ 6 ] = 6 ;
table [ 7 ] = 7 ;

int l = 0 ;

i f (0 <= h && h < 8) {
l = table [h ] ;

} else {
l = 0 ;

}

Listing C.4: Table LookUp

Implicit Flow This benchmark is a shortened version of an example program given
in [7]. The information is leaked via branching. Every if-statement leaks informa-
tion through an implicit information flow, except for the last one, where the output is
assigned its initialization value. The program leaks log2 7 ≈ 2,8 bits of information.

int l = 0 ;
i f (h == 1) l = 1 ;
i f (h == 2) l = 2 ;
i f (h == 3) l = 3 ;
i f (h == 4) l = 4 ;
i f (h == 5) l = 5 ;
i f (h == 6) l = 6 ;
i f (h == 7) l = 0 ;

Listing C.5: Implicit Flow

90



Loop Benchmarks
Parity The program checks whether the input parity has even parity. The difficulty
of this benchmark is, that the assignment to in every loop iteration depends on the
high input, however, the program can only ever output 0 or 1. The channel capacity is
therefore 1.

int pari ty = 0 ;
int b i t S e t ;

for ( int j = 0 ; j != 32; ++ j ) {
b i t S e t = (h & (1 << j ) ) != 0 ? 1 : 0 ;
par i ty = ( b i t S e t != pari ty ) ? 1 : 0 ;

}
int l = par i ty ;

Listing C.6: Parity

Laundering Attack The benchmark is taken from [22]. It is a standard example of in-
formation being leaked through implicit flows in a loop. All 32 bits of input information
are leaked by the program

int l = 0 ;
while ( l != h) {

++ l ;
}

Listing C.7: Laundering Attack

Shift and Launder This benchmark tests how the tools cope with computations
that do not influence the output. The loop computes two values, however, only one is
eventually leaked. The channel capacity of the program is 32.

int launder = 0 ;
int s h i f t = 1 ;
int i = 0 ;

while ( i != h) {
launder += 1 ;
s h i f t = s h i f t << 1 ;
i ++;

}
int l = launder ;

Listing C.8: Shift and Launder
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Masked Laundering This program first executes a laundering attack but then masks
the lowest value bit of the resulting value. The difficulty in this program is, that to
recognize that the conditional masks the value, the analysis tool has to correctly identify
the relationship between the secret input value and the result of the laundering attack
loop. The channel capacity of the program is 31.

int l = 0 ;
while ( l != h) {

l ++;
}
i f ( ( h & 1) != 0) {

l = 1 ;
}

Listing C.9: Masked Laundering

Sane Laundering This program combines the sanity check benchmark with the laun-
dering attack benchmark. The program leaks 4 bits.

int x ;
i f (0 <= h && h < 16) {

x = 3 + h ;
} else {

x = 3 ;
}

int l = 0 ;
for ( l != x ) {

++ l ;
}

Listing C.10: Sane Laundering
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Function Calls and Recursion Benchmarks
Recursive Laundering The program executes a laundering attack, however not itera-
tively in a loop, but through recursion. All 32 bits of information are leaked.

int launder ( int h , int l ) {
i f (h == l ) {

return l ;
}
return launder (h , l + 1 ) ;

}

int l = launder (h , 0 ) ;

Listing C.11: Recursive Laundering

Call Mask The program masks the four least valued bits of the input value through a
chain of function calls. The benchmarks test the ability of the tools to handle nested
function calls. The channel capacity of the program is 28.

int mask0( int h) {
return h | (1 << 0 ) ;

}

int mask1( int h) {
return h | (1 << 1 ) ;

}

int mask2( int h) {
return h | (1 << 2 ) ;

}

int mask3( int h) {
return h | (1 << 3 ) ;

}

int mask01( int h) {
return mask1(mask0(h ) ) ;

}

int mask012 ( int h) {
return mask2(mask01(h ) ) ;

}
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int mask0123 ( int h) {
return mask3( mask012 (h ) ) ;

}

int l = mask0123 (h)

Listing C.12: Call Mask

Dead Recursion The benchmark from [15] contains a recursive function that, de-
pending on the input value, requires many recursive calls, however eventually always
returns the same value. The channel capacity of the program is 0.

int id ( int i ) {
int r = 0 ;
i f ( i > 0) {

r = id ( i − 1) + 1 ;
}
return 0 ;

}

int l = id (h ) ;

Listing C.13: Dead Recursion
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