
A Classification of Pointcut Language Constructs

Maximilian Stoerzer
University of Passau
Passau, Germany

stoerzer@fmi.uni-passau.de

Stefan Hanenberg
University of Duisburg-Essen

Essen, Germany

shanenbe@cs.uni-essen.de

ABSTRACT
Aspect-oriented systems provide pointcut languages in or-
der to specify selection criteria for join points which in turn
will be adapted. However, a closer look into current point-
cut languages reveals that there are large differences among
them. Consequently different aspect-oriented system permit
to specify different selection criteria. This also means that it
is in general hard to state whether a certain aspect-oriented
system is adequate for a given problem without detailed sys-
tem knowledge.

This paper analyzes and classifies pointcut language con-
structs based on the objects they reason on. Based on this
analysis, we propose three conceptual classes of pointcut
constructs. These classes represent an abstract framework
for pointcut languages allowing to better understand and
compare existing approaches. They also describe a design
space for potential new language constructs.

1. MOTIVATION
Aspect Oriented Programming (AOP) as first introduced

in [13] addresses the problem of crosscutting concerns. The
term crosscutting concern describes parts of a software sys-
tem that logically belong to one single module, but which
cannot be modularized due to limited abstractions of the un-
derlying programming language. Aspect-oriented software
aims to overcome the problem of crosscutting concerns by
introducing a new kind of module - the aspect.

Aspects extend the underlying application by providing
additional functionality “at certain points”. These points
are called join points in the aspect-oriented terminology.
In order to specify where aspects extend the base appli-
cation, aspect-oriented systems provide language constructs
that permit to select those join points where aspects should
be woven to. In correspondence to [12, 6, 11] the term point-
cut language is used to describe these selection languages.
In order to specify how a certain selected join point should
be adapted, aspect-oriented systems provide additional lan-
guage constructs like advice in AspectJ.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLAT March 14-18, 2005, Chicago, Illinois, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Meanwhile, there are a number of systems available per-
mitting to develop software in an aspect-oriented way, like
AspectJ [13, 12], Hyper/J [9, 4], AspectS [11] or Sally [8].
Although all of them provide aspect-oriented features – the
selection and adaption of join points – there are a number
of differences among them.

First, different aspect-oriented systems provide different
kinds of join points. For example, AspectJ permits to select
those points in the execution of a program where an object’s
field value is set. Approaches like for example Hyper/J or
AspectS do not permit to select these kinds of join points.

Second, the features distinctive pointcut languages in cur-
rent approaches provide to select join points differ. For ex-
ample, the cflow-construct in AspectJ (allowing to select
join points based on properties of the call-stack) is a feature
that is not directly available in Hyper/J or Sally.

Third, different aspect-oriented systems differ in the kind
of adaptations they provide for each kind of join point. For
example, AspectJ provides the proceed-construct within
around-advice which permits to decide at runtime whether
or not execution should proceed with the original join point.
A similar join point adaptation does not exist for example
in Hyper/J.

These different facets of aspect-oriented systems make it
hard to compare them. As a consequence, it is hardly possi-
ble to determine whether or not a certain aspect can easily
be implemented in a given system. Furthermore, whenever
a new proposal for a language constructs appears, it is hard
to determine whether this feature differs conceptually from
known ones. The overall problem is that conceptual models
are missing that permit to compare different aspect-oriented
systems.

In this paper we put the focus the different pointcut lan-
guage constructs and abstract as far as possible from the
underlying join point model and the adaption mechanism.
We propose a classification of pointcut language constructs
(pointcut constructs for short) which provides a conceptual
view on them. These classes also permit to classify aspect-
oriented systems based on the features provided by their
pointcut languages. Furthermore, they represent an ab-
stract, general framework for the development of pointcut
languages.

In section 2 we briefly discuss different facets of aspect-
oriented systems and introduce a simple execution model
our classification uses. In section 3 we introduce our clas-
sification of pointcut constructs. Section 4 applies the clas-
sification to a number of aspect-oriented systems - namely
AspectJ, Hyper/J, Sally and AspectS. After referring to re-

lated work (section 5) we discuss and conclude this paper in
section 6.

2. SETTING THE SCENE
Before we describe the different construct classes we first

introduce a general model of aspect-oriented systems where
we describe the different ingredients an aspect-oriented sys-
tem consists of. The later on proposed classification is
closely related to the terms of static and dynamic join points.
Hence, this section also briefly introduces these terms. Fur-
thermore, we describe a general program execution model
that is used when referring to dynamic program behavior.

2.1 A Conceptual Model for
Aspect-Orientated Systems

In order to study different aspect-oriented systems in re-
spect to their expressiveness it is necessary to have a concep-
tual understanding of aspect-oriented systems. As a base for
our discussion, we developed an abstract model of aspect-
oriented systems by factoring out three core components:

Join Point Model: The join point model defines the join
points available for adaption in a specific system.

Pointcut Language: The pointcut language is the query
language to select a subset of the join points defined
by the join point model.

Adaption Mechanism: The adaption mechanism pro-
vides means to add or modify functionality at selected
join points.

The term join point model includes all elements of an
aspect-oriented system that can be selected and adapted.
Elements of the join point model are for example method
definitions in Hyper/J or method calls in AspectJ. Examples
for pointcut languages are the pointcut language of AspectJ
or the constructs within a concern mapping and hypermod-
ule in Hyper/J. Adaptation mechanisms are advice or inter
type declarations in AspectJ, or composition rules in Hy-
per/J.

2.2 Static versus Dynamic Join Points
The term join point is defined in [12] as a “principled point

in the execution of a program”. However, in the aspect-
oriented literature there is already the notion of static and
dynamic join points [2]. A static join point can be character-
ized as a location in the program’s source code ([5] describes
join points as “systematic loci” of a program, [1] describes
join points as “elements of a program”).

The characteristic of static join points is that the selec-
tion (and adaption) of a certain element only depends on
selection criteria referring to the application’s static struc-
ture. For a given syntactic element and a specific pointcut
expression it can be unambiguously determined whether or
not it should be selected (and adapted). I.e. every time the
corresponding source code elements is reached/executed at
runtime the same adaptation is performed.

This differs for dynamic join points. These join points
do not correspond directly to elements in the application
source, but may have an associated source code element. In
[15] this element of application’s sources has been called a
join point shadow. However, we will not use this term here as

a “shadow” itself can be a valid static join point (depending
on the join point model).

While static join points address the locations in source
code available for an aspect, each static join point can be
reached a multitude of times during program execution. We
define a dynamic join point as a single hit of a static join
point during program execution. One gets a good impression
of this idea by thinking of a program trace, which records
each static join point every time it is reached during program
execution.

The characteristic feature for dynamic join points is that
conditions that need to be evaluated at runtime and that
check whether or not the join point should be adapted are
implicitly expressed in the pointcut language. In [7] we refer
to such runtime conditions as join point checks. In [10] the
term “dynamic residue” has been used.

To summarize, the difference between static and dynamic
join points is that the decision whether or not a join point
should be adapted depends on runtime information. Con-
sequently, a system that provides dynamic join points needs
to provide a different kind of pointcut language, as this lan-
guage needs constructs to refer to runtime values. In con-
trast to that, a system that provides static join points needs
to provide means to reason on an abstraction of the source
code.

2.3 Modeling Dynamicity: a
Program Execution Model

Dynamic join points access the system state. However,
‘system state’ is a rather fuzzy term which has to be dis-
cussed. Therefore we introduce a simple model describing
program execution as a sequence of system states. Each
state σ is associated with an environment envσ providing
a mapping from names known in the system (all declared
variables/functions/etc.) to values, and a statement s that
will be executed next. We refer to the set of known names
with names(env)1. For v ∈ names(env) : val(v, σ) allows to
access the value for a given name for a state σ.

The starting state is σ0, where only the runtime environ-
ment has been initialized but no user code has been executed
yet. Thus the environment envσ0 contains no values (each
name is associated with an initial/null value)2 and the cor-
responding statement s represent the first statements in the
program.

The evaluation of a program statement s results in a state
transition

σi
s−→ σi+1

and might potentially change variable values in envσi , re-
sulting in a new environment envσi+1 . The execution of a
program for a given set of input values thus results in a state
sequence

σ0
s0−→ σ1

s1−→ σ2
s2−→ . . .

sn−1−−−→ σn

where σn is the final state where the program terminates3.
1Note that we associate each name with its source location,
to have unique names and avoid name clashes. So two local
variables called i declared at different source locations can
be kept apart and form two different names for the environ-
ment.
2If appropriate for the used base language, the environment
in σ0 can already contain accessible values defined by the
freshly initialized runtime system.
3Note that due to loops and recursion si = sj for j 6= i is

Although the concrete semantics of a statement s are de-
fined by the semantics of the underlying base language and
left open here, we can state the effects of a statement s more
precisely by associating a context with each statement s.

Definition 2.1 (Statement Context). The con-
text of a statement s is defined as:

context(s) ⊆ names(env)

Note that context(s) depends on the concrete semantics
of s. For a Java method call, the context would include all
formal parameters (including the target object), the this-
reference, all local variables within the current scope and
all global variables. This also includes a syntactic repre-
sentation of the stack-trace that can be generated in Java
by Exception instances. In Smalltalk the available con-
text is much larger: Smalltalk provides the special variable
thisContext that permits to access objects that occur in
the current control flow (in contrast to the pure syntactical
call-stack representation available in Java).

Note also that the context of a statement s is statically
defined – the set of accessible names does not change during
system execution, thus context(s) does not depend on the
current system state. However the set of associated values
changes, and consequently depends on the system state. We
use this observation now to state the effect of a statement s
on the environment.

Definition 2.2 (Effect of a statement). A
statement s potentially modifies values in it’s context:

σi; envσi ; s; context(s) ⊆ names(envσi)

σi+1; envσi+1 = envσi [val(v, σi)/s(val(v, σi))] : ∀v ∈ context(s)

In the above definition we model the semantics of s as
a function defined on the environment, which can change
values for names accessible through context(s): by execut-
ing a statement the values of variables in the environment
are substituted by the values that are part of the state-
ment’s context. For values not touched by s, we assume
that val(v, σi+1) = val(v, σi).

2.4 Join Points and Join Point Model
The intention of aspect-oriented systems with state-based

pointcut constructs is to specify selection criteria that de-
pend on the system state σ, or rather the associated data
in the environment envσ: this implies that they rely on dy-
namic join points. We define a dynamic join point in the
previously described model as a tuple (s, σ).

Definition 2.3 (Dynamic Join Point). A dynamic
join point jp is defined as:

jp = (s, σ)

The statement s represent the statement that will be ex-
ecuted next, and σ represents the state. This corresponds
to the definition of join points as principled points in the
execution of a program [12].

The different join point models underlying aspect-oriented
system provide different kinds of join points. For example,

possible.

in AspectJ assignments to a local variable do not represent
join points, while field assignments do. In AspectS, field
assignments do not represent join points at all. The kinds
of join points naturally depend on the underlying join point
model and the base language.

As a consequence, not each tuple (si, σi) in the state se-
quence

σ0
s0−→ σ1

s1−→ σ2
s2−→ . . .

sn−1−−−→ σn

necessarily forms a dynamic join point. This depends on
the underlying kind of statement in conjunction with the
system’s join point model.

3. A CLASSIFICATION OF
POINTCUT CONSTRUCTS

Systems based on static join point models like Hyper/J or
Sally permit to select join points only because of character-
istics that can be checked at compile-time. Method calls are
selected and adapted because of their position in the code,
classes are selected and adapted because of their name (Hy-
per/J) or because their relationship to other classes (Sally).

Systems like AspectJ or AspectS provide the ability to
specify runtime selection criteria. However, such selection
criteria also have different qualities. For example, a selection
in AspectJ based on the pointcut designators this, target
and args only permits to specify the actual runtime types
of objects participating in a certain join point. By using
the if-pointcut designator instead it is possible to specify a
selection criterion that refers to the arbitrary runtime values
of the system.

However, the pointcut designator cflow (which also ex-
ists in AspectS) is a different kind of join point selection:
the selection criterion does not only depend on the system’s
current state in terms of the objects participating in the
join point, but on the call-stack of the abstract machine ex-
ecuting the program when the join point is reached. The
call-stack itself however represents a part of the history of a
program.

Conceptually, the cflow construct differs from constructs
like if, this, target and args, because it refers to passed
states in the execution history of a program. Extensions of
AspectJ like for example the dataflow-pointcut designator
as described in [14] are comparable: again the selection cri-
terion reasons about the execution history of the program.

Based on these observations, we define different classes of
pointcut constructs that differ in the quality of the selection
criteria they permit to express:

Specification-based. A specification-based4 pointcut con-
struct permits to specify criteria for join points that
refer only to the specification of an application.

State-based. A state-based pointcut construct permits to
specify criteria for join points that refer to the pro-
gram’s current state (i.e. runtime values).

Progress-based. A Progress-based pointcut construct per-
mits to specify criteria for join points that refer to the
progress of an applications execution.

In the subsequent sections these classes of pointcut con-
structs will be discussed in detail.
4Here, the term specification does not necessarily refer to
a design document but rather represents any abstraction of
the source code.

3.1 Specification-based Join Point Languages
Specification-based selection constructs form the most

simple and best understood form of pointcut constructs.
Such systems have a static join point model and join points
can be selected based on a static view on the underlying
system. Systems that are based on such languages pro-
vide abstractions of the source code to be selected and
adapted. Consequently, systems based on specification-
based join point selections do not refer to any runtime in-
formation of the underlying base system.

Definition 3.1 (Specification-based construct).
Specification-based pointcut constructs allow to select join
points based on an abstraction of the source code.

Examples for specification-based constructs are the fea-
tures provided by the pointcut languages of Hyper/J or
Sally, since both only refer to elements in the application’s
sources from within their selection language. In Sally classes
can be selected because of their occurrence as formal param-
eters in method definitions, or because of their occurrence as
types of fields within different class definitions. In contrast
to this, Hyper/J selects classes because of their names, or
because of their super-classes.

Note that here not necessarily the whole source code (in
terms of the syntax tree) has to be available. Actually there
is a wide range of abstraction levels for specification based
constructs. For example it is possible that only class names
or relationships between classes (like inheritance relation-
ships) are available as base information to select join points
with. Program rewriting systems5 on the other hand often
allow a more detailed view on the source code.

Hence, aspect-oriented systems based on specification-
based pointcut constructs can widely differ with respect to
their expressiveness. However, as a commonality, all these
systems select join points based on some source code ab-
straction only.

3.2 State-based Constructs
State-based constructs in general refer to a dynamic pro-

gram execution model and consequently also dynamic join
points. When examining these approaches in detail, it is
observable that different aspect-oriented systems provide
different data from the environment that state-based con-
structs can refer to. For example, a method call in AspectJ
can be selected because of criteria specified for the caller ob-
ject, the called objects and the formal parameters. But it is
for example not possible to refer to the local variables within
the current scope of a statement s. Consequently, an aspect-
oriented system provides a context for join points that does
not necessarily correspond to the statement’s context.

Definition 3.2 (Join Point Context). A join
point context for a given join point jp is a subset of context
defined by a statement s:

context(jp) ⊆ context(s)

Hence, a join point’s context is a subset of the context

5We will consider program rewriting systems as an aspect-
oriented technique here.

defined by the underlying statement6. Based on this defini-
tion, we define state-based pointcut constructs as follows.

Definition 3.3 (State-based Constructs). State-
based pointcut constructs allow to specify selection criteria
for a dynamic join point jpi=(s, σi) based on variable
values defined in the join point’s context:

val(v, σi), v ∈ context(jpi).

The characteristic element of state-based constructs is
that they permit to specify selection criteria for a join point
based on the system’s state at the corresponding join point
(hence we use the term current state).

In general, different pointcut languages of different aspect-
oriented systems can be classified according to the size and
quality of the context for a join point. Obviously, the more
information is available in the context, the more fine-grained
selection criteria can be specified. In general, the number
of variables can vary between one7 to the number of vari-
ables defined by the environment envσ

8. In the latter case
however the concept of join point context is superfluous.

Besides the context size it is observable that different
aspect-oriented systems based on state-based pointcut con-
structs differ in respect to the quality of context values acces-
sible by the pointcut language. For example, earlier versions
of AspectJ (that did not contain the if-pointcut) permit-
ted to specify selection criteria only for the runtime types of
objects that are accessible via the join point context (using
the above mentioned pointcut designators). I.e. it was not
possible to specify for example field values of participating
objects as selection criteria. Current AspectJ versions also
offer access to values using the if pointcut designator.

3.3 Progress-based Pointcut Constructs
Specification-based and state-based pointcut constructs

already permit to classify the features provided by a wide
range of aspect-oriented systems. However, it is observ-
able that a certain kind of pointcut designators does not fit
into these categories. For example, the proposed dataflow-
pointcut [14] not only refers to the current state of the sys-
tem, but also to a state that once was reached. I.e. the
values the pointcut construct refers to in order to select a
join point jpi do not necessarily come from the environment
envσi , but from an environment envσj (where not necessar-
ily j = i).

From our point of view this represents a different class
of pointcut construct that we call progress-based pointcut
constructs.
6It is theoretically possible that a system provides a larger
context than defined by the underlying statement, like for
example adding additional variables from the environment.
However, until now there is no system known to us that pro-
vides such functionality. Additionally, allowing to access the
whole environment would somewhat invalidate the concept
of a dynamic join point, as you could basically always mon-
itor the state completely independent from any statement.
7In case the number of variables is zero, the pointcut lan-
guage is not able to specify any runtime-specific condition
on the join point. Consequently, all join points (of a certain
kind) would be selected; this corresponds to a static join
point selection.
8I.e. the maximum number of variables is the number of
variables defined in in the environment (whereby the defi-
nition of what variables belong to the environment depends
on the semantics of the underlying language).

Definition 3.4 (Progress-based Constructs).
Let J = {0, . . . n}. A progress-based pointcut construct
allows to select a join point jpi by reasoning on the
following values:

val(v), v ∈ (envσj)j∈J .

However this definition – similar to state-based constructs
– seems to be overly general. Again it seems reasonable that
selection criteria only refer to elements of their respective
join point context.

Definition 3.5 (Context- & Progress-based).
Let J = {0, . . . n}. A progress-based pointcut construct
allows to select a join point jpi by reasoning on values of
join point contexts:

val(v), v ∈ (context(jpj))j∈J .

Another difference between pointcut constructs is,
whether they permit to reason on past environments, or even
future environments for a certain join point. The major
difference is that the values provided by a previous envi-
ronment are available, while values of future environments
(in general) are not. Therefore, current aspect-oriented sys-
tems in general only provide a specific kind of progress-based
pointcut constructs - past-based constructs.

Definition 3.6 (Past-based Constructs). A past-
based pointcut construct allows to select a join point jpi by
reasoning on values of join point contexts,

val(v), v ∈ (context(jpj))j∈{0,...,i}.

While past-based pointcut constructs seem quite natural
as all currently available progress-based constructs – like
for example the cflow-pointcut in AspectJ or the proposed
dataflow-pointcut – belong to this category, future-based
constructs seem weird at first.

However one could also theoretically imagine a – very ex-
pensive – system allowing to set a save point when a future
criterion has to be evaluated, resume normal execution until
the specified criterion can be evaluated and if it evaluates to
true reset to the save point and adapt the join point (and
finally proceed with normal execution). As the practical
value of these constructs can be doubted9 we restrict our
discussion to past-based pointcut designators.

4. USING POINTCUT CONSTRUCTS
TO CLASSIFY AOP SYSTEMS

The proposed classification of pointcut constructs can be
directly used in order to classify aspect-oriented systems.
In this section, we apply the classification to pointcut con-
structs to the AOP systems AspectJ, Hyper/J, Sally and
AspectS.

4.1 Hyper/J
Hyper/J provides a pointcut language within its concern

mapping, as well as in its hypermodules. Within the con-
cern mapping file packages, classes, operations and fields are

9This would include several problems known from database
theory to revert transactions, some operations simply can’t
be undone (e.g. output).

enumerated in order to be added to a hyperslice. Within the
hypermodule specification it is possible to refer to the ele-
ments from a hyperslice by their names in order to compose
them using predefined composition rules like merge, override
or bracket.

The elements Hyper/J selects in order to composed them
represent pure static join points. Consequently, the pointcut
language of Hyper/J is a pure specification-based pointcut
language.

4.2 Sally
Sally [8] is a Java-based aspect-oriented system that pro-

vides a logic pointcut language and that permits to specify
parameterized introductions as well as parametric advice.
The underlying mechanism is that the pointcut language
is not only used to determine whether a join point should
be selected, but also to compute parameters that are used
within the code that adapts a number of join points.

The pointcut language in Sally is pure specification-based;
it only refers to elements from the application’s code. It is
not possible to specify runtime-specific conditions within the
pointcut language.

4.3 AspectS
AspectS [11] is an aspect-oriented system based on the

Smalltalk dialect Squeak. AspectS does not directly spec-
ify new language constructs for pointcuts, but a number of
classes that can be used to specify join point selections.

A pointcut in AspectS consists of a so-called join point
descriptor, which contains a class- and a method description
representing the (static) join point (called shadow), and an
advice-activator which represent the join point checks which
execute whenever a join point shadow is reached.

The join point descriptor selects methods due to their
static properties. Hence, it can be regarded as a language
constructs that belongs to the class of specification-based
pointcut languages. The advice-activators on the other hand
are executed at runtime and decide, based on the corre-
sponding evaluation, whether the advice should be executed.
Hence, advice activators belong in general the class of state-
based pointcut languages.

Similar to AspectJ, AspectS provides a special advice ac-
tivator to select join point because of selection criteria ap-
plied to objects on the call stack. However, Smalltalk al-
ready provides access to the call stack via a special variable.
Consequently, this control-flow specific join point selection
is – in contrast to AspectJ – a state-based construct, and
no progress-based criterion. Because of that, AspectS can
be regarded as an aspect-oriented system that provides a
specification-based, as well as a state-based pointcut lan-
guage.

4.4 AspectJ
AspectJ currently is the most popular aspect-oriented sys-

tem based on the programming language Java. Interestingly,
AspectJ provides a pointcut language that contains elements
from each of the described construct classes.

First of all, AspectJ provides pointcut designators that di-
rectly refer to pure syntactic elements of the underlying ap-
plication. Examples are constructs like the call, execution,
get, set, handler or the within(code) pointcut designa-
tors. For example, call selects method calls within the
base application according to the method’s name, the pa-

Figure 1: Graphical representation of AspectJ’s
pointcut language

rameters’ static types and the target’s static type.
Second (as already briefly discussed in section 3.2) point-

cut designators like this, target, args and the if-construct
refer to the application’s state: the first three of them per-
mit to select join points according to the actual types of
objects participating in a join point, the latter one permit
to pass objects of the join point’s context to a static method
in order to determine whether or not a join point should be
selected.

The cflow-construct finally does not fit into the state-
based category. This construct permits to select a join point
because of objects which are on the call stack. Java itself
permits to reason about the call stack in a merely textual
manner (exception traces). Consequently, selecting a join
point because of a previously reached method signatures re-
quires only a state-based pointcut language. But since Java
does not permit to reason on objects of the current call
stack, the cflow-designator AspectJ provides information
about the past execution and hence is a past-based pointcut
construct.

We can also backup this observation by examining the
language semantics for the cflow construct defined in [16].
The evaluation rule for a cflow-expression clearly references
the “previous join point”, and thus passed system states.

Figure 4.4 shows the characteristics of AspectJ in a graph-
ical manner. Although AspectJ has constructs which can be
classified in all three language classes, neither of these classes
is completely covered by AspectJ. For example, the cflow-
construct represents only a very limited from of past-based
join point selection. It is not possible for example to refer
to previous field values of objects.

5. RELATED WORK
There is no related work known to us that classifies

aspect-oriented systems according to their pointcut lan-
guages. However, there are works that provide frameworks
to compare aspect-oriented systems.

In [15] a modeling framework for aspect-oriented systems
is proposed. The framework models aspect-oriented mech-
anisms as a weaver that combines two input programs to
produce a woven system. A weaver is modeled as a 11-tuple

where each element of the tuple represents a different view
on the system: there are elements for example for represent-
ing the set of join points, the set of join point adaptations,
the set of elements that represent distinguishing character-
istics to identify join points, etc.

Afterward, based on that framework, a number of im-
plementations are proposed that represent different aspect-
oriented mechanisms (like for example pointcuts and advice
in respect to AspectJ, composition strategies in respect to
Hyper/J, etc.). The framework describes commonalities be-
tween weavers, whereby the elements of the 11-tuple rep-
resent common characteristics of aspect-oriented systems,
but the approach does provide distinguishing features that
can be used to compare different systems. For example, the
modeling framework can be used to say that Hyper/J as
well as AspectJ are aspect-oriented systems, but it is not
possible to determine any distinguishing characteristics for
them.

In [3] different dynamic aspect-oriented systems are com-
pared. The underlying criteria for this comparison are for
example efficiency or robustness. In contrast to the pro-
posed classification of pointcut language constructs, the cri-
teria used in [3] are on a different level of abstraction. While
the here proposed classification categorizes language con-
structs according to the objects they reason on, the criteria
used in [3] concentrate on more implementation-specific is-
sues.

6. DISCUSSION AND CONCLUSION
In this paper we propose three classes of pointcut con-

structs – specification-based, state-based and progress-based
constructs. We applied these construct classes to a num-
ber of aspect-oriented systems (namely AspectJ, Hyper/J,
Sally and AspectS) to illustrate that it is possible to ana-
lyze aspect-oriented systems in respect to their underlying
pointcut languages. Each of the three proposed classes has
a very different flavor associated with it.

6.1 Discussing the Construct Classes
First, we observe that state-based as well as progress-

based pointcut languages refer to a program’s state. Hence,
both classes are somehow closer related to each other than
to specification-based pointcut languages. The reason for
this lies in the different abstraction underlying specification-
based, state-based and progress-based pointcut languages.
While developers using a specification-based pointcut lan-
guage need to think in terms of syntactic elements of the
base language, developers using a state- or progress-based
pointcut language think in terms of objects and object-
relationships.

In our experience this syntax-based abstraction tends to
be more complex to understand – in terms of the underlying
pointcut semantics (although the set of selected join points
might be easier to evaluate). Furthermore, developers typ-
ically have additional efforts to specify dynamic join point
selection criteria in the adapting code as dynamic constructs
are not available in the selection language.

For example, if the developer needs to intercept all mes-
sages (i.e. calls to a method) m from an object of type A in a
class-based language like Java, he needs to specify all poten-
tial occurrences of m in class A as well as in all superclasses of
A (for reasons of simplicity we neglect interfaces here). Since
each occurrence of method calls in superclasses of A poten-

tially belong to an object which is not an instance of A, the
developer needs to check within the join point adaptation
whether or not the calling object actually is an instance of
A for the currently selected static join point.

Second, we observe that it is under certain circumstances
possible that an aspect-oriented system providing state-
based but no past-based constructs permits to select the
same join points. For example, if AspectJ would not pro-
vide the cflow construct, it is still possible to select all join
point that occur in a certain control flow by providing ad-
ditional implementation within the join point adaptation
(manually maintain a call stack representation) and apply-
ing the if-construct in an appropriate way. Similar to the
previous paragraph, this requires additional effort within the
join point adaptation.

Although the difference between state-based and progress-
based constructs does not seem to be that fundamental prog-
ress-based constructs indeed add language constructs which
are not (or only with unreasonable efforts) expressible using
state-based constructs. We outlined the dataflow point-
cut designator as a prototypical example. However, this
increased expressive power is not without cost: dataflow as
well as cflow tend to be rather expensive constructs, their
value is thus limited.

6.2 Conclusion
To summarize, the proposed construct classes provide an

abstract understanding of aspect-oriented systems. From
our point of view such an understanding is necessary in or-
der to speak about different kinds of join point selections on
a conceptual level without referring to concrete implemen-
tations.

We regard the construct classes as a useful tool to ana-
lyze future trends in aspect-oriented language development.
Major research efforts are taken to provide new pointcut
language constructs. Without an abstract understanding of
the kind of language construct it is hardly possible to state
how it relates to existing constructs.

Thus the proposed classes permit to better compare con-
structs on an abstract level and also suggest a design space
for new constructs.

7. REFERENCES
[1] Don Batory. A tutorial on feature oriented

programming and product-lines. In Proceedings of the
25th International Conference on Software
Engineering, pages 753–754. IEEE Computer Society,
2003.

[2] C. Bockisch, M. Haupt, M. Mezini, and
K. Ostermann. Virtual Machine Support for Dynamic
Join Points. In Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 26–35. ACM Press, 2004.

[3] R. Chitchyan and Ian Sommerville. Comparing
dynamic ao systems. Technical Report Technical
Report 04.01, RIACS, 2004. Filman, R.; Haupt, M.;
Mehner, K.; Mezini, M. (Hrsg.): Dynamic Aspects
Workshop (DAW’04) at AOSD 2004.

[4] Peri Tarr et al. Hyper/j: Multi-dimensional separation
of concerns for java. In Proceedings of the 23rd
international conference on Software engineering,
pages 729 – 730, 2001.

[5] R. E. Filman. What is aop: Revisited. In Workshop
on Multi-Dimensional Separation of Concerns at
ECOOP. Budapest, Hungary, June 2001.

[6] Kris Gybels and Johan Brichau. Arranging language
features for more robust pattern-based crosscuts. In
Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 60–69.
ACM Press, 2003.

[7] Stefan Hanenberg, Robert Hirschfeld, and Rainer
Unland. Morphing aspects: Incompletely woven
aspects and continous weaving. In Proceedings of the
3rd international conference on Aspect-oriented
software development, pages 26–35. ACM Press, 2004.

[8] Stefan Hanenberg and Rainer Unland. Parametric
introductions. In Proceedings of the 2nd international
conference on Aspect-oriented software development,
pages 60–69. ACM Press, 2003.

[9] William Harrison and Harrold Ossher.
Subject-oriented programming: a critique of pure
objects. In Proceedings of the eighth annual conference
on Object-oriented programming systems, languages,
and applications, pages 411 – 428, 1994.

[10] Erik Hilsdale and Jim Hugunin. Advice weaving in
aspectj. In Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 26–35. ACM Press, 2004.

[11] Robert Hirschfeld. AspectS – Aspect-Oriented
Programming with Squeak. In LNCS: International
Conference NetObjectDays, NODe 2002, Erfurt,
Germany, October 7–10, 2002. Revised Papers,
volume 2591 / 2003, pages 216 – 232. Springer-Verlag
Heidelberg, 2003.

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. Lecture Notes in Computer
Science, 2072:327–355, 2001.

[13] Gregor Kiczales, John Lamping, Anurag Mendhekar,
and et al. Aspect-oriented programming. In ECOOP
’97 - Object-Oriented Programming: 11th European
Conference, Jyvskyl, Finnland. Proceedings, page 220,
June 1997.

[14] H. Masuhara and K. Kawauchi. Dataflow pointcut in
aspect-oriented programming. In Programming
Languages and Systems, First Asian Symposium,
APLAS 2003, Beijing, China, November 27-29, 2003,
Proceedings, pages 105–121. Springer-Verlag, 2003.

[15] Hidehiko Masuhara and Gregor Kiczales. Modeling
crosscutting in aspect-oriented mechanisms. In
Proceedings of ECOOP2003, LNCS, July 2003.

[16] Mitchell Wand, Gregor Kiczales, and Christopher
Dutchyn. A semantics for advice and dynamic join
points in aspect-oriented programming. ACM Trans.
Program. Lang. Syst., 26(5):890–910, 2004.

	Motivation
	Setting the Scene
	A Conceptual Model for Aspect-Orientated Systems
	Static versus Dynamic Join Points
	Modeling Dynamicity: a Program Execution Model
	Join Points and Join Point Model

	A Classification of Pointcut Constructs
	Specification-based Join Point Languages
	State-based Constructs
	Progress-based Pointcut Constructs

	Using Pointcut Constructs to Classify AOP Systems
	Hyper/J
	Sally
	AspectS
	AspectJ

	Related Work
	Discussion and Conclusion
	Discussing the Construct Classes
	Conclusion

	References

