
Points-To for Java: A General Framework
and an Empirical Comparison

Mirko Streckenbach, Gregor Snelting
Lehrstuhl für Softwaresysteme

Universität Passau

strecken@fmi.uni-passau.de

ABSTRACTPoints-to analysis for Java is di�erent from points-to for Cor even C++. We present a framework whih generalizespopular points-to algorithms and generates set onstraintsfrom full Java byteode. The framework exploits previouslyomputed points-to sets in a �xpoint iteration for preiseresolution of dynami binding. We then ompare implemen-tations of this framework for uni�ation-based and subset-based analysis. It turns out that { in ontrast to the Csituation { both approahes have about the same runningtime, while the subset-based algorithm is still more preise.The uni�ation-based method is slowed down beause itsinherent impreision aumulates during �xpoint iteration.
1. INTRODUCTIONPoints-to analysis is a stati analysis whih omputes forevery pointer a set of objets it may point to at runtime.For imperative languages suh as C, many points-to algo-rithms suh as Andersen's algorithm [2℄, Steensgaard's al-gorithm [22℄, or Das' algorithm [7℄ have been investigated,and Steensgaard's algorithm is onsidered to be the fastest[14℄. For objet-oriented languages, dynami binding mustbe approximated, and in fat for C++ dynami binding anbe analysed similar to funtion pointers in C [13℄.For Java, however, the situation is di�erent: there are nopointer arithmetis and no pointers to pointers, arrays havedi�erent semantis, type asts are type safe, and dynamiloading of lasses is quite ommon. It is the aim of thisartile to generalize well-known points-to algorithms suh asAndersen's and Steensgaard's (and some reent extensions)to full Java, exploiting Java's unique features. We will thenprovide an empirial omparison of these methods.We begin with a small example illustrating that a arelesstreatment of dynami binding will result in very unpreisepoints-to information. For the program in Figure 1, Ander-sen's algorithm will ompute the initial points-to graph in

Figure 1 (left). A naive treatment of method alls wouldthen assume that in a all x.f(), all methods named f()from the stati lass of x and its sublasses an be targets ofthe all. It would then extend the points-to graph for any ofthese possible target methods by adding ars whih modelimpliit assignments to formal parameters, return values,and this-pointers. Thus for the example, all three imple-mentations of method f will be inluded during the analysisof the alls to f, resulting in the �nal Andersen graph to beseen in Figure 1 (middle); the �nal Steensgaard graph forthe same program an be seen in Figure 1 (right).1The results are very unpreise { for example, p is assumedto point to three di�erent objets, while it is obvious thatp an only point to one objet. Furthermore, the naivemethod assumes that in a.f() also C.f an be alled, butin fat a annot point to objets of type C, and in a type-safe language suh as Java, the all to C.f an therefore beignored. In fat, the �nal Steensgaard graph even ontainstype-inorret edges suh as !new A. Sine pointer aessalong suh edges will always generate an exeption in Java,they an safely be ignored. Note that in C or C++, thelatter onsideration would not be valid.The example demonstrates that for resolution of methodalls, the atual points-to sets for the target objet refer-enes should be onsidered. For a all x.f(), the points-toset for x gives possible target objets for the all, and statilookup for f() in the possible target objets will identifypossible target methods for f(). This strategy will lead to amuh smaller set of target methods than the naive method,whih in turn inreases preision sine fewer ars are addedto the points-to graph. For the example, it leads to thepoints-to graphs in Figure 2. Still, the Steensgaard graphontains type-inorret edges, due to its symmetri treat-ment of assignments.In this ontribution, we will elaborate on the insights fromthe above example. First we will present a generi frame-work for Java points-to analysis, whih an be instantiatedwith subset-based intraproedural approahes in the style ofAndersen, or uni�ation-based intraproedural approahesin the style of Steensgaard. The framework onsists of infer-ene rules, whih generate a onstraint system for the points-to sets. It omprises the full Java language, and questionsof library treatment and whole-program analysis are also1For reasons of readability, this-pointers are not shown inFigure 1.

lass MyExeption { Objet u; MyExeption(Objet t) { u=t } }lass A { A f(A g) { return g; }lass B extends A { A f(A g) { throw new MyExeption(g); } }lass C extends A { A f(A g) { return this; } }...A a=new A(), p=null, q, r, s;B b=new B();C =new C();if(...)a=b;try {p=a.f();} ath(MyExeption e) {q=e.u;}try {r=p.f(a);} ath(MyExeption f) {s=f.u;}

a

b

c

p

q

r

s

new A

new B

new C

		

a

b

c

p

q

r

s

new A

new B

new C

		

a

b

c

p

q

r

s

new A

new B

new C

		

Figure 1: Example Java program and points-to graphs for naive treatment of dynami binding. Left: initialAndersen graph, middle: �nal Andersen graph, right: �nal Steensgaard graph.
a

b

c

p

q

r

s

new A

new B

new C

		

a

b

c

p

q

r

s

new A

new B

new C

		

Figure 2: Final Andersen (left) and Steensgaard(right) graphs for improved resolution of dynamibinding.
disussed. For preise approximation of dynami binding a�xpoint iteration is used, whih exploits already omputedpoints-to sets for a all's target objet referene.We then desribe the implementation of spei� instanesof the framework. An empirial omparison will show thata subset-based approah is omparable in performane toa uni�ation-based approah, but is of ourse more preise.The reason is that the impreision in uni�ation-based meth-ods propagates during �xpoint iteration. The subset-basedmethod an legitimately be alled \Java-Andersen", whilethe uni�ation-based method should not be alled \Java-Steensgaard": it uses a Steensgaards-like approah for in-traproedural analysis, but uses �xpoint iteration for reso-lution of dynami binding.
2. POINTS-TO FOR JAVAPoints to algorithms are usually desribed in terms of apoints-to graph, whih is a straightforward implementationof the points-to sets. Indeed, the implementation of our ex-tended versions for Java is also based on points-to graphs.However, in order to make the idiosynrasies of points-tofor Java more lear, we will �rst present a formal desrip-tion in terms of points-to sets and provide an inferene sys-tem whih generates onstraints for the points-to sets (mp.[11℄). We use the following sets: Ptr, the set of all pointers

(i.e. objet referenes in Java); Obj, the set of all objets(i.e. onstrutor all sites);2 Ass, the set of all assignments,where an assignment l=r is written as (l; r) 2 Ass;3 Pt(p),the points-to set 2 2Obj for a pointer p 2 Ptr.The basi rules for intraproedural points-to analysis are asfollows. An assignment of an objet referene to a pointerleads to inlusion of the objet in the points-to set:(p; o) 2 Ass ^ o 2 Obj) o 2 Pt(p)Pointer assignments are treated di�erently by Andersen andSteensgaard. Andersen requires a subset relationship:(p; q) 2 Ass ^ q 2 Ptr) (Pt(q) � Pt(p))Steensgaard merges the two points-to sets:(p; q) 2 Ass ^ q 2 Ptr) (Pt(q) = Pt(p))The traditional algorithmi struture to solve the resultingonstraint system an be seen in Figure 3: The onstraintsare generated in one pass over the program by olletingall expliit and impliit assignments; for Steensgaard theonstraint system an then be solved in quasi-linear time,while Andersen requires an O(n3) iteration.Shapiro and Horwitz[19℄ and Das[7℄ presented points-to al-gorithms whih lie between Steensgaard and Anderson. Bothextensions stik to general struture in Figure 3. For exam-ple, Das' algorithm an be adapted to Java by adding thefollowing rule to the Andersen sheme:(p; q) 2 Ass) (Pt(p:f) = Pt(q:f))where p; q are objet referenes and f is a nested objetreferene.2Di�erent runtime inarnations for the same onstrutor allwill { as usual { not be distinguished.3Note that Ass also ontains impliit assignments, suh asassignments to parameters or this-pointers during methodalls.

Assignments ConstraintsAlgorithm Points-To
sets

Figure 3: Struture of traditional points-to algorithms
Dynamically bound

method calls

Assignments ConstraintsAlgorithm Points-to
sets

Figure 4: Struture of points-to algorithms for JavaNote that the Steensgaard rule an be modi�ed for Java inorder to avoid type-inorret ars in the points-to graph:(p; q) 2 Ass)��o 2 Pt(q)) o 2 Pt(p)� ^�o 2 Pt(p); type(o) � type(q)) o 2 Pt(q)��
Interproedural analysis simply uses the above rules in orderto handle assignments to formal parameters, return valuesand this-pointers. In the presene of dynami binding orfuntion pointers, however, the situation beomes more om-plex. Steensgaard's algorithm an be extended for funtionpointers without using an additional �xpoint iteration [8℄.However, Hind et al. [13℄ observed that the preise analysisof funtion pointers requires extensions of the basi meha-nism. They proposed to use the points-to sets for funtionpointers in order to determine the possible all targets, andto extend the points-to graph aording to these targets.For Java, the analysis of method alls must be based ona similar approah: it must exploit the already omputedpoints-to sets for the all's target objet referene. For anypossible target objet in this set, the orresponding targetmethod de�nition is determined aording to the target ob-jet's stati type. The all to the target method de�nitionis then treated in the usual way by taking into aount im-pliit assignments to formal parameters, return values, andthis-pointers. Hene these assignments are valid only underthe ondition that a spei� target objet is in the points-toset. Therefore, the onstraints for the resolution of dynamibinding have the following general form:�o 2 Pt(p) ^ lookup(o; f) = C�) (: : : ; : : :) 2 Asswhere f is the alled method; lookup determines the lasswhih ontains the appropriate de�nition of f aording tothe type of o. For the program in Figure 1, the all p=a.f()leads to three onditional onstraints:�o 2 Pt(a) ^ lookup(o; f) = A�)�(; gA) 2 Ass ^ (thisfA; o) 2 Ass ^ (p; gA) 2 Ass�

�o 2 Pt(a) ^ lookup(o; f) = B�)�(; gB) 2 Ass ^ (thisfB; o) 2 Ass��o 2 Pt(a) ^ lookup(o; f) = C�)�(; gC) 2 Ass ^ (thisfC; o) 2 Ass ^ (p; thisfC) 2 Ass�The assignments generated by these rules will then gener-ate additional set onstraints aording to the Andersenresp. Steensgaard rule. Note that the expliit generationof assignments deouples interproedural analysis from thehoie of the intraproedural algorithm. Note further thatthe naive method will generate the same assignments, butwithout the onditions; hene it would generate 8 assign-ments as ompared to 2 or 3. In general, onditional on-straints will never generate more assignments (and henepoints-to relations) than the naive method, but usually muhless.The orretness of the above onstraints is obvious. But inorder to solve suh a system of onditional onstraints, anadditional feedbak loop is needed (see Figure 4): points-toentries an generate new onstraints, whih an then extendthe set of assignments. The algorithm struture is as follows:
do {apply basi algorithm;evaluate onditional onstraints;} while (points-to graph hanged)
3. GENERATING CONSTRAINTS

FROM JAVA BYTECODEJava Byteode is more stable than the Java soure lan-guage, and many programs are available as Byteode butnot in soure form. We therefore present the details of theonstraint-generating inferene system for Byteode. Due tospae limitations, we will present only a few entral rules;the full inferene system { inluding in partiular stati allsand exeptions { an be found in [23℄. The general strutureof the inferene rules is as follows:

Byteode old stakonstraints types new stakRules are applied to byteode instrutions in sequential or-der, thereby generating onstraints and some auxiliary in-formation. The premises of a rule math a spei� byteodeinstrution. Byteode instrutions refer to stak elements,thus an abstration of the JVM stak ontents is used in therules as well. For runtime stak values, their abstrat repre-sentation is the orresponding variable name, whih an inmost ases be extrated from the ompiler's variable table.4The onlusion of eah inferene rule ontains in its leftpart the onstraints generated from the byteode instru-tion. Furthermore, some typings for pointers are reon-struted. The last part of the onlusion displays the mod-i�ed abstrat stak as to be used for the next byteode in-strution in its mathing rule premise. For better readabil-ity, onditional onstraints are split into two rules: sinetype and stak information do not depend on points-to in-formation, they are purely stati and are fatored out in aseparate rule.The inferene rules for onstraint generation are presentedin Figure 5. As a typial example, onsider the rule forvirtual method all. The premise of the stati part makesassumptions about the byteode instrution and the signa-ture of the method in question. In addition, the premisenames the (abstrations of the) atual parameters on thestak. The onlusion of the stati part states that the this-pointer and the return value are indeed pointers, and namestheir type. The next byteode must be mathed against aninferene rule using a modi�ed abstrat stak, where the pa-rameter abstrations have disappeared and are replaed bythe abstrat return value.Of ourse, the interesting part is the dynami part, whihgenerates assignments under the assumption that some ob-jet is in the points-to set for the all's objet referene.The latter referene (more preisely, its abstrat form, thatis a variable name) is taken from the abstrat stak (seestati part). The premise of the dynami part determinesthe orresponding method de�nition by stati lookup. Theonlusion generates one asignment for every formal/atualparameter pair, for the method's this-pointer, and for itsreturn value. It also gives types for the allee's this-pointer.Let us apply the rules to a small program fragment and itsbyteode (Figure 6). The abstrat stak as well as the gen-erated assignments an be seen in the lower part of Figure6. Appliation of the rule for the �rst byteode instrutionresults in two statements: the objet, whih is reated inmethod f(int) from lass S at byteode address 0 is indeedan objet, and has type A. The this-pointer of the defaultonstrutor method is initialised by the program, hene aorresponding unonditional assignment is generated. Thenext assignment, orresponding to the initialisation of vari-4In pathologial examples, the reonstrution of abstratstak values an lead to ombinatorial explosion due to anexponential number of ontrol ow paths between two pro-gram points. But in pratie, this never happens. An alter-native to get rid of this phenomenon alltogether is to analysesoure ode instead of Byteode.

able a, is also unonditional. Of ourse, the interesting partis the invokevirtual instrution and its orresponding ab-strat parameter entry on the stak. The appliation of theinvokevirtual-rule generates two ondititional onstraints,eah onsisting of three assignments and some additionaltype information. Note how the two onstraints mirror thetwo possibilities for dynami binding of method f: it ouldbe A.f or B.f. Finally, the putfield instrution generatesan unonditional assignment for v, and a onditional as-signment for any objet whih might be pointed to by f'sthis-pointer (sine it will also ontain �eld v).Note that the example program ontains a onditional ex-pression, whih generates a stak entry whose abstrat ver-sion annot be taken from the variable table; instead thepossible ontrol ows from method entry to the all of fmust be explored. This results in two abstrat top stak en-tries, namely S.f(int).<#18> and S.f(int).<#e> (that is,the new B resp. new C onstrution site). In the following,we explore only the �rst alternative.5 The initial onstraintsfor the points-to sets, aording to Andersen's algorithm, areas follows:S.f(int).<#0> 2 Pt(S.f(int).a)S.f(int).<#0> 2 Pt(A.<init>().<this>)S.f(int).<#18> 2 Pt(C.<init>().<this>)Pt(A.f(Objet->Objet).<return>)� Pt(S.f(int).<this>.(S.o))After one iteration, the �nal results are obtained:S.f(int).<#0> 2 Pt(S.f(int).a)S.f(int).<#0> 2 Pt(A.<init>().<this>)S.f(int).<#18> 2 Pt(C.<init>().<this>)Pt(A.f(Objet->Objet).<return>)� Pt(S.f(int).<this>.(S.o))S.f(int).<#0> 2 Pt(A.f(Objet->Objet).<this>)S.f(int).<#18> 2 Pt(A.f(Objet->Objet).p)Pt(A.f(Objet->Objet).<return>)� Pt(A.f(Objet->Objet).<return/S.f(int).a>)The solution shows that a as well as f's this-pointer anonly point to an A objet; hene the all a.f(...) has onlyA.f as a target method. Both the naive method as well asall-graph based methods suh as Rapid Type Analysis [3℄would be unable to exlude B.f as a possible target.
4. WHOLE-PROGRAM-ANALYSIS, NATIVE

CODE AND REFLECTIONMany programs use library funtions for whih there is nosoure text available, or whih are not written in Java (\un-analysed funtions"). A popular way to deal with this situ-ation is to provide stubs for these funtions, that is soureode fragments whih simulate the points-to behaviour ofthe funtion. However, the e�ort for stub implementationand maintenane is enormous.An alternative is to use a onservative approximation for un-known byteode. Unknown funtions an do anything with5In the rare ase of non-unique abstrat stak entries, sev-eral variants of the onstraint system will be generated andsolved.

Objet reation: I � new A S = [: : :℄m:<adr(I)>2 Objtype(m:<adr(I)>) = A S = [m:<adr(I)>; : : :℄
Assignment: I � astore r S = [p; : : :℄(Register(m; r; bi+1); p) 2 Ass Register(m; r; bi+1) 2 Ptr S = [: : :℄
Virtual all (stati part): I � invokevirtual msig(m) = (t1; : : : ; tn)! t S = [pr : : : p1; q; : : :℄m:<ret=q>2 Ptrtype(m:<ret=q>) = t S = [m:<ret=q>; : : :℄Virtual all (onditional onstraints):

o 2 Pt(q)) I � invokevirtual msig(m) = (t1; : : : ; tn)! tm0 = lookup(o;m)8ni=1(par(m0; i); pi) 2 Ass;(m0:<this>; q) 2 Ass;(m:<ret=q>;m0:<ret>) 2 Ass m0:<this>2 Ptrtype(m0:<this>) = ls(m0)m0:<ret>2 Ptrtype(m0:<ret>) = t
Data member aess (stati part): I � getfield ff 0 = LookupF ield(f) S = [p; : : :℄p:f 0 2 Ptrtype(p:f 0) = type(f 0) S = [p:f 0; : : :℄Data member aess (onditional onstraints): o 2 Pt(p)) I � getfield ff 0 = LookupF ield(f)(p:f 0; o:f 0) 2 Ass o:f 0 2 Ptrtype(o:f 0) = type(f 0)
Data member store (stati part): I � getfield ff 0 = LookupF ield(f) S = [p; : : :℄p:f 0 2 Ptrtype(p:f 0) = type(f 0) S = [p:f 0; : : :℄Data member store (onditional onstraints): o 2 Pt(p)) I � getfield ff 0 = LookupF ield(f)(p:f 0; o:f 0) 2 Ass o:f 0 2 Ptrtype(o:f 0) = type(f 0)
Array element store (stati part): I � aastore f S = [v; ; p; : : :℄type(p) = t[℄(p[℄; v) 2 Ass p[℄ 2 Ptrtype(p[℄) = t S = [: : :℄
Array element store (onditional onstraint): o 2 Pt(p)) I � aastore ftype(o) = t[℄o[℄ � type(v)(o[℄; v) 2 Ass o[℄ 2 Ptrtype(o[℄) = t
Type ast (stati part): I � hekast t S = [p; : : :℄:(p = null _ type(p) � t)(t)p 2 Ptrtype((t)p) = t S = [(t)p; : : :℄Type ast (onditional onstraint): o 2 Pt(p)) I � hekast ttype(o) � t((t)p; o) 2 AssFigure 5: Constraint-generating rules for some Byteode instrutions

lass A {Objet f(Objet p) { ... }}lass B extends A {Objet f(Objet q) { ... }}lass C {}lass S {Objet v;void f(int x) {A a=new A();v=a.f(x>0?(Objet)new B():(Objet)new C());}}

#0: new Adupinvokespeial A.<init>()astore_2aload_0aload_2iload_1ifle #18 -> #e #18#e: new Bdupinvokespeial B.<init>()goto #1f -> #1f#18: new Cdupinvokespeial C.<init>()invokevirtual A.f(java.lang.Objet->java.lang.Objet)putfield S.vreturn -> endInstrution Stak after rule appliation Auxiliary Information#0 new A S.f(int).<#0> S.f(int).<#0> 2 Obj, typ(S.f(int).<#0>)=A#3 dup S.f(int).<#0>S.f(int).<#0>#4 invokespeial A.<init>() S.f(int).<#0> (A.<init>().<this>,S.f(int).<#0>) 2 Ass#7 astore 2 (S.f(int).a,S.f(int).<#0>) 2 Ass#8 aload 0 S.f(int).<this>#9 aload 2 S.f(int).aS.f(int).<this>#a iload 1 S.f(int).x/intS.f(int).aS.f(int).<this>#b ifle #18 S.f(int).aS.f(int).<this>#18 new C S.f(int).<#18> S.f(int).<#18> 2 Obj, typ(S.f(int).<#18>)=CS.f(int).aS.f(int).<this>#1b dup S.f(int).<#18>S.f(int).<#18>S.f(int).aS.f(int).<this>#1 invokespeial C.<init>() S.f(int).<#18> (C.<init>().<this>,S.f(int).<#18>) 2 AssS.f(int).aS.f(int).<this>#1f invokevirtual A.f(Objet->Objet) A.f(Objet->Objet).<return/S.f(int).a> typ(A.f(Objet->Objet).<return/S.f(int).a>)=ObjetA.f(Objet->Objet).<return> 2 Ptr, typ(A.f(Objet->Objet).<return>) = Objeto 2 Pt(S.f(int).a)^LookupVirtual(o;A.f(Objet->Objet)) = A.f(Objet->Objet))A.f(Objet->Objet).<this> 2 Ptr, typ(A.f(Objet->Objet).<this>)=A^ (A.f(Objet->Objet).<this>,o) 2 Ass^ (A.f(Objet->Objet).p,S.f(int).<#18>) 2 Ass^ (A.f(Objet->Objet).<return/S.f(int).a>,A.f(Objet->Objet).<return>) 2 Asso 2 Pt(S.f(int).a)^LookupVirtual(o;A.f(Objet->Objet)) = B.f(Objet->Objet))B.f(Objet->Objet).<this> 2 Ptr, typ(B.f(Objet->Objet).<this>)=A^ (B.f(Objet->Objet).<this>,o) 2 Ass^ (B.f(Objet->Objet).q,S.f(int).<#18>) 2 Ass^ (A.f(Objet->Objet).<return/S.f(int).a>,A.f(Objet->Objet).<return>) 2 Ass#22 putfield S.v S.f(int).<this>.(S.v) 2 Ptr, typ(S.f(int).<this>.(S.v))=Objet(S.f(int).<this>.(S.v),A.f(Objet->Objet).<return>) 2 Asso 2 Pt(S.f(int).<this>))(o.(S.v),A.f(Objet->Objet).<return>) 2 Asso.(S.v) 2 Ptr, typ(o.(S.v)) = Objet#25 returnFigure 6: A program fragment, its Byteode, and the orresponding appliation of onstraint-generatingrules. m is unanalysed;sig(m) = (t1; : : : ; tn)! t8ni=1(unanalysed;m:<par(m; i)>) 2 Assm is unanalysed; sig(m) = (t1; : : : ; tn)! t(m0:<ret>; unanalysedt) 2 Ass
o 2 Pt(unanalysed=t)) m is method in t;m is visible in unanalysed ode;sig(m) = (t1; : : : ; tn)! tm0 = lookup(o;m0);8ni=1(par(m0; i); unanalysedti) 2 Ass;(m0:<this>; o) 2 Ass;(unanalysed;m0:<ret>) 2 AssFigure 7: Constraint generation for unanalysed funtions

their parameters; in partiular any objet given to an un-analysed funtion may reappear as the return value of anyother unanalysed funtion. But Java's type-safety an beexploited to deliver some preision even under this onser-vative and preision-threatening assumption.In order to deal with unanalysed ode, we �rst introduea global variable \unanalysed". Whenever an objet refer-ene p is passed to an unanalyzed funtion, an assignment(unanalysed; p) is added. Pointers whih are returned fromunanalysed funtions ould analogeously modelled as assign-ments (p; unanalysed). But for return values at least a typeis known and should be utilized for inreased preision. Wethus introdue speial versions of unanalysed, namely globalvariables unanalysedt for every type t. The relation betweenunanalysed and the various unanalysedt is given byo 2 Pt(unanalysed) ^ type(o) � t) o 2 Pt(unanalysedt)Instead of inserting the assignment (p; unanalysed) when-ever the return value of an unanalysed funtion is assignedto p, we insert (p; unanalysedt), whih redues the size ofp's points-to set. Note that this \trik" an only be done ina type-safe language as Java, but not in C or C++.Figure 7 (upper part) gives the inferene rules whih gen-erate the orresponding assignments. Unanalysed funtionsan all other funtions (unanalysed or analysed), and therule in Figure 7 (lower part) desribes suh alls. It is simi-lar to the invokevirtual rule, exept that there is no stak,and parameters and return values of funtions alled fromunanalysed funtions are again modelled via the unanalysedvariable. Exeptions and aess to global variables from un-analysed ode an be modelled similarly; for details see [23℄.Let us onlude this setion with a disussion of the ree-tion API. Native methods from the reetion API ould ofourse be analysed using the above approximations, but inmany ases, we an do better. As an example, onsider thealls to getClass in Figure 8. For every lass t in the pro-gram, we introdue a speial objet lasst. In order to anal-yse the all =a.getClass();, we �rst determine Pt(a). Thetypes of all objets in this set determine whih lasst haveto be added to Pt(). In the example, Pt() = flassAg.Therefore the all o=.newInstane(): will return a newspeial objet dyn : a of type A. As a result, the all a2.f();an be resolved.This approah is more preise than traditional stubs, be-ause again it inorporates points-to information for tar-get objets and parameters. Providing spei� onstraintsfor some popular unanalysed funtions improves preisiononsiderably, while the above general approximation an beused for less popular unanalysed funtions without harmingpreision too muh.
5. EMPIRICAL STUDIESWe implemented the framework as well as its subset-basedand uni�ation-based variants (see [23℄ for implementationdetails). The implementation is based on points-to graphs.For Andersen's method, every assignment, let it be statior onditionally generated, results in an additional ar in

the graph.6 In order to redue memory onsumption, theimplementation does not store omplete points-to sets, butallows transitive edges in the graph; omplete points-to setsare then determined by traversion of paths in the graph.Instead of adding edges, the implementation of uni�ation-based intraproedural analysis merges graph nodes via thefast union-�nd algorithm. We have already seen that thisan introdue type-inorret points-to relations. Therefore,additional type heks are performed whenever a points-toset is expliitely needed.We applied both variants to 22 small and medium-sized pro-grams with up to 25000 LOC. The results are summarizedin Figure 9. The �rst olumns give the program name, itsnumber of lasses, number of methods, Byteode size, andnumber of alls. Furthermore the perentage of alls whihould be resolved statially even without points-to informa-tion is given. It is interesting to see that this perentageis usually well above 80% { Java programs rely heavily onthe standard API, whih ontains many final methods. Ofourse, statially resolvable method alls do not need ondi-tional onstraint generation, but an be analysed diretly.For both methods, the following data are given: runtime,relative preision in perent, perentage of additionally re-solved method alls, and some information onerning ourspei� appliation of points-to analysis. The relative prei-sion is determined in omparison with a super-naive points-to method, where every points-to set ontains all objetswhih have a orret type:PtSN (p) = fo 2 Obj j type(o) � type(p)gThis method is even worse than the naive method from theintrodution, beause not only it resolves method alls ina naive way, it even makes very impreise assumptions forintraproedural analysis. Relative preision is de�ned asRP = Pp2Ptr jPt(p)jPp2Ptr jPtSN (p)jAn algorithm with relative preision less than 1 (or below100%) is thus better than the super-naive method.The runtimes have been determined on a SUN Enterprisesystem 450 with 1GB, running JDK1.2. Looking at theruntimes, there are two basi observations. First of all, theabsolute runtimes are quite high. The reason, of ourse, isthat preise analysis of dynami binding does not ome forfree. One might imagine a better implementation, or theuse of a dediated, highly optimized onstraint solver, butfat is that preise resolution of dynami binding requires anadditional level of �xpoint iteration. Furthermore, unanal-ysed funtions often indue quite onservative assumptionswhih redue preision and speed of the analysis.The seond fundamental observation is that the runtimesare relatively similar. The sum of all runtimes in the benh-6The basi Andersen rule an be expressed solely in assign-ments: �(p; q) 2 Ass) (Pt(q) � Pt(p))�()�(p; q) 2 Ass) (o 2 Pt(q)) o 2 Pt(p))�()�(p; q) 2 Ass) (o 2 Pt(q)) (p; o) 2 Ass)�. Similar for Dasand Steensgaard.

lass A {void f() { ... }}lass B extends A {void f() { ... }}lass Main {void main() throws IllegalAessExeption, InstantiationExeption {A a=new A();Class =a.getClass();Objet o=.newInstane();A a2=(A)o;a2.f();}}
Figure 8: Example use of reetion API

subset-based uni�ation-basedProgram Cl. Me. ode alls stati time RP s res. lient lient-t. time RP res. lient lient-t.Haar 17 230 23k 1011 94.0 51.53 71.7 0 / 3 5.9 16.2 13.01 59.98 95.0 4.3 16.9 13.73IComputer 63 390 39k 2261 94.2 162.31 58.9 14 / 14 5.1 22.8 55.91 282.21 84.6 4.9 22.9 59.60JBinHex 5 54 3024 75 81.3 7.12 77.7 2 / 2 18.7 33.2 1.11 5.68 96.8 6.7 33.4 1.14JLex 26 161 28k 1063 97.7 45.24 67.4 7 / 13 1.9 20.0 8.96 75.72 94.1 1.9 20.2 8.87Jodes 8 41 2897 158 68.4 19.98 74.7 2 / 2 21.5 23.5 3.05 7.40 95.7 21.5 23.5 3.07NanoXML 3 32 2296 158 96.2 6.64 81.0 2 / 2 3.8 16.0 1.09 4.89 98.4 3.8 16.0 1.12ProxyHammer 12 38 3079 242 88.8 14.76 73.9 0 / 0 10.7 31.8 2.74 11.02 98.5 10.7 31.8 2.68TextSroll 4 92 6644 425 73.2 16.71 68.0 0 / 0 26.8 6.4 4.35 14.02 95.6 26.8 6.4 4.39TumblingDie 34 196 12k 762 90.8 50.12 73.6 2 / 2 8.8 17.7 13.37 47.10 97.0 8.8 17.7 13.13arabeske 21 296 41k 1964 82.9 162.75 76.6 3 / 5 4.3 16.5 18.85 163.21 94.7 4.3 16.5 19.18graph 32 228 16k 1192 96.7 47.98 66.9 1 / 3 3.2 24.2 14.78 71.48 96.4 3.2 24.2 14.99hanoi 45 362 21k 1005 82.5 43.96 72.2 1 / 18 13.5 20.1 17.37 44.81 95.2 13.0 20.7 14.78j6502 1 31 8123 78 100.0 3.21 40.3 0 / 0 0.0 10.7 0.48 1.73 98.0 0.0 10.7 0.49jEdit 108 489 34k 2179 81.1 430.12 70.7 23 / 33 13.9 20.3 117.15 473.89 88.6 13.2 20.3 115.39jas 127 435 26k 1042 85.1 611.56 84.5 12 / 24 3.7 4.9 54.18 404.69 99.6 3.7 4.9 54.10java up 41 396 32k 2362 93.2 142.71 71.6 5 / 11 3.4 19.5 35.58 301.58 97.4 3.4 19.5 33.54jaxp 110 761 39k 1579 78.3 528.30 84.1 27 / 93 7.6 11.9 138.74 596.49 96.8 6.2 12.0 134.03jex 52 418 50k 2266 96.9 196.77 81.3 4 / 11 2.6 17.6 42.24 373.38 95.5 2.5 17.6 38.53jspringies 13 71 8045 239 90.8 15.19 68.3 2 / 2 8.4 15.6 3.17 7.68 97.4 8.4 15.6 2.98mars 19 120 5431 371 92.7 39.04 64.4 2 / 4 2.4 18.1 8.51 28.02 92.4 2.4 18.3 8.42sable 283 1867 74k 4562 68.2 949.04 62.3 2 / 72 20.1 4.0 363.71 1069.11 88.5 17.7 4.0 343.45yamm 71 264 39k 3279 89.8 1270.15 58.5 5 / 6 7.1 24.5 93.62 1390.87 78.5 6.2 24.5 91.84Figure 9: Benhmark results

mark is 4815.22 seonds for the subset-based, 5434.96 forthe uni�ation-based version; that is a di�erene of roughly10 perent. Obviously the iteration for dynami bindingdestroys the basi speed of the uni�ation-based method.Conerning relative preision, the subset-based method ison the average 32.8% more preise than the super-naivemethod, and the uni�ation-based method is on the aver-age 5.7% more preise than the super-naive method. Thisis a disappointing result for the symmetri uni�ation-basedapproah; indiating that it is unsuitable for the abundaneof unsymmetri subtype relations in Java programs.The di�erene is less signi�ant if we look only at the num-ber of statially resolved method alls. The olumns \res."give the perentage of alls whih ould not be resolved stat-ially, but where the points-to set is so small that the tar-get method is unique. Again, the subset-based method isbetter. Adding the values in olumn \stati" and in ol-umn \res.", both methods ahieve almost 100% for mostprograms. That is, dynami binding is hardly used in thebenhmark. Comparing this with the relative preision, thereader should keep in mind that the majority of pointers isnot used as target objets for method alls.We also inorporated an algorithm for strongly onnetedomponents as desribed in [17℄. Rountev reports very pos-itive e�ets for C programs, but for Java, the results aredisappointing. The olumn \s" presents the number ofstrongly onneted omponents in the Andersen graph be-fore and after �xpoint iteration. Both numbers are so lowthat there is no improvement in pratie. Again, we believethat the unsymmetri subtype relations whih are so typi-al for OO programming prevent the approah from beinge�etive in Java.Let us �nally onsider the e�et of the two di�erent methodson a spei� lient analysis, namely the KABA system as de-sribed in [21, 20℄. KABA starts out with a table ontainingall method aesses for every program variable, and in orderto ompute the table, points-to information is needed for ev-ery program variable. The better the points-to analysis, theless non-blank table entries. The olumns labelled \lient"display the perentage of table entries whih are not blank,and the olumns labelled \lient-t" give table onstrutiontime. Similarly to the \resolved alls" results, the subsetmethod is only slightly superior to the other one for thisspei� lient analysis.
6. RELATED WORKRountev, Milanova, and Ryder reently presented the onlyother implemented points-to algorithm for Java known tous [18℄. Their method is also based on set onstraints, butis limited to Andersen's approah; they do not onsider ap-proximations for unanalysed ode and the reetion API.Rountev et al. use Soot7 as a frontend and the BANE sys-tem [1℄ for solving set onstraints. The implementation hasroughly the same speed as ours, but uses less memory. Thisis probably due to their use of the highly optimized BANEengine (see [10, 24℄).7http://www.sable.mgill.a

It would be interesting to ompare the preision of the twosystems, but right now this is not possible: Rountev et al.analyse reahable methods in user and library ode; we anal-yse the whole user ode and treat libraries as unanalysedode. Furthermore, the programs ommon to both benh-marks are obviously not the same version. In any ase, aomparison not only of the resolved alls but also of therelative preision would be worthwhile.8Reently, Steensgaard's algorithm has been extended to Javaas well [8℄. In ontrast to our uni�ation-based variant, itdoes not use �xpoint iteration, but { in ase two variablesa and b have been uni�ed { uni�es the signatures and this-pointers of all methods in a's and b's stati type. This retainsthe quasi-linear speed of the method, but is less preise thanour approah. [8℄ reports that a reasonable preision anonly be ahieved if a ontext-sensitive extension is used.
7. CONCLUSION AND FUTURE WORKWe presented a omparison of a subset-based and a uni�ation-based points-to approah for Java. Our results an be sum-marized as follows:1. Both analysis strategies di�er only in one spei� in-ferene rule, whih is plugged into a generi points-toframework for Java.2. Java's type safety an be exploited to inrease prei-sion, in partiular for unanalysed ode.3. Uni�ation-based methods have diÆulties with theabundany of unsymmetri subtype relations in JavaPrograms.While in the world of imperative languages suh as C, Steens-gaard's method is muh faster than Andersen's, intraproe-dural Steensgaard ombined with �xpoint iteration for dy-nami binding is slightly slower for Java. The reason isthat the �xpoint iteration leads to a propagation of the im-preision in Steensgaard's method, and eventually to sloweronvergene.There is still muh room for improvement, both in prei-sion and performane. Besides better implementations ofour algorithms, two options seem worth exploring: ontext-sensitive points-to analysis and ow-sensitive points-to anal-ysis. A partially ow-sensitive analysis an easily be ahievedby transforming the Byteode to stati single assignmentform (mp. [12℄). Context-sensitive points-to analysis forJava an be ahieved in a way analogeously to [15℄, [9℄ or[5℄. This will inrease preision, but it is unlear how highthe prie will be in terms of performane, and what the per-formane/preision ratio will be.Our analysis is basially a whole-program analysis. But itis known that many Java objets never leave the methodswhih have reated them [4, 6, 25℄. It should thus be pos-sible to deal with loal pointers and objets at the level ofmethods, thereby dereasing the size of the global points tograph. For C, this has alrady been done [16℄; for Java, itremains to be seen whether it is possible.8Our urrent implementation requires that the byteodeomes with debug information.

8. REFERENCES[1℄ A. Aiken, M. Faehndrih, J. S. Foster, and Z. Su. Atoolkit for onstruting type- and onstraint-basedprogram analyses. Leture Notes in Computer Siene,1473:78{92, 1998.[2℄ L. O. Andersen. Program Analysis and Speializationfor the C Programming Language. PhD thesis, DIKU,University of Copenhagen, May 1994. (DIKU report94/19).[3℄ David F. Baon and Peter F. Sweeney. Fast statianalysis of C++ virtual funtion alls. InOOPSLA '96 Conferene Proeedings: Objet-OrientedProgramming Systems, Languages, and Appliations,pages 324{341. ACM Press, 1996.[4℄ Bruno Blanhet. Esape analysis for objet orientedlanguages. appliation to Java. In Proeedings of theConferene on Objet-Oriented Programming,Systems, Languages, and Appliations, pages 20{34,1999.[5℄ Ramkrishna Chatterjee, Barbara G. Ryder, andWilliam A. Landi. Relevant ontext inferene. In Pro.26th ACM SIGPLAN-SIGACT on Priniples ofprogramming languages, ACM SIGPLAN Noties,pages 133{146, New York, NY, USA, 1999. ACMPress.[6℄ Jong-Deok Choi, Manish Gupta, Mauriio Serrano,Vugranam C. Sreedhar, and Sam Midki�. Esapeanalysis for Java. ACM SIGPLAN Noties,34(10):1{19, Otober 1999.[7℄ Manuvir Das. Uni�ation-baseb pointer analysis withdiretional assignments. In Pro. SIGPLANConferene on Programmming Design andImplementation (PLDI), pages 35{46, Vanouver,Canada, June 2000.[8℄ Manuvir Das and Bjarne Steensgaard, November2000. Personal ommuniation.[9℄ Maryam Emami, Rakesh Ghiya, and Laurie J.Hendren. Context-sensitive interproedural points-toanalysis in the presene of funtion pointers. In PLDI,pages 242{256. ACM, ACM, June 1994.[10℄ Manuel F�ahndrih, Je�rey Foster, Zhendong Su, andAlexander Aiken. Partial online yle elimination ininlusion onstraint graphs. In Pro. SIGPLAN'98Conferene on Programming Language Design andImplementation, pages 85{96, Montreal, Canada, June1998. ACM SIGPLAN Noties 33(6).[11℄ Je�rey S. Foster, Manuel F�ahndrih, and AlexanderAiken. Flow-insensitive points-to analysis with termand set onstraints. Tehnial Report CSD-97-964,University of California, Berkeley, August 5, 1997.[12℄ Rebea Hasti and Susan Horwitz. Using stati singleassignment form to improve ow-insensitive pointeranalysis. In Proeedings of the ACM SIGPLAN'98Conferene on Programming Language Design andImplementation (PLDI), pages 97{105, Montreal,Canada, 17{19 June 1998.

[13℄ Mihael Hind, Mihael Burke, Paul Carini, andJong-Deok Choi. Interproedural pointer aliasanalysis. ACM Transations on ProgrammingLanguages and Systems, 21(4):848{894, July 1999.[14℄ Mihael Hind and Anthony Pioli. Whih pointeranalysis should I use? In Pro. InternationalSymposium on Software Testing and Analysis, pages113{123, Portland, OR, 2000.[15℄ William Landi and Barbara G. Ryder. A safeapproximation algorithm for interproedural pointeraliasing. In ACM SIGPLAN Conferene onProgramming Language Design and Implementation,June 1992.[16℄ Donglin Liang and Mary Jean Harrold. EÆientpoints-to analysis for whole-program analysis. In Pro.ESEC/FSE, pages 199{215, N. Y., September 6{101999. ACM Press.[17℄ Atanas Rountev and Satish Chandra. O�-line variablesubstitution for saling points-to analysis. InProeedings of the 2000 ACM SIGPLAN Confereneon Programmming Design and Implementation(PLDI), pages 47{56, Vanouver, Canada, June 2000.[18℄ Atanas Rountev, Ana Milanova, and Barbara G.Ryder. Points-to analysis for java using annotatedinlusion onstraints. Tehnial Report DCS-TR-417,Department of Computer Siene, Rutgers University,July 2000.[19℄ Mar Shapiro and Susan Horwitz. Fast and aurateow-insensitive points-to analysis. In Pro. 24th ACMSIGPLAN-SIGACT Symposium on Priniples ofProgramming Languages, pages 1{14, New York, NY,USA, 1997. ACM Press.[20℄ Gregor Snelting and Frank Tip. Understanding lasshierarhies using onept analysis. ACM Transationson Programming Languages and Systems. to appear.[21℄ Gregor Snelting and Frank Tip. Reengineering lasshierarhies using onept analysis. In Proeedings ofthe ACM SIGSOFT Sixth International Symposiumon the Foundations of Software Engineering: FSE-6,pages 99{110. ACM Press, 1998.[22℄ Bjarne Steensgaard. Points-to analysis in almost lineartime. In Proeedings of the Twenty-Third ACMSymposium on Priniples of Programming Languages,pages 32{41, St. Petersburg, FL, January 1996.[23℄ M. Strekenbah. Points-to-Analyse f�ur Java. NumberMIP-0011 in Tehnial Report Series. Fakult�at f�urMathematik und Informatik, Universit�at Passau, 2000.[24℄ Zhendong Su, Manuel F�ahndrih, and AlexanderAiken. Projetion merging: Reduing redundanies ininlusion onstraint graphs. In Conferene Reord ofPOPL'00: The 27th ACM SIGPLAN-SIGACTSymposium on Priniples of Programming Languages,pages 81{95, Boston, Massahusetts, January 19{21,2000.[25℄ John Whaley and Martin Rinard. Compositionalpointer and esape analysis for Java programs. ACMSIGPLAN Noties, 34(10):187{206, Otober 1999.

