
Aspect Mining for Aspect Refactoring: An Experience
Report

Maximilian Störzer, Uli Eibauer and Stefan Schoeffmann
Universität Passau, Passau, Germany

{stoerzer, eibauer}@fmi.uni-passau.de, stefan.schoeffmann@sdm.de

ABSTRACT
Aspect-Oriented programming currently suffers from one increas-
ingly important problem–while there is an abundance of aspect-
oriented languages and systems, only few example programs are
publicly available. To lighten this situation, we set out to refactor
crosscutting concerns into aspects for Open Source Java systems.

Aspect Mining (AM) is an important enabler of Aspect-Oriented
Refactoring (AOR), and this paper reports about our preliminary
experience with automatic and manual aspect refactoring. From
this experience we formulate interesting research questions for fur-
ther research.

1. MOTIVATION
Aspect-Oriented Programming has been proposed to address lim-

itations in current programming paradigms called the tyranny of the
dominant decomposition in literature [8]. While there is an abun-
dance of available languages, currently only few non-trivial exam-
ples programs are publicly available.

To address this lack of code we started two projects related
to aspect-oriented refactoring in the spirit of related work on
(A)JHotDraw [9, 1]. Our projects were originally independent
of each other: first, we designed an automatic refactoring tool[7]
for Eclipse based on fully automatic aspect mining1 using Dy-
nAMiT[3] and conducted three case studies with this tool. Sec-
ond we are currently working on a project targeted to refactor the
open source Java application HSQLDB (http://hsqldb.org/) using
a semantics-guided approach. Both our tool and the refactoring
project use AspectJ as target language.

The purpose of our refactoring tool was to easily generate As-
pectJ programs out of Open Source Java applications. However,
this goal turned out to be very ambitious. Nevertheless we learned
some important lessons for usability of aspect mining results for
automatic refactoring which we report in this paper.

HSQLDB is a medium-size open source project (65 kLoC), im-
plementing an relational database system. HSQLDB comes with a
JUnit test suite which we use to guarantee functional equivalence
of our system. Clearly the first step for an aspect-oriented refac-
toring is to find relevant crosscutting concerns which actually can
be refactored as aspects. We used manual semantics-guided code
inspection supported by FEAT[6] to find relevant crosscutting code.

As we originally did not intend to use these two projects to eval-
uate aspect mining techniques, we did not perform our case studies
using the same projects. However, we argue that the basic obser-
vations and results we report here are inherent to the underlying

1DynAMiT analyzes call relations without human interaction to
derive candidates for crosscutting concerns. We use the term auto-
matic aspect mining for comparable non-interactive techniques.

techniques—automatic versus manual aspect refactoring—and are
thus an interesting contribution, even if we agree that a more thor-
ough case study on one subject to verify these results is needed.

The contributions of this paper are twofold. First we report
our experience from two aspect-refactoring projects–one conducted
with automatic, one with manual aspect mining–and derive inter-
esting research questions for aspect mining tools from a compari-
son of this experience. Second, as for HSQLDB both the Java and
the AspectJ version will be available once our project is finished,
our effort will also result in an interesting evaluation test case for
(new) aspect mining tools. Comparing results of AM tools to the
aspects we found by manually analyzing the system might be an
interesting benchmark.

2. AUTOMATIC AOR WITH DYNAMIT
DynAMiT is an automatic aspect mining tool based on dynamic

program analysis. The tool evaluates traced call sequences to dis-
cover repeated patterns, which are then–if certain thresholds in rep-
etition are reached–reported as aspect candidates.

DynAMiT discovers candidates for before and after-advice
for call and execution joinpoints. For example DynAMiT
discovers that each time f() is called, g() is called immediately
after and then suggests that the call to g() should be embedded in
an after-advice to the call to f() or, symmetrically, the call to
f() should be embedded in a before-advice to the call to g().

Our automatic aspect refactoring tool uses DynAMiT to find as-
pect candidates, analyzes its results to figure out if a refactoring is
feasible, and, if so, allows to automatically refactor aspect candi-
dates. For our analysis we check if candidates identified by DynA-
MiT can be moved to an aspect (using AspectJ) without changing
program semantics. Therefore, context at the joinpoint has to be
available for AspectJ, and values (after the joinpoint and attached
advice have been executed in the refactored program version) must
be equal to the original values. To implement our analysis, we built
our system on the Java refactoring framework available in Eclipse,
and used human interaction if we could not derive a result.

We conducted three case studies to evaluate our tool, one based
on the source code of DynAMiT itself, one by analyzing the
Jakarta Commons Codecs project, and finally one by analyzing the
ANTLR parser generator framework. For each system, we ana-
lyzed if it is possible to semi-automatically refactor aspects from
the automatically derived results presented by DynAMiT.

We soon discovered that DynAMiT–as a dynamic analysis tool–
has two important disadvantage for automatic refactoring. Re-
peated call sequences are analyzed without any structural informa-
tion about the underlying calls. This means that DynAMiT also
reports repeated patterns if a call is governed by an if-statement
or part of a loop, i.e. the found patterns strongly depend on the



Case Study DynAMiT CommonCodecs ANTLR
Algorithm Crosscutting Basic Crosscutting Basic Crosscutting Basic

Refactorizability
√

? ×
√

? ×
√

? ×
√

? ×
√

? ×
√

? ×
before call 0 0 2 0 0 3 0 0 0 0 0 2 2 0 6 1 0 43
after call 0 0 1 0 0 4 0 0 0 0 0 3 0 0 11 0 1 49

before execution 0 0 2 1 0 4 2 0 0 4 0 2 4 1 5 22 1 44
after execution 0 1 2 1 2 3 0 2 0 1 4 0 3 7 16 12 9 118

Coverage (statement) 56,9 % 96,8 % 25,7 %
√

Semantics Preserving Refactoring feasible, × Refactoring failed due to Dependences, ? Semantical Change depends on Method Call

Table 1: Some Numbers: Candidates discovered by DynAMiT and their Refactorizability using our Tool

test suite used to generate the traces. If a insufficient test suite is
used2, extraction in an aspect is only possible and meaningful in
the traces cases, and will produce different system semantics oth-
erwise. This could be prevented if complicated pointcut expres-
sions using the if-designator are generated to create functionally
equivalent aspects. Consequently analysis of control dependences
is important to check if an aspect candidate can be automatically
refactored. However, we refrained from extracting such aspect can-
didates as such complex conditions more likely are an indicator for
false positives (no quantified statement).

Second, method calls are not the only statements. We often expe-
rienced situations, where several assignments preceded the first call
in a method. In these cases, the first call can only be extracted in a
before execution advice if it is guaranteed that the joinpoint
context is not modified by the above assignments, i.e. program se-
mantics have to be equivalent if the call is moved to the method
entry (code motion problem). That means data-flow constraints
can considerably restrict refactorizability of crosscutting code.

Third, necessary joinpoint context sometimes is simply not avail-
able as no respective joinpoint exists in the target language (e.g. lo-
cal variables or literals used in a call we want to extract in an aspect
are not available for AspectJ). This means that language limitations
also hinder aspect-oriented refactoring.

Please note that we did not examine the results of DynAMiT for
semantical soundness, but only examined if they allow automatic
refactoring resulting in a semantically equivalent program. For our
case studies, most results had to be discarded. Table 1 gives some
details on the case studies we performed. Consider for example the
first column group labeled DynAMiT. Here, we got 8 aspect candi-
dates in total when using the more strict “Crosscutting” algorithm
(some of them symmetric). From these, only 1 candidate could be
semi-automatically refactored. Our system has no pointer-analysis
to safely approximate the effects of method calls, and thus does
not allow us to automatically decide about refactorizability in all
cases. We thus ask the user in such cases, using the refactoring
view known from the Eclipse Java refactorings. These cases are
counted in the ’?’ column. For the other 7 cases our tool found di-
rect control and data flow dependences or was not able to access the
context, all of which prevented refactoring. Note that DynAMiT is
based on dynamic analysis, and thus the test coverage of the suite
the analysis is based on is a very important issue in this context.
The last line thus reports the coverage of the test suites we used for
our case studies.

The Commons Codes system produced similar results. For
ANTLR we got 55 advice candidates, and could only refactor 9
of these results. However, in 8 other cases a refactoring might have
been possible, although our limited analysis could not decide this

2Note that for semantics-preservation, even a statement coverage
of 100 % is not sufficient.

automatically. To summarize the above observation, control and
data flow properties as well as language limitations are very impor-
tant to decide if automatic refactoring of a crosscutting concern is
possible. Recent work [2] of the author of DynAMiT also recog-
nized these problems and added additional static analysis support.

To connect this observation with aspect-mining tools used for
refactoring, analyzing and reporting data and control dependences
can be used to (i) reduce the false positive rate and (ii) give ad-
ditional information useful for programmers when they actually
refactor code. Hence, analyzing refactorizability of candidates
could be an additional criterion for the quality of an aspect-mining
tool and might serve to give additional feedback to the user.

A second observation is that automatic syntax-based aspect min-
ing tends to produce many false positives. Such tools identify cross-
cutting code–but crosscutting code not necessarily is due to a cross-
cutting concern. Crosscutting code is an indication for a crosscut-
ting concern, but not a sufficient criterion; the decisive criterion is
the actual semantics of the crosscutting code. Additionally the user
still has to figure out all those identified patterns that actually be-
long to the same concern manually and thus should be encapsulated
in the same aspect. So there is also a mismatch in granularity for
purely syntax-based automatic techniques.

DynAMiT reported several candidates where we could not iden-
tify an semantical concern inducing the crosscutting code. From
our perspective it is very hard if not impossible to distinguish be-
tween “accidentally” crosscutting code and crosscutting code due
to an actual crosscutting concern without additional semantical in-
formation. This seems to be a general restriction of automatic
syntax-based mining approaches.

3. MANUAL AM USING FEAT
Compared to the above study with automatic aspect-mining

based on DynAMiT, we used a semantics-driven manual approach
for HSQLDB. To find aspects here we based our analysis on the list
of ‘standard aspects’ introduced in Laddad’s book “AspectJ in Ac-
tion” [5] and then used FEAT to discover relevant code locations.
When becoming familiar with the source code we also found some
application specific aspects, for example trigger firing or checking
constraints before certain operations are performed.

To support manual system analysis, FEAT proved to be very ef-
fective. FEAT is a user guided cross referencing tool and allows to
quickly discover code locations referencing some method or field.
What we basically did–slightly simplified–was to discover poten-
tially interesting classes–like e.g. Tracing or Cache–and then
to use FEAT to discover where these classes are referenced. These
references then have to be eliminated and replaced with an aspect
to conduct the aspect-oriented refactoring.

We have finished the aspect mining phase and begun to actu-
ally implement the aspect-oriented refactoring. Our observations



reported here are thus based on the aspects we identified, but we
can not yet report if the aspect-oriented refactoring will actually be
successful3 in all cases. Refactoring in this case is manual, not au-
tomatic. Thus we are not as restricted in the ways we can refactor
a system as in the above tool project.

For our analysis we manually discovered the starting point for
a search, but this manual analysis was guided by our aspect cata-
log. We then used FEAT to find the locations where a crosscutting
concern is tangled with other modules. Thus instead of using syn-
tactical or low level properties of the system, we used a semantical
approach. We started with a certain concern we expected to find in
the system in mind, and tried to retrieve the code locations for its
implementation. Compared to the above automatic study per def-
inition no semantically questionable aspect candidates can occur.
While this reduces the false positive rate, a considerable amount
of manual code inspection and analysis (although supported by
FEAT) was necessary to fulfill this task.

However, even for these manually identified crosscutting con-
cerns, refactoring in general is not straightforward. Some of the
problems we encountered are similar to the problems we discov-
ered in the DynAMiT case study. FEAT also discovers calls to be
extracted within a loop, or governed by an if-statement. Although
this crosscutting code results from an actual crosscutting concern,
refactoring these calls is nevertheless problematic. One strategy we
use in this case is to pre-process the code (i.e. extract some code in
methods if this is adequate) to allow a subsequent aspect-oriented
refactoring. From a software engineering point of view, this cannot
be a general solution as it easily jeopardizes system structure.

Our semantic catalog-guided approach was successful in discov-
ering many standard aspects in the HSQLDB code base, including
Tracing, Caching and Authentication/Authorization. To summa-
rize, we think that augmenting aspect-mining tools with semantical
information might be a fruitful approach for aspect mining. For
example one might identify a set of classes related to a semanti-
cal concern–like e.g. a Logger class–and then demand that all
reported candidates have to be related to one of these classes.

We will also illustrate these observations—both for aspect min-
ing and refactoring—with an example. For HSQLDB, we identified
the tracing concern as a crosscutting concern and its implementing
crosscutting code. Tracing has been considered a standard cross-
cutting concern since the invention of AOP, so the aspect mining
for this specific concern was relatively easy and straightforward
following the strategy described above. Refactoring this concern
and extracting its code into an aspect however was far from trivial.
The problem is that custom tracing in an existing system cannot be
formulated with a quantified statement like “On each method entry,
log the method name and the parameter values.”. The implemen-
tation is rather considerably more customized for each method to
capture the values of interest within this method—including local
variables and their changes e.g. within loops. Such customized
tracing policies are very hard to capture in an aspect. We did this
as an example for some classes, and to succeed we had to: create
a common trace format (i.e. the system now produces a different
output!), refactor loop bodies to helper methods (arranged pattern
problem!), or “promote” local variables to fields (locality?). To
make a long story short: the resulting implementation is—from a
software engineering point-of-view—at least questionable.

However there are also positive examples. We identified pool-
ing, also a standard crosscutting concern according to Laddad, as
an aspect that can be refactored easily without the problems men-
tioned above. The source of HSQLDB contains a class Value-

3I.e. if it is possible to refactor an identified concern or if the con-
cern is too tightly coupled thus preventing refactoring.

Pool which contains relevant pooling logic. When an Integer,
a Long, String, Double, Date, or BigDecimal-object is
needed, the corresponding access method in the pool is explicitly
invoked. Calls to these accessors occured at approximately 250 lo-
cations in the source code. As a result of these scattered calls we
observed a high coupling between the classes containing these calls
and class ValuePool.

For refactoring, these explicit calls to the value pool were re-
placed by the corresponding constructor calls (e.g. new Inte-
ger()). We then advised the constructors with around-advice
which invokes the appropriate pool methods without calling pro-
ceed. This approach has several advantages compared to the
purely object-oriented variant: As the pooling aspect is imple-
mented as a separate aspect, the coupling due to the explicit pool
invocations has disappeared (only the pooling aspect knows about
the relation between class ValuePool and the remaining system).
Second, the aspect now can be removed from the core program
without any additional base changes. Finally, the aspect captures
additional 190 code locations that failed to invoke the value pool
before, as we used wildcards for the respective constructors to spec-
ify the pointcuts. To summarize, the aspect-oriented implementa-
tion in this case is clearly superior compared to the original version.

Although not all refactorings were successful, our seman-
tic catalog-guided mining approach was nevertheless very suc-
cessful in discovering many standard aspects in the HSQLDB
code base, including Tracing, Caching, Pooling and Authenti-
cation/Authorization. To summarize, we think that augmenting
aspect-mining tools with semantical information might be a fruitful
approach for aspect mining.

4. LESSONS LEARNED
Most automatic aspect-mining approaches we are aware of

are either based on finding repeated patterns in call se-
quences/traces/etc. or on finding duplicated code.

From our experience, actually refactoring advice candidates
found by such tools has to deal with several important problems.

Control Dependences: Control dependences can easily lead to
false positives, for example if a method call is always triggered in
an available test suite used for analysis, but not necessarily trig-
gered every time. While in some cases candidate code governed by
an if-statement can be refactored to advice using an equivalent if
pointcut designator, this is not true in general. Loops are an even
more important problem.

Data Flow Restrictions: Advice cannot be attached to arbitrary
code positions. If code should be moved to an aspect, it is possible
that this code has to be moved e.g. to the beginning or the end of a
method. This is of course not possible in general.

Arranged Pattern Problem: The code to be refactored in gen-
eral uses some values from its context. These values thus always
have to be accessible for the aspect language in order to allow a
refactoring. Especially for AspectJ this is often problematic.

It is tempting to argue that any refactoring is possible, if we only
use enough purely object-oriented refactorings to remove problem-
atic control and data-flow dependences and make necessary join-
point context available to our aspect language. However, this will
result in another problem called the arranged pattern problem in
[4]. Code is transformed only to allow advice application, but not
to create well-defined, easy to understand, reusable, and evolvable
methods. As a consequence, software quality degrades. This might
be a language problem rather than an aspect mining issue, however
suggesting such refactorings is problematic nonetheless.

Semantics vs. Syntactical Properties: The most important
question: Did we really find a crosscutting concern? Even if



syntactically a tool can derive an aspect candidate, is this candi-
date also semantically a valid concern? The use of utility classes
is a good example. In general functionality of such classes is
called from several parts of the system, however the modularity
of the system is fine and nobody would argue that references to
java.lang.Math show a crosscutting concern.

When looking at aspect mining results it is tempting to dismiss
non-refactorizable candidates as false positives, although this is not
true in general. However, if a crosscutting concern has an imple-
mentation too tightly coupled with the system, refactoring may not
be a valid option anyway.

So is a purely semantic approach as we used for HSQLDB the
method of choice? This method clearly has the advantage that we
do not have to deal with many false positives. However, refactor-
ing the code to advice faces the same problems as the automatic
syntax-based aspect mining tools before. This justifies that simply
removing non-refactorizable candidates from a result set is not a
valid option, i.e. ’refactorizability’ is no criterion to rule out candi-
dates—but it might help to order them by relevance for refactoring.

Semantic-based aspect mining also has another important dis-
advantage: We started our analysis based on the standard aspects
catalog provided by Laddad. By only following this technique we
will per definition only find aspects we know about–but never new
ones. This is clearly a strength of syntax-based mining tools.

As a challenge to the aspect-mining community it might be in-
teresting to create aspect mining tools which help programmers
to identify standard crosscutting concerns in a given system. Of
course such a tool could not be automatic, but compared to FEAT
more automation might considerably help programmers trying to
refactor standard crosscutting concerns. The main improvement we
suggest is to also use semantical information to guide automatic
tools when retrieving aspect candidates. Not all repeated method
call sequences are advice candidates, but maybe those referenc-
ing a certain class are. Not each piece of duplicated code is a un-
refactored advice, but maybe code referencing certain fields. This
approach would combine automatic support from automatic aspect
mining with the semantic guidance useful to avoid false positives.

While such a tool is interesting for a practitioner in the field try-
ing to refactor an existing application based on a catalog of known
aspects, it might also be interesting to develop tools designed to
identify new aspects. Theses tools however are designed for re-
searchers, who set out to better understand the nature of aspects in
general, and also to extend the aspect catalog.

For evaluation of aspect-mining, both suggested tool categories
have a considerably different profile and need different evaluation
strategies. Tools targeted to discover standard aspects need appro-
priate systems where a refactored aspect-oriented and an original
version exist. Based on these two versions, quality of the results
is accessible. Evaluating tools designed to discover new aspects is
considerably harder. The above strategy is not useful in this case.

5. CONCLUSION
In this paper we discussed the results of a fully automatic aspect

mining tool in contrast to a manual aspect mining approach.
From our experience many aspect candidates proposed by the

automatic aspect mining tool are not useful for an automatic refac-
toring, as language restriction, i.e. un-accessible context, control
dependences, i.e. calls to-be-extracted which are embedded in
loops/governed by if-statements, or data-dependences, i.e. modi-
fications of parameter values prior to calls to-be-extracted, prevent
refactoring. Reviewing these problems for particular cases often
also raises doubt if the corresponding code is actually part of the
implementation of a crosscutting concern.

Our second study based on manual aspect mining was suc-
cessful to discover standard aspects, but failed to reveal any
new/application specific aspects. This is a general weakness of this
approach. While here per definition no false positives occur (either
a valid concern can be found or not), refactoring the found cross-
cutting code might not be recommendable due to a high coupling
with the base system.

To improve result quality for aspect mining tools, we suggest to
build two kinds of tools: (i) aspect mining tools guided by a catalog
of well-known crosscutting concerns to assist software engineers
in actually refactoring existing systems and (ii) less restricted au-
tomatic mining tools designed to help researchers find completely
new aspects. For the first category of tools refactorizability might
be a good criterion to prioritize mining results.

Using projects like AJHotDraw and HSQLDB as case studies
(once our project is finished) seems to be a good way to evaluate
category (i) aspect-mining tools. We encourage researchers to use
their tools to also refactor other projects as case studies and make
the resulting aspect-oriented systems publicly available.

Acknowledgments
Thanks to the anonymous reviewers and Daniel Wasserrab for their
valuable and interesting comments on this paper.

6. REFERENCES
[1] Dave Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and

Paolo Tonella. Automated Refactoring of Object Oriented Code into
aspects. In ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), pages 27–36,
Washington, DC, USA, 2005. IEEE Computer Society.

[2] Silvia Breu. Extending Dynamic Aspect Mining with Static
Information. In 5th International Workshop on Source Code Analysis
and Manipulation (SCAM 2005), Budapest, Hungary, October 2005.

[3] Silvia Breu and Jens Krinke. Aspect Mining Using Event Traces. In
19th International Conference on Automated Software Engineering
(ASE 2004), pages 310–315, September 2004.

[4] Kris Gybels and Johan Brichau. Arranging language features for more
robust pattern-based crosscuts. In AOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software development,
pages 60–69, New York, NY, USA, 2003. ACM Press.

[5] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT, USA, 2003.

[6] Martin P. Robillard and Gail C. Murphy. Concern graphs: finding and
describing concerns using structural program dependencies. In ICSE
’02: Proceedings of the 24th International Conference on Software
Engineering, pages 406–416, New York, NY, USA, 2002. ACM Press.

[7] Stefan Schöffmann. Semi-automatisches Aspect
Refactoring–Tool-Entwicklung und Fallstudie auf Basis bestehender
Aspect Mining Tools. Master’s thesis, Universität Passau, Innstraße
32, 94032 Passau, Germany, Dezember 2004.

[8] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton.
N degrees of separation: multi-dimensional separation of concerns. In
ICSE ’99: Proceedings of the 21st international conference on
Software engineering, pages 107–119, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

[9] Arie van Deursen, Marius Martin, and Leon Moonen. AJHotDraw: A
showcase for refactoring to aspects. In In Proceedings AOSD
Workshop on Linking Aspect Technology and Evolution, 2005.


	Motivation
	Automatic AOR with DynAMiT
	Manual AM using FEAT
	Lessons Learned
	Conclusion
	References

