
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

FirmReduce:
Automated Test-Case

Reduction for Graph-Based
Compilers

Bachelorarbeit von

Tina Maria Strößner

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: M.Sc. Sebastian Graf

Abgabedatum: 7. September 2018

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

Testcase reduction is the process of isolating the failure-inducing parts of a given
larger testcase, with the goal of obtaining a testcase, minimal in size, that reveals
the same faulty behaviour in the system under test.

This thesis presents FirmReduce , a program to automate testcase reduction for
testcases given in the Firm intermediate presentation that can be used to test and
debug the libFirm compiler backend. It is based on the findings given in Test-Case
Reduction for C Compiler Bugs [1]. We will show that the reducer FirmReduce has
the capability to substantially reduce a given testcase in size and present reduction
results using different bugs we identified in libFirm .

i

Zusammenfassung

Testfallreduzierung beschreibt die Isolation von versagensauslösenden Programmteilen
in großen Testprogrammen mit dem Ziel, die Größe dieses Tesfalls zu minimieren,
sodass dieser immernoch das Fehlverhalten des zu testenden Systems offenlegt.

Diese Arbeit präsentiert das Programm FirmReduce zur automatischen Reduktion
von Testfällen, die in der Compiler-Zwischensprache Firm gegeben sind, das zum
Testen und Debuggen des libFirm Compiler-Backends verwendet werden kann. Wir
werden zeigen, dass FirmReduce in der Lage ist, die Größe von Testprogrammen er-
heblich zu reduzieren und präsentieren die Ergebnisse von Reduktionen mit Testfällen
für in libFirm vorhandenen Bugs.

iii

Contents

1 Introduction 1

2 Background 3
2.1 Firm . 3

2.1.1 Firm Graphs . 4
2.1.2 Optimizations . 5

2.2 Testcase Reduction . 6
2.2.1 The Testcase Reduction Problem 6
2.2.2 Testcase Minimization vs Testcase Reduction 7

3 Related Work 9
3.1 Delta Debugging . 9
3.2 C-Reduce . 10

4 Design and Implementation 11
4.1 Driver . 12

4.1.1 Optimization strategy . 12
4.1.2 Reduction Loops . 13

4.2 Passes . 15
4.2.1 Destructive Passes . 15
4.2.2 Non-destructive Passes . 18
4.2.3 Pass Synergies . 19

4.3 Interestingness Test . 21

5 Results and Evaluation 23
5.1 Input Data . 23
5.2 Results . 24

5.2.1 Reduction . 24
5.2.2 Pass Efficiency . 27
5.2.3 libFirm Bugs . 30
5.2.4 Comparison to C-Reduce . 32

5.3 Future Work . 34

6 Conclusion 37

v

Contents

Appendices 43
1 Size over Time - Full data . 43
2 Analysis of successful sequences . 45

vi

1 Introduction

Compilers generate machine code from source code written in higher-level program-
ming languages. The correctness of the produced executables therefore depends
heavily on the compiler being able to translate the input to a semantically equivalent
program. Bugs in compilers inhibit this ability and cause the compiler to produce
wrong machine code or even to crash.

Bugs in compilers are often discovered by generating random test programs, using a
fuzzer, or by chance, when using the compiler to build an executable. Either way,
the resulting test programs, which cause the compiler to show faulty behaviour, are
often quite large and therefore make it difficult to identify which part of the testcase
provokes this behaviour. In order to make the debugging process easier, it is desirable
to have a testcase of minimal size, triggering the bug in question.

A common approach to find a minimal testcase isolating the bug, is to start with a
larger testcase and successively reduce its size, while maintaining its bug-triggering
properties. Examples of such reduction frameworks include the Delta Debugging
algorithm used in different applications or C-Reduce, a reducer that works on C
programs developed at the University of Utah.

libFirm is a library providing a compiler optimization suite and a backend used for
code generation. It implements FIRM, a graph-based intermediate representation,
used to represent programs in SSA-form as a basis for the subsequent optimizations
and code generation. A flexible test suite is used to maintain libFirm ’s code quality
and prevent software regression. The testcases used in the suite can be generated
using FirmSmith [2], a fuzzer producing programs directly in FIRM. This makes
the testcase generation independent of the compiler frontend and source language
features and achieves a higher coverage of libFirm features. However, this approach
prevents the use of all common testcase reducers, as they do not operate on Firm.

Based on the methods used in C-Reduce, this thesis aims to provide a testcase
reduction framework, that works exclusively on Firm graphs to improve the debugging
process for the libFirm library and make testcase reduction for Firm graphs possible.
Secondly, the reduction program shall be used to analyze and isolate bugs, currently
found in libFirm .

1

The main contributions of this thesis are as follows:

• We present a possible design for a modular reducer based on the graph-based
intermediate representation Firm.

• We determine which graph transformations are most useful to minimize a
given testcase. Furthermore we identify synergy effects between different graph
transformations as an important part of the reduction process and present how
they can best be exploited to increase efficiency of the reduction.

• We show that our reducer can match the results of existing tools, while allowing
working directly on the intermediate representation. This makes it possible
to omit the compiler’s frontend from the whole debugging process if required,
which is not possible with other testcase reducers.

2

2 Background

Compilers are used to translate programs from source code to architecture-specific
machine code. The translation process is split into three different phases:

First, the compiler frontend analyzes the input and checks for syntactical and se-
mantical correctness. Afterwards the program is transformed into an intermediate
representation that is independent of the source and target language. The intermedi-
ate representation of a program is the result of the frontend’s source code analysis
and the basis for the middle-end’s optimizations. The choice of data structure for
the IR directly influences the efficiency and quality of a compiler’s transformation
[3]. Optimizations are applied to the program in an effort to improve the program’s
performance. It is essential for these optimizations to each output a program that is
semantically equivalent to the input. Lastly, the compiler backend is responsible for
the code generation [4].

This chapter will introduce the basics of the Firm intermediate representation, as
well as give a more comprehensive explanation of the testcase reduction problem.

2.1 Firm

libFirm is a C library, providing optimizations and machine code generation, based
on a graph-based intermediate representation Firm. Firm was developed in 1996
at the Karlsruhe Institute of Technology, as part of the Sather-K compiler Fiasco,
but was later extracted to the separate library libFirm [5]. Firm is a completely
graph-based representation of a program in SSA form. SSA form ensures, that every
variable is defined before it is used and is assigned exactly once. A variable that is
assigned more than once, is split into multiple variables. At points in the program
where two control control flow paths join, a φ function is used, that chooses the right
definition of the variable, depending on the control flow of the program [6].

3

2.1. FIRM

2.1.1 Firm Graphs

A program in Firm is represented by mulitple graphs, each representing a function
in the program. The nodes of a graph represent either a basic block, a transfer of
the control flow or a data flow operation. Basic blocks are the vertices in a control
flow graph and represent pieces of code, that are executed sequentially with exactly
one entry and one exit point. Control flow is transferred to a different basic block on
operations like (conditional) jumps. Data flow operations are operations that change
the state of memory, such as Stores, Loads or Allocate operations.

The edges of a Firm graph represent control flow dependencies. A control flow
dependency between two nodes exists, if the execution of the operation represented
by node A is dependent on the result of the execution of node B. A dependency
of this nature would be represented in a Firm graph by an outgoing edge from
node A pointing to node B. The control dependency edges are reversed compared
to a control flow graph. A special case are memory dependencies, where the value
creating the dependency is in the memory and can therefore not be duplicated. A
memory operation would have the whole memory state as input and produce a new
memory state as output.

Firm Nodes

The transformations applied to a Firm graph by FirmReduce often target specific
nodes in the graph. Below we provide a description of all nodes that are targeted.

Alloc node These nodes allocate a block of memory on the stack. Its inputs are
a memory node and the size of the block in bytes. Output is the resulting
memory state and a pointer to the newly allocated memory.

Arithmetic nodes Arithmetic nodes in the context of this thesis are Add, Sub, Mul,
Div, Mulh, Mod, Shr, Shrs, Shl nodes. They all have two inputs (the operands
of the arithmetic operation) and one output (the result of the arithmetic
operation). The two operands and the result may have different types depending
on the operation.

Call node This node represents a function call. It has the current memory state
input as well as a pointer to the called code. Additionally, function parameters
of the called functions may be predecessors to this node. Successors are the
resulting memory state, a tuple value containing the result values of the call
and the control flow successors.

4

2.1. FIRM

Cond node A conditional change to the control flow. The input is the condition
parameter ("selector").

Load node Loads a value either from heap or stack. The input parameters are the
current memory state and a pointer to the address to load from. The output
consists of the resulting memory state and the result of the load operation.

Mux node A Mux node has three predecessors: Two operands and one selector. One
of the operands is returned based on the value of the selector.

Proj node In Firm every SSA value corresponds to a node. This can become
a problem for operations that return multiple results. To avoid this, these
operations instead return a single tuple value. Tuple values also appear after
function calls that return both the call result, as well as the resulting memory
state. From this tuple, the components can be projected using a Proj node.
A Proj node has the tuple value as its input and outputs the value it projects.

Return node This node represents the return statement of a function. It takes the
function’s final memory state, as well as all return values as input.

Store node Stores a value either to heap or stack. It has three inputs: The current
memory state, the address to store at and the value it is supposed to store.
The output is the resulting memory state.

Switch node A node which changes the control flow depending on the value of
its input selector. Successors to this node are all possible destinations of the
control flow change.

2.1.2 Optimizations

Compilers not only translate programs from a source language into machine code, they
also perform different analyzes and optimizations. Optimizations are transformations
that maintain semantics, while improving the program in regard to execution time
and memory usage. libFirm implements 17 different compiler optimizations that are
used in FirmReduce to advance the reduction process. [7]

5

2.2. TESTCASE REDUCTION

2.2 Testcase Reduction

While a general description of the problem of testcase reduction was given in the
introduction, this chapter will provide a more formal definition.

2.2.1 The Testcase Reduction Problem

Bugs in compilers are often discovered by compiling program that triggers said bug
and causes the compiler to crash or miscompile said program. Finding out which
part of the program is responsible for triggering the bug is vital for understanding
and ultimately fixing the bug, but can be a tedious task if the program is large.
Testcase reduction is trying to solve said problem. In the following chapter, we adapt
and expand the definitions given in [1] in order to create a formal foundation upon
which we can base our work in this thesis.

Let T be the set of all valid inputs to some system under test. An element t ∈ T is
called a testcase. Let I be the set of predicate i : T → {True, False}, that map a
testcase to a boolean value. A testcase t ∈ T is considered an interesting testcase (or
bug reproducer), iff it fulfills the given predicate i ∈ I, i.e. i(t) = True. Otherwise it
is considered uninteresting.

Let Ti ⊆ T be the set of all interesting testcases for a given predicate I and for all
t ∈ TI let |t| be the testcase’s size according to some appropriate metric (for the
metric used in this thesis, refer to section 4.1.1). The testcase reduction problem for
a given compiler bug is to find tmin ∈ TI , where ∀t ∈ TI : |tmin| ≤ |t|. tmin might not
be unique. We call tmin the minimal interesting testcase.

The process of finding a minimal interesting testcase is based on the production
of variants of a given interesting input testcase t. Let P ⊆ T → T be a set
of transformations, where each transformation p ∈ P manipulates a given input
testcase t in a predefined way, and outputs a different testcase t′. We write t⇒p t

′.
Additionally, we write t ⇒P t′, iff t ⇒p t′ for an arbitrary p ∈ P. We assume
id ∈ P .

Definition 1. t′ is called variant of t iff t′ lies within the reflexive-transitive hull of
t w.r.t. ⇒P .

Depending on the initial interesting testcase t used to find variants, it is possible,
that the minimal interesting testcase rmin we are looking is not a variant of t. Instead
of finding an unrelated interesting testcase t′, where rmin is a variant of t′, we will
focus on finding the minimal interesting variant:

6

2.2. TESTCASE REDUCTION

Definition 2. For a given initial testcase t and a compiler bug predicate i ∈ I, let
Vt,i := {t′ |t′ is variant of t∧t′ is interesting w.r.t i}. We call t′ a minimal interesting
variant iff t′ ∈ Vt,i ∧ ∀t′′ ∈ V : |t′| ≤ |t′′|.

The minimal interesting variant might not be unique.

In order to check if an interesting variant is also minimal, we use ?? 1. How it is
used is explained in section 4.1.2.

Theorem 1. Let t′ be an interesting variant for a given initial testcase t and w.r.t
a given bug i in the compiler. t is a minimal interesting variant iff ∀ variants t′′ of t
with |t′′| < t′ : t′′ is not interesting.

Proof. The theorem results from the contraposition of the definition of the minimum
for a given partial order. In this case, the partial order in question is given by the
chosen metric | · |.

2.2.2 Testcase Minimization vs Testcase Reduction

The terms ’testcase reduction’ and ’testcase minimization’ are not always used
uniformly. We use the definitions given in [1], where ’testcase reduction’ refers to the
transformation of a single given testcase (i.e. finding the minimal interesting variant),
whereas ’testcase minimization’ means finding the absolute minimal interesting
testcase.

Other definitions, such as ’testcase reduction’ being the minimization of number
of testcases, while preserving the same code coverage, are not applicable in this
thesis.

7

3 Related Work

Existing reduction tools use different approaches to minimize the size of a testcase.
One of the first tools to minimize testcases automatically is the delta debugging
algorithm. Another commonly referred to method is the algorithm used in C-Reduce,
which is also the basis for the work done in this thesis. Both approaches are described
in the following chapter.

3.1 Delta Debugging

The Delta Debugging algorithm was first described in 1999 at the university of
Saarland. The motivation behind the development of the methodology stems from
the Mozilla Gecko BugAThon: A call for volunteers, where Mozilla was asking
volunteers to help to simplify the many open bug reports listed in the Mozilla bug
database [8].

ddmin The minimizing Delta Debugging algorithm ddmin minimizes a testcase by
removing characters from the original test case and testing whether Mozilla
crashes on the given test case. The result is a minimal failing test case, where
every character is relevant to reproducing the Mozilla crash.

dd The general Delta Debugging algorithm dd in contrast tries to isolate the differ-
ences between a failing and a passing test case. Additionally to minimizing
the failing input, dd also tries to maximize the passing input until a minimal
failure-inducing difference is obtained.

While Delta Debugging was first developed for and tested with HTML input, it is
not limited to such and the general concept can be applied to "all circumstances that
in any way affect the program execution" [9].

9

3.2. C-REDUCE

3.2 C-Reduce

C-Reduce is a test case reduction tool for testing C compilers that was developed at
the university of Utah. It is a modular reducer, that uses a series of transformations,
that are iteratively applied to the program until a fixpoint in the reduction is found.
These transformations, in contrast to the Delta Debugging methodology are not
hard-coded, but implemented as plug-ins to the main program driver. C-Reduce uses
five types of transformations [1]:

Peephole optimizations A peephole optimization is an optimization that is per-
formed over a small contiguous chunk of the code. The optimizations used in
C-Reduce include changing identifiers and integer constants to 0 or 1, removing
a basic block or constant folding.

Localized, but non-contiguous changes These transformations mostly affect the
control flow of the program by merging or separating basic blocks. As an
example, this can be achieved by removing an if statement plus the following
pair of curly braces without altering the block of code between them.

Line Removal Instead of applying transformations to specific source code elements,
these transformations remove lines from the source code, without taking into
account their semantic value to the program. The number of lines removed
initially is the number of lines in the test case. This number is successively
reduced until it reaches the minimum of one line removed.

External Pretty-Printing Reformatting can turn a failure-inducing test case into a
non-failure-inducing testcase, which is why this step is included in the reduction
itself and not post-processing.

Compiler-like transformations Using LLVM’s Clang front end, a set of compiler-like
transformations were added to the reducer, including dead-code elimination,
function inlining or the scalar replacement of aggregates.

C-Reduce uses the number of lines in a program as its metric to identify the minimal
testcase. This metric may not always deliver the best testcase for easy bug anal-
ysis, since the number of lines doesn’t necessarily correlate to the complexity of a
program.

10

4 Design and Implementation

The reduction strategy used by FirmReduce is based on iteratively producing and
evaluating different variants of the initial testcase given as input. A variant is
a testcase derived from the input program by applying a transformation, such as
substituting constant values or omitting parts of control flow where possible. Variants
are evaluated according to their size and bug reproducibility and either kept for
further reduction or discarded.

FirmReduce has a modular structure, consisting of the driver, numerous passes, as
well as a user-supplied interestingness test (see figure 4.1).

The driver manages the different parts of the program. Its responsibility is invoking
the different passes and the interestingness test script, as well as evaluating the
newly found variants according to their size and determining if a fixpoint is found
and FirmReduce should terminate. The passes’ responsibility is the reduction itself,
by each creating new variants from the input given to them. Checking whether a
variant is still a reproducer of the bug is done by a interestingness test. The criteria
that a variant must fulfill in order to pass the test depends on the bug we want to
reproduce. The test can therefore not be hardcoded into the program, but is supplied
by the user in form of a shell script that is executed repeatedly during the reduction
process.

The algorithm used by the driver to apply passes and the interestingness test is shown
in line 31, a more detailed explanation of the responsibilities and functionalities of
FirmReduce ’s different modules is given in the following sections.

FirmReduce is programmed in C and uses libFirm version 1.22.1. Additionally,
the interestingness tests used for the reductions use cparser (version 1.22.1), a C99
parser and frontend for libFirm .

11

4.1. DRIVER

User Input firmReduce Output

Testcase

Interestingness Test

Driver Minimal testcase

Passes

Figure 4.1: Structure of FirmReduce
The user inputs the testcase and Interestingness Test. The driver then
loops through the passes that produce new variants, while making sure
the new variants fulfill the Interestingness Test. The final output is a
minimal testcase.

4.1 Driver

The driver manages the interaction of the passes and the interestingness test. Within
its responsibilities lies the decision of which pass to apply to which part of the
program and when to test the current variant for reproducibility. The passes are
plugged into the program dynamically and are reloaded at every program start to
allow for easy addition / removal of passes. A path to the reproducer script needs to
be passed to the driver when starting the reduction.

4.1.1 Optimization strategy

FirmReduce uses a greedy optimization strategy meaning the variant given to the
passes to reduce is always the best one we have found so far. A variant is considered
’better’ than another variant, if it either

• has fewer nodes,

• has fewer graphs,

12

4.1. DRIVER

• has reduced control flow complexity, measured by the number of nodes in the
program that influence the control flow,

• has less data dependencies, measured by the number of nodes in the program,
performing memory dependent operations,

• or has less types.

Choosing these criteria may lead to one criterion favouring variant A, whereas
another criterion favours variant B. If from the criteria it is not clear, which variant
is the better one, we choose the newer variant, as we assume that the passes used
in the reduction are implemented to transform the input variants in a useful way.
Additionally, we allow for these metrics to become temporarily worse, as many
compiler optimizations require node insertions to be able to simplify the program.

Because the Firm intermediate representation is a low-level representation of a
program compared to C source code, the correlation between the number of nodes
and the complexity of the program is quite high compared to the metric used in
C-Reduce, which is the number of lines in the C source code.

4.1.2 Reduction Loops

FirmReduce uses two separate reduction loops, that work with two different granual-
ities on the input file. The first loop operates on graph-level, meaning it advises the
passes to apply as many transformations to a graph as possible. The advantage of
being this aggressive with the reduction is a significant reduction in execution time.
This is due to less system overhead, since every pass invocation requires creating
a new process, as well as less overhead in FirmReduce itself. If after a graph-level
application of a pass the interestingness test fails, the reduction approach may have
been too aggressive. The graph-level changes are discarded. In a second reduction
loop, all graph-pass combinations that yielded uninteresting outputs during the first
reduction loop are executed again. This time the pass is restricted to do only a
single transformation and return the result. The order in which passes are applied
is important. Applying pass A to a graph can lead to pass B being able to make
more transformations than before the application of pass A. An example of this is
shown in figure 4.3. The order which is best depends on the characteristics of the
test-case. Therefore it cannot be determined in advance. Instead, FirmReduce uses
a randomized order in which it applies the passes to the test-case. In most cases,
passes will be executed more than once, as the reductions that were applied to the
variant in between these two executions, allow the pass to find more places in the
program, where it can apply its own transformations. To exploit synergy effects
between the passes as much as possible, all passes have to applied at least once,

13

4.1. DRIVER

before one pass will be applied a second time. The randomization in FirmReduce is
therefore based on iterating over a permutation of the list of loaded passes, before
creating a new permutation and repeating the process.

The reduction is complete and FirmReduce exits, if a fixpoint in the reduction is
found. A fixpoint is a variant that cannot be further reduced by any of the passes in
FirmReduce . Here, we use 1: we stop the reduction if every variant smaller than
the current one is either not a valid Firm graph (thus, it is not a testcase, since we
defined a testcase to be a valid input) or it is not interesting w.r.t. the predicate
used for reduction.

Listing 4.1: Algorithm used by the driver to reduce a testcase
1
2 while ! f i x p o i n t {
3 pas s e s ← random permutation o f pas s e s
4 for pass in pas s e s {
5 while t e s t c a s e conta in s r educt i on oppo r tun i t i e s {
6 i r g ← random i r g
7 new_variant = apply_pass_aggress ive ly (pass , i rg ,

current_var iant)
8
9 i f new_variant i s reproducer {
10 current_var iant ← new_variant
11 } else {
12 mark ((pass , i r g))
13 d i s ca rd (new_variant)
14 }
15 }
16 }
17 }
18
19 for (pass , i r g) in pas s e s × i r g s {
20 i f marked {
21 new_variant = apply_pass_conservat ive ly (pass , i rg ,

current_var iant)
22
23 i f new_variant i s reproducer {
24 current_var iant ← new_variant
25 } else {
26 mark ((pass , i r g))
27 d i s ca rd (new_variant)
28 }
29 }
30 }
31

14

4.2. PASSES

4.2 Passes

The responsibility of the passes is the reduction of the input program. Each pass
performs one specific transformation to the program. The modular architecture of
FirmReduce means, passes can be added and removed easily and can be implemented
in different programming languages. The driver communicates with each pass over
the command line: It decides for the pass, which input file it should transform, which
graph of that input and how aggressive the reduction should be. Internally, a pass
does not need to adhere to a certain structure. Each pass needs to make sure it
produces a valid program, i.e. a program that the compiler should be able to handle
without faults.

4.2.1 Destructive Passes

Destructive passes do not uphold semantic equivalence between the input and the
output program. This yields more possibilities for transformations. The destructive
passes and their transformations that are used in FirmReduce are:

Garbage Collection of IRGs The pass tries to remove a graph from the program.
This transformation only succeeds, if no other graph has a dependency to the
deleted one and we are not trying to remove the main function. This pass
works best, if, by removing function calls from the program, we have already
removed dependencies between graphs.

Removal of Alloc nodes Alloc nodes that only have a data dependency in-edge
and no control flow in-edge are removed. The data dependency is re-routed
to the previous memory state. Alloc nodes without successors except the
output memory state, usually don’t appear in a program naturally, but after
the application of other passes, that eliminate the need to save a variable,
because it is unused in the rest of the program.

Removal of Store nodes All Store nodes in the graph are removed. All memory
successors are re-routed to the Store node’s memory predecessors. This not
only voids the single store operation, but also all calculations done to the value
that was to be saved at this point in the program.

Removal of Void Calls The pass removes all calls to void functions and non-void
functions, the return values of which are not used. Function calls that do have
a return value that is used in the initial program cannot be removed by this
pass. However testing has shown, that the data and memory dependencies of a
function’s return value are reliably removed by the other passes. The return

15

4.2. PASSES

foo

Start Block 71

End Block 70

Return 85

Proj M M 75Add Is 84

Const 0xFFFFFFFE Is 83 Mul Is 82

Const 0x2A Is 81 Add Is 80

Const 0x3 Is 79 Proj Is Arg 0 78

Proj T T_args 76

Start 73

End 72

0

01

001

01

01

0

0

(a) Original graph The arithmetic oper-
ations all have a non-zero constant
operand.

foo

Start Block 76

End Block 75

End 77

Return 90

Proj M M 80Add Is 89

Const 0x0 Is 88 Mul Is 87

Const 0x2A Is 86 Add Is 85

Const 0x3 Is 84 Proj Is Arg 0 83

Proj T T_args 81

Start 78

0

01

001

01

01

0

0

(b) Conservative Reduction The trans-
formation was applied to only one of
the constant values. The last addi-
tion becomes superfluous and will be
removed, the other two remain un-
changed.

foo

Start Block 76

End Block 75

End 77

Return 90

Proj M M 80Add Is 89

Const 0x0 Is 88 Mul Is 87

Const 0x0 Is 86 Add Is 85

Const 0x0 Is 84 Proj Is Arg 0 83

Proj T T_args 81

Start 78

0

01

001

01

01

0

0

(c) Aggressive Reduction The transfor-
mation was applied to all Const
nodes. The result of the function will
always be 0, hence all operations done
in the function will be removed.

Figure 4.2: Aggressive vs Conservative Reduction The pass used in this exam-
ple replaces constants with the value 0.

16

4.2. PASSES

value becomes an unused variable, hence this pass is now able to remove the
function call completely. In all (so far...) testcases we reduced, function calls
were removed, except the ones that are important to a testcases reproducibility
properties.

Replacement of Arithmetic nodes The pass removes nodes that perform arith-
metic operations, including Add, Sub, Mult, Multh, Div, Mod, Shl and Shr
nodes. The operation is replaced with a Const node, having the same mode
as the operation’s result and containing the value 0.

Replacement of Cond Selectors In libFirm every Cond node has a Selector, that
selects one of the outgoing control-flow edges as the next instruction, based on
the evaluation of the condition given to the node. The transformation done
in this pass replaces this condition randomly by true or false. Making the
result of the condition a constant, means always the same branch is chosen for
execution. The other one is dead and can be garbage collected.

Replacement of Load nodes Load nodes, that load values stored on the heap or
stack, are replaced by Const nodes that hold values of the same mode and
the value 0. If all instances, where a value in memory is loaded, are removed
from the program, we assume the storing of the value itself to become obsolete.
The corresponding Store node will be removed by subsequent passes.

Replacement of Mux Selectors Similar to Cond nodes, Mux nodes have a selec-
tor that chooses one of two operands depending on the evaluation of a boolean
value. This boolean value is replaced by a randomly chosen constant. The
not-chosen operand and all its control-flow dependencies become unreachable in
the program and will be removed by other passes in the course of the reduction.

Replacement of Proj nodes Proj nodes are used to project single values from a
tuple. Operations that return tuple values include function calls, load and
store operations and reading function arguments. If the value projected is of a
primitive type, we substitute this Proj node for a Const node, containing a
constant value of the same type. Doing this also removes the data dependency
to the Proj node’s predecessor.

Replacement of Return Values The return value of a function is replaced by a
constant value. A function that always returns the same constant value
will be inlined by the subsequent optimizations, therefore removing all data
dependencies to the function. This makes the removal of the corresponding
graph possible.

Replacement of Switch Selectors The selector value, that indicates which control-
flow branch will be executed, is replaced by a constant integer value. This

17

4.2. PASSES

leads to the same effects described in the passes section 4.2.1 and section 4.2.1.

Substitution of Constant Values The value of a variable represented by a Const
node is set to the value 0.

The nature of the transformations used in FirmReduce ’s destructive passes allows
them to be used either on the whole program (i.e. each node that the transformations
may be applied to), all nodes in a single graph or even only a single node. For
each possible reduction granularity, there is a trade-off between execution time and
reduction success: Being more aggressive in a single reduction iteration means that
the interesingness and other validity tests on the variant have to be executed less
often, therefore reducing overall execution time. However, the more a variant is
changed before it is tested for reproducibility, the higher is the probability that
this test fails and the variant has to be discarded. Reducing the whole program at
once has proven to be impractical as the interestingness test would fail too often.
The most aggressive reduction FirmReduce uses is a graph-level reduction. If this
granularity proves to be to low, the driver remembers the tuple of pass and graph that
failed and in a later reduction cycle will retry the reduction with a finer granularity
(node-level).

4.2.2 Non-destructive Passes

Non-destructive passes do not change the semantics of the input file. This is needed
when we reduce a testcase, the interestingness of which can only be determined by
evaluating the output of an execution of the compiled testcase. For the transforma-
tions, FirmReduce uses compiler optimizations that are implemented in libFirm .
This raises the question if the reduction may be compromised if there are bugs in
the optimizations, especially since the input for the passes are programs that are
supposed to trigger these bugs. This is not the case, as changes in the semantic
validity of the program is either not important to its quality as a bug reproducer
or are discovered by the interestingness test and immediately discarded. In cases
where a pass fails to produce a syntactically valid program from a syntactically
valid input, we may have found a variant that invokes a bug in the pass. This is
especially interesting if the pass solely consists of an optimization used in libFirm .
The transformations of the pass are discarded, however the input variant is saved as
a potentially interesting, bug-triggering testcase to examine at a later time.

18

4.2. PASSES

4.2.3 Pass Synergies

The transformation used by the passes, especially the ones described in section 4.2.1
are very simple. Despite this, they manage to reduce the input program significantly,
because we can exploit synergy effects between the passes. Applying each pass once
may not result in a minimal program, but the application of passes can produce new
opportunities for other passes to further transform the program. An example for
synergy effects occurring between the replacement of Proj nodes and the removal
of Call nodes can be seen in figure 4.3.

Other synergy effects taking place are:

Passes producing unreachable code Some passes, such as the replacement of Cond,
Mux or Switch selectors, produce unreachable code, i.e. code that will never
be executed. The compiler optimizations will remove the dead branch from
the program graph.

Passes producing dead code Because the passes remove calculations, function calls
or store operations, the variables used in these become unused. The data
dependencies to the part where these variables are calculated no longer exist,
therefore these calculations can also be removed from the program, as they are
unnecessary.

Passes replacing variables by constants The value of variables is usually unknown
until run-time. FirmReduce replaces these variables with constant values,
therefore making especially local optimizations more effective.

The occurrence of synergy effects between specific passes was analyzed in the course
of the evaluations done in this thesis. The results are illustrated in section 5.2.2 and
especially in table 1, where we examined which passes where most beneficial to call
after the application of a specific pass.

19

4.2. PASSES

main

Start Block 95

End Block 94

End 96

Return 109

Proj M M 106Proj Is 0 108

Proj T T_result 107

Call 105

Address &sum P 102 Const 0x5 Is 103 Const 0x7 Is 104Proj M M 99

Start 97

0

01

00

0

0 1 2 3

0

(a) Original graph The Call node cannot be removed,
because the Call result is needed for later operations.

main

Start Block 100

End Block 99

Return 113

Const 0x1 Is 112Proj M M 111

Call 110

Address &sum P 107 Const 0x5 Is 108 Const 0x7 Is 109Proj M M 104

Start 102

End 101

0

0 1

0

0 1 2 3

0

(b) The Proj node was replaced by a Const node.
This also removed the data dependency to the
function call. Now the pass are able to the
function call

main

Start Block 105

End Block 104

End 106

Return 113

Const 0x1 Is 112Proj M M 109

Start 107

0

0 1

0

(c) The resulting graph without the
function call.

Figure 4.3: Synergy Effect between the Call node removal and Proj node
replacement The pass used in this example replaces constants with
the value 0.

20

4.3. INTERESTINGNESS TEST

4.3 Interestingness Test

The criterion that marks a testcase as a bug reproducer is dependent on the bug
itself, therefore the interestingness test cannot be hard-coded into the program. It is
separated into a user-supplied script that is invoked by the driver at the appropriate
times. The user can specify a set of command line arguments that will be passed to
the reproducer script by the driver to increase reusability of the script.

21

5 Results and Evaluation

In this chapter we will evaluate our implementation of FirmReduce . We will
compare its output to the minimal interesting testcase as well as C-Reduce’s output
for the same testcase. Furthermore we examine the impact of randomization during
the reduction process.1

5.1 Input Data

The testcases used for this evaluation are produced by FirmSmith [2] and CSmith
[10] (version 2.3.0). FirmSmith generates programs directly in the Firm intermediate
representation, while CSmith delivers C programs that need to be translated into
Firm representation before FirmReduce can use it. The translation was done
using cparser (version 1.22.1). FirmSmith and CSmith were both developed to find
programs where the tested compiler shows incorrect behaviour. For the purpose of
this evaluation, we modified the fuzzers in order to also produce programs where
libFirm behaves correctly. This produces testcases that compile successfully.

For the interestingness tests we used two different kinds of predicates: First, we
used the compilability of the input testcase: A testcase is interesting iff it compiles
successfully. Using a predicate that looks for a certain pattern in the testcase might
inhibit a specific pass from exploiting its full reduction potential and therefore distort
the analysis to the disadvantage of said pass. Choosing this method of evaluation
also allowed for a bigger sample size, as bug-triggering testcases are significantly
harder to find.

Secondly, we used testcases that trigger existing bugs in the compiler. These were
harder to compute for the fuzzers and therefore have a smaller sample size for
each predicate used. However, these cases give a clearer indication of the potential
reduction that can be achieved for a predicate that likely depends on a more complex
structure in the input testcase than the ones that were tested in the first step.

1All testcases and scripts used in this chapter can be found in: https://github.com/tnstrssnr/
firmreduce

23

https://github.com/tnstrssnr/firmreduce
https://github.com/tnstrssnr/firmreduce

5.2. RESULTS

5.2 Results

5.2.1 Reduction

For this part of the analysis, we used the compilability of the program as the reduction
predicate. The interestingness test used is shown in figure 5.1.

1 #!/ usr / b in /env bash
2 ! cpa r s e r $@ >/dev/ nu l l 2>&1

Figure 5.1: Interestingness Test that checks if the input is compilable

For this predicate, the minimal interesting testcase, which is the smallest possible
compilable C program is shown in figure 5.2. It consists of seven nodes. Additionally,
the figure shows the smallest Firm graph any function in a C program can have.

1 int main () {
2 return 0 ;
3 }

main

Start Block 68

End Block 67

Return 76

Const 0x0 Is 75Proj M M 72

Start 70

End 69

0

0 1

0

Figure 5.2: Smallest compilable C program as source code and in Firm inter-
mediate representation

To test the reduction as a whole, we used 107 different input testcases2 and ran
FirmReduce once for each. The average size of the input testcases was just over
8000 nodes, with the values ranging between 912 and 18585 nodes per testcase. The
size of most input testcases either range from ~900 to ~1500 or between ~12.000 and
~15.000.

In 94.4% FirmReduce was able to produce the minimal interesting testcase. For
the remaining testcases, the result either consisted of 14 or 17 nodes. The output

2see directory {firmReduce_home}/examples/Working

24

5.2. RESULTS

testcases containing 14 nodes consist of two instances of the graph shown in figure 5.2.
As there are no dependencies between the two graphs, FirmReduce should have
been able to remove one of them. One output testcase contained 17 nodes, with
the graph of the main function being a minimal 7-node graph and the graph of the
second function containing a recursive call to itself. The function call is void, so
ideally it should have been removed by FirmReduce . For all testcases where the
maximum reduction was not achieved on the first run of FirmReduce , a second
run was performed on the output of the first reduction. This time all testcases were
reduced to the minimal interesting testcase. Running FirmReduce a second time on
the original input with a different seed also yields the minimal interesting testcase.

FirmReduce failed to fully reduce these testcases on the first try, because the program
prematurely assumed it has found a fixpoint. This can happen due to the randomized
nature of the reduction process, as FirmReduce does not guarantee to apply a pass
to every graph in the testcase.

We also conducted a second run of FirmReduce , where the order of passes was
completely randomized, instead of using a permutation of passes, where immediate
repetitions of passes are not possible. This reduced the share of testcases reduced to
7 nodes to 84.4%. Guaranteeing, instead of expecting, that each pass will be run
periodically increases the quality of the reduction due to an improved pass success
rate, caused by stronger synergy effects, and a more reliable fixpoint identification.

How the program size develops during the reduction process can be seen in figure 1.
The diagram shows the number of nodes over the number of passes applied for a
selection of the testcases. To keep the diagram easy to read we did nott include
all testcases, a second graph containing all data can be seen in appendix 1. All
reductions seen in the graph show the same pattern: The number of nodes stays
stationary for a number of passes, until it drops by a significant amount with only one
pass. Mostly, these drops are the result of a destructive pass immediately following
a number of non-destructive passes. A more detailed of pass effectiveness under
different circumstances is given in section 5.2.2.

Also apparent in the diagram is the strong variance in the number of passes needed
during a reduction to reach the fixpoint. This variance can also be seen in the
execution time FirmReduce needs. Not only is the variance great between testcases
of different sizes, but also between testcases of similar sizes. This suggests that
the order of passes in the reduction has a great impact on the reduction result.
Reducing the same testcase with different seeds confirms this assumption, as the
ratio of successful/total number of passes ranges between 14.6% and 3.2%.

table 5.4 summarizes the results of the analysis.

25

5.2. RESULTS

0 20 40 60 80 100 120 140

7

10

100

1,000

10,000

20,000

no. of passes applied

no
.
of

no
de
s

Figure 5.3: Size of graphs over no. of passes applied Each line shows the total
number of nodes after x passes have been applied for a different input
file. The thick line shows the geometric mean of the data plots.26

5.2. RESULTS

Category Max. Min. Median Standard Deviation
Size of input 18585 912 11030 6358
Size of output 17 7 7 1.75
output size / input size 0.111 % 2.2 % 0.043% 0.46 %
no. of passes applied 279 25 125 42.7
no. of passes applied success-
fully

18 3 8 4

applied / success 32.1 % 1 % 6.4 % 4.7%
execution time (hh:mm:ss) 02:25:58 00:00:11 00:08:52 00:21:14
% of testcases, where max.
reduction was achieved

94.4%

Table 5.1: Results of reducing 107 different testcases

5.2.2 Pass Efficiency

This section details the efficiency of the single passes in the reduction process. For
this purpose, we analyzed each pass individually and during the reduction process.
For this section we will call a pass successful, if it managed to remove a part of the
testcase or simplified the testcase in a way that is better according to the metric
defined in section 4.1.1.

First we applied each pass to the same testcases used in section 5.2.1 separately in
order to see, which passes achieve a reduction and which don’t. The result is shown
in table 5.2. Most passes are never successful, giving the impression that they are
superfluous and don’t need to be included at all. A smaller subset of passes is either
successful for some testcases, but not all. Contrasting this, table 5.3 shows the pass
evaluation during a complete run of FirmReduce . After running the testcases, the
results show, that almost every pass had successful invocations. This difference in pass
effectiveness can be attributed to the synergy effects occurring between the passes
during the reduction process. Overall, the sucess rate of the passes is acceptable, but
with an average of 10.01%, there is still room for improvement. Unsuccessful pass
invocations happen predominantly towards the end of the reduction. The smaller
the testcase has already become, the smaller is the subset of passes that still have
the ability to reduce the testcase further. The probability of randomly choosing one
of these passes declines over time. This can also be seen in figure 1, where the slope
of the curve initially is quite high and flattens towards the end of the reduction.
Apart from choosing the wrong passes, we also need a series of unsuccessful passes
to identify a fixpoint. On average, 70 passes are applied without any progress, until
FirmReduce recognizes a fixpoint.

The second and third column in table 5.3 shows the average size delta for each pass,
i.e. the percentage by which each pass could reduce the testcase compared to the

27

5.2. RESULTS

Successful every
time

Never Successful Sometimes Successful

remove void calls replace loads opt blocks (38.74%)
replace cond selectors remove allocs normalize n returns (3.61%)
remove stores replace mux selectors opt jumpthreading (1.81%)
replace switch selectors normalize one return opt tail rec (80.19%)
replace return values remove critical cf edges optimize reassociation (31.54%)
combo remove unreachable opt if conv (36.04%)
conv opt opt funccalls opt ldst (72.08%)
optimize graph df opt frame replace proj (72.08%)
optimize cf gc irgs
simplify consts gc entities
replace arithmetic do loop inversion

remove bads
opt bool
construct confirms
scalar replacement opt
place code
optimize load store
opt parallelize mem
gvn pre
occult consts
dead code elimination

Table 5.2: Evaluation of Pass Efficiency for passes that were applied to different
testcases by itself. The passes can be put in the three categories seen
above, with unsuccessful passes being the majority.

state before pass invocation and the initial testcase size respectively. The data shows
the destructive passes being far more effective than the non-destructive passes. Some
non-destructive passes even on average increase the size of the testcase, however this
will not greatly affect our result, since these increases are small. More likely, these
create opportunities for other passes to reduce the testcase further. Additionally,
since changing parts of the program without changing its interestingness further
isolates the failure-inducing elements, even a slightly bigger graph may help in
identifying the underlying issue if we compare different variants throughout the
reduction process.

To be able to increase the success rate of FirmReduce ’s passes, we analyzed the
sequences of successful passes that occurred in the testruns and scanned them for
recurring patterns. For each pass, the list of passes that were successful immediately
afterwards is no longer than 22 (out of 47) passes, showing a clear inclination towards
certain passes being better choices than others. The detailed results of this analysis
can be seen in table 1. This knowledge can be used to define a heuristic for choosing

28

5.2. RESULTS

Pass % successful ∆ size (%) ∆ size com-
pared to initial
size

Destructive Passes
replace arithmetic 14.02% 29.74% 25.00%
replace loads 0% 26.74% -
remove allocs 28.68% 27.56% 2.92%
simplify consts 27.93% 15.41% 9.56%
replace mux selectors 0% - -
replace proj 24.63% 33.62% 16.64%
remove void calls 12.84% 7.16% 1.70%
replace cond selectors 20.08% 42.90% 26.95%
remove stores 26.52% 37.38% 13.42%
replace switch selectors 0% - -
replace return values 12.88% 23.77% 18.36%
gc irgs primitive 3.38% 67.6% 8.06%
Non-Destructive Passes
combo 6.82% 24.26% 21.59%
normalize one return 7.96% -1.27% -1.11%
opt blocks 9.1% -0.69% -0.87%
remove critical cf edges 6.8% -2.23% -1.86%
remove tuples 0% - -
remove unreachable 0.0% - 0.13%
opt funccalls 1.51% 2.50% 0.27%
normalize n returns 12.46% 0.92% 0.46%
opt frame 0.0% - -
gc irgs 29.55% 86.19% 28.96%
do loop inversion 0% - -
conv opt 8.34% 9.95% 8.45%
remove bads 2.27% 1.08% 0.40%
opt bool 0.0% - -
construct confirms 11.52% 1.59% 0.36%
scalar replacement opt 1.14% 0.05% 0.04%
opt jumpthreading 4.53% 0.21% 0.72%
optimize graph df 11.75% 35.12% 30.83%
place code 9.44% -2.73% -1.61%
opt tail rec 11.37% 3.09% 1.49%
optimize load store 25.76% 12.74% 1.99%
optimize reassociation 7.2% -0.07% -0.05%
opt if conv 9.47% 2.08% 2.09%
opt parallelize mem 17.36% –0.86% -0.23%
gvn pre 8.72% -1.11% -0.97%
optimize cf 14.34% 3.31% 1.66%
occult consts 2.32% 1.08% 1.00%
opt ldst 0% - -
dead code elimination 0% - -
gc entitites 8.34% 24.73% 0.00%
Total 10.01 %

Table 5.3: Evaluation of Pass Efficiency during the reduction process. The table
shows the % of total invocations that each pass has been successful,
as well as the difference in size each pass achieved compared to the
programs size before pass invocation, as well as initial program size.

29

5.2. RESULTS

passes in the reduction process, where each pass is given a weight dependent on
the previously chosen passes and passes with higher weights are more likely to be
chosen.

5.2.3 libFirm Bugs

To test how FirmReduce deals with real use cases, we identified several bugs in
libFirm , constructed testcases for them using FirmSmith and variants produced
by FirmReduce and examined the reduction results according to the same aspects
used in the previous chapters.

The testcases we used showed the following faulty behaviours:

Assertion failure on call to function ’gen_Proj_Load’ Compiling a testcase from
{firmReduce_home}/examples/pn_load using cparser and the options ’-fbool
-O0’ results in an assertion failure with the following output to stderr:

1 cpa r s e r : i r /be/amd64/amd64_transform . c : 2 7 8 5 : gen_Proj_Load :
Asse r t i on ‘pn == pn_Load_M’ f a i l e d .

2 Aborted (core dumped)

Assertion failure in Load Store Optimization When applying the Firm optimiza-
tion opt_ldst to a testcase found in {firmReduce_home}/examples/ldst,
libFirm aborts with the following error message:

1 pass_l ib f i rm_opt_ldst : . / i r / i r / irnode_t . h : 6 5 0 : set_Block_phis_ :
Asse r t i on ‘ i r_re source s_re se rved (get_irn_irg (b lock)) &
IR_RESOURCE_PHI_LIST’ f a i l e d .

2 Aborted (core dumped)

Assertion failure in IRG garbage collection When calling the garbage collection
function for graphs gc_irgs, libFirm aborts with the following error message:

1 pass_gc_irgs : i r /ana/cgana . c : 5 2 : cg_get_cal l_n_cal lees : As se r t i on
‘ i s_Cal l (node) && node−>at t r . c a l l . c a l l e e_ar r ’ f a i l e d .

2 Aborted (core dumped)

Testcases for this bug can be found in {firmReduce_home}/examples/gc

Assertion failure on edge exchange On re-routing edges from one node to another,
using the exchange function, libFirm aborts with the following error message:

1 pass_replace_loads : i r / i r / irgmod . c : 4 4 : exchange : Asse r t i on ‘ i r g ==
get_irn_irg (nw) ’ f a i l e d .

2 Aborted (core dumped)

30

5.2. RESULTS

Testcases for this bug can be found in {firmReduce_home}/examples/exchange

Segmentation fault during Compilation When compiling a testcase from
{firmReduce_home}/examples/exit_code_11 using cparser, the compiler crashes
due to a Segmentation Fault.

Pass success rates, execution time and pass applications needed for the reduction on
average do not differ from the results obtained in section 5.2.1, where we reduced
testcases without a specific predicate other than the validity of the testcase. Therefore
we will concentrate on the output testcases for each bug.

For the bug in the Load-Store-Optimization, the testcases were mostly reduced to a
minimal 7-node graph. A small minority consisted of 14-17 nodes, however this is due
to a premature termination of the reduction, as is explained in section section 5.2.1.
The graphs being reduced to the smallest outcome possible, suggests that the cause
for the compiler failure does not lie in the structure of the program itself. Other
programs, with the same program graph do not invoke the error. The difference
between these testcases may lie in the types that are included in the testcase. If we
compare the minimized testcases to a program with the same graph, that didn’t go
through a reduction process, we see big difference in the number of types included.
The reduced testcases still include old, unused types, since no pass or compiler
optimization removes them. FirmReduce is only designed to isolate structures in
the program graph and not the type system, which means that a further analysis of
the bug will have to be done by hand.

The bug in the exchange function, a function that re-routes edges from one node of
the graph to another, was discovered while using the function in one of the passes
in FirmReduce . The reduction of the affected testcases results in graphs, that
contain one memory operation plus the necessary successors and predecessors of this
operation, leaving a single opportunity for the pass to apply the exchange function.

A similar result was obtained from the reduction of testcases for the garbage collection
bug. Every part of the program could be removed, except for the parts needed for
the pass to be applied. Interestingly, all reduced testcases included a function call to
a function that was previously removed from the program. This suggests that the
error is not in the subsequent call to the garbage collection function, but happened
beforehand, when a function, contained in the call graph of the main function, was
removed from the program.

The testcases for the assertion failure during the Proj node generation all had similar
sizes coming out of the reduction. Furthermore they all had a similar structure,
consisting of only one main graph, that contained exactly two Cond nodes, many load
and store operations, but not many other statements. The similarities between the
reduced testcases let us conclude that theresults are close to the minimal interesting

31

5.2. RESULTS

Category Max. Min. Median standard deviation
Assertion failure on call to function ’gen_Proj_Load’
Size of input 13469 12380 12380 266.3
Size of output 222 145 146 22.1
Assertion failure in Load Store Optimization
Size of input 14819 16 3624 5322.8
Size of output 16 7 7 3.6
Assertion failure in IRG garbage collection
Size of input 15827 94 5097 5751.6
Size of output 8122 24 24 1433.6
Assertion failure on edge exchange
Size of input 14819 17 947 4218.1
Size of output 34 17 22.5 5.5
Segmentation fault during Compilation
Size of input 14287 9226 12967 1896.5
Size of output 5582 108 1781.5 2323.2
Table 5.4: Results of reducing testcases for the different bugs in libFirm

testcase for this bug.

The results of the segmentation fault testcases contained just over 100 nodes on
average. Running FirmReduce multiple times on these testcases didn’t improve the
outcome. The resulting graphs contain many structures that FirmReduce should
be able to reduce, if it won’t cause the interestingness test to fail. Since it is
yet unknown what the cause for the segmentation fault is, we cannot assess how
close the reduction results are to the minimal interesting variant of each testcase.
Comparing the testcases amongst each other does not deliver much insight, since we
only have two different testcases for this bug. The other two testcases we found for
the segmentation fault bug, as well as two of the testcases belonging to the failed
garbage collection, contained over 5000 nodes after the reduction and were clear
outliers compared to the other testcases we reduced. All of them were composed of a
small main function and a large second function, that would fail the interestingness
test if a pass was applied.

5.2.4 Comparison to C-Reduce

C-Reduce uses C source code as its testcases and the number of lines in the source
code as the reduction metric. To be able to compare the results of C-Reduce and
FirmReduce , we translated the original C file to Firm intermediate representation
using cparser, used this as input for FirmReduce . Then we also translated C-
Reduce’s output to Firm representation and compared the graph to FirmReduce

32

5.2. RESULTS

’s output. To be able to compare the two reducers, we need to use cparser twice,
which might distort the results. The same applies to the evaluation of variants that
C-Reduce and FirmReduce do. They use different metrices that don’t always rate
the same variant as the smaller one.

Because we needed testcases in C source code, using Firmsmith is not an option.
CSmith was not able to produce testcases with compiler errors. Therefore we decided
to manipulate libFirm in different ways, that would cause the compiler to crash,
as long as either a multiplication (explicit or implicit in for example a pointer
dereference) or a comparison is part of the testcase. A comparison between the
output sizes of the two reducers is presented in table 5.5. Then we used small C
programs from the libFirm test suite3

Regarding execution time, C-Reduce is clearly the faster reducer. The causes for
FirmReduce ’s lacking efficiency were already analyzed earlier in this chapter. Ways
to improve FirmReduce ’s efficiency will be outlined in chapter section 5.3.

Testcase No. initial size C-Reduce Result FirmReduce Result
1 159 16 16
2 287 22 9
3 184 16 30
4 372 22 138
5 401 17 25

Table 5.5: Comparison between C-Reduce and FirmReduce The size of the
testcases is measured in # of nodes in their respective Firm graph.

The output graphs of both reducers for most testcases are a similar size. However, we
also found outliers, where FirmReduce ’s output was significantly bigger than that
of C-Reduce. One reason for the large graphs is that they contain program structures
that FirmReduce ’s passes can’t handle. Adding more passes to FirmReduce to
deal with those will likely improve the result. Another reason is that many passes,
including all compiler optimizations, affect large parts of the graph. This often causes
the interestingness to fail. C-Reduce’s passes on the other hand often only affect a
small part of the program, whereby the interestingness test will fail less often.

3https://github.com/libfirm/firm-testsuite/blob/master/opt/HeapSort.c,
https://github.com/libfirm/firm-testsuite/blob/master/opt/MergeSort.c,
https://github.com/libfirm/firm-testsuite/blob/master/opt/Queens.c,
https://github.com/libfirm/firm-testsuite/blob/master/opt/Hanoi.c,
https://github.com/libfirm/firm-testsuite/blob/master/opt/QuickSort.c

33

https://github.com/libfirm/firm-testsuite/blob/master/opt/HeapSort.c
https://github.com/libfirm/firm-testsuite/blob/master/opt/MergeSort.c
https://github.com/libfirm/firm-testsuite/blob/master/opt/Queens.c
https://github.com/libfirm/firm-testsuite/blob/master/opt/Hanoi.c
https://github.com/libfirm/firm-testsuite/blob/master/opt/QuickSort.c

5.3. FUTURE WORK

5.3 Future Work

Based on the results outlined in this chapter so far, the following improvements and
extensions can be added to FirmReduce to improve the results:

Increasing Pass-Scope

So far FirmReduce uses 47 different passes for the reduction. Especially the de-
structive passes that remove a certain type of node are responsible for pushing the
reduction forward. Here we only have 12 passes that each target a specific type of
node. As the results have shown, this is enough to reach a satisfying result for most
input cases. Widening the scope of the passes, by adding more destructive passes for
so far unconsidered nodes, especially Member nodes and Jmp nodes, will certainly
increase the reduction capabilities of FirmReduce .

Heuristically choose the next pass

Instead of choosing the next pass randomly over a uniform distribution, using a
heuristic may increase the success rate of passes over the course of a reduction. Based
on the sequences of successful passes seen during the testing phase, for each pass we
can define a probability measure that is used to pick the next pass. A higher weight
will be given to passes that proved to be more successful in the past, meaning they
are more likely to be chosen.

Parallelization

Depending on the size of the initial input and the order of the passes, FirmReduce
took between 1 and 60 minutes to complete a reduction. The execution time could
be improved by exploiting the Parallelization potential that the program offers.
One possibility of parallelizing the reduction was suggested by the developers of
C-Reduce in [11]. For FirmReduce ’s purposes it would be useful to outsource the
pass application to multiple child processes until one of them has found a new smaller
variant. All other child processes are interrupted and restarted with the new smaller
variant as their input.

34

5.3. FUTURE WORK

Reducing Failure-Inducing Differences

Apart from reducing a single testcase that contains the for the failure critical section,
it may be useful for debugging to have two similar testcases, one that fails and
another that does not fail. Using the same reduction on both of them while ensuring
that still only one of them fulfills the reduction predicate results in two smaller
testcases whose differences highlight the failure-inducing parts of the program. Such
two testcases could be obtained during a normal reduction, if a pass application
causes the interestingness test to fail.

35

6 Conclusion

The aim of this thesis was to provide an implementation for an automatic testcase
reducer that operates on programs in the Firm intermediate representation and
subsequently evaluate its performance, using testcases that trigger bugs in the
libFirm compiler backend.

After evaluating the data we collected about FirmReduce , the following conclusions
can be made: FirmReduce has a respectable ability to reduce a testcase, having
reduced the majority of tested inputs to or close to its minimum. Improvements can
be made to FirmReduce ’s efficiency however: The execution time and pass success
rate are highly dependent on the order of passes during the reduction. Introducing a
heuristic for achieving a favourable order of execution will most likely improve the
program’s performance.

In the future, we would like to add more transformations to FirmReduce , to
increase the amount of language constructs that FirmReduce can utilize in its
reduction process. Furthermore, improving FirmReduce ’s execution times through
an improved pass heuristic and parallelization will increase its usability.

As a final conclusion we can say that FirmReduce , while still offering room for
improvement, provides a helpful tool to use in the debugging of libFirm , as it is
able to create small and easy to understand testcases for a given compiler error.

37

Bibliography

[1] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-Case
Reduction for C Compiler Bugs,” p. 11, 2012.

[2] J. Wagner, “Firmsmith test generation for compiler optimizations,” p. 44.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control dependence
graph,” ACM Transactions on Programming Languages and Systems, vol. 13,
pp. 451–490, Oct. 1991.

[4] R. Wilhelm and D. Maurer, Übersetzerbau: Theorie, Konstruktion, Generierung
; mit 70 Tabellen. Springer-Lehrbuch, Berlin: Springer, 2., überarb. und erw.
aufl ed., 1997. OCLC: 75899693.

[5] M. B. S. Buchwald and A. Zwinkau, “FIRM—A Graph-Based Intermediate
Representation,” p. 8, 2011.

[6] S. Buchwald, D. Lohner, and S. Ullrich, “Verified construction of static single
assignment form,” pp. 67–76, ACM Press, 2016.

[7] “Firm - Optimization and Machine Code Generation.” https://pp.ipd.kit.
edu/firm/. Accessed: 2018-06-28.

[8] “The Gecko BugAThon.” https://www-archive.mozilla.org/newlayout/
bugathon.html. Accessed: 2018-07-30.

[9] A. Zeller, “Simplifying and Isolating Failure-Inducing Input,” IEEE TRANS-
ACTIONS ON SOFTWARE ENGINEERING, vol. 28, no. 2, p. 17, 2002.

[10] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs in
c compilers,” SIGPLAN Not., vol. 46, pp. 283–294, June 2011.

[11] J. Regehr, “Parallelizing Delta Debugging – Embedded in Academia,” Nov.
2012.

39

https://pp.ipd.kit.edu/firm/
https://pp.ipd.kit.edu/firm/
https://www-archive.mozilla.org/newlayout/bugathon.html
https://www-archive.mozilla.org/newlayout/bugathon.html

Erklärung

Hiermit erkläre ich, Tina Maria Strößner, dass ich die vorliegende Bachelorarbeit
selbstständig verfasst habe und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche
kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher
Praxis beachtet habe.

Ort, Datum Unterschrift

41

Appendices

1 Size over Time - Full data

0 20 40 60 80 100 120 140
710

100

1,000

10,000
20,000

no. of passes applied

no
.
of

no
de
s

Figure 1: Size of graphs over no. of passes applied Each line shows the total
number of nodes after x passes have been applied for a different input
file. The thick line shows the geometric mean of the data plots.

43

1. SIZE OVER TIME - FULL DATA

44

2. ANALYSIS OF SUCCESSFUL SEQUENCES

2 Analysis of successful sequences
co
m
bo

oc
cu

lt
co
ns
ts

op
ti
m
iz
e
re
as
so
ci
at
io
n

re
m
ov
e
cr
it
ic
al

cf
ed

ge
s

re
pl
ac
e
ar
ith

m
et
ic

(4
)

sim
pl
ify

co
ns
ts

(3
)

co
nv

op
t
(3
)

op
t
bl
oc
ks

(3
)

gv
n
pr
e

op
ti
m
iz
e
gr
ap

h
df

co
ns
tr
uc

t
co
nfi

rm
s

co
nv

op
t

op
t
bl
oc
ks

(3
)

re
pl
ac
e
re
tu
rn

va
lu
es

(4
)

gc
irg

s
(3
)

re
pl
ac
e
co
nd

se
le
ct
or
s
(4
)

re
pl
ac
e
re
tu
rn

va
lu
es

(3
)

op
tim

iz
e
lo
ad

st
or
e
(4
)

no
rm

al
iz
e
n
re
tu
rn
s
(4
)

op
t
ta
il
re
c
(3
)

co
m
bo

(3
)

op
t
if
co
nv

(3
)

pl
ac
e
co
de

op
t
bl
oc
ks

op
t
ta
il
re
c

op
ti
m
iz
e
cf

op
t
if
co
nv

(3
)

op
t
if
co
nv

(3
)

op
t
if
co
nv

(3
)

re
pl
ac
e
pr
oj

pr
im

iti
ve

(4
)

re
m
ov
e
st
or
es

(3
)

op
t
ta
il
re
c
(3
)

sim
pl
ify

co
ns
ts

(4
)

op
t
ju
m
pt
hr
ea
di
ng

(4
)

re
pl
ac
e
re
tu
rn

va
lu
es

(3
)

op
tim

iz
e
lo
ad

st
or
e
(3
)

re
pl
ac
e
pr
oj

pr
im

iti
ve

(3
)

op
tim

iz
e
lo
ad

st
or
e
(4
)

re
m
ov
e
vo
id

ca
lls

(3
)

re
pl
ac
e
ar
ith

m
et
ic

(3
)

gv
n
pr
e
(4
)

pl
ac
e
co
de

(4
)

op
t
pa

ra
lle

liz
e
m
em

re
m
ov
e
vo

id
ca
lls

re
pl
ac
e
pr
oj

pr
im

it
iv
e

gc
ir
gs

pr
im

it
iv
e

gv
n
pr
e
(3
)

op
tim

iz
e
lo
ad

st
or
e
(5
)

re
m
ov
e
st
or
es

(1
0)

sim
pl
ify

co
ns
ts

(5
)

gc
irg

s
pr
im

iti
ve

(4
)

sim
pl
ify

co
ns
ts

(7
)

re
m
ov
e
al
lo
cs

(1
4)

re
pl
ac
e
re
tu
rn

va
lu
es

(3
)

sim
pl
ify

co
ns
ts

(3
)

re
pl
ac
e
pr
oj

pr
im

iti
ve

(3
)

gc
irg

s
(8
)

gc
irg

s
pr
im

iti
ve

(7
)

op
tim

iz
e
lo
ad

st
or
e
(3
)

gc
irg

s
(3
)

gc
irg

s
pr
im

iti
ve

(8
)

re
m
ov
e
al
lo
cs

(3
)

op
t
bl
oc
ks

(3
)

gc
irg

s
pr
im

iti
ve

(3
)

sim
pl
ify

co
ns
ts

(9
)

gc
irg

s
(4
)

op
tim

iz
e
lo
ad

st
or
e
(3
)

op
t
if
co
nv

gc
ir
gs

re
pl
ac
e
ar
it
hm

et
ic

re
pl
ac
e
co
nd

se
le
ct
or
s

op
t
bl
oc
ks

(5
)

sim
pl
ify

co
ns
ts

(6
)

re
m
ov
e
al
lo
cs

(5
)

re
m
ov
e
al
lo
cs

(3
)

sim
pl
ify

co
ns
ts

(3
)

gc
irg

s
pr
im

iti
ve

(1
7)

gc
irg

s
(4
)

re
m
ov
e
vo
id

ca
lls

(5
)

re
pl
ac
e
co
nd

se
le
ct
or
s
(3
)

op
t
pa

ra
lle

liz
e
m
em

(3
)

re
pl
ac
e
pr
oj

pr
im

iti
ve

(4
)

gc
irg

s
(4
)

op
t
ta
il
re
c
(3
)

op
tim

iz
e
cf

(3
)

sim
pl
ify

co
ns
ts

(4
)

re
pl
ac
e
pr
oj

pr
im

iti
ve

(6
)

no
rm

al
iz
e
n
re
tu
rn
s
(3
)

gc
en
tit

ite
s
(6
)

op
tim

iz
e
lo
ad

st
or
e
(3
)

gc
irg

s
pr
im

iti
ve

(4
)

gc
irg

s
(5
)

re
m
ov
e
al
lo
cs

(6
)

no
rm

al
iz
e
n
re
tu
rn
s
(4
)

op
tim

iz
e
lo
ad

st
or
e
(3
)

re
m
ov
e
st
or
es

(6
)

re
m
ov
e
st
or
es

(3
)

re
m
ov
e
st
or
es

(4
)

Table 1: Analysis of successful sequences The table shows which passes are
most likely to succeed following a successful invocation of the pass in the
left column. We only show passes that have succeeded at least 3 times

45

2. ANALYSIS OF SUCCESSFUL SEQUENCES

no
rm

al
iz
e
n
re
tu
rn
s

re
m
ov
e
al
lo
cs

re
pl
ac
e
re
tu
rn

va
lu
es

op
ti
m
iz
e
lo
ad

st
or
e

re
m
ov
e
al
lo
cs

(4
)

gc
irg

s
pr
im

iti
ve

(2
0)

re
pl
ac
e
co
nd

se
le
ct
or
s
(3
)

gc
irg

s
(4
)

co
m
bo

(3
)

re
pl
ac
e
re
tu
rn

va
lu
es

(4
)

re
pl
ac
e
pr
oj

pr
im

iti
ve

(5
)

gc
irg

s
pr
im

iti
ve

(8
)

re
pl
ac
e
co
nd

se
le
ct
or
s
(3
)

re
pl
ac
e
pr
oj

pr
im

iti
ve

(6
)

gc
irg

s
pr
im

iti
ve

(3
)

re
pl
ac
e
re
tu
rn

va
lu
es

(3
)

co
ns
tr
uc

t
co
nfi

rm
s
(4
)

sim
pl
ify

co
ns
ts

(6
)

re
m
ov
e
al
lo
cs

(5
)

re
pl
ac
e
pr
oj

pr
im

iti
ve

(3
)

op
t
if
co
nv

(4
)

re
m
ov
e
vo
id

ca
lls

(3
)

op
t
bl
oc
ks

(3
)

re
m
ov
e
al
lo
cs

(7
)

gv
n
pr
e
(3
)

op
t
pa

ra
lle

liz
e
m
em

(3
)

no
rm

al
iz
e
n
re
tu
rn
s
(4
)

op
t
pa

ra
lle

liz
e
m
em

(3
)

gc
irg

s
(3
)

gc
irg

s
(1
0)

sim
pl
ify

co
ns
ts

(4
)

op
tim

iz
e
cf

(3
)

re
m
ov
e
st
or
es

(3
)

re
m
ov
e
st
or
es

(4
)

op
t
ta
il
re
c
(3
)

op
t
ta
il
re
c
(3
)

re
pl
ac
e
ar
ith

m
et
ic

(3
)

re
m
ov
e
st
or
es

si
m
pl
ify

co
ns
ts

op
tim

iz
e
cf

(3
)

re
m
ov
e
vo
id

ca
lls

(5
)

gc
irg

s
(5
)

re
m
ov
e
al
lo
cs

(1
2)

gc
irg

s
pr
im

iti
ve

(7
)

co
nv

op
t
(3
)

re
m
ov
e
al
lo
cs

(9
)

op
t
ta
il
re
c
(3
)

sim
pl
ify

co
ns
ts

(5
)

op
tim

iz
e
lo
ad

st
or
e
(6
)

no
rm

al
iz
e
n
re
tu
rn
s
(3
)

no
rm

al
iz
e
n
re
tu
rn
s
(5
)

op
tim

iz
e
lo
ad

st
or
e
(5
)

re
pl
ac
e
re
tu
rn

va
lu
es

(5
)

re
pl
ac
e
pr
oj

pr
im

iti
ve

(4
)

gc
irg

s
(1
1)

re
pl
ac
e
re
tu
rn

va
lu
es

(4
)

re
pl
ac
e
pr
oj

pr
im

iti
ve

(4
)

gc
irg

s
pr
im

iti
ve

(1
2)

46

	Introduction
	Background
	Firm
	Firm Graphs
	Optimizations

	Testcase Reduction
	The Testcase Reduction Problem
	Testcase Minimization vs Testcase Reduction

	Related Work
	Delta Debugging
	C-Reduce

	Design and Implementation
	Driver
	Optimization strategy
	Reduction Loops

	Passes
	Destructive Passes
	Non-destructive Passes
	Pass Synergies

	Interestingness Test

	Results and Evaluation
	Input Data
	Results
	Reduction
	Pass Efficiency
	libFirm Bugs
	Comparison to C-Reduce

	Future Work

	Conclusion
	Appendices
	Size over Time - Full data
	Analysis of successful sequences

