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Writing concurrent applications is extremely challenging, not only in terms of producing bug-free and main-
tainable software, but also for enabling developer productivity. In this paper we present the ÆMINIUM
concurrent-by-default programming language. Using ÆMINIUM programmers express data dependencies
rather than control flow between instructions. Dependencies are expressed using permissions, which are
used by the type system to automatically parallelize the application. The ÆMINIUM approach provides a
modular and composable mechanism for writing concurrent applications, preventing data races in a prov-
able way. This allows programmers to shift their attention from low-level, error-prone reasoning about
thread interleaving and synchronization to focus on the core functionality of their applications. We study
the semantics of ÆMINIUM through µÆMINIUM, a sound core calculus that leverages permission flow to
enable concurrent-by-default execution. After discussing our prototype implementation we present several
case studies of our system. Our case studies show up to 6.5X speedup on an eight-core machine when lever-
aging data group permissions to manage access to shared state, and more than 70% higher throughput in a
web server application.

Categories and Subject Descriptors: D.3.3 [Programming Languages]; D.1.3 [Concurrent Program-
ming]; D.1.5 [Object-oriented Programming]

General Terms: Languages, Theory, Performance

Additional Key Words and Phrases: access permissions, permissions, data groups, concurrency

ACM Reference Format:
Stork,S. Naden, K., Sunshine, J., Fonseca, A., Mohr, M., Marques, P., Aldrich, J. 2012. ÆMINIUM: A Permis-
sion Based Concurrent-by-Default Programming Language Approach ACM Trans. Program. Lang. Syst. V,
N, Article A (January YYYY), 42 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
In recent years concurrency has become ubiquitous in a wide range of software sys-
tems, from high performance computers to ordinary laptops, smart phones and even
embedded systems. The concurrency models used by applications running on these
systems differ widely, including parallel number crunching, task synchronization, and
inter-thread communication for hiding I/O latency, among many others.

The problem of concurrency cannot be successfully solved without considering soft-
ware engineering concerns. Today most software leverages libraries, frameworks and
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other reusable software components, and is large enough to be difficult for a single pro-
grammer to fully understand. This often leads to cases where a small change in one
component breaks a completely unrelated component. In addition to those correctness
concerns comes the question of efficiency. [Adve and Boehm 2010] show that correct
and efficient concurrency support requires programming language support. In partic-
ular it is shown that race freedom, at the very least, must be supported in programming
languages to allow efficient cooperation between hardware and software.

In this paper we present ÆMINIUM [Stork 2013], which is to our knowledge the first
system to combine automatic parallelization with type-based safe deterministic and
non-deterministic concurrency. The ÆMINIUM type system is based on access permis-
sions, which express constraints on program aliasing, allowing us to overcome one of
the major obstacles in prior automatic parallelization work. This aliasing information
allows the compiler to easily build a dependency graph and then to parallelize the code.
A novel permission splitting operation allows programmers to express when two opera-
tions that access the same data are conceptually independent, allowing the compiler to
safely extract nondeterministic concurrency in addition to deterministic parallelism.

Our approach permits the user to expose potential parallelism in a predictable way
through permissions, but puts the runtime system in charge of the highly platform-
dependent task of scheduling that potential parallelism onto hardware resources. Li-
brary code can also be more reusable, as the programmer only exposes potential paral-
lelism with permissions, rather than committing to a particular parallelization strat-
egy which may conflict with client code.

The main contributions of this paper are:

— A concurrent-by-default programming language that leverages permissions and
data groups to automatically, safely, and deterministically parallelize applications
based on permission flows. While an initial sketch of the approach was presented
in [Stork et al. 2009], this paper fills in the sketch to show how the system actually
works, and provides a different (and more workable) design for data group permis-
sions.

— A safe approach to integrating nondeterminism into the implicit parallelism model
above. Our approach leverages access permissions to data groups, allowing devel-
opers to explicitly specify when nondeterminism is permisible, while ensuring the
absence of data races.

— A core calculus called µÆMINIUM which makes the model above precise and allows
formal reasoning about the system. The formal system consists of:
— a type system that extracts dependency information and ensures the absence of

race conditions;
— a concurrent-by-default evaluation semantics, which models dataflow paral-

lelism at a fine granularity, in contrast to prior type-based concurrency models
that used threads or explicit fork-join parallelism; and

— a proof of type soundness and race freedom.
— A detailed description of our prototype implementation in the Plaid programming

language infrastructure.
— Several case studies to evaluate our initial implementation which show the benefits

and applicability of our system to selected example programs.

1.1. Approach
In ÆMINIUM the programmer uses permissions to specify which data he is accessing
and in which way he needs to access the data (e.g., if he is willing to share access to
the data with other parts of the code or if he wants exclusive access). Encoding this
permission information allows the system to check for the correctness of each function
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as well as their composition in a modular way. Based on the permission flow through
the application ÆMINIUM infers potential concurrent executions by computing a data
flow graph [Rumbaugh 1975] which can then be executed by exploiting available, and
potentially concurrent, computation resources. ÆMINIUM’s type system prevents data
races by either enforcing synchronization when accessing shared data or by correctly
computing dependencies to ensure a happens-before relationship (meaning conflicting
accesses will be ordered according to their lexical order).
Note: ÆMINIUM is implemented in Plaid [Aldrich et al. 2009] which already has first
class support for permissions. We therefore present all examples in ÆMINIUM/Plaid
syntax. Plaid’s syntax is sufficiently close to Java’s syntax to be readily understood. We
ignore Plaid’s special features (such as typestate) and for the purposes of this paper,
we consider Plaid’s states to be equivalent to Java’s classes.

To illustrate these concepts, consider the transfer function shown below, which
transfers a specific amount between two bank accounts. It first withdraws the spec-
ified amount of money from the ‘from’ account and then deposits the same amount into
the ‘to’ account.� �

method void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount)
deposit(to, amount);

}� �
For this example we assume that the order in which we perform the withdraw and

deposit operations does not matter. In particular, they could be executed concurrently
because both the withdraw and deposit operations should only affect the specified bank
account and no other. To encode this extra information ÆMINIUM uses permission an-
notations. Permissions [Boyland 2003] specify aliasing and access information for ob-
jects. The transfer method specifies that it requires a unique permission to both bank
accounts and a immutable permission to the amount parameter. The unique permis-
sion means that there is only one valid reference to the specified object in the whole
system at the moment of a function call, and modifications to the object within the
function are possible. The immutable permission specifies that there might be multi-
ple aliases to this object but none of them can be used to change the object.

Assuming the method declarations for the deposit and withdraw methods given
below, ÆMINIUM is now able to compute the permission flow within the transfer
method. The unique permission of the ‘to’ parameter flows to the deposit method while
the unique permission of the ‘from’ parameter flows to the withdraw. But we only have
one immutable permission to the ‘amount’ object while both withdraw and deposit re-
quire one each. Because immutable permissions explicitly allow aliasing ÆMINIUM
automatically splits the one immutable permission into two permissions, which are
then passed to the two method calls.� �

method void withdraw(unique Account account,
immutable Amount amount) {...}

method void deposit(unique Account account,
immutable Amount amount) {...}� �

The permission flow of the transfer method is shown in Figure 1. After the split
operation the unique ‘to’ and immutable ‘amount’ permissions are passed to deposit
method while the unique ’from’ permission and immutable ‘amount’ permission flow to
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transfer(to, from, amount) {

split

deposit(to, amount) withdraw(from, amount)

join

}

to : unique,
from : unique,
amount : immutable

amount : immutable,
to : unique

amount : immutable,
from : unique

to : unique,
amount : immutable

from : unique,
amount : immutable

to : unique,
from : unique,
amount : immutable

Fig. 1: Permission Flow in the Transfer Example. We use the notation var : perm to indicate
that we have permission ‘perm’ for variable ‘var’.

the withdraw method. After those methods complete ÆMINIUM will automatically join
the previously split immutable permissions. The permission flow graph corresponds to
the data flow graph which is used to execute the transfer methods. Although this ex-
ample illustrates only unique and immutable data, we will later show how ÆMINIUM
supports shared mutable data with shared permissions and an atomic synchronization
primitive.

Note that in this example, passing a unique Account object to be modified by a
method is isomorphic to passing an immutable Account object as an argument and
receiving an updated Account as the result of the method. One can thus think of state
being threaded through the program following the permissions. In this sense, permis-
sions allow us to treat an imperative program as if it were purely functional, with
corresponding benefits for reasoning and parallelization. An analogy can be made to
monads [Moggi 1991] such as the state monad in Haskell, which conceptually threads
the state of the heap through the program computation. However, embedding permis-
sions in a linear logic and providing splitting rules, as discused below, adds flexibility
compared to a monadic approach. While we do not explore the monad analogy further
in the paper, we believe some readers may find it helpful.

In the following example we explore a hypothetical mistake, in which the program-
mer tries to implement the available_balance method to compute the available bal-
ance of a given account. For this the caller must pass in the account object along
with an immutable permission. Due to a mistake the programmer adds a call to the
withdraw method, which attempts to withdraw the specified amount from the given
account. The withdraw method, though, requires a unique permission to the account
and we only have an immutable permission to the specified account. This will result in
a typechecking error because an immutable permission cannot be converted into the
required unique permission—and fortunately so, because an immutable object can be
accessed in parallel, so allowing a modifying access could result in a race condition.
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method immutable Amount available_balance(immutable Account account) {

// ...
withdraw(account, amount); // typecheck error
// ...

}� �
1.2. Outline
The paper is organized as follows: Section 2 provides an overview of the concept of the
ÆMINIUM language; Section 3 gives a detailed description of the core calculus; Section
4 presents an overview of our initial prototype implementation and Section 5 presents
its evaluation; Section 6 discusses the current limitations of our prototype system and
future work; Section 7 compares our approach with previous approaches and, finally,
Section 8 concludes the paper.

2. OVERVIEW
In this section we describe the ÆMINIUM programming language, which realizes a
concurrent-by-default programming model [Stork et al. 2009] with a concrete design
and precise semantics. ÆMINIUM uses access permissions [Beckman et al. 2008] for
objects and data group permissions for data groups [Leino 1998] to compute the per-
mission flow throughout the code (explained in the next sub-sections). The compiler
uses this information to compute a dataflow graph, which can then be executed in
parallel on available computing resources.

While the general ÆMINIUM approach is language agnostic, we use an extended
Java syntax for presenting the examples in this section. This requires extending the
Java syntax with the missing language constructs and permission annotations. We are
currently working on a prototype implementation in the Plaid [Aldrich et al. 2009] lan-
guage. Plaid has permissions built-in as an first class language construct and therefore
requires only minor extensions to support ÆMINIUM.

2.1. Access Permissions
Access Permissions (AP) have been studied in the past for checking interface proto-
col compliance and verifying the correct use of synchronization [Beckman et al. 2008].
In ÆMINIUM we use access permissions, and more precisely the flow of the access
permissions through the application, to model possible concurrent execution strate-
gies for a program. Access permissions are abstract capabilities associated with object
references. The primary purpose of access permissions is to keep track of how many
references to a given object exist in a moment in time, and to specify what kind of
operations are permitted on the object at that moment. In ÆMINIUM we adopted the
following three permissions kinds:

unique. A unique access permission to an object reference indicates that there is
exactly one reference (the current reference to that object) at this moment in time.
A unique access permission allows clients to read and modify the object.
shared. A shared access permission to an object reference indicates that there are
an arbitrary number of references to the object in the system and all the permissions
are shared. A shared access permission allows the client to read and modify the
object.
immutable. An immutable access permission to an object reference indicates that
there are an arbitrary number of references to the object in the system and all of
them are immutable. An immutable access permission allows only read access to
the object.
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Access permissions follow the rules of linear logic [Girard 1987]. They are analogous
to physical resources that are unavailable once consumed. Permissions can be con-
verted from one type to another as long as the previously described invariants hold.
For instance, a unique AP can be split into two shared APs. Because of the linearity of
APs the unique AP is gone, having been replaced by two shared APs. Each of the shared
APs can be further split into more shared APs, but not into unique or immutable per-
missions. Using fractions [Boyland 2003] for keeping track of the individual AP allows
permissions to be joined, eventually enabling the recovery of a unique access permis-
sion.

The type system computes the AP flow in the program and automatically splits/joins
APs as needed. In ÆMINIUM two expressions may execute concurrently if their per-
missions do not interfere: that is, they have a disjoint set of unique permissions or an
arbitrary set of overlapping shared and immutable permissions. To avoid data races
ÆMINIUM only allows access to shared data within atomic blocks. The AP flow obeys
the lexical order of statements, meaning that if two pieces of code need the same unique
AP, the unique AP will first flow to the first expression and then to the second one.

2.2. Data Groups
Although pure APs define a clean execution model for unique and immutable data,
our permission splitting rules will allow all operations on shared data to proceed con-
currently. We need a way to express when one operation on a shared data structure
depends on another. Furthermore, we’d like to control these dependencies, as well as
sychronization on shared data, at a granularity greater than one object at a time.

To address this challenge we leverage data groups (DG, [Leino 1998]). A data group
represents an abstract collection of objects. Using data groups for grouping multiple
objects differs from previous work [Leino et al. 2002], which used data groups exclu-
sively to partition the state of one object. When an object is part of a data group, we
say that this object is owned by that data group. In ÆMINIUM each shared object
must be part of exactly one data group. The specific data group an object is in can
change during runtime execution. To transfer a shared object from one data group to
another one, all shared permissions to the object must be joined into a unique permis-
sion. Only when a unique permission has been reassembled is it possible to split this
unique permission into shared permissions associated with a different data group. We
write shared〈myGroup〉 to indicate that the shared object is part of the data group
myGroup. Data groups need to be declared in a state but are instance specific (like
instance-specific fields). When an object is allocated, the data groups associated with
it are instantiated by the compiler/runtime system. The global set of data groups par-
titions the heap of shared objects into disjoint parts, which do not overlap.

Additionally, we adapt the concept of access permissions to data groups and call
them data group permissions (GP). ÆMINIUM currently defines the following data
group permissions:

exclusive. There is at most one exclusive GP to a data group in the whole system
at a time. This resembles a unique AP. Similar to a unique permission, an exclusive
GP represents the only currently existing permission through which the data of the
data group can be accessed.
An exclusive group permission behaves like “thread-local” data (although we do not
have the notions of threads in ÆMINIUM). An execution path that holds an exclu-
sive group permission can safely access the associated shared objects of the group
without synchronization. This is an important feature as many data structures in-
trinsically require shared access permissions to the objects they are composed of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



ÆMINIUM: A Permission Based Concurrent-by-Default Programming Language Approach A:7

Object

Access
Permissions unique shared〈α〉 immutable

Data Group

Group
Permissions exclusive shared protected

1
n

n

1
n

1

Fig. 2: Permissions in ÆMINIUM. Shows different permission kinds and what each permission
controls (including arity). Access permissions control access to objects and group permissions
control access to data groups of shared objects. There can only exist one unique, exclusive or
protected permission to an object or data group at a time in the system, while there can be an
arbitrary number of shared and immutable permissions. Shared permissions refer to the data
group to which they belong to (e.g., shared〈α〉 means the object belongs to data group α).

(e.g., a doubly linked list which requires at least two valid references to the linked
node objects).
shared. A shared GP resembles a shared AP: there can be an arbitrary number of
shared GP in the system. Having a shared GP does not grant any kind of access to
the associated data because there is the danger of data races.
protected. A protected GP indicates that access to the shared data is safe because
the access to the shared data group has been protected by a corresponding atomic
block. The semantics of protected permissions is that there can only be one protected
permission per data group at a time. This is enforced by the runtime system. In con-
trast to an exclusive permission, a protected permission cannot be split into shared
permissions; doing so would be tantamount to requesting concurrency within an
atomic block, likely with confusing and even error-prone semantics.

Figure 2 provides an global overview of all available permissions in the ÆMINIUM
system. Access permissions are used to classify object references and consist of unique,
shared and immutable. By definition every shared object must be associated with a
data group (e.g., α) for which we use a data group permission exclusive, shared and
protected.

2.2.1. Management of Data Group Permissions. Unlike the automatic splitting of access
permissions, data group permissions are split and joined manually to provide the pro-
grammer with better control over dependencies between operations. By default, each
operation on a data group depends on the previous operation on that data group; when
the operations are conceptually independent, an explicit split block is used to split an
exclusive GP into an arbitrarily number of shared GPs (see Figure 3). The split block
specifies data groups for which it splits the available permission (either exclusive or
shared) into more shared permissions (one for each statement in the body). Group per-
missions to data groups not mentioned are simply passed into its body. The available
permissions inside the body are partitioned into disjoint sets. Each one of those permis-
sion subsets flows to one statement of the body. This means that if multiple statements
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in the block require the same unique AP, or any GP that is not mentioned in the split
block, then the code will not typecheck because permissions cannot be duplicated. Af-
ter the completion of all body statements, the split block joins the generated shared
permissions back to the permission that existed before the block was entered.

In order to give programmers control over the granularity of synchronization, each
atomic block protects access to objects in the particular data groups that are specified
at the atomic block entry point. It will provide a protected GP for the specified data
group to its body expression. The specification of the data group is optional as the com-
piler can automatically infer the required data groups from the provided arguments
at the call site. This is similar to C++ which can deduce template parameter type
from the provided arguments. In ÆMINIUM’s case the type of the arguments encodes
which data groups the shared objects are associated with and the compiler can use
this information to deduce the required data group parameter information. Providing
an explicit annotation, however, provides useful documentation of the programmer’s
intent and helps catch unintended data accesses. In particular, the semantics of the
atomic block is that its body is executed as if it has exclusive access to the shared data
associated with the specified data group. Similar to the split block, the atomic block
will upon its completion revert the GP to the state it was in before entering the atomic
block. The semantics of split and atomic blocks is illustrated by example in Figure 3.

Data groups are declared inside states in a similar way to fields (see Figure 4, line
6). Data groups are only visible inside states and their sub-states (similar to Java’s
protected). Before accessing data associated with those inner groups, the program-
mer must gain access to those data groups via an ‘unpackInnerGroups {. . .}’ con-
struct. The unpackInnerGroups block, similar to the focus operation from [Fahndrich
and DeLine 2002], will trade the permission to the owner group of the receiver object
for permissions to inner groups defined in the receiver’s state. This exchange prohibits
recursive method calls from accessing the same inner groups, which would violate the
permission invariants (e.g., only one exclusive data group permission per data group).
What happens is that when unpackInnerGroups is called, the exclusive permission for
the "owner" is replaced by exclusive permissions for the inner data groups of the re-
ceiver object (i.e., the "this" object). This approach transitively avoids the need for
synchronization. Analogously, when the client has either a shared or protected per-
mission to the owner (rather than exclusive), the owner permission is replaced by a
shared permission to the inner groups. The unpackInnerGroups block could automati-
cally be inferred by the compiler (by simply determining which statements need inner
data groups and wraping them in an unpackInnerGroups block), but adding it explicitly
aids in documenting the programmer’s intent. Despite the manual group permission
management ÆMINIUM’s type system guarantees the absence of race conditions.

2.2.2. Discussion and List Example. The introduction of data groups and data group per-
missions allows programmers to introduce nondeterminism when they need it, but
ensures that they are explicit about where nondeterminism is permitted and helps
them to control the granularity of parallelization, and therefore of synchronization.
Nondeterminism can only be introduced via explicit split blocks, and its impact is
limited to accesses within that block. This explicitness helps ensure that program-
mers have thought about the semantics of their program enough to avoid errors due to
unexpected nondeterminism. Furthermore, data groups allow coarse-grained synchro-
nization because an atomic block on a data group protects all the objects within that
data group, eliminating the need to synchronize separately on each object. In the case
of an exclusive group permission, no synchronization is needed at all.

To make this more clear, consider the doubly linked list example in Figure 4. In line
5, the DoubleLinkedList state is defined with group parameter data, using the same
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1 // gr : gp with
2 // gp ∈ {exclusive, shared}
3 split 〈gr〉 {
4 // gr : gp with
5 // gp : shared
6 atomic 〈gri〉 {
7 // gri : protected
8 }
9 // gr : gp with

10 // gp : shared
11 }
12 // gr : gp with
13 // gp ∈ {exclusive, shared}

(a) Split/Atomic Block

exclusive

shared

protected

split

split

atomic

(b) Group Permission Conversion Diagram

Fig. 3: Group Permission Splitting/Joining via Shared and Atomic blocks. The notation gr : gp
means that we have group permission gp for data group gr.

syntax as Java type parameters. The data group parameters specifies the data group
to which the objects stored in the list belong. Line 6 defines a new data group called
‘internal’. Line 9 declares the ‘head’ field pointing to the chain of ‘DoubleLinkedLis-
tItems’ which are all associated with the ‘internal’ data group of the surrounding ‘Dou-
bleLinkedList’. Because inner groups are not visible outside the state it is impossible
for these objects to leave the scope of the state. This strong encapsulation resembles
ownership types [Clarke et al. 1998], and allows ÆMINIUM developers to incremen-
tally refine their internal data structures to increase internal concurrency (e.g., in our
case study below, modifying a hash table that uses one data group for all hash buckets
to an implementation that uses one data group per hash bucket).

Lines 12 and 24 show the definitions of two add functions that specify data group pa-
rameters along with their required permissions. The signature of the two add methods
are identical, with the exception that the add method in line 12 requires an exclusive
permission to the data group that owns the receiver, while the add method in 24 re-
quires a shared GP. The effect of this difference can be observed in the implementation
of the corresponding bodies. In the case of the add method that requires an exclusive
permission to the receiver’s data group, the unpackInnerGroups can provide an exclu-
sive permission to the inner data groups, which in turn allows the programmer to ac-
cess the shared inner state without any synchronization. In the case of the add method
that requires a shared permission to the receiver’s data group, the unpackInnerGroups
can only provide a shared permission to the inner data groups, requiring the program-
mer to synchronize on the inner data group (line 30).

Note that the current design of ÆMINIUM only protects against race conditions and
not against deadlocks. The latter has been handled in prior work [Boyapati et al. 2002],
which is orthogonal to our approach, and is left out of this discussion for simplicity.

2.3. Producer/Consumer Example
After the discussion of access permissions, data groups and their relationships we now
present a producer/consumer example in ÆMINIUM (see Figure 5). The program starts
execution at the global entry method main (line 19). When entering the body it has
an exclusive permission to a data group α. This permission will first flow into the
createQueue method call (line 21). The exclusive permission matches the method per-
mission requirements as specified in line 16. After the createQueue call returns the
exclusive permission to α, the permission flows into the split block at line 23. As previ-
ously described, the split block will replace the exclusive permission with one corre-
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1 state DoubleLinkedListItem〈data〉 {
2 ... // standard double linked list item
3 }
4

5 state DoubleLinkedList〈data〉 {
6 group〈internal〉 // inner data group
7

8 // ‘head’ belonging to inner data group ‘internal’
9 shared〈internal〉 DoubleLinkedListItem〈internal, data〉 head;

10

11 method void
12 add〈exclusive owner, shared data〉(shared〈data〉 Object〈data〉 o)
13 : shared〈owner〉 // shared permission to the receiver
14 {
15 // owner : exclusive, data : shared
16 unpackInnerGroups {
17 // internal : exclusive, data : shared
18 // access internal data directly
19 }
20 // owner : exclusive, data : shared
21 }
22

23 method void
24 add〈shared owner, shared data〉(shared〈data〉 Object〈data〉 o)
25 : shared〈owner〉 // shared permission to the receiver
26 {
27 // owner : shared, data : shared
28 unpackInnerGroups {
29 // internal : shared, data : shared
30 atomic 〈internal〉 {
31 // internal : protected, data : shared

32 // need protection to access internal data
33 }
34 }
35 // owner : shared, data : shared
36 }
37 ...
38 }

Fig. 4: A DoubleLinkedList with Data Groups. The example has two add methods. The first one
requires an exclusive permission to the owner and transitively provides an exclusive permission
to the inner groups, and does not requires synchronization. The second version only requires
a shared permission to the owner and only provides shared permissions to the inner groups,
requiring synchronization i.e. atomic blocks. In comments ‘//’ we show which permissions we
currently hold via the notation dg : gp, meaning for data group dg we have permission gp.

sponding shared permission for each statement in its body. This leads to the fact that
one shared permission to α is flowing in parallel to the producer and consumer method
calls (line 24 + 25). After those calls have been completed, and therefore have returned
their shared permissions to α, the share block will collect them and join them back
together to an exclusive permission (line 26). This newly gained exclusive permission
is then fed to the disposeQueue method call. Note that if either producer or consumer
want to access the shared queue, they first have to protect their access to this data
group via an atomic block (lines 4 and 11). Figure 6 shows the resulting permission
flow and the derived data flow graph for this example program.
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1 state ProducerConsumer {
2 method void producer〈shared γ〉(shared〈γ〉 Queue〈γ〉 q) {
3 // α : shared
4 atomic 〈γ〉 {
5 // α : protected
6 ...
7 }
8 }
9 method void consumer〈shared γ〉(shared〈γ〉 Queue〈γ〉 q) {
10 // α : shared
11 atomic 〈γ〉 {
12 // α : protected
13 ...
14 }
15 }
16 method shared〈γ〉 Queue〈γ〉 createQueue〈exclusive γ〉(){...}
17 method void disposeQueue〈exclusive γ〉(shared〈γ〉 Queue〈γ〉 q){...}
18

19 method void main〈exclusive α〉() {
20 // α : exclusive
21 shared〈α〉 Queue〈α〉 q = createQueue〈α〉()
22

23 split 〈α〉 {
24 producer〈α〉(q) // α : shared
25 consumer〈α〉(q) // α : shared
26 }
27 // α : exclusive
28 disposeQueue〈α〉(q)
29 }
30 }

Fig. 5: Producer/Consumer Example

createQueue

split 〈α〉 {

producer(q) consumer(q)

}

disposeQueue(q)

α : exclusive

α : exclusive

α : shared α : shared

α : shared α : shared

α : exclusive

α : exclusive

Fig. 6: Data Flow Graph for Producer/Consumer Example
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1 method void exchange〈exclusive S,
2 exclusive I,
3 exclusive O〉(shared〈S〉 Socket s,
4 shared〈I〉 Packet inp,
5 shared〈O〉 Packet outp) {
6 receivePacket〈S, I〉(s, inp);
7 checkPacket〈I〉(inp);
8 updatePacket〈O〉(outp);
9 sendPacket〈S, O〉(s, outp);

10 }

Fig. 7: Exchange Source Code

receivePacket updatePacket

checkPacket sendPacket

S : exclusive
I : exclusive

O : exclusive

I : exclusive

S : exclusive
O : exclusive

S : exclusive
O : exclusive

I : exclusive

Fig. 8: Data Flow Graph for exchange Function (for simplicity we show only the flow of data
group permissions as the access permissions do not cause additional dependencies)

2.4. Dataflow is not Fork/Join
ÆMINIUM supports both dataflow and fork/join parallelism. To better understand
the difference between those concepts, consider the example shown in Figure 7. The
exchange function, which could be part of a bi-directional ring network implementa-
tion, receives a new packet via the provided socket s into the Packet inp. It then checks
the newly received packet inp for errors (e.g., that checksums match). The function
then updates the outgoing packet outp (e.g., update header fields and re-computes
checksums), before this packet is sent through the socket.

Assuming that all functions called in the exchange method require exclusive permis-
sions to the corresponding data groups, the permission flow forms a graph as shown
in Figure 8. The graph shows that receiving the incoming packet can be performed in
parallel to updating the outgoing packet. As soon as the incoming packet has been re-
ceived the newly received packet can be checked. When additionally the updates of the
outgoing packet have completed, the outgoing packet can be sent in parallel to checking
of the incoming packet. This kind of parallelism is naturally supported by ÆMINIUM’s
dataflow approach, but cannot be directly expressed in a fork/join paradigm unless
extra dependencies or synchronization is used.

3. FORMAL LANGUAGE
This section formalizes the object-oriented µÆMINIUM core language. We briefly dis-
cuss the syntax of the language and then elaborate on how the static and dynamic
semantics of the calculus prohibit race conditions. We conclude this section by describ-
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ing the soundness properties we have proved for µÆMINIUM. The goal of µÆMINIUM
is to explore a simple, efficient mechanism to track data dependencies via permission
flow and to guarantee the absence of race conditions. Because only shared data can
lead to race conditions and the tracking of object permissions and data group permis-
sions can be done using similar mechanisms, we focused the core calculus on modeling
data groups and data group permissions, assuming that all data is implicitly shared
and omit immutable and unique permissions from our formal system (note that our
implementation has support for all discussed permissions). µÆMINIUM’s typecheck-
ing rules generate a data group configuration representing the graph of dependencies
between primitive expressions in the language; this configuration is used along with
run-time permissions to model parallel execution in the dynamic semantics.

3.1. Syntax
The grammar of µÆMINIUM is shown in Figure 9 and is formulated as an extension to
Featherweight Java (FJ, [Igarashi et al. 2001]). Our extensions are highlighted in red.

In a nutshell the major extensions to FJ are: i ) addition of data group parameters to
method calls, and class and method declarations; ii ) addition of group types, and ex-
tension of object types to be parameterized with group parameters; iii ) new language
constructs to deal with data groups and to support assignment.

We use the overbar notation to abbreviate a list of elements (e.g. x : T = x1 :
T1, . . . , xn : Tn). Unless otherwise mentioned this notation includes the empty list.
We write • to indicate the empty sequence.

A program consists of a set of classes and a main method. In µÆMINIUM the global
starting expression of FJ is explicitly wrapped in a main method, to provide an initial
data group for the top level objects. A class declaration (CL) gives the class a unique
name C and defines its data group parameters, internal data groups (G), fields (F ) and
methods (M ). Note that the sequence of data group parameters may not be empty, and
instead of having an explicit owner parameter, the first data group parameter specifies
the data group to which the class instances belong. µÆMINIUM does not provide an
explicit constructor. Upon creation of a new object all its fields are initialized to null
and must later be explicitly set. Fields (F) are declared with a name and type. Data
groups (G) are declared by name, which is passed to the group constructor. Methods
(M) specify their result type, the data group permissions they require, their formal
parameters and a body expression.

We syntactically distinguish between expressions and possibly effectful atoms.
Atoms are straightforward and consist of field read and assignment, method invo-
cation, and new object creation. Besides the standard let binding ( let ), expressions
consist of atomic blocks ( atomic ) which specify the data group they protect access
to and a body expression; an operation that exchanges permission to the owner of an
object for permission to its inner data groups ( unpackGroupsOf ), which specifies the
object and an expression which should gain access to the inner groups of the specified
object (the unpackInnerGroups of ÆMINIUM essentially limits the object reference to
the receiver object); and a share primitive ( split ), which specifies which data groups
should be shared between the two specified expressions. Note that the sequence of
data group references in the share construct must be non-empty. The inatomic primi-
tive ( inatomic ) does not appear at the source level and is only used as an intermediate
form for tracking entered atomic blocks. We use a global class table (CT ) to map class
names to class declarations.
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(programs) P ::= 〈CL,main〉
(class decl.) CL ::= class C〈α, β〉

extends D〈α〉 {G F M}
(field decl.) F ::= T f
(group decl.) G ::= group〈gn〉
(method decl.) M ::= Tr m〈gp γ〉(Tx x) { e }
(main meth.) main ::= C〈α〉 main〈exclusive α〉() { e }
(values) v ::= o | null
(references) r ::= x | v
(group ref.) gr ::= r.gn | α
(expressions) e ::= a

| unpackGroupsOf r in e
| let x = e in e
| atomic 〈gr〉 e
| split 〈gr〉 between e1 ‖ e2
| inatomic 〈gr〉 e

(atoms) a ::= r
| r.f
| r.f := r
| r.m〈gr〉(r)
| new C〈gr〉(r)

(types) T ::= C〈gr〉 | G
(object) obj ::= C[f = v]
(group perm.) gp ::= exclusive | shared | protected
(group state) S ::= U | L
(class table) CT ::= • | CT, 〈C 7→ CL〉
C,D,E ∈ CLASSES m ∈METHODS

f ∈ FIELDS x, y, this ∈ VARS
α, β, γ ∈ GROUP VARS o ∈ OBJ. REFS.

gn ∈ GROUP NAMES

Fig. 9: µÆMINIUM Grammar

3.2. Static Semantics
This section first provides an overview of all definition forms, then discusses the de-
tailed typing rules. We implicitly assume that names of fields, groups and methods in
a class declaration are unique.

3.2.1. Typing Context. The typing context Γ contains all the typing information for ob-
ject references and data group references. We use G as the type for all data group
references.

(Typing Context) Γ ::= • | Γ, r : C〈gr〉 | Γ, gr : G

3.2.2. Permission Context. The permission context ∆ is a linear context that keeps track
of the currently available permissions. We write gr : gp to indicate that we have group
permission gp for data group gr.

(Linear Context) ∆ ::= • | ∆, gr : gp

3.2.3. Data Group Configuration. The data group configuration G hierarchically tracks
the data group requirements of an expression, including any ordering or concurrency
among those requirements. It vaguely resembles NESL’s [Blelloch and Greiner 1996]
approach for tracking profiling information, but instead of tracking operation costs we
track permission requirements. A data-group configuration can either be empty (•);
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a collection of group references ({gr}), indicating the permission requirements of the
current expression; the sequential composition of data group configurations (⊕), used
to combine data group configurations of expressions that are sequentially ordered, or
the parallel composition of data group configurations (‖), used to combine data group
configurations of expressions that are executed in parallel. We also define a global
data group configuration table (GT ) which maps class and method tuples to data group
configurations.

(DG configuration) G ::= • | {gr} | (G1 ⊕ G2) | (G1 ‖ G2)
(G table) GT ::= • | GT , 〈(C,m) 7→ G〉

Example: Let us consider a simplified example to provide an intuition for how the
data group configuration is used to control execution. Let us assume we have a given
expression e which represents a normal let binding with a corresponding data group
configuration G. It consists of the sequential composition of the data group configura-
tions of its sub-expressions (i.e. G = (G1⊕G2) where G1 and G2 are data group configura-
tions of subexpressions e1 and e2). Furthermore, assume without loss of generally that
the required data groups for those sub-expressions are requiredPerms(G1) = {gr0, gr1}
and requiredPerms(G2) = {gr0}.� �
G := (G1 ⊕ G2) requiredPerms(G1) = {gr0, gr1}

requiredPerms(G2) = {gr0}
e := let x = e1 in e2� �

For the moment consider the simple evaluation judgment δ|G ` e 7→ e′ a G′, meaning,
given the runtime permissions δ and the expression e with its data configuration G,
the expression e steps to a new expression e′ with its new data group configuration G′.� �

{gr0,gr1 } | G ` let x= e1 in e2 7→ let x = e′1 in e2 a G′

G′ := (G′1 ⊕ G2) requiredPerms(G′1) = {gr1}
requiredPerms(G2) = {gr0}

e′ := let x = e′1 in e2� �
The first subexpression e1 requires all available runtime permissions, and because of

the sequential composition operator ⊕ the runtime system needs to satisfy its require-
ments first. Therefore there are no runtime permissions for the second expressions e2

left. The system steps e1 to e′1 and updates its data group configuration to G′1. As shown
above, assume that with this step all remaining operations in e′1 solely depend on the
runtime permission gr1 indicated by requiredPerms(G′1) = {gr1}. In the next execution
step, the runtime system again first needs to satisfy the dependencies of e′1 before e2.
But this time e′1 does not require all available runtime permissions, which allows the
system to provide the remaining runtime permissions to e2. This allows the system to
step e′1 and e2 in parallel as shown below.� �

{gr0,gr1 } | G′ ` let x = e′1in e2 7→ let x = e′′1 in e′2 a G′′

G′′ := (G′′1 ⊕ G′2)
e′′ := let x = e′′1 in e′2� �
3.2.4. Typing Judgments. We type-check an expression with the judgment Γ|Σ|∆

C̀
e :

T | G, which reads: given the typing context Γ, the store typing Σ, and the permission
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fields(C) = F returns fields of class C and its superclasses
groupDecls(C) = gn returns the declared groups of class C and its super-

classes
override(C,m) ok checks if a method correctly overrides another

method
requiredPerms(G) = gr returns the set of all permissions in G

requiredTokens(e) = {gr@L} return the set of group access tokens for which e con-
tains an corresponding inatomic .

mdecl(C,m) = M looks up the method declaration of m in class C
mbody(C,m) = γ.x.e× G looks up the method body of m in class C, and re-

turns the body expression with the method parame-
ter names and the data group configuration

Fig. 10: µÆMINIUM Helper Functions

context ∆, the expression e checks in the context of class C with type T and has data
group configuration G.

We use the judgment Tf f ok in C to check that the given field declaration is valid in
class C.

We use the judgment Tr m〈gp γ〉(Tx x) { e } ok in C to check that the method decla-
ration is valid in class C.

3.2.5. Helper Functions. Throughout the typing and evaluation rules we use several
helper functions to abbreviate common functionality. For space reasons we delegate
the full definitions of these functions to a companion Technical Report (submitted as
supplementary material) and just provide a short overview of their effects in Figure
10.

3.2.6. Typing Rules. The typing rules are shown in Figure 11. Most rules are straight-
forward; we highlight the most interesting ones. T-PROGRAM starts the checking with
a top-level data group α. The T-UNPACKGROUPSIN-* rules exchange a permission to
the data group of an object for a permission to the inner groups of that object. In the
case that we have a unique permission to the receiver object we get exclusive group
permissions (i.e., T-UnpackGroupsIn-Exclusive) in all other cases we get shared group
permissions (i.e., T-UnpackGroupsIn-Shared). We could always unpack inner group
permissions to shared group permissions, but making the distinction allows us to avoid
unnecessary synchronization overhead in the case we know that we do not need it
(i.e., in the case of a unique object). T-SPLIT splits the incoming permission context
in two, duplicating the named shared permissions, while T-ATOMIC allows the pro-
tected expression to treat a shared data group as protected. T-LET supports sequential
composition, as specified by the group configuration G1 ⊕ G2, while T-SHARE specifies
parallel use of any shared groups, as specified by the group configuration G1 ‖ G2. T-
FIELD-READ and T-FIELD-ASSIGN require an exclusive or protected permission to the
first data group parameter (gr0) of the object being read or assigned. This ensures that
either a data group is unshared, or it is locked with an atomic section before being
used. Field reads and writes generate a data group configuration that is just the group
being read or assigned. Finally, T-CALL ensures that the data groups required by the
called function are provided by the caller. For a more detailed description of each rule
cf. [Stork et al. 2012a]

3.3. Dynamic Semantics
This section first provides an overview of the definition forms used, then discusses the
evaluation rules in detail. Instead of generating an explicit dataflow graph, the dy-
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T-PROGRAM
CL ok main = C〈α〉 main〈exclusive α〉() { e }

(α : G)| • |(α : exclusive) ` e : T |G
T <: C〈α〉

〈CL,main〉 : C〈α〉

T-FIELD
CT (C) = class C〈α, β〉 extends D〈α〉 {G FM}
(α : G, β : G, this : C〈α, β〉, G : G) ` E〈grE〉 ok

E〈grE〉 f ok in C

T-METHOD
CT (C) = class C〈α, β〉 extends D〈α〉 {G FM}

override(C,m) ok

Γ = (this : C〈α, β〉, α : G, β : G, γ : G)

Γ ` Tx ok Γ, (x : Tx)| • |(γ : gp)
C̀
e : Te | G

Te <: Tr

Tr m〈gp γ〉(Tx x) {e} ok in C

T-CALL
Γ|Σ ` r : Tr, p : Tp, gr : G

∆ ` gr : gp Tr = D〈grD〉
CT (D) = class D〈α, β〉 extends E〈α〉{G F M}
mdecl(D,m) = Tresult m〈gp γ〉(Tx x){ e }

Tp <: [gr,grD/γ,α,β ]Tx

Tr <: [
gr,grD/γ,α,β ]D〈α, β〉

Γ|Σ|∆
C̀
r.m〈gr〉(p) : [

gr,grD/γ,α,β ]Tresult | {gr}

T-CLASS
M ok in C F ok in C

class C〈α, β〉 extends D〈α〉 {G F M} ok

T-UNPACKGROUPSIN-EXCLUSIVE
Γ|Σ ` r : C〈gr〉 ∆ = ∆

′
, (gr0 : exclusive)

groupDecls(C) = gn

Γ, (r.gn : G)|Σ|∆′, (r.gn : exclusive) ` e : T | G
Γ|Σ|∆

C̀
unpackGroupsOf r in e : T | ({gr0, r.gn} ⊕ G)

T-UNPACKGROUPSIN-SHARED
Γ|Σ ` r : C〈gr〉

∆ = ∆
′
, (gr0 : gp) gp ∈ {shared, protected}

groupDecls(C) = gn

Γ, (r.gn : G)|Σ|∆′, (r.gn : shared) ` e : T | G
Γ|Σ|∆

C̀
unpackGroupsOf r in e : T | ({gr0, r.gn}} ⊕ G)

T-SPLIT
{gp} ⊆ {exclusive, shared} ∆ = ∆1,∆2,∆r

Γ|Σ|(∆1, gr : shared)
C̀
e1 : T1 |G1

Γ|Σ|(∆2, gr : shared)
C̀
e2 : T2 |G2

G = (G1 ‖ G2)

Γ|Σ|(∆, gr : gp)
C̀

split 〈gr〉 between e1 ‖ e2 : ⊥ | G

T-ATOMIC
Γ|Σ ` gr : G Γ|Σ|(∆, gr : protected)

C̀
e : T | G

Γ|Σ|∆, (gr : shared)
C̀

atomic 〈gr〉 e : T | ({gr} ⊕ G)

T-INATOMIC
Γ|Σ ` gr : G Γ|Σ|∆, (gr : protected)

C̀
e : T | G

Γ|Σ|∆, (gr : shared)
C̀

inatomic 〈gr〉 e : T | ({gr} ⊕ G)

T-LET
Γ|Σ|∆1 ` e1 : T1 | G1 (Γ, x : T1)|Σ|∆1,∆R C̀

e2 : T2 | G2
Γ|Σ|∆1,∆R C̀

let x = e1 in e2 : T2 | (G1 ⊕ G2)

T-REFERENCE
Γ|Σ ` r : D〈gr〉

Γ|Σ|∆
C̀
r : D〈gr〉 |•

T-FIELD-READ
Γ|Σ ` r : D〈gr〉, gr0 : G

gp ∈ {exclusive, protected}
fields(D) = Tf f

Γ|Σ|∆, (gr0 : gp)
C̀
r.fi : Tfi | {gr0}

T-FIELD-ASSIGN
Γ|Σ ` rv : Tv, r : D〈gr〉, gr0 : G
gp ∈ {exclusive, protected}
fields(D) = T f Tv <: Tfi

Γ|Σ|∆, (gr0 : gp)
C̀
r.fi := rv : Tv | {gr0}

T-NEW
CT (D) = class D〈α, β〉 extends E〈α〉{G F M}

Γ|Σ ` gr : G
Γ|Σ|∆

C̀
new D〈gr〉() : [

gr
/α,β ]D〈α, β〉 | •

Fig. 11: Static Semantics of µÆMINIUM.

namic semantics uses the data group configuration together with runtime permission
tokens to model the permission flow at runtime and emulate the dependencies.
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3.3.1. Store. The store µ is a mapping of object references o to objects obj. A store can
either be a potentially empty set of object mappings or race, which indicates the case
that a race condition occurred during the execution (our soundness theorem will show
that these races cannot occur in well-typed code). An object is a record consisting of all
instance fields. The inner groups (i.e., data groups that are declared by every object)
along with their corresponding state are managed separately in the group access token
context (cf. Section 3.3.3)

(store) µ ::= 〈o 7→ obj〉 | race

During the evaluation of an expression, differential stores (µδ ) containing the ac-
cessed objects are generated. Those differential stores are merged via the ] operator.
To generate a new global heap we write µ′ = [µδ ]µ for element wise update/substitution
of objects.

µδ = µδ1 ] µδ2 =

 µδ1 , µδ2 dom(µδ1) ∩ dom(µδ2) = •

race OTHERWISE

µ′ = [µδ ]µ =

{
race µδ = race
[o 7→ obj]µ ∀〈o 7→ obj〉 ∈ µδ

3.3.2. Runtime Permission Context. The runtime permission context δ is used to model
permission flows at runtime and is either empty or consists of a set of o.gn (i.e. run-
time permissions). The runtime semantics do not allow an expression to execute until
all of its required permissions, as expressed in its group configuration, are available.
A runtime permission can be split and can flow along different paths, just as static
permissions can.

The top level permission context always contains only one initial permission to the
global data group of the main function. More runtime permissions are successively
generated by unpacking inner groups.

(runtime permission context) δ ::= • | δ, o.gn
3.3.3. Group Access Token Context. The group token context Ψ is a set of group access to-

kens, i.e., group references along with their current locking state S = {U |L}. A locking
state U indicates an unlocked state, meaning that one atomic block referring to that
data group can be entered. A locking state L indicates a locked state meaning that an
atomic block referring to that data group is currently executing. There is a controver-
sial discussion [Boehm 2009] regarding the correct semantics for atomic blocks. Some
argue that transactional semantics should be used while others argue that lock-based
semantics should be used. We decided to use a lock-based approach for its simplic-
ity of implementation and semantics. In future we might reconsider this decision and
evaluate a transactional semantics [Moore and Grossman 2008].

There exists exactly one group access token for every data group in the system and
unlike runtime permissions, group access tokens cannot be split. In several rules the
unlocked group access token context is split in a non-deterministic way. This models
non-determinism of how atomic blocks can lock data groups. Locked group access to-
kens are forced to flow into the expression that contains the corresponding inatomic .
This approach is not strictly necessary but allows us to formulate a stronger preserva-
tion induction hypothesis.

(group context) Ψ ::= • | Ψ, o.gn@S

3.3.4. Evaluation Judgment. To evaluate expressions we use the judgment µ|δ|Ψ|G ` e 7→
e′ a µδ |Ψ′|G′, which reads as follows: given the store (µ), the runtime permissions (δ),
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E-TRANS-Z
(µ|δ|Ψ|G|e) 7→ (µ|δ|Ψ|G|e)

E-TRANS-N
µ|δ|Ψ|G ` e 7→ e1 a µδ |Ψ1|G1 µ1 = [µδ ]µ (µ1|δ|Ψ1|G1|e1) 7→∗ (µ

′|δ|Ψ′|G′|e′)
(µ|δ|Ψ|G|e) 7→∗ (µ

′|δ|Ψ′|G′|e′)

Fig. 12: µÆMINIUM Program State Transitions Rules

E-FIELD-READ
G = {vg.gn} vg.gn ∈ δ µ ` 〈v 7→ C[f = vf ]〉 µδ = 〈v 7→ C[f = vf ]〉

µ|δ|Ψ|G ` v.fi 7→ vfi a µδ |Ψ|•

E-FIELD-ASSIGN
G = {vg.gn} vg.gn ∈ δ µ ` 〈vr 7→ objr〉

objr = C[fr = vfr , fri = vfi, fr = vfr ] obj
′
r = C[fr = vfr , fri = ov, fr = vfr ] µδ = 〈vr 7→ obj

′
r〉

µ|δ|Ψ|G ` vr.fri := ov 7→ ov a µδ |Ψ|•

E-NEW
G = • groupDecls(C) = gn onew fresh µδ = 〈onew 7→ C[f = null]〉

µ|δ|Ψ|G ` new C〈vg.gn〉() 7→ onew a µδ |Ψ, onew.gn@U |•

E-CALL
G = {vg.gn}

vg.gn ∈ δ µ ` 〈vr 7→ C[f = vfr ]〉 mbody(C,m) = α.x.e× Ge G′ = [
vg.gn/α][

vp/x][
vr/this]Ge

µ|δ|Ψ|G ` vr.m〈vg.gn〉(vp) 7→ [
vg.gn/α][

vp/x][
vr/this]e a •|Ψ|G′

Fig. 13: Dynamic Semantics of µÆMINIUM Atoms

the group access tokens (Ψ), and the data group configuration (G), the expression e
steps to e′ and produces a differential store (µδ ), an updated set of group access tokens
(Ψ′), and an updated data group configuration (G′).

3.3.5. Program State. A program state is a quintuple of the form (µ|δ|Ψ|G|e), consisting
of a store (µ), a runtime permission context (δ), a group access token context (Ψ) of
available tokens, a data group configuration (G), and an expression (e). A program
state represents a consistent state of the execution. To transition from one program
state to another, the expression takes a step following the evaluation judgment and
then generates a new global store (see E-TRANS-N in Figure 12).

3.3.6. Evaluation Rules. The Evaluation rules for atoms are shown in Figure 13 and the
rules for expressions are shown in Figure 14 + 14. Once again we describe the most
interesting rules. E-FIELD-READ demonstrates the basic approach: we look up the per-
missions required based on the group context G (which was computed by the typecheck-
ing rules), and the read cannot execute unless and until the required permission is in
the permission context δ. Other atom rules are similar. The E-UNPACKGROUPSOF-*
rules make the inner permissions available to the enclosed expression if and only if the
permission to the outer object is available; otherwise the enclosed expression can only
take steps for which these permissions are not required. There are three variants of the
let and share rules: one where the first expression takes a step, one where the second
steps, and one where both expressions step (this can occur even in the sequentializing
LET construct if the permissions required do not overlap). The rules for split differ in
that LET divides the permissions without duplicating any, while SPLIT duplicates the
permissions named in the split block. Finally, the rules for the atomic block do not
pass a permission to the named data group inwards until a lock is acquired, at which
point the state of the lock changes to @L and the expression changes to inatomic for
tracking purposes. For a more detailed description of each rule cf. [Stork et al. 2012a].
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E-UNPACKGROUPSOF-REPLACE
G = ({v′.gn′, vr.gn} ⊕ Ge)

δ = δ
′
, v
′
.gn
′
, µ|δ′, vr.gn|Ψ|Ge ` e 7→ e

′ a µδ |Ψ′|G′e G′ = ({v′.gn′, vr.gn} ⊕ G′e)
µ|δ|Ψ|G ` unpackGroupsOf vr in e 7→ unpackGroupsOf vr in e

′ a µδ |Ψ′|G′

E-UNPACKGROUPSOF-NONE
G = ({v′.gn′, vr.gn} ⊕ Ge) v

′
.gn
′
/∈ δ µ|δ|Ψ|Ge ` e 7→ e

′ a µδ |Ψ′|G′e G′ = ({v′.gn, vr.gn} ⊕ G′e)
µ|δ|Ψ|G ` unpackGroupsOf vr in e 7→ unpackGroupsOf vr in e

′ a µδ |Ψ′|G′

E-LET-1
G = (G1 ⊕ G2) δ1 = δ ∩ requiredPerms(G1)

Ψ = Ψ1,Ψ2 requiredTokens(e1) ⊆ Ψ1

µ|δ1|Ψ1|G1 ` e1 7→ e
′
1 a µδ |Ψ

′
1|G
′
1

G′ = (G′1 ⊕ G2) Ψ
′

= Ψ
′
1 ∪Ψ2

µ|δ|Ψ|G ` let x = e1 in e2 7→ let x = e
′
1 in e2 a µδ |Ψ′|G′

E-LET-2
G = (G1 ⊕ G2) δ2 = δ − requiredPerms(G1)

Ψ = Ψ1,Ψ2 requiredTokens(e1) ⊆ Ψ1

requiredTokens(e2) ⊆ Ψ2

µ|δ2|Ψ2|G2 ` e2 7→ e
′
2 a µδ |Ψ

′
2|G
′
2

Ψ
′

= Ψ1 ∪Ψ
′
2 G′ = (G1 ⊕ G′2)

µ|δ|Ψ|G ` let x = e1 in e2 7→ | let x = e1 in e′2 a µδ |Ψ
′|G′

E-LET-12
G = (G1 ⊕ G2) δ1 = δ ∩ requiredPerms(G1) δ2 = δ − δ1

Ψ = Ψ1,Ψ2 requiredTokens(e1) ⊆ Ψ1 requiredTokens(e2) ⊆ Ψ2 µ|δ1|Ψ1|G1 ` e1 7→ e
′
1 a µδ1 |Ψ

′
1|G
′
1

µ|δ2|Ψ2|G2 ` e2 7→ e
′
2 a µδ2 |Ψ

′
2|G
′
2 Ψ = Ψ

′
1 ∪Ψ

′
2 G′ = (G′1 ⊕ G

′
2) µδ = µδ1 ] µδ2

µ|δ|Ψ|G ` let x = e1 in e2 7→ let x = e
′
1 in e′2 a µδ |Ψ

′|G′

E-LET-VALUE
G = (• ⊕ G2) G′ = [

v
/x]G2

µ|δ|Ψ|G ` let x = v in e2 7→ [
v
/x]e2 a •|Ψ|G′

E-UNPACKGROUPSOF-VALUE

µ|δ|Ψ|G ` unpackGroupsOf vr in v 7→ v a •|Ψ|•

E-SPLIT-1
G = (G1 ‖ G2) δ1 = δ ∩ requiredPerms(G1) Ψ = Ψ1,Ψ2 requiredTokens(e1) ⊆ Ψ1

requiredTokens(e2) ⊆ Ψ2 µ|δ1|Ψ1|G1 ` e1 7→ e
′
1 a µδ |Ψ

′
1|G
′
1 Ψ

′
= Ψ

′
1 ∪Ψ2 G′ = (G′1 ‖ G2)

µ|δ|Ψ|G ` split 〈v.gn〉 between e1 ‖ e2 7→ split 〈v.gn〉 between e′1 ‖ e2 a µδ |Ψ
′|G′

E-SPLIT-2
G = (G1 ‖ G2) δ2 = δ ∩ requiredPerms(G2) Ψ = Ψ1,Ψ2 requiredTokens(e1) ⊆ Ψ1

requiredTokens(e2) ⊆ Ψ2 µ|δ2|Ψ2|G2 ` e2 7→ e
′
2 a µδ |Ψ

′
2|G
′
2 Ψ

′
= Ψ1 ∪Ψ

′
2 G′ = (G1 ‖ G′2)

µ|δ|Ψ|G ` split 〈v.gn〉 between e1 ‖ e2 7→ split 〈v.gn〉 between e1 ‖ e′2 a µδ |Ψ
′|G′

E-SPLIT-12
G = (G1 ‖ G2) δ1 = δ ∩ requiredPerms(G1) δ2 = δ ∩ requiredPerms(G2)

Ψ = Ψ1,Ψ2 requiredTokens(e1) ⊆ Ψ1 requiredTokens(e2) ⊆ Ψ2 µ|δ1|Ψ1|G1 ` e1 7→ e
′
1 a µδ1 |Ψ

′
1|G
′
1

µ|δ2|Ψ2|G2 ` e2 7→ e
′
2 a µδ2 |Ψ

′
2|G
′
2 µδ = µδ1 ] µδ2 Ψ

′
= Ψ

′
1 ∪Ψ

′
2 G′ = (G′1 ‖ G

′
2)

µ|δ|Ψ|G ` split 〈v.gn〉 between e1 ‖ e2 7→ split 〈v.gn〉 between e′1 ‖ e
′
2 a µδ |Ψ

′|G′

Fig. 14: Dynamic Semantics of µÆMINIUM Expressions [1/2]

3.4. Proof
We prove the correctness of our system by induction on the derivation of program
state transitive rules (cf. Figure 12). We prove the type safety following the standard
approach [Pierce 2002] by proving progress and preservation separately.

Our definition of correctness means that every well formed program is free of data
races. As outlined in Section 2.2.2 ÆMINIUM currently does not handle deadlocks.
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E-ATOMIC-STEP1
G = ({v.gn} ⊕ Ge)

v.gn /∈ δ µ|δ|Ψ|Ge ` e 7→ e
′ a µδ |Ψ′|G′e

G′ = ({v.gn} ⊕ G′e)
µ|δ|Ψ|G ` atomic 〈v.gn〉 e 7→ atomic 〈v.gn〉 e′ a µδ |Ψ′|G′

E-ATOMIC-STEP2
G = ({v.gn} ⊕ Ge) δ = δ

′
, v.gn

v.gn@U /∈ Ψ µ|δ′|Ψ|Ge ` e 7→ e
′ a µδ |Ψ′|G′e

G′ = ({v.gn} ⊕ G′e)
µ|δ|Ψ|G ` atomic 〈v.gn〉 e 7→ atomic 〈v.gn〉 e′ a µδ |Ψ′|G′

E-ATOMIC-INATOMIC
G = ({v.gn} ⊕ Ge)

v.gn ∈ δ Ψ = Ψ
′′
, v.gn@U Ψ

′
= Ψ

′′
, v.gn@L

µ|δ|Ψ|G ` atomic 〈v.gn〉 e 7→ inatomic 〈v.gn〉 e a •|Ψ′|G

E-INATOMIC-STEP
v.gn ∈ δ Ψ = Ψ

′′
, v.gn@L

G = ({v.gn} ⊕ Ge) µ|δ|Ψ′′|Ge ` e 7→ e
′ a µδ |Ψ′′′|G′e

Ψ
′

= Ψ
′′′
, v.gn@L G′ = ({v.gn} ⊕ G′e)

µ|δ|Ψ|G ` inatomic 〈v.gn〉 e 7→ inatomic 〈v.gn〉 e′ a µδ |Ψ′|G′

E-SPLIT-VALUE
G = (• ‖ •)

µ|δ|Ψ|G ` split 〈v.gn〉 between v1 ‖ v2 7→ null a •|Ψ|•

E-INATOMIC-VALUE
Ψ = Ψ

′′
, v.gn@L v.gn ∈ δ Ψ

′
= Ψ

′′
, v.gn@U

µ|δ|Ψ|G ` inatomic 〈v′.gn〉 v 7→ v a •|Ψ′|•

Fig. 15: Dynamic Semantics of µÆMINIUM Expressions [2/2]

Therefore a correct ÆMINIUM program, while free of deadlocks, might still have po-
tential deadlocks.

The intuitive idea behind the proof is that to avoid race conditions at runtime our
type systems checks that all accesses to shared data groups are correctly protected
using an atomic block. Accessing the same object if the heap in a conflicting manner
would result in a race heap. Our proof shoes that using ÆMINIUM’s type system no
such conflicting operations can occur at runtime.

3.4.1. Type Safety. We state type safety as follows: If Γ|Σ|∆ ẁf (µ|δ|Ψ|G|e) and
(µ|δ|Ψ|G ` e) 7→∗ (µ′|δ′|Ψ′|G′|e′) then Γ|Σ′|∆ ẁf (µ′|δ′|Ψ′|G′|e′) and not stuck. In word
this means that every well formed (cf. Definition 3.1) program state can take an arbi-
trary amount of steps and will result in another well-formed program state. We prove
this theorem through induction by leveraging our progress and preservation lemma
(cf. Section 3.4.2 and 3.4.3).

Definition 3.1 (Well-Formed Program State). A program state is well typed, writ-
ten as ·|Σ|∆ ẁf (µ|δ|Ψ|G|e), if :

— ·|Σ|∆ ` e : T |G
— Γ|Σ ` µ
— If o.gn ∈ δ then there exists the corresponding o.gn : gp ∈ ∆
— µ 6= race
— (o.gn@U ∈ Ψ ∨ o.gn@_ /∈ Ψ) =⇒ @ inatomic 〈o.gn〉 . . . ∈ e

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 Stork et al.

— o.gn@L ∈ Ψ =⇒ ∃ exactly one inatomic 〈o.gn〉 . . . ∈ e
3.4.2. Progress. Our progress lemma is stated as follows:

LEMMA 3.2 (PROGRESS). If Γ|Σ|∆ ẁf (µ|δ|Ψ|G|e) (i.e. a well-formed program
state) then either:

— e is a value and G = •
— µ|δ|Ψ|G ` e 7→ e′ a µδ |Ψ′|G′ for some e′, µδ ,Ψ

′,G′
— e stops execution with null-dereference, meaning that the expression e contains a sub

expression of the form null.f .
— e is waiting for resource to become available

In other words, for every well-formed program state, the expression e is either a
value, or can take a step to e′, caused a null pointer execption or is waiting for be-
ing able to run (i.e., waiting until all the previous expressions it depends on have
executed). We prove the correctness of our progress lemma through induction on
Γ|Σ|∆

C̀
e : T |G (cf. [Stork 2013]).

3.4.3. Preservation. We state our preservation lemma as follows:

LEMMA 3.3 (PRESERVATION). If Γ|Σ|∆ ẁf (µ|δ|Ψ|G|e) with Γ|Σ|∆ ` e : T |G and
µ|δ|Ψ|G ` e 7→ e′ a µδ |Ψ′|G′ and µ′ = [µδ ]µ then there exists:

— Σ′ ⊇ Σ
— T ′

such that:

— Γ|Σ′|∆ ẁf (µ′|δ|Ψ′|G′|e′) with Γ|Σ′|∆ ` e′ : T ′ |G′ and T ′ <: T

In other words, if we start with a well-formed program state and the expression
e steps to e′ we end in a well-formed program state again. We prove this lemma by
induction on (µ|ΨF |ΨL|G|e) 7→∗ (µ|Ψ′F |Ψ′L|G′|e′) (cf. [Stork 2013]).

4. IMPLEMENTATION
Our implementation is based on the Plaid programming language and is publicly avail-
able in our Google Code repository [Stork et al. 2012b]. The overall system architecture
is shown in Figure 16. The compiler user writes Plaid code and feeds it into our com-
piler. The compiler first translates the Plaid source code into an Abstract Syntax Tree
(AST). The newly generated AST is then used by the type checker to check that the
input program does not violate Plaid’s typing rules. In addition to typechecking the
program, the type checker also computes a sequential dependency graph based on the
permission flow. The dependency graph design and optimizations follow the general
idea of Cliff Click’s sea of nodes [Click and Paleczny 1995] in which he replaces the
AST representation with a graph structure. The AST and the dependency graph is
then used by the Æminiumfier which analyses and transforms the sequential depen-
dency graph into a parallel dependency graph. The parallel dependency graph and the
AST are then used by by the Task Builder to cluster operations into more coarse tasks.
The generated task graph and AST is used by the Code Generator to generate the final
Java byte code.

The generated code uses the Plaid and ÆMINIUM runtime libraries to create and
manage objects and parallelism. The Plaid runtime is responsible for managing states,
objects and Java interoperability. The ÆMINIUM runtime is responsible for managing
the execution of the tasks generated by the program. The following sections elaborate
on the extensions we made to the Plaid compiler.
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Fig. 16: System Architecture

4.1. Plaid Primer
This section provides a short introduction to the Plaid programming language, ex-
plaining all necessary constructs required for this paper. Please refer to the official
Plaid language specification [Aldrich et al. 2012] for a more in-depth overview of Plaid.
By design, the Plaid language resembles the Java language as much as possible. The
main conceptional difference between Plaid and Java is the usage of states instead of
classes. Conceptionally, Plaid uses state abstractions to naturally encode the various
states an object can be in a direct and checkable way. We discuss state composition and
state change semantics in [Sunshine et al. 2011]. An overview of Plaid’s type system is
given in [Naden et al. 2012]. Those concepts are orthogonal to ÆMINIUM’s paralleliza-
tion approach and we therefore limit ourselves to a subset of Plaid which most closely
resembles normal Java.

Listing 1 shows simple Counter code emphasizing the commonalities with Java. In
line 1 we define a new state Object. States, similar to Java classes, consist of a col-
lection of fields and methods that operate on those fields. Instead of using the class
keyword Plaid uses the state keyword to declare such a collection. As in Java, we
call the instances of states objects. Line 2 shows that the Object state defines only
one method called toString. Plaid’s method declaration follows the same syntax as
a Java method declaration, with the following exceptions. All method declarations in
Plaid start with the keyword method to indicate the start of a new method declaration.
Note that Plaid does not support Java’s modifiers (i.e., public, final, abstract, etc)
but has its own (discussed later). After the method keyword we have the return type of
the method followed by the method name and its parameter list. After the parameter
list we have the so-called environment of the method declared in square brackets. The
environment is an implicit parameter list specifying all the variables that are implic-
itly passed into the method or are captured from the enclosing lexical environment. As
shown in the example, the environment contains the declaration of the this reference.
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1 state Object {
2 method immutable String toString() [ local immutable Object this ];
3 }
4

5 state Counter case of Object {
6 var immutable Integer count = 0;
7

8 method void inc() [ unique Counter this ] {
9 this.counter = this.counter + 1;
10 }
11

12 method void dec() [ unique Counter this ] {
13 this.counter = this.counter 1;
14 }
15

16 method immutable Integer get() [ local immutable Counter this ] {
17 this.counter
18 }
19

20 method immutable String toString() [ local immutable Counter this ] {
21 "Counter(" + this.count.toString() + ")"
22 }
23 }

Listing 1: Basic Plaid Example

1 method immutable Integer fibonacci(immutable Integer n) {
2 match ( n <= 2 ) {
3 case True { 1 }
4 default {
5 fibonacci(n−1) + fibonacci(n−2)
6 }
7 }
8 }

Listing 2: Plaid Fibonacci Example

Note the additional local keyword in front of the immutable permission of the this
reference. local is a permission modifier that allows the caller of a method to recover
the permission passed in, without requiring the user to worry about concrete fractions
(cf. [Naden et al. 2012]). The this reference is implicitly passed into the method and
therefore we need to specify which permissions we need. After the environment we
usually would declare the method body in curly braces, but in this case we finish the
declaration with a semicolon to indicate an abstract method declaration.

In line 5 we define a new state Counter as a sub-state of Object. Plaid uses the case
of instead of Java’s extends to declare sub-typing. The Counter defines a local field in
line 6. All fields and variable declarations start with either val (immutable) or var (mu-
table). In lines 8, 12 and 8 the Counter defines various methods to increase, decrease
or retrieve the current counter value. In Plaid, like in Smalltalk [Goldberg and Robson
1983], everything is an object. This means unlike in Java there are no primitive types
(like int, boolean, etc). The addition operation ‘this.count + 1’ in line 8 is translated
into a method call with the first operand as the receiver, i.e. ‘this.count.+(1)’. This
is possible because Plaid supports methods named after operator symbols. Another
important observation is the absence of the return statement in Plaid. Plaid automat-
ically returns the value of the last statement in a method body. In line 20 the Counter
object implements the abstract toString method as defined by its super state.
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1 immutable state Boolean { ... }
2

3 state True case of Boolean { ... }
4

5 state False case of Boolean { ... }

Listing 3: Plaid Boolean

Pattern matching is the only control flow mechanism built into the Plaid program-
ming language. The pattern matching in Plaid currently works on the type level, and
does not allow the automatic binding of internal fields to local variables. The simplest
way to describe Plaid’s match statement is to think of Java’s switch statement com-
bined with instanceof operations to test for matching types instead of values. An exam-
ple of Plaid’s pattern matching is shown in Listing 2. The example shows a Plaid im-
plementation of the Fibonacci number computation. The example uses a global method
defined in line 1. Global methods in Plaid are like static methods in Java, meaning
they can be called without having an object instance available. In line 2 the match
block starts. It will take the result of the expression n <= 2 and checks which case
matches the result type. The result of the comparison is of type Boolean.

Note that in Plaid booleans are not part of the language and are implemented as
part of the standard library. Listing 3 shows an abbreviated version of Plaid’s boolean
declaration. Line 1 defines the top-level Boolean type. Lines 3 and 5 define two orthogo-
nal subtypes, one for true values and one for false values. The definition of the Boolean
state also demonstrates Plaid’s default permission. The state declaration is annotated
with an immutable permission. This allows the user to omit the permission annotation
for the Boolean type and the Plaid compiler will automatically extend it with default
permission specified on the state declaration (in this case an immutable permission).

Coming back to the Fibonacci example in Figure 2 line 3 we define a case to check
if the value of the comparison operations is of type True. If so we simply return the
constant value one. Line 4 declares the default case, which is used when no other
case applies. In this case we simply use the recursive definition of fibonacci numbers
to compute the result. Note that the result of the method body is the value to which
the last statement reduces. In this case, the last statement is the match block, which
evaluates to the value of the executed case.

4.2. Type Checker Extensions
Because Plaid’s type checker already had support for access permissions, our first ex-
tension was adding support for data groups and data group permissions. The over-
all implementation of data groups and permissions is straightforward and analogous
to the existing implementation of access permissions (with the exception that ac-
cess permission are automatically split/merged, while group permissions are manually
split/merged). The second extension we made to the typechecker was the generation
of a permission flow graph. Because of Plaid’s eager typechecker implementation (i.e.,
access permissions are merged back as soon as possible) the resulting permission flow
graph does not capture all the possible parallelism. Instead of reimplementing Plaid’s
typechecker in a non-eager way, we decided to remove the eagerness-induced sequen-
tiality via an extra compiler pass (cf. Section 4.3).

4.3. Æminiumfier
The ÆMINIUM parallelizing pass runs directly after the typechecking pass and trans-
forms the sequential dependency graph inferred by the typechecker into a parallel
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Name Description
Chained Splits Simplifies chains of split nodes introduced by binary per-

mission split rules.
Chained Joins Simplifies chains of split nodes introduced by binary per-

mission split rules.
Unique Join/Split Removes unnecessary split/join operations which split noth-

ing off a unique permission.
Symmetric Join/Split Transforms sequential dependencies to symmetric permis-

sions into parallel dependencies.

Fig. 17: Parallelizing Peephole Optimizations

Split ’α’ [ρ → ρ′] (1)

δ1 Split ’α’ [ρ′ → ρ′] (2)

δ2 . . .

Split ’α’ [ρ′ → ρ′] (n)

δn δn+1

Split ’α’ [ρ → ρ′] (1)

δ1 δ2 . . . δn δn+1

Fig. 18: Chained Split Block Optimization

version by applying multiple peephole optimizations [McKeeman 1965]. A peephole
optimization searches for specific patterns inside generated code (in our case the ‘code’
is the dependency graph) and replaces those patterns by a simpler or more efficient
one. The following sections explain each optimization and Figure 17 provides a short
summary.

4.3.1. Simplification of Chained Splits. Typechecking follows a bottom-up approach. This
leads to cases where multiple subsequent permissions can be split off the same variable
before they get merged back. A simple example of such a case would be typechecking
a method call where the same variable is passed multiple times as a parameter to the
call. This chaining of permission splits is unnecessary and can be optimized. Instead
of having a binary split node and building chains of them we simply merge those nodes
to create one n-ary split node. Figure 18 illustrates this operation. The graph on top
shows a chain of split nodes along with the nodes depending on them (δ1, ..., δn+1). The
optimization is applied locally to individual nodes. For every node in the graph the
algorithm checks whether the current node is a split node. If it is a split node it will
check if the input permission is the same as the output permission and if the current
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δi1 . . . δin

δ

δo1 . . . δon

δi1 . . . δin

δo1 . . . δon

Deleting a node δ from the ÆMINIUM de-
pendency graph simply removes the node
from the graph and makes all nodes which
dependent on him (δo1, . . . , δon) depend on
all the nodes the removed node depended
on (δi1, . . . , δin). The algorithm is shown be-
low.

Fig. 19: Node Delete Operation

Split ’α’ [ρ → ρ′] (1)

δ1 Split ’α’ [ρ′ → ρ′] (2)

δ2 . . .

Split ’α’ [ρ′ → ρ′] (n)

δn δn+1

Split ’α’ [ρ → ρ′] (1)

δ1 δ2 . . . δn δn+1

Fig. 20: Chained Join Block Optimization

node depends on another split block. If all conditions hold the algorithm deletes the
current split block from the graph while preserving its dependencies (see Figure 19).

4.3.2. Simplification of Chained Joins. Similar to chained splits, the typechecker can gen-
erate chained join nodes that merge the chained split permissions back into the origi-
nal permission. Therefore the same principle can be applied and we can reduce these
chains to a single join node. Figure 20 shows the approach and the algorithm. The al-
gorithm operates on individual nodes. It first selects all join nodes. Then for every join
node the algorithm checks whether the node joins the input permission into the same
kind of permission. If the node does, does the algorithm checks if there is any other
join node depending on the current node. If all conditions hold the algorithm deletes
the current node, again while preserving dependencies.

4.3.3. Simplification of Unique Split/Join Sequences. The typechecker may sometimes need
to split off a unique permission from a variable, leaving a none permission associated
with the variable. Later, when the unique permission is returned to the variable, the
typechecker merges the incoming unique permission with the available none permis-
sion. This is a typical scenario for method calls where the permission gets conceptually
split off from the variable and later (after the method call) merged back. Figure 21
shows the scenario on the left hand side where a unique permission from α has been
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δ1

Split ’α’ [U → U ] (1)

δ2

Join ’α’ [U → U ] (2)

δ3

δ1

δ2

δ3

Fig. 21: Simplify Unique Join/Split sequences

Split ’α’ [ρ→ ρ′] (i1)

δ1

Join ’α’ [ρ′ → ρ] (i2)

Split ’α’ [ρ→ ρ′] (i3)

δ

Join ’α’ [ρ′ → ρ] (i4)

Split ’α’ [ρ→ ρ′] (i1)

δ1 δ2

Join2 ’α’ [ρ′ → ρ] (i4)

Fig. 22: Symmetric Join/Split Optimization

split off to satisfy the operations δ2. Figure 21 also shows the algorithm to implement
this optimization, which simply removes those unnecessary nodes.

4.3.4. Simplification of Symmetric Join/Split Sequences. The current version of the type-
checker implements a greedy approach for merging permissions back. For every oper-
ation, the greedy approach splits off the required permissions and joins them back as
soon as they become available again (i.e., the operation completes). This leads to the
problem that if two operations require a symmetric permission the typechecker creates
unnecessary dependencies.

To solve this issue we want to detect such unnecessary join/split patterns and elimi-
nate them such that both operations can operate in parallel. Figure 22 shows how we
remove those inner join/split nodes and reorganize the graph so that we initially split
multiple symmetric permissions off the original permission and execute the operations
in parallel.

4.4. Taskbuilder
Generating a new task for every node in the dependency graph (i.e., one task per opera-
tion) is prohibitively expensive because the ratio of task work to task creation overhead
is too small. Therefore, we developed the Task Builder Pass, which combines multiple
operations into bigger tasks. Figure 23 shows the basic idea. The task builder takes
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Arg ’from’ (13)

Block (16)

Arg ’to’ (14)

Arg ’amount’ (15)

Id ’from’ (18)

Split ’amount’ [I→I] (19)

Join ’amount’ [I→I] (29)

MethodCall ’[...].deposit’ (28)MethodCall ’[...].withdraw’ (21)

Id ’amount’ (20) Id ’amount’ (27) Id ’to’ (25)
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Fig. 23: Task Builder Approach
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Name Description
Sequentializing Single Task Graphs Generate sequential code for methods which

have a task graph of only one node.
Inlining Starter Task Inline start task into method body code block

.
Inlining Body Task Inline body task into the method body code

block.

Fig. 24: Overiew of Code Generation Optimizations

as input a dependency graph (see Figure 23(a)) and then computes which operations
can be mapped into the same task without losing parallelism. Figure 23(b) shows the
input graph with the task clustering. The task builder outputs a graph consisting only
of tasks (see Figure 23(b)).

The general idea behind the task builder is called edge zeroing. The task builder uses
a cost metric to estimate the overall execution costs of a specific dependency graph. The
algorithm then analyses, for every edge in the dependency graph, how removing the
edge and merging the connecting nodes would affect the execution cost of the whole
graph. If the execution cost does not increase, the task builder removes the current
edge from the graph and merges together the nodes formerly connected by that edge.
The following sections explain the task builder in more details.

Our task builder algorithm is based on Sarkar’s Algorithm (SA, [Sarkar 1989]). To
work properly, SA needs to know the runtime costs for every operation in the graph.
This cost can be easily estimated for all operations except method calls. To enable
SA to perform more aggressive optimizations, we provide a simple categorization of
the methods. We differentiate between normal methods and cheap methods. Cheap
methods, defined via cheap annotations on their declarations, are relatively short in
their execution and do not justify the creation of parallelism by themselves. We prefer
annotations to inference for modularity reasons, but the compiler verifies that methods
annotated as cheap call only other cheap methods. Other static [Blelloch and Greiner
1996] or dynamic [Acar et al. 2011] approaches to determine runtime costs have been
proposed and are generally applicable to our system.

4.5. Code Generator
While the task builder tries to minimize the number of tasks, there are still a few opti-
mizations that can be performed during code generation to further reduce the number
of created tasks. The following sections present several optimizations that can help
in this regard (cf. Figure 24 for a summary overview). We discuss each optimization
separately to focus on its core idea. We present all optimizations in the context of
method calls, but notice that the optimizations are also applicable to optimizing other
constructs, such as case statements in a match block. To focus on the optimization tech-
niques, and for brevity reasons, we use the generic scheduling algorithm as a basis for
our extensions when we present those optimizations.

Sequentializing Single Task Graphs. If the task builder manages to reduce the task
graph of a whole method body to a single task, then code generation will inline this
task. This results in the generation of a sequential method body, equivalent to the
sequential method body that would have been generated by the standard Plaid code
generator.
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method PlaidObject m(. . .) {

τ@[δ]〈ω〉
}

Listing 4: Single Task Function Graph

method PlaidObject m(. . .) {
δτ

}
Listing 5: Single Task Function Code

Inlining Body Tasks. Because the method always has to wait for the main body task
to complete, we can inline this task into the method body and avoid the creation and
synchronization overhead for this task. Listing 6 shows our code generation strategy,
which is comprised of the following steps:

1© Variable extraction. No changes.
2© Task Creation. We create all tasks except the body task.
3© Task scheduling. No changes.
4© Wait for dependencies. Wait for all tasks the body task depended on to complete.
5© Execute body task. Execute the remaining operations of the body task and return

the value of the last statement.

method PlaidObject m(. . .) {

τ\τb

τb

}
Listing 6:
Inline Body Task Graph

public PlaidObject m(. . .) {
// create variables

1© PlaidObject[] _ = new PlaidObject[
∣∣∣{V arDecl(x) ∈ {δ : τ@[δ]〈ω〉}}

∣∣∣];
// create task objects

2© ∀τi ∈ {τ\BODY_TASK(τ)} : Task Tτi = new Task(|DEPS(τi)|) {
public void run() {

IS_CASE_TASK(τi) =⇒ if ( CASE_MATCH_COND(τi) ) { δτi }
¬IS_CASE_TASK(τi) =⇒ δτi
∀τ ′ ∈ RDEPS(τi) : if ( Tτ′ ! = BODY_TASK(τ) &&

Tτ′ .decDepCount() == 0 ) {
schedule(Tτ′ );

}
}

};

// compute dependencies and schedule tasks
3© ∀τi ∈ START_TASKS(τ) : schedule(Tτi );

// wait for dependencies of the body task to finish
4© ∀τi ∈ DEPS(BODY_TASKS(τ)) : Tτi .wait();

5© return δBODY_TASKS(τ);

}

Listing 7: Inline Body Task Code

Inlining Single Starter Task. If a task graph has only one starter task, we can inline
this task, similar to the inlining of the body task.

1© Variable extraction. No changes.
2© Execute start task code. Execute the operations associated with the start task

directly in method body.
3© Task Creation. We create all tasks except the start task.
4© Task scheduling. Schedule all start tasks which depends on the original start

task.
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5© Wait for body task. No changes.

method PlaidObject m(. . .) {

τs

τ\τs

}
Listing 8:
Inlining Start Task
Graph

public PlaidObject m(. . .) {
// create variables

1© PlaidObject[] __ = new PlaidObject[
∣∣∣{V arDecl(x) ∈ {δ : τ@[δ]〈ω〉}}

∣∣∣];
// execute start task code

2© δSTART_TASK(τ)

// create task objects
3© ∀τi ∈ {τ\START_TASK(τ)} : Task Tτi = new Task(|DEPS(τi)|) {

public void compute() {
IS_CASE_TASK(τi) =⇒ if ( CASE_MATCH_COND(τi) ) { δτi }
¬IS_CASE_TASK(τi) =⇒ δτi
∀τ ′ ∈ RDEPS(τi) : if ( Tτ′ .decDepCount() == 0) { schedule(Tτ′ ); }

}
};

// compute dependencies and schedule tasks
4© ∀τi ∈ RDEPS(START_TASKS(τ)) : schedule(Tτi );

// wait for dependencies of the body task to finish
5© return TBODY_TASK(τ).wait();

}

Listing 9: Inlining Start Task Code

4.5.1. Dynamic Load Balancing. Despite the optimizations above, our system can pro-
duce significant more tasks than we have parallel execution units. To eliminate the
high costs of task creation and scheduling we implemented the dynamic load-balancing
approach shown in Listing 10. Every method that supports parallel execution first per-
forms a check whether we have enough parallelism (i.e., enough generated tasks to
utilize the available computation units) or not by calling the PARALLELIZE method. If
this method returns false it means that we have enough work and should not gener-
ate new work. In this case we simply execute the sequential method body instructions.
If the return value is true we need to generate more parallel work and we execute the
parallel method body implementation as described earlier.

The PARALLELIZE method implementation checks whether there are threads without
work. Because we call the PARALLELIZE method on every method invocation, determin-
ing all the threads’ current state is prohibitive expensive. To overcome this problem
we guard the check with a global variable estimating the lack of parallel work. This
global variable is updated when threads create new tasks and when threads are run-
ning out of work. To further optimize runtime overhead, all accesses to this variable
are not synchronized. The lack of synchronization obviously leads to race conditions
and lost updates. In the scheme we apply when updating the variable, lost updates
only ever lead to the creation of additional tasks and never to starving threads (refer
to our implementation for the exact details).

An important observation is that when we execute the sequential code branch the
sequentiality is only enforced for the current method. If the sequential code call a func-
tion which contains potential parallel executions this function will do the same check
to determine if it should parallelize the code or not. This is an important feature of the
system as it allows us to recover from heavily imbalanced code paths. The drawback
of this approach is that we have to check for parallelization on every method that has
potential parallelism.
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public PlaidObject m(PlaidObject pthis, ...) {
if ( PARALLELIZE() == false ) {

... // sequential code
} else {

... // parallel code
}

}
Listing 10: Dynamic Load Balancing

atomic { GLOBAL_DATAGROUP .enterAtomic();
... =⇒ ...

} GLOBAL_DATAGROUP .leaveAtomic();
Listing 11: Atomic Block Translation

public PlaidObject m(PlaidObject pthis, ...) {
if ( GLOBAL_DATAGROUP.inAtomic() ) {

... // sequential code
} else {

... // parallel code
}

}
Listing 12: Global Atomic Test

4.5.2. Atomic Block Implementation. Our implementation allows seamlessly mixing code
with and without data groups. If we use code without data groups we are talking
about plain shared permissions and atomic blocks without any datagroup parame-
ters. In this datagroup-less mode we implicitly pass a share datagroup permission to
an anonymous global datagroup into every method. Figure 11 shows that we simply
translate an atomic block into the an enterAtomic and leaveAtomic method call on the
corresponding datagroup. Once we entered a global atomic block we decided for sim-
plicity reasons to sequentialize the execution of its body. This means that when we call
a method from inside a global atomic block this methods needs to execute sequentially
even if it could execute in parallel. There are two approaches to achieve this behavior.
The first option is to have a dynamic check at runtime to force sequential execution.
The second option is to have two versions of every method: one version that is called by
default and another version that can only be called from inside an atomic block directly
or transitively (cf. AtomJava [Hindman and Grossman 2006]). We decide to go for the
dynamic approach because it can be easily merged with dynamic load-balancing and
avoids code explosion. Listing 12 shows the implementation of the global atomic block
sequentializing check.

In the case that we have actual data groups we translate an atomic block the same
way, with the exception of replacing the GLOBAL_DATAGROUP with the corresponding
data groups specified by the user. Note that we do not have to sequentialize the ex-
ecution of methods called from inside a non-global atomic block, as we have explicit
specified datagroup permissions which automatically enforce sequentialization where
necessary.
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4.6. Implementation Reflection
The goal of our implementation was to be as fast as possible. During our initial ex-
periments it became quite obvious that creating and executing fine-grained tasks on a
large scale was prohibitively expensive. Therefore our goal was to eliminate as many
tasks as possible. In our experience, the load balancing method resulted in the most
dramatic reduction in number of tasks. The dynamic load balancing approach only
generates as many tasks as needed to utilize system resources. Despite this fact, all
the other optimizations we described play an important part in our achieved perfor-
mance (cf. Section 5). Those optimizations are important as they help to reduce the
number of tasks and increase the overall task size (which helps to counteract the tast
switching cost). Like so many other cases, it is not a single optimization but rather a
combination of several that results in the best possible performance.

5. EVALUATION
We evaluated our system by conducting several case studies of which we present only
a selection in this section. The remaining case studies can be found in [Stork 2013].

Inspired by Problem Based Benchmark Suite (http://www.cs.cmu.edu/ pbbs/) we devel-
oped a dictionary benchmark to evaluate the effectiveness of data groups. Our im-
plementation (http://goo.gl/nzvLd) is based on a hash table using separate chaining to
handle collisions. We developed two versions, a global version which uses plain shared
permissions for its internal data structures and a fine version in which every bucket
has its own data group.

We evaluated two use cases, one in which we have a unique permission to the dictio-
nary and one in which we have a shared permission. Our benchmark first inserts the
identity mapping for the numbers 20 to 216 into the dictionary (initialization). Then we
lookup every mapping to check for correctness (checking). We run each benchmark case
50 times on an eight core SMP system (using Intel Xeon X5460 CPUs) with 16GB of
memory running Fedora 7 using the Java HotSpot 64-Bit Server VM (build 20.4-b02).
We used a dictionary with 64 hash buckets. To avoid artificial patterns we random-
ized the sequence in which the numbers are inserted/checked with a constant seed to
guarantee reproducibility.

Figure 25 shows the results of our dictionary benchmark. The first bar ‘global/u-
nique’ (15.12s) represents the results of the global dictionary implementation with a
unique permission to the dictionary. The linearity of the unique permission sequen-
tiallizes all insert/check operations. In the second bar ‘global/shared’ (15.13s) we have
a shared permission to the dictionary, which allows us to perform our operations in
parallel. This case performs no better because each parallel operation must immedi-
ately synchronize on the entire shared dictionary structure, thus sequentializing all
the accesses. The third bar ‘fine/unique’ (9.99s) uses the implementation which uti-
lizes data groups for its internal representation. This scenario is faster than any of the
cases using the global implementation, because of the use of fine-grained data groups,
one for each bucket. The unique receiver permission allows us to get exclusive group
permissions to the inner groups of the dictionary. This means we do not require pro-
tection to access data within those data groups and therefore we avoid unnecessary
synchronization operations. The last case ‘fine/shared’ (2.32s) also allows the parallel
execution of our operations. Because the implementation associates each bucket with
its own data group, we achieve a very fine-grained protection mechanism which allows
the parallel modification of disjoint parts of the dictionary. This results in a speedup of
6.5X compared to the ‘global/shared’ version.

The second case study we present consists of a web server application
(http://goo.gl/rU3P2). We compiled the web server in two ways. First we compiled it
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Fig. 25: Dictionary Benchmark Results.
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Fig. 26: Webserver Benchmark Results.

as a plain Plaid program (resulting in a sequential program) and second we com-
piled it with ÆMINIUM enabled. As a control we implemented equivalent Java ver-
sions (sequential and parallel). We hosted the web server in a quad-core machine
(Intel Core 2 Q6600 with 4GB of memory running Ubuntu 11.04 and using the
OpenJDK 64-Bit Server VM (build 20.0-b11)), serving the Python 2.7 documentation
(http://docs.python.org/). We mirrored the whole documentation three times to our local
machine using the puf (http://puf.sourceforge.net/) tool. The puf tool uses up to 20 con-
nections to parallelize the file downloads and therefore allows us to emulate multiple
clients.
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Fig. 27: Integral Performance Graph
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Figure 26 shows the average performance values measured. The Plaid version of the
webserver is the slowest (49.1s) followed by the sequential Java version (48.5s). This
makes sense as Plaid is generally slower than Java. The ÆMINIUM compiled version
of the webserver is the second fastest (37.4s) version. It is approximately 31% faster
than its sequentially-compiled counterpart. The reason for this is that the webserver
in the ÆMINIUM compiled version is able to handle multiple requests in parallel. This
allows the overlapping of communication and computation and results in a higher
throughput. The manually parallelized Java version delivered the best performance
(31.2). The performance difference between the parallelized Java and the ÆMINIUM
version is bigger compared to their sequential counterparts. This effect is caused by
the parallel execution and the overlap of communication and computation which hides
the communication costs to some degree. Because the communication effect is reduced,
the computation part gains relatively more weight, with the result that lower base
performance of the Plaid programming language has a greater impact.

In our Integral case study we investigated ÆMINIUM’s capabilities to parallelize
purely functional, highly computation-intensive problems. We developed a small in-
tegral library which computes the integral of a user-defined function. The integral
is computed by subdividing the overall interval into infinitesimal small intervals for
which we calculate the approximate area, and then add up all fractions to compute the
area of the whole integral. We evaluated the performance by computing the integral
of the square function (i.e., f(x) = x2) for the interval [0, 1]. We run the sequential
Plaid and parallel ÆMINIUM version on our eight-core machine each 20 times. The
average runtime and standard deviation of both cases are shown in Figure 27. The
Plaid version requires 8.9s while the ÆMINIUM version needs only 4.2s. This results
in a speedup of 2.1 meaning that ÆMINIUM was able to parallelize the program and
achieve some performance improvements. But it also means that the ÆMINIUM ver-
sion was only twice as fast on an eight core machine, which would suggest a speedup
closer to eight. Our investigation revealed that the main source for this poor perfor-
mance lays in the Plaid’s object system. As described previously, Plaid does not sup-
port primitive types which means that every value in Plaid is an object. This means
that in this computation-heavy application we have to create a new object for every
floating point value we compute. Our investigation showed that the this particular
benchmark allocates more than 1.8 billion (1.8×109) floating point objects. This means
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Program Total
SLOC

Annot.
SLOC

Type Annot. Group Arg. ÆMINIUM
Constr.

webserver∗ 227 47 (20.7%) 59 0 0
dic/global∗ 169 41 (24.2%) 65 0 3
dic/fine∗ 251 71 (28.3%) 109 10 2
Total∗ 647 159(24.6%) 233 10 5
webserver† 227 0 ( 0.0%) 0 0 0
dic/global† 169 5 ( 3.0%) 2 0 3
dic/fine† 251 41 (18.3%) 41 10 2
Total† 647 52( 7.9%) 43 10 5

Fig. 28: Annotation Overhead over Java

that overall performance of out benchmark is limited by the throughput of the virtual
machine memory system. This result does not invalidate the ÆMINIUM approach, be-
cause the problem is a current limitation of the Plaid language implementation and
not of ÆMINIUM.

We evaluated our annotation overhead by comparing our ÆMINIUM programs to
their equivalent Java versions. We counted how many lines of the source code (SLOC,
measured with wc) we had to modify by: annotating types (i.e., add permission infor-
mation to types), how often we had to specify additional group parameters to method
calls and how many ÆMINIUM specific operations we used (e.g., atomic blocks). Fig-
ure 28 shows the numbers for the case studies we presented. The values marked with
‘∗’ are versions fully annotated and values marked with ‘†’ are programs which use
Plaid’s default permission mechanism which allows omitting the permission annota-
tion by specifying a default permission in the state declaration. This allows the com-
piler to automatically insert a default permission wherever the user did not specify a
permission explicitly (e.g., in Java all strings are immutable by design and therefore
the default permission for strings could be immutable, which allows the user to sim-
ply write String instead of immutable String when he specifies a string type). The
numbers show that type annotations are the most common source of overhead and
that Plaid’s default permission helps to reduce it. The second important observation
is that the more developers specify, the more performance the compiler can achieve.
This means users can start with a simple version of a program and then incrementally
add more annotations to increase the performance. It is worth pointing out that using
Plaid’s default permission approach we are able to extract concurrency in the web-
server example without the need for any additional annotations. Overall we achieve
a reasonable 7.9% annotation overhead which is comparable to the 10.7% reported by
DPJ [Bocchino et al. 2009]. Further improvements to our system (e.g., type inference)
should allows us to further mitigate the programmer’s burden. The reader should also
take into account that the access permission information in Plaid serves additional
purposes (e.g., checking typestate).

6. FUTURE WORK
While our current prototype system demonstrated the potential of our approach, it
has a few shortcomings we would like to address in future versions. The following
paragraphs elaborate the most interesting and useful directions for future extensions.

Permissions and data groups provide a nice abstraction for many situations but
there are corner cases in which they can be cumbersome or not sufficient. For instance,
the programmer may want to impose an order on two operations, perhaps because
the operations have effects that are not currently captured in our permission system
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(e.g. I/O). In this case the programmer would have to write “ghost permissions” that
represent the effect. Another situation would be when the user has to write multiple
versions of the the same method for different permission configurations. To solve these
issues, investigation into refined permission abstractions is necessary. These new ab-
stractions should not only allow more fine control by the programmer, but also allow
to the compiler to infer permissions and implementations when possible.

Our current implementation does not support global state. While global state is gen-
erally considered a bad thing, there are situations where it is extremely convenient.
An example may include using I/O methods such as println\printf that rely on global
state to access the standard output device.

In the current system we use static costs for the operations and method calls. We
already distinguish between cheap and heavy functions in order to optimize the task
graph. One way to improve this approach would be be to use an aggressive static anal-
ysis to try to prove a bound on method costs. Another, and more promising, approach
would be to have a just-in-time (JIT) version of our compiler. This JIT would analyse
the cost of functions at run time and then optimize code depending on the gathered
profiling information.

7. RELATED WORK
Deterministic Parallel Java (DPJ, [Bocchino et al. 2009]) is a parallel programming lan-
guage with deterministic-by-default semantics. DPJ uses regions (which correspond to
ÆMINIUM’s data groups) to partition the store and provides explicit fork/join parel-
lelism. DPJ has special language constructs (e.g., for loops, cobegin blocks, etc) which
allow parallel execution of statements that do not interfere with each other. Code out-
side those constructs executes sequentially. DPJ recently added support for race-free
non-deterministic parallelism as well [Bocchino Jr et al. 2011].

The most significant difference between ÆMINIUM and DPJ is that programmers in
ÆMINIUM think and write code with permissions in mind. Parallelism in ÆMINIUM is
implicitly inferred based on the permission flow of those permissions. Implicit paral-
lelism means that ÆMINIUM programs are not tied to a particular amount or granular-
ity of parallelism specified by the programmer; instead, the runtime is free to adapt to
the parallelism available in the underlying hardware. Likewise, the runtime can par-
allelize a library, or not, depending on whether the client is already taking advantage
of parallel resources.

On a technical level, our implicit parallelism uses a dataflow model, which can in
some programs capture more parallelism than can be expressed in DPJ’s fork/join
model (cf. Section 2.4) . This dataflow computation makes our formal system quite
different than prior fork/join or thread-based type systems. Our split block (developed
independently of DPJ’s nondeterminism, see [Stork et al. 2012a]) also differs concep-
tually from DPJ’s nondeterministic parallelism construct: it does not specify that code
executes in parallel, but rather that two blocks of data can be accessed independently
without affecting (high-level) program semantics. Finally, Plaid’s permissions and data
groups are tied to individual objects, in contrast to DPJ’s globally-declared regions; our
design is more object-based, and helps express idioms such as uniqueness that are not
supported in DPJ.

Craik et al. [Craik and Kelly 2010] describe a system which uses ownership informa-
tion to automatically parallelize code in a dataflow style. Craik’s ownership contexts
are similar to ÆMINIUM’s data groups, but they do not have the concept of unique or
immutable permissions. Their system supports only deterministic parallelism. While
they provide an argument for soundness, our formal model goes further in incorporat-
ing a small-step operational semantics model of parallelism and a rigorous progress/p-
reservation proof approach.
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The FX programming language [Gifford and Lucassen 1986] uses an implicit
dataflow approach similar to ÆMINIUM. The FX language classifies every expression
into one the following four categories: producer (i.e., can read, write and allocate mem-
ory), observer (i.e., can read and allocate memory) function (i.e., can allocate memory)
and pure (i.e., side-effects free). Based on the effects of each expression the system can
compute a dataflow graph based on the interference on the global heap and extract
concurrency. Compared to ÆMINIUM, FX only supports deterministic parallelism and
computes interference using effects with a global granularity rather than fine-grained
data groups.

Data-Centric Synchronization (DCS) [Vaziri et al. 2010] is an explicitly parallel sys-
tem where synchronization is expressed by associating object fields with atomic sets.
Each method declares which atomic sets it accesses and the run-time system inserts
synchronization to ensure that no methods with conflicting atomic sets will be executed
at the same time.

Fortress [Allen et al. 2008] has concurrent-by-default evaluation semantics for some
language constructs (e.g., loops). When the programmer uses these constructs, she is
indicating that it is safe to parallelize execution. ÆMINIUM takes this concurrent-by-
default principle and applies it to the whole language, not just a few language con-
structs. Furthermore it provides a type system for controlling parallelism according
to dependencies which, in the case of Fortress, might be missed by the programmer,
causing errors.

ÆMINIUM’s dataflow parallelism generalizes fork-join parallelism, which was no-
tably supported by Cilk [Blumofe et al. 1995]. Cilk extends C with three additional
keywords for explicit parallelism: cilk, spawn and sync. Every method annotated with
cilk can be asynchronously spawned-off with the spawn keyword. sync keyword is used
to wait for a previously started asynchronous task. ÆMINIUM essentially attempts to
infer spawn and sync points based on typed dependencies, and can also capture more
general dataflow patterns of parallelism.

Axum (formerly known as Maestro) [Microsoft Corporation 2009] is an actor-based
programming language. Axum comes with several operators to allow the explicit con-
struction of data flow graphs, which can be hierarchically composed. For efficiency
reasons, Axum also provides domains, containers for state, which allows associated
actors to access the enclosed state. Actors can either be readers or writers of shared
state and scheduling will follow the one-writer or multiple-reader model. Axum and
ÆMINIUM share similar concepts, in particular the data flow approach, and the use of
data groups/domains combined with explicit access specifications.

Boyapati [Boyapati et al. 2002] describes an explicitly concurrent extension to Java
that associates each object with an owner (related to our data groups), and checks that
the owner is locked before accessing the object. Deadlocks are also prohibited via a lock
ordering protocol.

Athapascan-1 [Galilée et al. 1998] is a language that dynamically computes and uses
a data flow graph to execute the code. In Athapascan-1 the user writes tasks which can
be asynchronously spawned off. Tasks are annotated with information about which
shared data they access and in which way. The semantics of Athapascan-1 preserves
the deterministic result of execution and can roughly been seen as a dynamic version of
DPJ. Compared to ÆMINIUM, Athapascan-1 uses a dynamic approach while ÆMINIUM
uses a static approach for computing the data flow graph.

SharC [Anderson et al. 2008] is a data race checker for C programs. SharC uses
lightweight type annotation system which bares some resemblance to ÆMINIUM’s per-
mission and data group approach. SharC has private and readonly annotations which
compare to ÆMINIUM’s unique and immtable permissions. In SharC, all shared data
accesses need to be marked with an locked(lock) indicating which lock needs to be held
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before accessing the corresponding data. This resembles ÆMINIUM’s shared permis-
sions associated with data groups. To allow for more flexibility, SharC uses on top of
a static typesystem additionally a dynamic runtime checks. Unlike ÆMINIUM, SharC
is a checker only and can only check that a user parallelized program is accessing its
state in a safe manner.

The biggest differentiator for ÆMINIUM is that while nearly all the systems above
all have explicit parallel programming constructs or libraries, in the case of ÆMINIUM
code executes in parallel by default, to the extent allowed by permission dependencies.
Compared to the implicitly parallel models in FX and Craik et al., ÆMINIUM supports
a richer set of permissions that enables expressing the programs from our case studies.

8. CONCLUSION
We presented ÆMINIUM, an automatic parallelization methodology with type-based
safe deterministic and non-deterministic concurrency. ÆMINIUM uses the permis-
sion flow and datagroups to automatically parallelize code and supports dataflow
and fork/join parallelism. We further presented µÆMINIUM, a core calculus for the
concurrent-by-default programming language ÆMINIUM along with its soundness
proof. We presented our initial prototype implementation and several case studies
showing the benefits and applicability of the ÆMINIUM concept to selected use cases.
The ÆMINIUM approach is modular, composable, incremental and provably avoids race
conditions. The fundamental concept of ÆMINIUM is generally applicable and not lim-
ited to object oriented languages. With ÆMINIUM programmers can focus on the core
functionality of their applications by shifting concerns about race conditions and par-
allelization to ÆMINIUM.
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