
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

SSA-based Register
Allocation for Compressed

Machine Code

Masterarbeit von

Maximilian Stemmer-Grabow

an der Fakultät für Informatik

2

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuender Mitarbeiter: M. Sc. Andreas Fried

Abgabedatum: 20. Dezember 2021

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Abstract
Many RISC instruction sets include compressed instruction variants to improve code
density. Due to limited encoding space, these compressed variants are restricted, often
in terms of the registers they can be used with. This means that explicitly modeling
these restrictions during register allocation can be leveraged to improve compression
of the resulting code. In this thesis, we present an extension to the SSA-based
register allocator used in the LibFirm framework that enables compression-aware
register allocation. It is an opt-in optimization that can be enabled for backends by
specifying compression requirements for instructions. It supports specifying a limited
subset of compressible registers to be used in compressed instructions, 2-address
requirements for instructions, and combinations of these requirements. We implement
the optimization for LibFirm’s RISC-V backend and evaluate the resulting code
size improvements: Using the optimization, we can observe an overall aggregated
reduction of text segment sizes in compiled object files of around 4.2% or 5.7% in
Embench or SPEC CINT2000 benchmark suites, respectively. At the same time, the
overall number of generated instructions does not increase by more than 0.2% for
any of the benchmarks from SPEC CINT2000. This indicates that the optimization
does not otherwise negatively affect the performance of the generated code.

Zusammenfassung
Viele RISC-Architekturen enthalten zur Verringerung der Codegröße komprimierte
Instruktionsvarianten. Diese sind in ihrer Funktionalität beschränkt, was häufig die
Auswahl von Registern für Operanden und Ergebnisse betrifft. Deswegen kann die
Codegröße dieser Architekturen verringert werden, indem diese Beschränkungen auch
im Compiler beachtet werden. Diese Arbeit enthält eine Erweiterung des auf SSA
aufbauenden Registerallokators des LibFirm-Frameworks, die Code-Kompression
bei der Registerallokation explizit modelliert. Die Optimierung kann für Backends
in LibFirm genutzt werden, indem für alle Instruktionen die Bedingungen spezifi-
ziert werden, unter denen sie komprimierbar sind. Dazu können für komprimierte
Instruktionen Beschränkungen auf eine Teilmenge von komprimierbaren Registern
und 2-Adress-Bedingungen angegeben werden, sowie Kombinationen davon. Die
Optimierung wurde für das RISC-V-Backend in LibFirm implementiert und die
Verbesserung der Codegröße untersucht: Mit der Optimierung lässt sich die Größe
von Textsegmenten in Objektdateien im Mittel um etwa 4,2% (für Embench) bzw.
5,7% (für SPEC CINT2000) verringern. Gleichzeitig steigt die Gesamtzahl von
generierten Instruktionen bei keinem der SPEC-Benchmarks um mehr als 0,2% an,
die Optimierung verschlechtert also nicht die Performance des generierten Codes.

Contents

1 Introduction 7

2 Foundations 11
2.1 Compressed ISAs . 11
2.2 RISC-V Compressed Instruction Set Extension 14
2.3 LibFirm Architecture . 17
2.4 Register Allocation in LibFirm . 20

2.4.1 Copy Optimization Heuristic 21
2.4.2 Mandatory 2-Address Requirements 25

3 Related Work 27
3.1 Irregular Architectures and Register Allocation 27
3.2 Register Allocation and Code Generation for Compressed ISAs 28
3.3 Optimal Register Allocation . 30

4 Compression Optimization 33
4.1 Design Requirements . 33
4.2 Compressibility Specification . 35
4.3 Compression Requirement Handling 37

4.3.1 Static Register Order . 37
4.3.2 Affinity Graph Structure . 40
4.3.3 Copy Optimization Heuristic 42

4.4 Backend Integration . 46

5 Evaluation 49
5.1 Scope and Affected Metrics . 49
5.2 Benchmarking Data Set . 50
5.3 Setup . 51
5.4 Results . 56

6 Conclusion and Future Work 63

A Appendix 71

5

1 Introduction
Apart from their semantic correctness, programs generated by optimizing compilers
can be evaluated according to different metrics: These include performance when
running the code or the overall size of the resulting executables. Optimizing for
small code size is especially important when space is limited, for example when
dealing with embedded applications, but can also in turn affect code performance.
The associated metric is called code density, which describes the required code size
of a program which performs a specific function – a higher code density implying a
smaller footprint for the executable.
Architectures based on the RISC philosophy (short for reduced instruction set

computer) are successful due to being easier to specify and implement in hardware,
but their trade-offs often negatively affect code density of generated code. This
difference in code size between traditional fixed-length RISC and CISC code has
previously been surveyed and placed at around 25% on average [1]. Uniform instruc-
tion lengths common in RISC instruction sets simplify the architecture, but also
reduce flexibility when it comes to the amount of information encoded in specific
instructions. RISC architectures are also often designed as load-store architectures,
separating instructions accessing memory from those operating on data in registers.
This lowers the required number and complexity of different instruction types, but
may also increase the number of instructions in a given program when compared to
typical CISC architectures.
To counteract problems with lower code density, several architectures have intro-

duced the notion of compressed instructions, instruction variants that have shorter
encodings than the standard instruction length. Due to the limited encoding space
available for these shortened instructions, they can only cover a part of the original
instruction set: Not all instructions can be included and there need to be restrictions
on the information that is encoded in the instructions themselves. Often, this is
achieved by requiring operands or results to be in a certain subset of all available reg-
isters, or an operand and the result being placed in the same register (i.e., conforming
to a 2-address instruction format).

The RISC-V architecture this thesis is focused on includes compressed instructions
in its C extension (also abbreviated RVC). They are also restricted in this way:
For example, RISC-V defines a sub instruction which subtracts the contents of
two registers: sub rd, rs1, rs2 places rs1− rs2 into the register rd. In the base
instruction set, either operand can be chosen from any of the 32 general purpose
registers available in RISC-V, and the result can be placed in any register. The
compressed sub instruction variant requires the result to overwrite the first operand
(rs1 and rd have to be identical). Additionally, all involved registers have to be in

7

1 Introduction

the subset of eight compressible registers instead of the full register set. Both of these
requirements need to hold in order to be able to choose the compressed instruction
variant. A more detailed description of the RISC-V Compressed extension will be
presented later in section 2.2.
For cases such as RVC where the requirements for compressed instructions are

related to the register set, this introduces a dependency on the result of register
allocation in the compiler: Whether an instruction can be expressed in a compressed
format depends on which values in the program are placed in which physical register.

In general, operand placement in registers is often somewhat restricted, especially
in CISC architectures. For example, architectures may require that operands are
placed in certain registers in order for them to be used with a specific instruction.
Of course, these restrictions are mandatory: They have to be fulfilled in order to
generate correct code for the architecture. For this reason, this kind of restriction is
already modeled in compilers and compilers are aware of it during register allocation.

Restrictions related to compression we are concerned with in this thesis are different,
however: Compression-related requirements are optional and not required to generate
correct code. In cases where the compression restrictions cannot be fulfilled, the
uncompressed instruction encoding can be chosen instead, the penalty being the
larger code size that comes with using the uncompressed instruction. This makes
trying to fulfill compression-related restrictions a trade-off: As many of them as
possible should be fulfilled, but without introducing more instructions overall.

However, modern compilers usually do not directly model and optimize for compres-
sion requirements when performing register allocation. This thesis aims to improve
code density by explicitly making the compiler aware of these requirements. To
do this, we focus on the compressed instruction extension for RISC-V and modify
the register allocation step which is part of LibFirm, a graph-based intermediate
representation library. It includes backends for multiple instruction sets, RISC-V
being one of them.
LibFirm’s register allocation includes a step called copy elimination (or copy

optimization). It employs a heuristic to try to find a valid register allocation that also
minimizes the number of times values need to be copied (or moved) between different
registers when running the program. To simultaneously maximize the number of
instructions that are compressed in the final compiled program, we extend this step to
account for the compression requirements of specific instructions. This also requires
a way to express which instructions can be compressed (and under which conditions)
in the architecture-specific backends for LibFirm. In the case of the sub operation,
the backend can provide the information that there is a corresponding compressed
instruction which requires the first operand to be in the same register as the result
as well as all involved registers to be in the compressible register subset. The copy
elimination algorithm can incorporate this into the placement of the operands and
result of the instruction. This can then be applied for every instruction that may be
compressed if similar requirements hold. The most important design goals for this
extension include:

8

• The quality of the register allocation should not be negatively affected. Register
allocation has a large impact on the performance of the generated code: Its
result determines the number of times data has to be copied between registers
or registers and memory when running the code. This not only affects run-
time performance, but also the resulting code size (via the number of move
instructions between registers remaining in the program code).

• The extension should also keep the additional complexity introduced into the
register allocation algorithm itself to a minimum: Improved compression is
desirable, but should not come at the cost of considerably longer running time
of the register allocator. It also should not include changes to the allocator
that make it much harder to understand and reason about.

We evaluate the results of the optimization by comparing resulting code sizes in
benchmarks using cparser, a C compiler which uses LibFirm for intermediate code
representation, optimization, and code generation.

The thesis is structured in the following way: Chapter 2 contains an introduction
to the context of and the concepts required in the thesis. This includes compressed
instruction sets as well the LibFirm infrastructure and its theoretical foundations.
Chapter 3 provides an overview over other works relevant in this context: Works
dealing with register allocation confined by restrictions present in many computing ar-
chitectures. It also surveys other works that deal with compiling code for architectures
that support compressed machine code. Contributions of the thesis are structured in
this order: An overview over the design of the compression optimization as well as
how it is implemented can be found in chapter 4. Measurements, comparisons, and
results are presented in chapter 5. Chapter 6 outlines starting points for possible
future work in the context examined here and concludes the thesis.

9

2 Foundations

This chapter serves as an introduction to the basic concepts and ideas that are
relevant to this thesis. We will first take a look at the rationale and design of
compressed instruction sets as well as some specific examples in section 2.1, followed
by a more in-depth look at the compressed instruction extension for RISC-V in
section 2.2. A brief introduction to the LibFirm approach and its architecture is
contained in section 2.3, especially concerning where and how register allocation
is integrated there. LibFirm’s register allocation approach and especially its copy
optimization step is covered in section 2.4.

2.1 Compressed ISAs
As mentioned in the previous chapter, the concept of compressed instructions is
related to optimizing code density. A higher code density corresponds to a smaller
total size of the instructions required for a particular program when compiled for
a specific architecture. Especially for RISC architectures with uniform instruction
lengths, this is a challenge: Different types of instructions typically also have different
requirements for the amount of data that is useful to include in them, e.g. depending
on the number of operands or the desirable length of immediate values. Many RISC
architectures are also designed as load-store architectures: These isolate instructions
for transfer of values between memory and registers from instructions operating on
them. As an example, this means that as arithmetic instructions only operate on
values in registers, the additional required load and store instructions often lead to
overall higher instruction counts. In contrast, CISC architectures are often designed
with variable-length instruction encodings.

For example, let us examine the code generated for a simple function that computes
the maximum of two operands with one of them being scaled beforehand:

int max42(int a, int b) { return (a * 42 > b) ? a : b; }

Figure 2.1 shows code generated for RISC-V (with 32-bit instruction length and
without compressed instructions) and x86. In this case, even though both code
versions contain five instructions, there is a difference in code size: Due to the
variable-length encoding of x86 instructions, they only require 11 bytes while the
RISC-V instructions take up 20 bytes.

As a matter of course, this difference between code sizes varies a lot across different
code samples and architectures. Overall, in a survey of code densities of different

11

2 Foundations

max42:
02 a00793 li a5, 42
02 f507b3 mul a5, a0, a5
00 f5c463 blt a1 , a5, <max42+0x10 >
00058513 mv a0, a1
00008067 ret

(a) RISC-V

_max42:
89 d0 mov %edx , %eax
6b d1 2a imul $0x2a , %ecx , %edx
39 c2 cmp %eax , %edx
0f 4f c1 cmovg %ecx , %eax
c3 ret

(b) x86

Figure 2.1: Comparison between RISC-V and x86 code generated for the function int
max42(int a, int b) { (return a * 42 > b) ? a : b; }.

instruction sets, Weaver and McKee found code sizes for fixed-length RISC instruction
sets to be an average of about 25% larger than those for CISC instruction sets [1].
Compressed instructions aim to reduce this difference by introducing variable-

length encodings: There are multiple RISC instruction sets that include the notion
of compressed instructions, including RISC-V. These may be included as variants of
or as extensions to the original fixed-length instruction sets. In our example above,
using the compression extension for RISC-V, two of the five instructions could be
replaced by compressed instructions. These only take up 16 bits each and in this case
bring down the code size from 20 to 16 bytes. When evaluating instruction sets that
support compression or a specific group of instructions, we use the term compressed
instruction rate to describe the share of instructions that are compressed (in the
example above, it is 40%).
Let us review and compare the approaches for enabling compression in some

architectures most relevant in the context of this thesis:

ARM and Thumb Thumb is an instruction set based on the ARM instruction set
[2], which was introduced to achieve higher code density when compared to ARM
code by utilizing instructions with a length of 16 instead of 32 bits. Most of these
shortened instructions are closely related to ARM instructions, but not all of them
are directly expandable into uncompressed instructions. Not all instructions in the
ARM instruction set are available as shortened instructions in Thumb, and available
instructions are constrained: For example, of the 16 general purpose registers available
with ARM, only eight are available as general purpose registers with Thumb. Three

12

2.1 Compressed ISAs

additional registers have special functions with certain instructions, but are not
arbitrarily accessible. Processors can support both Thumb and ARM instruction sets
simultaneously: In this case, explicit mode switch instructions can be used to change
between ARM and Thumb execution modes. Other works have investigated how
compression can be optimized for this kind of explicitly mode-switching architecture
(more details can be found in section 3.2).

Instructions in the original Thumb specification are not designed to provide the
full functionality from the ARM instruction set. To alleviate this, Thumb-2 (2003) [2]
extends Thumb with new instructions, especially in 32-bit encodings: These aim to
reintroduce most functionality from the ARM instruction set missing from Thumb,
but are separate instructions not included in ARM. This effectively converts Thumb
into a mixed-length instruction set which aims to cover similar functionality as the
separate, fixed-length 32-bit ARM instruction set. This also removes the need for
changing execution modes in between instructions by allowing 16- and 32-bit encoded
instructions to be directly intermixed. To be able to target both Thumb and ARM,
the Thumb-2 extension also includes an assembly syntax that can be compiled to
both variants, called Unified Assembly Language (UAL for short). Note that the
Thumb-2 extension replaced the original instruction set and is now only referred to
as Thumb in its specification.

MIPS MIPS16e and its successor MIPS16e2 are extensions to the MIPS32 and
MIPS64 instruction sets [3] which include 16-bit instructions. Processors implementing
them have an execution mode that has to be explicitly set: A mode switch instruction
needs to be executed before any of these additional 16-bit instructions. For most
instructions in the 16-bit execution mode, only a subset of eight registers is available
instead of the full 32 registers available with 32-bit instructions. Only compressed
move instructions support access to all registers.

There is also a more recent addition which removes the need for explicit execution
mode switching: microMIPS [4] is an extended ISA variant based on MIPS32/64
which includes additional instructions with 16-bit length, similar to those defined
in MIPS16e(2). microMIPS is a superset of MIPS32/64 and hence also allows the
longer, uncompressed instructions to be used. As it does not require an explicit mode
switch, instructions can be freely intermixed between microMIPS’ additional 16-bit
and regular 32-bit MIPS instructions. Similarly to MIPS16e(2), most instructions
are restricted to access a subset of eight registers (registers 2-7, 16, and 17 in MIPS
register encoding) [4].

As microMIPS has been introduced to replace MIPS16e(2), it is now the preferred
way of implementing compressed instructions for MIPS. MIPS16e has been removed
from the MIPS specification in its Release 6 [4, p. 13].

RISC-V RISC-V [5] is designed as a modular instruction set specification: Its full
functionality is split across multiple extensions that add instructions to the base
instruction set. Compressed instructions are contained in extension C, short for

13

2 Foundations

Table 2.1: RISC-V C instruction formats, taken from the RISC-V specification [5].

Format Meaning 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CR Register funct4 rd/rs1 rs2 op
CI Immediate funct3 imm rd/rs1 imm op
CSS Stack-relative Store funct3 imm rs2 op
CIW Wide Immediate funct3 imm rd ′ op
CL Load funct3 imm rs1 ′ imm rd ′ op
CS Store funct3 imm rs1 ′ imm rs2 ′ op
CA Arithmetic funct6 rd ′/rs1 ′ funct2 rs2 ′ op
CB Branch/Arithmetic funct3 offset rd ′/rs1 ′ offset op
CJ Jump funct3 jump target op

Compressed. The extension was suggested by Waterman in 2011, explicitly to im-
prove energy efficiency for execution when compared to the fixed-length RISC-V
instruction set [6]. It defines compressed instructions which are freely intermixable
with uncompressed instructions from the base instruction set or other extensions.
We will now take a more in-depth look at the design of the extension in the following
section.

2.2 RISC-V Compressed Instruction Set Extension

The RISC-V specification [5] defines three base instruction sets with different register
widths: 32-bit (RV32), 64-bit (RV64), and 128-bit (RV128). The C extension (also
called RVC) can be combined with any of these instruction sets. The extension defines
instructions with a length of 16 bits that can all be expanded into corresponding
uncompressed instructions which are semantically equivalent. Instructions with
compressed variants are contained in the base instruction set or in the F and D
extensions (which provide hardware floating-point handling). The standard provides
nine different instruction layout types in this 16-bit format, shown in table 2.1. The
encodings are chosen from these formats according to the required fields in each
specific compressed instruction. During execution, compressed instructions can be
expanded into their long-format equivalent by the processor in the decoding step.
The opcode encoding space for compressed instructions is reserved and not used in
uncompressed base instructions sets or other extensions. On machines which support
the extension, RVC allows compressed and uncompressed instructions to be freely
intermixed without the use of a flag or special instruction to toggle instruction
modes. RVC also relaxes the alignment requirements for uncompressed instructions,
which precludes the need for padding when switching between compressed and
uncompressed instructions (as such padding would negatively affect code size).

The fact that compressed instructions correspond directly to uncompressed instruc-
tions and can be intermixed as described make RVC a good candidate for a prototype
implementation of explicitly incorporating compression into register allocation. This
is why we chose it as the focus for this thesis.

14

2.2 RISC-V Compressed Instruction Set Extension

RISC-V provides the following workflow for creating code that includes compressed
instructions: Explicit mnemonics for compressed instructions with the prefix c do
exist as part of RISC-V assembly. However, these are not required to generate
compressed code when using the assembler that is part of the RISC-V toolchain. As
any compressed instruction has an uncompressed counterpart, the assembler can
select compressed variants for those instructions which comply with all compression
requirements, even if they are not explicitly indicated as compressible in the assembly
code.
This allows a form of implicit compiler support: The compiler does not need to

be aware of compressed instructions or their requirements if it emits assembly code
that is passed to the RISC-V assembler. Instructions which satisfy all requirements
are then transformed into their compressed versions. LibFirm uses this fact in its
RISC-V backend and emits the same assembly code for platforms with or without
support for the C extension, passing the selection of compressed instructions on
to the assembler. However, as compared to this “incidental” compression, explicit
compiler support can increase the number of overall instructions that satisfy the
requirements for compressed instructions, hence reducing code size further.

We will now take a closer look at the specific compression requirements included in
RVC. Evaluating whether a single instruction can be compressed means evaluating
each compression requirements associated with it. Not all types of instructions have
compressed encodings, so the very first criterion is the instruction having an opcode
that also has a compressed variant. We will outline below which other types of
requirements RVC imposes on compressed instructions apart from this.

Immediate and O�set range Many values that are directly encoded in compressed
instructions are limited to a shorter length than in their uncompressed counterparts:
This applies to immediate values for register-immediate or constant generation
instructions. These have a (signed) immediate field which is limited to 6 bits. Branch
and jump target offsets are also limited to 8 and 11 bits, respectively.

Compressible registers Regular RISC-V instructions that can operate on any
register include 5-bit register specifiers to select it (making all 32 registers of the
RISC-V register set accessible unless specifically forbidden by the specification).
Many compressed instructions can only accomodate 3-bit shortened register specifiers,
which can select from only eight of the available registers. As shown in table 2.1,
this is the case for the CIW, CL, CS, CA, and CB instruction formats. The registers
which can be specified this way are registers x8 to x15 (called s0-s1 and a0-a5 in
the RISC-V ABI). These registers are most commonly used as they are the ones
defined in the RISC-V calling convention to be used to pass the first parameters for
function calls, which are passed in registers instead of on the stack. Registers in this
subset are referred to as compressible registers in this thesis. When combined with
the hardware floating-point extensions, there is a similar subset that covers eight

15

2 Foundations

of the 32 floating-point registers which can be addressed using shortened register
specifiers.

2-Address Format Instructions with input and output registers may also have a
requirement for a 2-address instruction format. This applies for CR, CI, CA, and
CB instruction formats. RISC-V specifies uncompressed instructions in 3-address
formats where applicable, meaning that operands can be specified separately from
the destination. With a 2-address requirement, one operand must be in the same
register as the result. This means the first operand cannot be used again in later
instructions without moving it to another register prior to executing the 2-address
instruction.

Note that for instructions with multiple requirements, every single one of them has
to be fulfilled in order for the instruction to be compressible. For example, the sub
instruction we used as an example in a previous chapter uses the CA format: It
combines a 2-address requirement with the need for operands to be in compressible
registers. If either of these requirements is not fulfilled, the uncompressed instruction
has to be chosen (which has neither of these restrictions). This means that all
compression requirements for an instruction are linked: Only fulfilling them partially
while others remain unmet does not offer any advantage with respect to compression.
However, fulfilling requirements partially may of course affect compressibility of other
instructions.

The RISC-V specification [5] defines compressed variants for a number of instruction
types, each with a combination of the different limitations described above. The
following instructions are compressible:

• Load and store instructions with a source or target register that is compressible.
However, stack-pointer-relative compressed loads and stores can be used with
all registers. The offset of the specified address from a register is limited to
5 bits (or 6 bits for stack-pointer-relative loads and stores) and is scaled to
increase the range.

• Jump instructions with a limited offset. This includes jumps to addresses in
registers and jump and link instructions. Compressed branch instructions exist
for comparisons of a compressible register with zero.

• Constant generation instructions with small immediates that fit into 6 bits.

• Move instructions from and to all registers.

• Register-based arithmetic instructions (and, or, xor, and sub instructions)
with 2-address format and with all operands and the result being in compressible
registers.

• Register-immediate shi� instructions with 2-address format and partially with
compressed register requirements.

16

2.3 LibFirm Architecture

• Register-immediate and register-register add instructions with 2-address format.
Note that for add instructions, operands are not restricted to the compressible
register subset. The compression requirements for add instructions are relaxed
when compared to other arithmetic instructions because they are usually the
most frequently used arithmetic instructions.

The extension also includes special instructions for operations related to the
stack pointer: Addition of scaled immediates onto the stack pointer can be
used to adjust the stack pointer, and stack-pointer-relative adds that write to
a compressible register are useful to generate pointers to values on the stack.

From this overview, it is already apparent that an improved compression rate cannot
be expected for all of these groups when adjusting only the register allocation step
in the compiler: All move instructions are already compressible regardless of the
result of register allocation, but their overall number is of course affected by the
quality of the register allocation result. Whether jumps and constant generation
instructions are compressible depends on the offset and immediate sizes. This is
not directly related to register allocation. Only a specific subset of all available
branch instructions is potentially compressible. Most relevant when optimizing the
register allocation step are therefore load/store and arithmetic instructions, as their
compressibility requirements are directly related to the register allocation. More
details on the relative frequency of the different instruction groups in benchmark
code and the share of compressed instructions in them can be found in chapter 5.

2.3 LibFirm Architecture

To understand register allocation in the context of LibFirm, let us first introduce the
way it represents programs: LibFirm uses a graph-based intermediate code represen-
tation (IR) called Firm [7]. Backend infrastructure to transform this representation
into executable code for several architectures is included in LibFirm, as well as a
selection of code analyses and optimizations.
LibFirm’s intermediate representation is in SSA form (short for single static

assignment). SSA requires variables in the IR to be assigned only once and then only
used afterwards. Reassigning different values to a single variable is disallowed, as is
usage of values without a prior definition. These restrictions have many advantages
for algorithms and optimizations used in the compiler.

In SSA, dependencies of values on control flow are modeled by using so-called Phi
(φ) functions: Phi functions choose from a list of previously defined variables based
on where control flow originated from and define a new variable with the respective
value. Actual hardware architectures in use do not directly support executing Phi
functions, so they need to be resolved during compilation: This is done by replacing
them with moves between registers (and/or memory) at appropriate places in the
program.

17

2 Foundations

Firm being a graph-based representation means that programs are represented as
a collection of graphs: A function corresponds to a directed graph. Data and control
flow are represented by nodes of different types and edges between these nodes. SSA
values such as the results of data flow operations correspond to nodes. Control flow
is also encoded in the graph: Instructions related to control flow and basic blocks are
also represented as nodes. Their relationships (such as the nodes included in a given
basic block or the operands of arithmetic instructions) correspond to directed edges
between them.

An example for a Firm graph is shown in figure 2.2. It depicts the max42 function
we introduced as an example in section 2.1. Each node is shown with the type of
operation it represents (such as Mul for multiplication), the type of the value (also
called mode, the Mul node representing a signed integer or Is), and a unique identifier.
Basic blocks are depicted as boxes around the nodes they contain. Proj nodes are
used to extract values for cases where nodes output tuples of multiple values. We
can also see a Phi node representing the Phi function which selects the correct value
for the ternary operator in the function.
Using this representation, LibFirm can perform a multitude of optimizations

expected from an optimizing compiler directly on the graphs: This involves transfor-
mations of the input graph that do not alter the semantics of the input program,
but e.g. improve the performance of the resulting code.
In the backend, the optimized graphs can be converted into code for the target

architecture. Even in the backend, the graphs remain in SSA form, but are modified
and annotated with additional information. Highly simplified, this includes the
following steps:

• During instruction selection, nodes are replaced with architecture specific
operations (often representing available instructions on the target architecture).

• Scheduling means arranging the nodes in a way that conforms to the depen-
dencies between values in the program and that can be used as the order
instructions are emitted in.

• The register allocator assigns values to physical registers. Before this step, most
generic nodes in the graph have already been replaced with architecture specific
ones. When determining a register assignment, the register allocator also needs
to make sure that enough registers are available to find a valid allocation: To
guarantee this, some values may need to be transferred to memory first (which
is called spilling). The register allocator needs to ensure that after being run,
each value (each node in the Firm graph) is assigned a valid register, without
conflicts between values that may be used at the same time in the program.
Register assignments are annotated as attributes of the Firm nodes. As this is
the main phase we are concerned with in this thesis, we will discuss register
allocation in LibFirm in more detail in section 2.4 below.

• After handling requirements concerning how functions are called and how the
stack is organized, the target architecture code can be generated and emitted.

18

2.3 LibFirm Architecture

max42

Block 148

Return 151

Phi Is 150

End Block 57

End 58

Start Block 59

Proj M M 65

Proj X false 74 Proj X true 73

Cond 72

Cmp b greater 238

Mul Is 69

Const 0x2A Is 68Proj Is Arg 0 66 Proj Is Arg 1 67

Proj T T_args 64

Start 62

0

0 1

0

0 0

0

0 1

0 1

0 0

0

0

01

1 0

01

Figure 2.2: Firm graph for the function int max42(int a, int b) { return (a
* 42 > b) ? a : b; }.

19

2 Foundations

To be able to use this infrastructure to compile code in a high-level programming
language, we use cparser, a C compiler built around LibFirm: It is a LibFirm frontend
for C, performing the transformation into LibFirm’s intermediate representation.

2.4 Register Allocation in LibFirm

LibFirm performs register allocation based on the formalization as a graph-coloring
problem. A vertex coloring of an undirected graph is an assignment of colors to each
node in the graph such that no two nodes that share an edge also share the same
color. Register allocation can be expressed as such a problem using the interference
graph. This is an undirected graph representing the relationship between the variables
in the program. Variables or values are nodes in the interference graph, and edges
are placed between two nodes if they are live at the same time in the execution of
the program. Variables are considered live if their value could be needed later in the
runtime of the program. This means that variables that are live at the same time
cannot be assigned the same register: They are considered interfering.
When interpreting register allocation as a coloring problem, available registers

correspond to the colors that can be used to color the graph. A valid register allocation
then corresponds to a valid coloring for the nodes of the interference graph. This
ensures that no two nodes sharing an edge are colored in the same color (i.e., no
interfering variables are assigned the same register).
Register allocation is also related to spilling: Spilling refers to deciding whether

and which values to transfer from registers into memory. This is required in order to
produce a valid register allocation in cases where more than the available number of
registers would be required without evicting some of them to memory.
This approach to register allocation as a graph-coloring problem was introduced

by Chaitin in 1982 [8]. On arbitrary interference graphs, finding a valid coloring or
even finding the number of required colors for a coloring (the chromatic number)
is NP-complete. For this reason, Chaitin’s algorithm uses the node degrees in the
interference graph as a heuristic for coloring and spilling decisions. Chaitin’s work has
been extended or built upon in numerous ways [9] [10] [11], probably most notably
by Briggs in 1992 [12]. In these algorithms, spilling and coloring are interlocked:
During coloring, it may be required to iteratively spill more values in order to find a
valid register allocation.

As we discussed above, SSA form is used throughout LibFirm’s backend without
deconstructing it for further handling. Instead, the transformations performed on the
graph by the backend yield a structure that is more and more restricted and contains
additional annotations. For example, scheduling or register assignment information
is added.
This also means that when register allocation is performed, the program’s inter-

mediate representation is still in SSA form. For register allocation, this presents
advantages related to the fact that SSA programs’ interference graphs are chordal.

20

2.4 Register Allocation in LibFirm

Chordal graphs are triangulated, meaning that for all cycles of more than three
nodes, there are edges not part of the cycle that connect two nodes in the cycle.

The theoretical foundations of the current LibFirm approach to register allocation
based on the special characteristics of SSA interference graphs were suggested in
works by Hack and Goos. They showed that for a hypothetical fully uniform register
set, register allocations for programs can be found in polynomial time [13]. More
practically relevant, Hack introduced the current principles of register allocation
in LibFirm in his PhD thesis from 2006 (published in 2007) [14]: This includes
register allocation on chordal graphs, which allows to decouple spilling from register
allocation. After spilling, register allocation on chordal graphs can be performed
without possibly having to iteratively spill more values (like it is required when
performing register allocation based on the Chaitin/Briggs algorithms).

2.4.1 Copy Optimization Heuristic
Hack also suggested the predecessor of the current copy coalescing heuristic used in
LibFirm. Copy coalescing, copy elimination, or copy optimization attempts to reduce
the number of move instructions that are required in the program. This is achieved
by intelligently selecting a register allocation which places values which would need
to be copied between registers into the same physical register. This heuristic is the
component of LibFirm’s register allocator which has the largest impact on the quality
of the resulting register allocation.

Before running the heuristic, an initial assignment of registers is determined, and
the heuristic tries to optimize it without invalidating the coloring. Note that in
the descriptions below, assignment of a value to a specific register is referred to as
coloring its node with the color corresponding to the register.

To aid the explanations below, we use pseudocode formulations of parts of the
heuristic. These are shown in algorithms 1, 2, and 3. All of these listings are adapted
from section 4.5.2 of Hack’s dissertation [14], with changes as they are reflected in
the current implementation of the heuristic used in LibFirm.

A�inities and A�inity Graphs The heuristic is based on the concept of the affinity
graph of the program. This is an extension to the idea of the interference graph. It is
an undirected graph that also contains values as nodes, but places edges between
nodes that are copy-related: This means that finding a register allocation which
assigns them the same color (places them in the same physical register) saves a move
instruction between the two.

The purpose of the copy optimization heuristic is finding a valid register allocation
that satisfies the maximum number of affinities. More precisely, it aims to fulfill the
set of affinities which would impose the highest runtime cost if their associated move
instructions could not be elided. To be able to model this, affinity edges are also
assigned a weight representing the cost of not fulfilling the affinity. The cost function
is adjustable in LibFirm: The default cost function is based on a simple heuristic
estimating instruction execution frequency.

21

2 Foundations

A�inity Chunks The reflexive-transitive closure of the affinity relation yields affinity
components. These components of the affinity graph which are connected by edges
are not always free of internal interferences. If they do have internal interferences,
the nodes in the component cannot all be colored with the same color, and not all
affinities they include can be fulfilled.

To be able to handle this situation, nodes are put into affinity chunks, interference-
free subsets of affinity components. Thus they can in principle all be colored with
the same color. In practice, this is not always possible. In that case, affinity chunks
can be split further.

Algorithm 1 Affinity Chunk Construction
1: procedure BuildAffinityChunks(IG G: (nodes V , interference edges E, affinity edges A))
2: for v ∈ V do
3: v.chunk← New chunk
4: for xy ∈ A sorted by edge weight from high to low do
5: . Add all nodes in y’s chunk to x’s chunk

if there are no interferences between the two chunks
6: AbsorbChunk(x.chunk, y.chunk)

The initial affinity chunks are constructed greedily. Pseudocode for the construction
procedure is shown in algorithm 1. Starting out with a single node, affinity chunks
are grown by collecting other nodes connected with affinities, going in the order of
decreasing affinity edge weights. At each step, this only needs to ensure that newly
inserted nodes do not interfere with any of the nodes already in the chunk.

Chunk Weights When executing the heuristic, the weights of all affinity edges
contained in a chunk are aggregated for all its nodes. This avoids having to handle
each node in the chunk separately. Lists of nodes from other chunks interfering with
any node in the chunk are also maintained per chunk for performance reasons. The
summed weight of all affinity edges which connect nodes contained in the chunk is
referred to as chunk weight.

Every chunk has an associated metric which indicates its favorability for each color.
It is based on the number of nodes in the chunk that are colorable in the respective
color; nodes that are very constrained in their color choice are weighted higher. From
this, an order of the colors can be derived, which is called the color preference of the
chunk.

Chunk Recoloring The chunk recoloring algorithm is a recursive method for heuristi-
cally finding the best color for a chunk. A simplified overview of the variant currently
used in LibFirm is shown in algorithm 2.

Colors for the chunk are tried in the order that corresponds to the color preference
value. When the color col is tried, recoloring follows this pattern: Generally, the
target is to color all nodes in the given chunk with col. If col is allowed for a node n,

22

2.4 Register Allocation in LibFirm

Algorithm 2 Chunk Recoloring
1: procedure ColorAffinityChunk(IG G, Chunk C, Queue Q)
2: . R is the set of registers in a register class (the set of colors available to color the graph)
3: Compute color preference, order colors in R by preference
4: for col ∈ R ordered by color preference do
5: Unfix colors for all nodes in C

6: for n ∈ C do
7: . Try to recolor n with col and choose a color that is not col for interfering neighbors
8: ChangeNodeColor(n, col)
9: n.fixed ← true
10: local_best ← Best subset of C colored to col
11: if local_best.weight > best_chunk.weight then
12: best_chunk ← local_best
13: best_color ← col
14: if All nodes were colored in col then
15: . Stop searching if all nodes were recolored
16: break
17: for n ∈ C do
18: ChangeNodeColor(n, best_color)
19: n.fixed ← true
20: rest ← C \ best_chunk
21: if rest 6= ∅ then
22: rest_chunk ← New chunk
23: for v ∈ rest do
24: v.chunk ← rest_chunk
25: Add rest_chunk to Q

23

2 Foundations

the recoloring decision is then propagated recursively: Interference neighbors of n
with the same color col are recolored in another color (any allowed color excluding
col) and so on. This is performed by the ChangeNodeColor procedure on line 8.
In case this recursive coloring attempt for the node n is not successful, the process
has to be rolled back to the original colors. For this, a list is kept which holds the
nodes that were recolored in the current pass as well as their original colors. During
this process, the algorithm tracks the “best subset” of the chunk: This is the subset
with the largest weight that could be successfully colored in the same color best_color
(see lines 11 to 13).

It can occur that not all nodes in the chunk could be successfully colored with the
same color. If this is the case, the chunk is then split into the part that was brought
to the color and a new chunk with the remaining nodes for which this failed (shown
in lines 20 to 25).
To ensure termination of the heuristic, recoloring is not continued under the

following conditions: In the chunk that is currently recolored, a node’s color is fixed
when it is successfully recolored. Fixed colors are not to be changed again in the same
recoloring step. This prevents nodes from being visited multiple times. Additionally,
the recursive recoloring of neighbors is aborted if a fixed limit of recursive steps is
reached.

The overall steps necessary to execute the heuristic using these components is shown
in algorithm 3: This consists of building the affinity chunks as described above,
then creating a priority queue that contains the chunks that are yet to be handled,
recoloring them one after another, and then applying the resulting coloring.

Algorithm 3 Copy Coalescing Heuristic
1: procedure SolveHeuristic(IG G: (nodes V , interference edges E, affinity edges A))
2: Setup data structures
3: C ← BuildAffinityChunks(G)
4: Initialize empty priority queue Q

5: for c ∈ C do
6: . Q keeps chunks sorted by decreasing weight
7: Insert c into Q

8: while Q 6= ∅ do
9: c← pop(Q)
10: . c is the chunk from Q with the largest weight
11: ColorAffinityChunk(G, c, Q)
12: for v ∈ V do
13: SetRegister(v, resulting color from heuristic)

24

2.4 Register Allocation in LibFirm

2.4.2 Mandatory 2-Address Requirements
As indicated in chapter 1, operand placement for some instructions is restricted in
many architectures. This means compilers need to be able to model and handle these
restrictions in order to generate correct code. For example, certain instructions in
the x86 instruction set mandate a 2-address format. We will call these requirements
which need to be fulfilled in all cases mandatory 2-address requirements. Let us look
at how they are implemented in LibFirm:

• Instructions can specify them as a should-be-same constraint as part of their
definition in the architecture specification. In more complicated cases where it
is not yet clear whether such a constraint is required for an instruction, they
can also be programmatically added later (during code selection) while building
the graphs for the backend.

• While building the affinity graph for the copy optimization heuristic, should-
be-same constraints are added into the graph as affinity edges. These are
placed between the values that must be contained in the same register. The
copy optimization heuristic handles these affinities the same way as any other
affinities, trying to fulfill as many of them as possible. Note that the heuristic
cannot always resolve all of these 2-address requirements.

• After register allocation has taken place, unfulfilled affinities originating from
should-be-same constraints may remain. These are handled in a “fixup” step:
In case of unfulfilled affinities, this inserts additional copy instructions before
and/or after the offending nodes.

25

3 Related Work

This section provides an overview over other works relevant in the context of this thesis
and how their approaches and applicability are different from the work presented
here.

3.1 Irregular Architectures and Register Allocation
Computer architectures differ in the structure of their register set. The simplest model
is to allow all data and operations to be used with all available registers. However,
many architectures put restrictions on the use of registers or the combination of
operations with values in certain registers. This ranges from few restrictions to highly
structured register sets which require that different kinds of data be stored in different
registers. The latter is sometimes found especially in embedded architectures.

Architectures with these kinds of restrictions are often called irregular architectures.
While multiple approaches exist for dealing with these irregularities when performing
register allocation, many of them focus more specifically on architectures with highly
constrained register architectures. As described in section 2.1 in the previous chapter,
there are often restrictions for compressed instructions affecting which registers can
be used for specific instructions in order for them to be compressed. These differing
requirements for compressed and uncompressed instructions also introduce a slight
irregularity into a register architecture (even for those which might otherwise be
considered fairly uniform). It is informative to take a look at works concerned with
the role of irregularities in register allocation in general in order to identify whether
their results are also useful for our goal of improving code compression.

Register allocation based on graph-coloring has been extended to explicitly accomo-
date architectures with irregularities in a multitude of works. This especially includes
handling of multiple related register classes, as this introduces irregularities commonly
found in many architectures. Smith and Holloway [15] modified the Chaitin-Briggs
register allocation approach in 2000 to be able to handle some specific irregularities
(especially those present in the x86 architecture) such as more flexible multi-register
usage. To handle this, they introduce the notion of a weighted interference graph
(WIG), with weights assigned to nodes in the graph, e.g. based on register width.
Instead of using the node degree to determine colorability like in the Briggs register
allocator, they introduce a more complex heuristic for colorability based on these
weights. Runeson and Nyström presented a similar approach to modifying graph-
coloring register allocation in 2003 [16], also supplementing additional information
to the interference graph, in their case by including a mapping of nodes to their

27

3 Related Work

respective register classes. As compared to Smith and Holloway, they also introduce
generic “architecture description models” to be able to adapt their approach to
different irregularities.

In 2002, Scholz and Eckstein [17] presented an approach which formalizes register
allocation as a partitioned boolean quadratic optimization problem (PBQP) and uses
dynamic programming in conjunction with heuristics to obtain register allocation
solutions. Their approach focuses on highly irregular architectures which pose strong
constraints on which registers can be used with which operations. The hypothetical
highly structured register set they use to demonstrate their solution has separate
address and index registers. A pairing between those types of registers determines
which of them can be used in instructions together (e.g. a specific index register can
only be used with a certain set of address registers).
However, these approaches focus specifically on handling irregularities based

on requirements which always have to be satisfied, instead of the optional but
desirable requirements we are concerned with when optimizing register allocation for
compressed instruction sets.

3.2 Register Allocation and Code Generation for
Compressed ISAs

Compressed instruction sets and the specific requirements they impose on code
generation generally and on register allocation specifically have also been previously
investigated. As described in the previous chapter, the original Thumb architecture
was based on ARM and processors can support both instruction sets, but switching
between Thumb and ARM requires an explicit mode change instruction.
Krishnaswamy and Gupta [18] presented an approach to allow for generation

of mixed ARM and Thumb code in 2002 (note that this predates the Thumb-2
extension). It also includes a comparison of Thumb with regular ARM code regarding
performance and size of the generated code, but focuses on rather coarse mixing of
the instruction sets, meaning it either generates only Thumb or ARM instructions
inside of a single function. Selection of whether to use compressed instructions is
based on heuristic analysis of the code under consideration. Finer-grained mixing of
instruction types inside of single functions is based on matching specific patterns
in ARM code which are known to have shorter Thumb representations. These are
selectively replaced by compressed instructions and surrounded by mode switch
instructions.

Also based on the original Thumb without free instruction length intermixing, in
2005, the same authors Krishnaswamy and Gupta [19] presented a way to use the
registers available in ARM by extending the Thumb ISA to allow the visible registers
to be changed (of course requiring hardware modifications to support this). Their
approach uses a custom extension of ARM/Thumb which adds SetMask instructions
to choose which registers are visible without extending register specifiers in shortened

28

3.2 Register Allocation and Code Generation for Compressed ISAs

instructions. Registers are paired and only one of the paired registers is visible at
any one time. To prevent code size penalties due to the SetMask instructions that
need to be inserted, these instructions are coalesced into the following instructions
where possible using their custom “Augmenting eXtensions” (AX) to decrease the
number of additional instructions. Their work also includes an algorithm to place
SetMask instructions in a way that reduces their overall number.
In 2010, Edler von Koch, Böhm, and Franke [20] presented an approach for code

generation when allowing mixed 16- and 32-bit instructions, especially focusing on
embedded use cases. The custom ARCompact ISA they investigate allows short and
long instructions to be mixed without needing to modify the processor mode (the same
way it is possible with the RVC extension). To leverage this, they introduce a method
for “feedback-guided code generation”, which is based on multiple compiler passes to
improve code compression. The first compiler pass is used to annotate the intermediate
representation (IR) with information on compression possibilities, and the following
pass can use that information to deactivate generating compressed instructions where
this would introduce additional move instructions or spills. They also include a
code selection variant for “opportunistic” selection of compact instructions where
requirements are incidentally fulfilled. As described in the previous chapter, a similar
behavior is already present in the RISC-V toolchain due to the fact that the assembler
already selects compressed instructions where all compression requirements are
fulfilled. However, in the case of RISC-V, this behavior is transparent to the compiler
itself and does not need any special support apart from utilizing the toolchain’s
assembler.
Lee, Moon, and Park [21] discuss another approach to designing compressed

variants for instructions by grouping the full register set into multiple register banks.
Their model works similarly to windowed register access concepts: Instead of defining
one of the register banks as being available from compressed instructions, all registers
can be made available by restricting the available registers to the currently selected
bank. Their concept introduces a register allocation method which works with this
design by grouping code into regions connected by sections of bank change and
inter-bank copy instructions. Switching between banks is accomplished by adding a
special register bank change instruction, which of course requires hardware support:
For this, they proposed a “banked Thumb” (b-Thumb) instruction set. However,
none of the architectures surveyed in the previous chapter use their proposed model
to make more registers available for use with compressed instructions.

There are also works that address compressed instruction sets more generally: In
2016, Lopes et al. [22] presented a methodology for finding compression schemes for
ISAs. It uses integer linear programming to optimize immediate value sizes in the
compressed instructions, which they apply to design a compression extension for
SPARC (which they call SPARC16). Their work also includes an analysis of different
compressed ISA variants and evaluates the resulting compression ratios.
For our purposes, works that relate to the compression extension for RISC-V

(RVC) are especially relevant: RVC has been thoroughly analyzed with regards to
performance and code size. Li [23] also tries to further optimize RVC compression

29

3 Related Work

results by reallocating the ISA namespace the RISC-V standard has assigned to
compressed instructions. Perotti et al. [24] modify RVC with their Xpulp extension,
which includes instructions to directly push values onto or pop values from the stack.
They also survey compiler options that are useful to reduce code size, but do not
introduce new compiler optimizations. These proposed schemes would all require
adoption in the RISC-V ISA and hardware changes to be implemented.

Let us also review the current state of the art in mainstream optimizing compilers
concerning code generation for compressed instruction sets, especially for RVC. In
LLVM [25], this is handled during register allocation by exploiting register allocation
order and register usage costs: The greedy register allocator included in LLVM
includes a facility for specifying costs for using specific registers. These costs can be
set in the backend description for each physical register. They are used to resolve
allocation order by replacing the chosen register for a value with another, “cheaper”
register in cases where there are no other interferences with values which would
prohibit that [26]. In the case of Thumb-2 or RISC-V, only the registers which are
part of the compressible subset are assigned no cost for using them [27], [28].
The result of the allocation is also dependent on the order in which registers are

assigned. In the case of Thumb-2, there were documented changes to LLVM in order
to optimize code size via adjusting the allocation order [29], [30]: With Thumb-2,
the low registers R0 to R7 can be used for all compressed instructions, and these
are currently also assigned first in LLVM: Previously, registers R12 and LR were
assigned before R4 to R7. The proposed change [29] included an evaluation with a
selection of benchmarks from SPEC CPU2000, SPEC CPU2006, and CoreMark, which
documented an overall code size reduction of about 0.13% in these benchmarks (most
benchmarks showing a reduction in the range of 0.05% to 0.4%). Similar changes to
the register allocation order in LibFirm were also implemented for this thesis. More
details can be found in chapter 5.
However, to our knowledge, optimizing compilers like LLVM or gcc do not per-

form explicit modeling of compression requirements which goes beyond preferring
compressible registers during allocation in this way, especially no modeling of other
requirements such as 2-address requirements or multiple combined requirements.

3.3 Optimal Register Allocation

There are also methods that approach finding a solution for allocating registers in a
specific program explicitly as generic optimization problems. These can be modeled e.g.
by using integer linear programming, which allows solving them (possibly optimally)
with suitable generic solving algorithms. Going this route usually allows requirements
and parameters that impact register allocation to be more explicitly modeled in the
problem statement than in fundamentally heuristic-driven approaches. It may also
allow many other aspects of the register allocation problem to be modeled, such as
requirements for instructions to be compressed. Arbitrary optimization metrics can in
principle be inserted into the optimization problem and solved for. An example of a

30

3.3 Optimal Register Allocation

recent comprehensive approach was presented by Lozano et al. in 2019 [31] as part of
the Unison project [32]. Their work covers constraint modeling for register allocation
combined with instruction scheduling and uses constraint solving to compute optimal
register allocations. What makes this relevant in the context of this thesis is the
fact that their solution also includes modeling of the costs and benefits of using
compressed instructions. The requirements for instructions to be compressed can
directly be included in the optimization problem that is built to describe a valid
register allocation, e.g. when using code size as the overall cost function that is to be
optimized for.

However, optimally solving register allocation in this way is usually only suitable in
specific situations due to compilation performance concerns. Lozano et al. demonstrate
speedups and code size improvements with their approach finding optimal solutions
in cases of up to around 1000 instructions (given a fixed time limit of 15 minutes
for finding a solution). They also concede that this approach is only applicable
in cases where generated code performance or size is particularly important to
warrant the trade-off with compilation times that are considerably longer than with
heuristic-based approaches.

31

4 Compression Optimization
This chapter describes how our optimization is designed and how it is integrated into
the copy optimization heuristic in LibFirm to accomodate compression requirements.
It also contains an overview of how the implementation is handled in the LibFirm
codebase.

The design consists of several parts that have to be in place. We will discuss them
in turn: Considerations about the requirements for the proposed solution are outlined
in the first section 4.1. To be able to take compression into account during register
allocation, we need to be able to tell the register allocator in the backend which
instructions in the lowered graph have compressed variants, and which requirements
have to be satisfied in order for them to be used. This is discussed in section 4.2. This
information can then be used in the copy optimization heuristic to adjust the result
in a way that improves compression, but does not negatively affect the quality of the
register allocation. This is especially relevant in case no compression information is
provided by the backend. This part will be described in more detail in section 4.3.
Notes on how the optimization can be implemented for backends can be found in
section 4.4.

4.1 Design Requirements
This section serves as a high-level overview over how the extension of LibFirm
for compression-aware register allocation is designed, especially focusing on which
requirements guide the design. Let us look at the basic requirements the optimization
should meet:

• Not all architectures supported by LibFirm make use of compressed instructions.
This means that our optimization is not relevant for all target architectures, but
only useful for certain backends. Compression only affects the goals of register
allocation in detail while the basic target of eliding as many copy instructions as
possible remains the main focus of the heuristic. In order to avoid duplicating
existing copy optimization code by creating a new compression-aware register
allocator, we want to design the optimization as a backwards-compatible
extension to the existing heuristic. This enables backends to opt into the
optimization where applicable. At the same time, our optimization should not
affect the results of register allocation in other cases (e.g. for architectures
without compressed instructions).
Introducing multiple distinct code paths for compression-aware and -unaware
register allocation should also be avoided to not impede maintainability: They

33

4 Compression Optimization

may diverge and fixes or performance improvements would have to be dupli-
cated. Introducing an explicit new subsystem that handles register allocation
for compressed instructions sets may also complicate testing of the register
allocator.

• When including compression handling in the existing register allocation step,
the execution time of the register allocator should also not be affected in cases
where the backend being used does not support compression or no compression-
related information is available. Preferably, this should be handled without
needing an explicit flag that disables compression-aware register allocation
where it is not applicable in order to preserve performance for this case.

• In the register allocation architecture used in LibFirm, the result of the copy
minimization step in general has large performance implications for the gener-
ated code. It directly affects the number of copy instructions which need to be
executed.

In contrast, the effects of compression are more specifically related to code size,
which is only indirectly linked to code performance (e.g. due to instruction
caching; for more considerations about this, see chapter 5). For this reason,
compression optimization should in most cases not trade off copy instructions
versus compressed instructions, but instead prioritize eliding copy instructions
where possible.

• The optimization itself should be independent of a specific backend. As described
above, this allows backends to opt into using it: They should only need to
specify their requirements for compressed instructions. This information can
be provided in their architecture specification and by implementing a clear
interface to the register allocator.

• The optimization should not alter the basic approach of register allocation used
in LibFirm and be integrated into the concepts already used here: The well-
tested copy optimization heuristic based on chunk-recoloring that is operating
on affinity graphs.

On account of these goals, the compression optimization described in this thesis uses
the metrics and capabilities already present in the existing heuristic and refines them
to include added information pertaining to compressibility of the generated code.
Specifically, this applies to the weight of edges in the affinity graph and costs for not
fulfilling specific affinities: These are adjusted and extended, but the basic principle
of finding a suitable register allocation result remains untouched. That also means
that the result for a certain configuration of affinity and interference graphs, edge
weights, and associated costs remains unchanged.

34

4.2 Compressibility Specification

4.2 Compressibility Specification
During execution of the copy optimization heuristic, information about compression
opportunities and the corresponding register requirements needs to be available.
This is highly backend-specific: Different ISAs vary in which compressed instruction
variants are available and which requirements they each have. For the purposes of this
thesis, the model at least needs to cover the types of requirements that are present
for RISC-V, but it should be designed in a way that is sufficient for other similar
instruction sets as well. This way, compression-aware register allocation support can
be easily added for other instruction sets like Thumb.
In general, LibFirm’s register allocation is abstracted from specific backends.

It relies on register-specific information that is part of a well-defined interface
between the backend and the register allocator. This also covers required information
concerning spilling of values (which is performed as the compiler step before). We
extend this interface to also cover information related to code compression. Without
the compression optimization, it already includes the following information:

• The costs associated with spills and reloads of values along with references to
functions that insert the nodes required to perform them into an IR graph are
directly included in the interface.

• A description of available registers and instructions as well as associated
metadata is part of what we will call architecture or backend specification.
They are implemented in Perl syntax as a way to provide a more compact
representation of the specification. Perl scripts take these as input and generate
C source code containing information about each register, available instructions,
and register requirements for their input and output.
The register description also contains a list of which registers are included in
each available register class. For each register, other associated information
such as its name or the index it is encoded with in instructions is also included.

As described in section 2.2, compressed instructions from RVC may have two fun-
damental types of requirements for the register placement of operands or results:
Requirements of values to be placed in the subset of compressible registers and
2-address requirements. We will discuss how each one of them is integrated into
the heuristic in more detail in section 4.3, but will first cover which compression
information is required to represent this and how it can be specified in the backend.
Information about compression requirements exists on two levels:

Compressible register subset On the level of the register set, we need to specify
the compressible register subset. This means that each register needs information
associated with it about whether it is part of this subset. We will also refer to those
registers in the subset as compressible registers. They are specified by adding a flag
to all compressible registers.

35

4 Compression Optimization

This is part of the architecture specification. It already includes the option to
include other flags, and we modify the script generating the code representation
from Perl to also parse the flag for compressible registers. When handling registers,
this flag can then be accessed as a field on LibFirm’s arch_register_t type which
represents all information that is included in the architecture specification for a single
register.

Node compression requirements On the instruction level, nodes in the lowered
program graph – which represent potentially compressible instructions – need to be
mapped to their compression requirements. To cover RVC, it is sufficient to model
the two types of requirements outlined above. Compression requirements of one
type are also never “mixed” on a single instruction for RVC. This means that if
a requirement of one type is present on an instruction, it applies to all involved
registers. For example, either all registers specified in a compressed instruction require
a compressible register, or they can all be chosen from the full register set.
The option to indicate compression requirements for instructions in principle

could be made part of the architecture specification, similarly to how mandatory
register requirements are handled. However, compressibility for some instructions
also depends on additional information apart from the instruction type and operand
and result placement. For example, there are additional restrictions for immediate
or offset ranges for compressed instruction variants, which would also need to be
covered in the specification.

Hence the more flexible approach we are using in this thesis is to make backends
that support compression-aware register allocation implement a predicate function
which can inspect nodes in the program graph directly. It assigns compression
requirement information to a node that is passed to it: This includes a specifier for
the type of compression requirement as well as additional information that is useful
to fulfill the requirement. This way, it can evaluate all information associated with
the node and return the applicable compression requirement. This approach can also
be used to examine a node’s context (such as other nodes in the same graph).

Overall, when examining a node n from the lowered program graph, the resulting
compression requirement specifier can be one of the following:

• register subset: n is compressible if all operands and the result are placed in a
compressible register,

• 2-address: n is compressible if the first operand and the result are placed in
the same register,

• register subset + 2-address: n is compressible if both conditions above hold, or

• n is never or always compressible.

The latter are neutral to the behavior of the copy optimization heuristic, but can
be included in debug information as part of predicting which instructions will be
compressed (see below in section 4.4 for more details).

36

4.3 Compression Requirement Handling

A reference to a function get_op_compression_requirements performing the
mapping to compression requirements is added as part of the register allocation
interface mentioned above. It can be used to query compression requirements during
register allocation. An implementation can be provided by backends to opt into
compression-aware register allocation and is provided as an input to LibFirm’s
register allocator.

Table 4.1 shows the compression requirements which are returned by our implemen-
tation of the mapping for the RISC-V backend. Some restrictions in the compressed
instructions from RVC are not related to register placement of operands or results:
This means that in some cases, attributes of the node have to be examined in order
to determine whether it is potentially compressible depending on register placement.

While we can directly check whether immediates can be encoded in the compressed
instruction variants, this is not the case for branch and jump offsets: These cannot
easily be checked at this stage. Compressible jump instructions do not have an
associated register-related compression requirement, which means that our choice
for the resulting compression requirement is not essential for the copy optimization.
For branch instructions, there is an associated register subset requirement for only a
part of available branch conditions: Only equality or inequality comparisons with
the zero register are potentially compressible. If this is the case, we optimistically
add a register subset requirement, assuming the range is sufficient in enough cases
for the requirement to be useful.

4.3 Compression Requirement Handling
The handling of compression requirements is integrated into the copy optimization
heuristic currently used in LibFirm. For the purposes of this section, we will again
refer to the description of the heuristic presented in section 2.4. The chunk recoloring
algorithm based on Hack’s thesis [14] discussed there is reprinted in listing 4. When
discussing the heuristic, we will also again refer to registers as colors in the context
of interference and affinity graphs.

The compression-aware heuristic uses the compressibility specifications described
in the previous section as input for the heuristic: It has access to the program’s nodes,
register set descriptions, and the mapping from nodes to compression requirements as
part of the register allocation interface. We will cover the changes to take compression
into account by tracing along the register allocation process followed in LibFirm’s
register allocator.

4.3.1 Static Register Order

LibFirm’s register allocator is somewhat sensitive to register ordering: This is the
case because the registers (colors) are in several places evaluated in their order from
the architecture specification. Additionally, the chunk recoloring algorithm (listing 4)
does not always try all colors. As we can see in lines 14 to 16, recoloring is aborted if

37

4 Compression Optimization

Table 4.1: Overview over register-related compression requirement types that are
assigned to operations of the RISC-V backend in our implementation of
get_op_compression_requirements.

Firm opcode
iro_riscv_*

Compression requirement Note
register 2-addr. always

lw, sw •
j, jal • Assumed1

ijmp, jalr, switch •

bcc (branch) • Assumed for (in)equality
with zero2

lui • Depending on immediate3
slli •
srli, srai • •
addi • Depending on immediate4
add •
andi • • Depending on immediate4
and, or, xor, sub • •
SubSP •
SubSPimm, be_incSP • Depending on immediate5
Copy (emitted as mv) • Generic firm node

1 The sign-extended offset is 11 bits long and the is LSB omitted, yielding a 2KiB jump
range. We cannot check the offset, so we mark all of these jumps as always compressible.

2 This is only marked as potentially compressible for equality (eq) or inequality (ne) condition
markers. Additionally, the second operand register must be fixed as register zero. In this
case, the sign-extended offset with LSB omitted is 8 bits long, allowing for a ±256B range.
We cannot check the offset, so we add a register requirement for all nodes fulfilling the
other requirements.

3 If the upper bits (ignoring the lower 12 bits) fit into 6 bits.
4 If the (signed) immediate fits into 6 bits.
5 If the (signed) immediate fits into 6 bits or the lowest 2 bits are zero and the bits above
fit into 6 bits (in this case, there is the special C.ADDI16SP compressed instruction that
scales its immediate by 16 and adds it to the stack pointer).

38

4.3 Compression Requirement Handling

Algorithm 4 Chunk Recoloring Algorithm
1: procedure ColorAffinityChunk(IG G, Chunk C, Queue Q)
2: . R is the set of registers in a register class (the set of colors available to color the graph)
3: Compute color preference, order colors in R by preference
4: for col ∈ R ordered by color preference do
5: Unfix colors for all nodes in C

6: for n ∈ C do
7: . Try to recolor n with col and choose a color that is not col for interfering neighbors
8: ChangeNodeColor(n, col)
9: n.fixed ← true
10: local_best ← Best subset of C colored to col
11: if local_best.weight > best_chunk.weight then
12: best_chunk ← local_best
13: best_color ← col
14: if All nodes were colored in col then
15: . Stop searching if all nodes were recolored
16: break
17: for n ∈ C do
18: ChangeNodeColor(n, best_color)
19: n.fixed ← true
20: rest ← C \ best_chunk
21: if rest 6= ∅ then
22: rest_chunk ← New chunk
23: for v ∈ rest do
24: v.chunk ← rest_chunk
25: Add rest_chunk to Q

39

4 Compression Optimization

a valid color for all nodes in the chunk could be found. This performance optimization
is due to the fact that the heuristic views two colors as interchangeable as a valid
chunk color if both can be used to color a chunk completely. Without any additional
restrictions on the registers, this assumption is valid, but it no longer holds for our
case: The compressible register subset should be preferred over the other registers as
using registers from it may improve code compression.
In summary, this means that even without any other explicit handling of com-

pression requirements in the compiler, the compression result can be improved by
reordering the registers in the architecture specification. As discussed in section 3.2
for the case of LLVM, this kind of optimization has also been shown to be profitable
for improving code compression in other register allocators.
The best result is expected if registers that are part of the compressible register

subset are provided first as an input to the copy optimization heuristic. We will
refer to this configuration where the registers have been reordered in this way, but
compression is not considered in other ways when performing register allocation as
static register preference and will evaluate its effects on code size in chapter 5.

4.3.2 A�inity Graph Structure
Compression-related 2-address requirements can be handled by modifying the affinity
graph before the heuristic is being run. In section 2.4.2, we discussed the existing
concept of mandatory 2-address requirements and how they are handled in LibFirm.
To recap, instructions can specify should-be-same constraints which are added as
edges to the affinity graph. These are taken into account by the heuristic. In case
of unfulfilled affinities, copy instructions are added to ensure all of the mandatory
2-address requirements are satisfied.

This functionality is similar to what is required when optimizing compression, but
we are concerned with a different kind of 2-address requirement: Compression-related
2-address requirements are optional. As we discussed before, not fulfilling them
only results in certain instructions not being compressible. This is why we do not
require any fixup in order to handle compression-related requirements which remain
unfulfilled after executing the copy optimization heuristic. Instead, our goal is not
to fulfill all 2-address requirements, but only those which can be handled without
otherwise negatively impacting the register allocation result. For this reason, we do
not use the existing should-be-same constraints for compression-related 2-address
requirements.
We also map our optional 2-address requirements to additional affinity edges in

the graph, but without specifying a should-be-same constraint for the instructions.
Additionally, these edges are tagged as a different kind of affinity to be able to
distinguish them in the copy optimization heuristic.

Affinities for 2-address requirements always connect the result and an operand of
an instruction. In the affinity graph, this yields the following structure: For a node
n with 2-address requirement, the affinity edge connects n itself to its predecessor
representing the value used as an operand in n. Figure 4.1 shows this for the

40

4.3 Compression Requirement Handling

Sub Is 163

Mul Is 162 Mul Is 161

0 1

(a) Excerpt from a Firm graph

Sub Is 163

Mul Is 162 Mul Is 161

aff_edge_compression

(b) Resulting a�inity

Figure 4.1: Insertion of compression-related a�inity edges into the a�inity graph.

example of a sub instruction (which in RVC has a 2-address as well as a register
subset requirement). The affinity edge is inserted between the Sub node and its first
operand.

By introducing optional 2-address requirements as additional affinities, the affinity
graph now contains affinities with different meanings. To distinguish between the
types of affinity edges in the graph, edges are annotated and can be handled differently
during register allocation depending on which kind of affinity they represent. The
available edge types are:

• aff_edge_noncopy: An affinity indicating copy-relatedness, meaning that a
move instruction can be omitted if it is fulfilled.

• aff_edge_compression: A compression-related affinity which indicates that
an instruction may be compressed if it is fulfilled.

This approach allows affinities to be handled uniformly in the copy optimization
heuristic, while also being able to distinguish the types, e.g. to prioritize them. A
way to do this which we will discuss below is adjusting their weight to be able to
tune the influence of compression-related affinities versus affinities which may allow
move instructions to be elided.
LibFirm’s copy optimization driver builds the affinity graph before it runs the

copy optimization heuristic, and additional affinities are inserted after checking for
compression requirements there.

Commutativity Some compressible instructions with a 2-address requirement are
commutative, i.e., their operands as well as the requirement can be switched around.
This affects some of the arithmetic register-register operations: add, and, or, and
xor instructions all have a 2-address requirement as well as being commutative.

The RISC-V assembler is also aware of this and uses it to improve code compression:
For instructions where the 2-address requirement is fulfilled apart from the ordering
of the operands, they are exchanged to allow the compressed encoding to be used. For
example, an xor s0, s1, s0 instruction is converted into the compressible binary
representation of the xor s0, s0, s1 instruction by the assembler (if it targets an
architecture with the C extension). Note that for xor, there is an additional register

41

4 Compression Optimization

subset requirement which is also fulfilled here as the registers s0 and s1 are both
compressible.

We also use this during the insertion of affinity edges into the graph: Compression
requirements can be marked as being commutative. In this case, if they describe
a 2-address requirement, an additional affinity edge for the second operand of an
operation is inserted, yielding edges between the result of an operation and both
operands. The mandatory 2-address requirements we discussed in section 2.4.2 also
use this approach of adding multiple affinities. In most cases, only one of these
affinities can be fulfilled at a time, but either is sufficient to satisfy the 2-address
requirement for the compressed instruction variant: A compressed instruction is
emitted by the assembler regardless of which of the operands is overwritten by the
operation’s result.

4.3.3 Copy Optimization Heuristic
We can now examine how the compressibility specification described above and the
additional information encoded in the affinity graph are used in the copy optimization
heuristic to improve code compression.
In the chunk recoloring algorithm from listing 4, we will especially examine and

adjust the following parts to incorporate compression:
• The “best” chunk subsets that can be colored with the current color are

evaluated according to their weight as shown in lines 11 to 13. These chunk
weights can be adjusted based on how much the chunk influences the overall
compression of the program.

• The color preference from line 3 is used to determine the order in which colors
are tried when coloring the chunk. This is shown in line 4 of the algorithm. By
adjusting the costs associated with certain colors, we can influence the coloring
order.

Chunk weights The additional affinity edges used for modeling 2-address require-
ments described above especially affect chunk construction and chunk weight. They
affect chunk construction because affinity edge weights determine the order in which
chunks are expanded in the affinity chunk construction algorithm discussed in section
2.4 and specified in listing 1. Chunk weight is calculated as the sum of the weights of
all affinity edges it contains, so these edges also contribute to the overall weight a
chunk has.
When computing the weights of chunks as part of the heuristic, edge weights for

affinities arising from compression requirements are scaled down as compared to
other affinity edges. This is controlled by a compiler parameter called ccscale (short
for compression cost scale), which is the ratio between weights of compression-related
edges and edges between copy-related nodes.

The weight of affinity edges that are due to copy-relatedness is governed by a cost
function c0 that determines the cost of requiring a copy instruction at a particular

42

4.3 Compression Requirement Handling

node. The standard cost function is based on a heuristic estimating execution
frequency. To compute the weight of compression-related edges, we also use the cost
function, but scale it down with ccscale:

ccompr(n) := ccscale · c0(n) .

Using the cost function that potentially incorporates execution frequency is done even
though code size is not related to execution frequency: Any compressed instruction
reduces code size by the same amount, irrespective of its dynamic execution frequency
in the program. This is done for two reasons: Firstly, c0 serves as a reference value
for the cost of compression-related edges. Without such a value, we would not know
the base cost that is used by the (potentially arbitrary) cost function c0. Therefore,
not aligning it to a reference could potentially lead to compression-related affinity
edge weights being completely out of scale from copy-related affinity edge weights,
potentially being much higher or lower than any other affinities in the graph. Secondly,
not scaling compression-related affinity weights could lead to them being essentially
ignored in any context with a higher-than-base estimated execution frequency. We
also added a compiler option to the heuristic to be able to disable using the cost
function if desired. In this case, all compression-related affinity edge weights are
evaluated as the fixed value of ccscale in the heuristic.

Chunk weights are used to decide the order in which chunks which remain to be col-
ored are handled. As chunk weights were previously integers, which is not compatible
with freely scalable edge weights, they have been extended to be floating-point values.
This means that in order to use them in the priority queue implementation employed
by the heuristic, the value is truncated. This does sacrifice sub-integer precision in
the order represented in the priority queue, which is negligible in practice.

Costs and compressibility In general, the heuristic aggregates metrics across chunks
and only recalculates them in case the chunk structure changes, so we also do this for
compression-related costs. This removes the need to repeatedly traverse the graphs
themselves during register allocation.

As described above, colors are chosen as a potential new color for the chunk in an
order that conforms to the chunk’s color preference (see line 3 in listing 4). The color
preference of a chunk C assigns a cost cost0(C, col) to each color col. The colors are
then tried in order of descending cost cost0 in the chunk recoloring step. Note that
this means that a color with a higher cost value is preferred during chunk recoloring.
The color preference cost is based on a combination of how restricted the colors for
the nodes in the chunk are and which other chunks it interferes with.

We adjust these costs to incorporate compression into the color preference order: To
do this, we adjust them for colors col that are part of the compressed register subset.
The amount the cost is adjusted by is based on the number of nodes that depend on
col being in the compressible register subset. Instructions with compressible register
subset requirements require both their result as well as all their operands to be in
compressible registers: This is why we incorporate both in the calculation.

43

4 Compression Optimization

For this adjustment, we need to track the amount of nodes that depend on the
chosen color col for the chunk C being in the compressible register subset. To do
this, we use a metric we call compressibility(C). It is based on two components:

• |Drestr|: The number of nodes in the chunk itself which require their own result
to be placed in a compressible register in order for them to be compressible.
In this case, Drestr ⊆ C denotes the set of nodes in C with a register subset
compression requirement.

• |Urestr|: The number of nodes that use the value of a node x ∈ C as an operand
and require x to be colored with the color of a compressible register to be
compressible themselves. This means that y ∈ Urestr iff. y has a register subset
compression requirement and y uses a value x ∈ C as an operand. Note that
the node y can both be inside or outside the chunk C.

Along with the number of nodes in the chunk denoted by |C|, the compressibility
metric can be calculated with

compressibility(C) := |Drestr|+ |Urestr|
|C|

.

For example, compressibility(C) = 1 means that the number of nodes whose com-
pressibility depends on the chunk C being colored with a compressible color is the
same as the number of nodes |C| it contains.
The color preference adjustment is also based on an additional parameter: The

compressibility influence parameter ci can be used to specify how much the color
preference is adjusted by.

We can now use compressibility to adjust the costs assigned to specific colors: The
color preference costs for colors that are part of the compressible register subset
Rc ⊆ R are adjusted upwards, proportionally to the prior cost cost0(C, col) assigned
to a color by the heuristic:

costadj(C, col) :=
cost0(C, col) · (1 + ci · compressibility(C)) col ∈ Rc

cost0(C, col) otherwise

Note that this means that the influence parameter ci is not a strict cap of the
maximum influence on the cost: In cases where a single instruction is used by many
others that would themselves benefit from its result being placed in a compressible
register, this yields a high compressibility value and in turn a larger adjustment to
the cost.

Requirement pruning We also experimented with a mechanism we will call re-
quirement pruning, but elected not to include it in the final implementation: In our
evaluation, it did not appreciably improve code compression, while at the same time
introducing some additional complexity to the code.

44

4.3 Compression Requirement Handling

The mechanism was intended to accomodate the fact that compression requirements
for an operation are related in the following sense: The question whether the operation
can be compressed depends on multiple coloring decisions. For this reason, we
evaluated whether compression could be further improved by disabling (or pruning)
requirements that belong to operations that are not compressible for other reasons,
regardless of whether these requirements are fulfilled. In the algorithm for coloring
chunks, this for example applies when the register for an operation is fixed to a
register not in the compressible register subset. In this case, we can disable a related
requirement such as an additional 2-address requirement as there is no benefit to
fulfill it anyway. Disabled or pruned compression affinity edges can then be excluded
from the weight of the chunk they are contained in. We implemented this mechanism
in one direction: If an operation cannot be compressed due to the color that has
been chosen for its result, we can disable its linked 2-address requirement; the latter
is encoded in the affinity edge between its operand and result.

However, as colors are frequently fixed and unfixed during execution of the heuristic,
compression requirements also have to be updated frequently to correctly keep track
of the current set of active requirements. In our tests, the difference in compression
between activated and disabled requirement pruning was very slight and code size
improvement or degradation depended on which specific benchmark was used.

Compiler parameters Overall, this yields two continuous parameters that can be
used to tune the behavior of register allocation in the presence of compression
requirement information:

• The compression cost scale factor (ccscale) governs the priority of compression-
related affinity edges when compared to other affinity edges.

• The compressibility influence (ci) affects the color preference order based on
the number of nodes that are affected by the choice of a compressible or
incompressible register for a chunk.

Choosing lower values for these parameters means that the result of the heuristic
is affected by the compression parameters to a lesser extend. We would expect no
code compression improvements with these parameters set to zero, and improving
compression with increasing values. However, especially in the case of ccscale, we
can also expect the overall result of the heuristic being negatively affected with high
values as copy-related affinities are fulfilled in fewer cases and traded off against
compression-related affinities.

These parameters are also available to be set externally when invoking cparser to
fine-tune the effects of the compression optimization. We will discuss their choice in
section 5.3 in the evaluation.

45

4 Compression Optimization

4.4 Backend Integration
Let us also examine how this approach interfaces with backends wanting to support
the optimization. The following steps are required to add support for compression-
aware register allocation to an additional backend:

• Marking compressible registers in the backend specification.

• Implementing get_op_compression_requirements with the compression re-
quirements based on the ISA specification.
In general, this implementation should be handled conservatively: “Under-
specifying” compression opportunities for instructions should be preferred to
overspecifying them. This is the case as incorrectly specifying that an instruction
is compressible may result in degraded compression rates for other instructions.
When not implementing all facets of compression requirements, nodes may then
be marked as incompressible instead. In these cases, not specifying potentially
non-existant compression opportunities ensures that the quality of the register
allocation is not negatively affected regarding the number of move instructions
remaining in the program.
Compression requirements could also be too complex to identify or not all
information be available at the time of register allocation. This may for example
be the case for jump instructions which are compressible with a limited distance.
At the time of register allocation, basic block scheduling information is not
yet available. This means it may not be possible or at least not practical to
check whether the required offset in a jump is compatible with its compressed
variant.
On the other hand, if jump distances that can be encoded in compressed
instruction variants are sufficient to encode a significant portion of jumps,
implementors could also decide to mark them as compressible “optimistically”
and include the corresponding register-related compression requirements.

• In cases where the generation of compressed instructions cannot be handled
transparently by the assembler like for RVC, generation of compressed in-
struction encodings also needs to be reflected in the code generation step.
When implementing a backend which directly generates binary code, selecting
compressed or uncompressed instruction variants of course needs to be part of
the compiler itself.

For the purposes of RVC, the latter part is not required: As described in section 2.2,
the RISC-V assembler (when invoked to generate code for an architecture variant
which includes the C extension) generates compressed instructions where applicable,
without any of them having to be explicitly selected in assembly code mnemonics.

Still, the overall result of course depends on the accuracy of assigning compression
requirements to nodes. To check whether this assignment is accurate, it is useful to

46

4.4 Backend Integration

add a prediction of whether a specific instruction will be compressed or not after
register allocation is completed. This can then be checked against the actual output
of the RISC-V (or other) assembler. To do this, the prediction needs to be included
in generated assembly code.
LibFirm already includes a facility to include debug information in the compiled

code (such as the origin of instructions in the source program and internal graph
node labels). To cover compression predictions, we extend this with a way to include
additional arbitrary debug notes in the generated assembly. When emitting code,
the predictions are then inserted based on assigned compression requirements and
the result of register allocation. This is also useful when adding compression support
for additional backends to check the consistency of the compression requirement
assignment with the final generated code.

47

5 Evaluation

After discussing how to model and integrate compression-awareness into LibFirm’s
SSA-based register allocator, this chapter examines the applicability and effectiveness
of the described optimization.

We will begin by describing some general considerations and the metrics that are
affected by our optimization in section 5.1. An overview over the benchmarking data
set we chose for the evaluation can be found in section 5.2. The benchmarking setup
is discussed in section 5.3, including how benchmark data was collected and the
compiler configurations we use to compare the results. Results of the compression
optimization are presented in section 5.4.

5.1 Scope and A�ected Metrics

We will first take a look at the ways in which the compression-aware register allocation
optimization proposed in this thesis affects the generated code. The overall structure
of the generated code is unaffected as no changes to code selection, spilling, or
scheduling were made in the optimization. However, the heuristic of course does
affect the number and placement of remaining copy instructions in the code. As
described in previous chapters, move instructions remain in the resulting code when
affinities are not satisfied. These affinities are provided as an input for the heuristic
in the form of the affinity graph.
The parts of LibFirm which are used for estimating dynamic code behavior were

also not changed for the optimization: Most notably, this includes the heuristic for
estimating dynamic execution frequency of operations in the code. It is used to assess
the priority of particular affinities when performing copy optimization.
An improved compression result can be directly measured by comparing static

code size between the code generated with and without our optimization. This is
related to the number of compressed and overall instructions that are generated: We
will refer to their ratio in a certain program or group of instructions as compressed
instruction share. Note that not all types of instructions have compressed variants:
This means that not all instructions can be considered for compression if code
selection is unaltered. However, in this evaluation, the compressed instruction share
is always measured relative to the overall number of instructions, not relative to the
number of instructions that are potentially compressible given the right registers and
immediates. Due to the fact that the scope of our optimization is restricted to the
register allocation phase (or more specifically, to the copy optimization), the number

49

5 Evaluation

of overall instructions that are generated can only be affected by a lower or higher
number of remaining move instructions.

Generated Code Performance As indicated in chapter 4, an important design goal of
the optimization was to not negatively affect the overall number of move instructions.
This does have a direct impact on the runtime performance of the generated code.
Unfortunately, we could not evaluate this in a test setup with real RISC-V hardware
in the context of this thesis. However, the limited scope of the changes in the
generated code we described above also limits the runtime performance impact of the
optimization: An overall performance degradation can only be expected in case the
overall number of move instructions remaining in the compiled program is increased
with the compression optimization. We will discuss this in section 5.4.

There is also another potential factor that may influence runtime performance
of compressed code in a more indirect way. On machines using instruction caching,
code compression may have a performance impact apart from the number of (e.g.
move) instructions that need to be executed: For code with higher compression rate,
more instructions may fit into instruction caches. This potentially leads to fewer
instruction cache misses. Therefore, code with optimized compression could also be
executed faster. However, this may be subtle and hard to measure without hardware
with effective instruction caching. Benchmarking the effect of this is beyond the scope
of this evaluation. We instead focus on the direct performance impact of remaining
move instructions as described above.

5.2 Benchmarking Data Set

To be able to judge the results both in terms of ensuring that the optimization
does not affect correctness of generated code as well as its effects on code density in
real-world contexts, we use a collection of tests and benchmarks. Using the latter,
we can compare resulting code sizes with and without the optimization.

LibFirm Test Suite During development, cparser and LibFirm are tested with an
extensive test suite to ensure correctness of the compiler and its optimizations. We
use this test suite to make sure that changes to the compiler do not break previously
working compilation test cases. We could not observe any regressions in tests from
the test suite when comparing between our modified compiler and the mainline
version, especially for code compiled for RISC-V.

The test suite contains a variety of test types and could also be used to measure
compression performance. However, most test cases included in it are not designed to
simulate real-world code. Instead, many minimized, specific test cases have artificial
constraints such as only covering very small functions, including unstructured code,
and exhibiting low register pressure. For this reason, we did not use the test suite to
measure the results of our optimization, but only to validate its correctness.

50

5.3 Setup

Embench Code size and code density are especially important for embedded systems.
Embench [33] is a benchmark set especially curated to benchmark these kinds of
systems. It is focused on benchmarks that represent smaller applications found on
embedded systems, such as “Internet of Things” devices. The benchmark suite which
was introduced in 2019 [34] is based on benchmarks from the Bristol/Embecosm
Embedded Benchmark Suite (BEEBS), and also based on previous benchmark suites
such as MiBench and DSPStone.
It is a collection of 22 benchmarks, all designed to only require small amounts

of memory (intended to not exceed 64KiB of program space and RAM during
execution) and restricted in their execution time to make it feasible to use them
for benchmarking embedded hardware. From the set, we used 21 benchmarks: We
excluded cubic from our tests as it uses the long double data type which is not
yet supported by LibFirm’s RISC-V backend.

SPEC CINT2000 The SPEC CPU packages are standard benchmark suites that
are especially used for performance testing (both of computing systems as well as
for compilers). SPEC CPU2000 [35], the version we are using for the purposes of
this evaluation, is split into benchmarks focused on integer (CINT2000) and on
floating-point performance (CFP2000). The benchmarks are much larger in code
size and more demanding in resource usage when compared to the benchmarks from
Embench.
The RISC-V LibFirm backend is not yet fully-featured and does not support

hardware floating-point instruction handling, but does include software floating-point
translation. However, this limits the type of benchmarks which are useful to test
the quality of the code generated with this backend: All programs were compiled
with software floating-point handling, which would bias the results in cases where
a substantial part of the program consists of floating-point calculations. For this
reason, only benchmarks from the CINT package were included.

The package includes 12 benchmarks, most of them written in C, with one using
C++. As cparser’s support for C++ is very limited, the benchmark 252.eon was
excluded from our benchmarking data set. We also excluded 253.perlbmk due to
lacking file system support in the libraries included with the RISC-V toolchain.
Due to problems in the RISC-V backend that are unrelated to our optimization,
compilation of the 176.gcc benchmark could be completed, but was not successful
and produced miscompiles: These issues are related to the handling of the RISC-V
calling convention and jump ranges. However, as complete object files for all parts of
the program could be fully generated, we chose to still include the benchmark in our
analyses as these issues likely do not affect compression results.

5.3 Setup
When compiling code for RISC-V, cparser emits assembly code which is then passed
to the assembler and linker which are part of the RISC-V toolchain. The assembler

51

5 Evaluation

evaluates which of the instructions fulfill all compression requirements and emits
instructions in compressed encodings for those.
To measure and compare static code size, there are several methods which are

available, the simplest being a comparison between resulting executable sizes. However,
(statically) linked executables may contain substantial amounts of code not under
our control: The size of precompiled system library code in the executable is of
course unaffected by the use of any optimizations in the compiler used for user code.
Thus comparing overall executable size may reduce comparability across different
benchmarks.1 The same is true for code sections in the executable other than the text
segment. Therefore, we compare the results of our compression optimization by using
a “net” code size: For code size comparisons, we compare only text segment sizes
for unlinked object files. All of the code included in these is generated by cparser,
which increases comparability between benchmarks. However, keep in mind that the
relative code size reduction expected for the overall executable may be lower than
the values given in this evaluation, depending on the size of code sections other than
the text segment and the amount of foreign code linked into the executable. For
the purposes of this evaluation, the term code size is used to describe this net text
segment size.

To evaluate text segment sizes, we use the output from the size command included
in the RISC-V toolchain. For more detailed analyses of instruction types and their
compression properties in the generated code, we use the decompiled output from
objdump (executed on the aforementioned object files).

Compiler configurations To put the results of our optimization into context, code
size and compressed instruction share are compared across different configurations of
the compiler:

• Uncompressed refers to not using any compressed instructions at all. This
corresponds to compiling code for a RISC-V target configuration that does
not include the C extension. In our case, this is also handled by the assembler,
which does not emit any compressed instruction variants.

• Reference is the current latest state of cparser and LibFirm without any of the
changes proposed in this thesis.

• Static refers to only statically reordering the registers in the architecture
specification as described in section 4.3.1 without any other changes to the
register allocator and copy optimization heuristic.

1The suggested solution for the Embench benchmark suite when evaluating static code size is
to use “dummy” libraries. These contain empty declarations for all required libraries which
do not contain any implementations. When comparing static code size, they can be linked
into the compiled binaries without adding to the code size footprint. This however requires
creating special dummy versions of all libraries that are used in the benchmarks and is hence
not practical for our use case.

52

5.3 Setup

• Result is the configuration when applying our compression optimization includ-
ing all mechanisms discussed in this thesis.

Comparisons that are given as a relative change in this chapter are given in relation
the reference configuration. It represents the current mainline implementation of the
compiler without any explicit handling of compression in its register allocator.

Instruction groups To be able to investigate the effects of compression optimization
in different subsets of the instruction set, instructions were grouped based on their
functionality. The groups we identified are:

• loads and stores,
• move instructions,
• arithmetic instructions,
• instructions used for constant generation,
• multiplication and division instructions,
• (unconditional) jump instructions,
• conditional branch instructions, and
• all other instructions.

A detailed list of which instructions were included in which of these groups can be
found in appendix A.1.

The share of instructions which are from each of these instruction groups in code
generated for the benchmarks from SPEC CINT2000 is shown in figure 5.1. Note that
the share of move instructions in this graph is likely higher than may be expected
in real-world generated code. This is due to the fact that as we described above,
floating-point calculations were performed as soft-float operations without hardware
floating-point instructions. This results in more calls into the corresponding library
functions and hence more moves to satisfy the calling convention. Also, LibFirm’s
handling of callee-saved registers is not yet fully optimized, which may also contribute
to an elevated share of move instructions.

Compression Cost Scale and Compressibility Influence As we described in section
4.3.3, we introduced two new tunable parameters into the copy optimization heuristic
that are related to compression optimization. We will now take a closer look at how
their values influence the results. As they affect the overall compression of the code
in conjunction with one another, we will also look at them that way here. Our tests
indicated that a relationship of ci = 2 · ccscale produced the overall best results when
comparing text segment sizes, so this is the setting we will look at here. Figure 5.2
shows the relative changes in text segment sizes, instruction count, and compressed
instruction share for different values of the parameters with the above ratio for the
benchmark 186.crafty from SPEC CINT2000. It was chosen as a medium-sized

53

5 Evaluation

load/store
(27.7%)

constant
(24.2%)

move
(15.2%)

arithmetic
(14.5%)

jump
(9.8%)

branch
(7.0%)

mult/div, compare,
other (1.7%)

Figure 5.1: Shares of instruction groups in code generated for the benchmarks from
SPEC CINT2000. The instruction group assignments can be found in ap-
pendix A.1.

benchmark from our data set that exhibited very consistent code sizes when compiled
with the reference configuration repeatedly.

The results are indexed against the result of compilation with both parameters set
to zero, which yields results that are close to the static configuration both in code
size as well as in compressed instruction share.

For this benchmark, even very low nonzero values for the parameters yield a sizable
improvement in code size, with the maximum improvement of around 2.8% being
reached at a ccscale value of about 0.2. If we aggregate across all benchmarks from
our data set, the resulting overall code size is smaller with ccscale values in the range
of 0.1 to 0.3 than with values that are very close to zero.
For larger values of the parameters, we can observe the trend we anticipated in

section 4.3.3, if only slightly: Increasing the parameters further yields an increased
number of overall instructions, which in turn increases code size. This is likely the
case because compression-related affinities compete against affinities that are due to
copy-relatedness: With a high enough priority, the former are fulfilled at the expense
of the latter.
It is also visible that the result of the heuristic is “unstable” in the sense that

small changes in the input parameters can yield large jumps in the register allocation
result: Single coloring decisions may have a profound effect on the further course of

54

5.3 Setup

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Compression cost scale parameter
(= 0.5 compressibility influence)

3%

2%

1%

0%

1%

2%

3%

Re
la

tiv
e

ch
an

ge

Text segment size
Instruction count
Diff. in compressed instr. share

Figure 5.2: Relative changes in text segment size, overall instruction count, and
the di�erence in compressed instruction share for di�erent values of
ccscale (compression cost scale) and ci (compressibility influence) for the
186.crafty benchmark from SPEC CINT2000. Changes are referenced
to code generated with both values set to zero.

55

5 Evaluation

the algorithm. As default values for the parameters, we chose values of 0.2 for ccscale
and 0.4 for ci. These values were used to compile all benchmarks examined below.

Compiler Flags All code was compiled with the RISC-V backend for the RV32IMAC
architecture variant and the ILP32 ABI specification. Apart from the C extension,
this architecture includes the extensions for multiplication and atomic instructions.
Notably, it does not contain the F or D extensions as floating-point handling was
performed in software.
Unless otherwise indicated, we used LibFirm’s highest optimization level O3 to

generate the code for the evaluation. Even though our primary focus for this evaluation
is code size, we opted against only using the optimization level Os which optimizes
for code size: With Os, LibFirm currently does not perform any special optimizations
to reduce code size apart from disabling inlining while O3 optimizes the code more
extensively.

5.4 Results
An overall comparison of text segment sizes between the result, static, and reference
compiler configurations is shown in table 5.1. Benchmarks from the benchmark
sets are aggregated by summing over their text segment sizes. This means that
benchmarks in the set are weighted according to their code size instead of every
benchmark being assigned equal weight. This avoids a distortion that would occur
when a benchmark that is considerably smaller than others has an outlier result.
When aggregating all benchmarks from the respective benchmark sets according to
this method, our optimization yields a code size reduction of about 5.7% for the
benchmarks from SPEC CINT2000 and 4.2% for Embench. The relative changes in
code size between the result and reference configuration broken down by benchmark
are also shown in figure 5.3. Code size decreases across the single benchmarks range
from 4.3% to 7.8% for SPEC CINT2000 and from 0% to 9.6% for Embench. None
of the benchmarks we tested showed an increased total text segment size when
compared to the reference configuration. The decrease in text segment size when
compared to the static configuration was about 2.2% for Embench and 1.6% for
SPEC benchmarks.

The differences in these results for SPEC and Embench benchmarks may be related
to the differing code structure across the benchmark sets: As it is focused on software
for embedded devices, Embench contains much smaller benchmarks. On average,
functions in Embench code are also much shorter: The benchmarks included in SPEC
CINT2000 have an average function length of 1042 instructions, compared to only
542 average instructions per function for Embench.

We could not observe an appreciable increase in the number of overall instructions
in the compiled programs for either benchmark set. For benchmarks from the SPEC
suite, the range for the change in overall instructions was between −1.4% to 0.2%,
but the aggregated instruction count was still lower than the reference. For the

56

5.4 Results

Table 5.1: Resulting text segment sizes for result, static, and reference compiler con-
figurations for the SPEC CINT2000 and Embench benchmark suites.

Benchmark Text segment size % change vs. ref.
reference static result static result

Em
be

nc
h

aha-mont64 4992 4912 4704 −1.60 −5.77
crc32 416 416 400 0.00 −3.85
edn 3376 3264 3088 −3.32 −8.53
huffbench 3280 3152 3088 −3.90 −5.85
matmult-int 1072 1056 1024 −1.49 −4.48
md5sum 1616 1568 1520 −2.97 −5.94
minver 2560 2480 2416 −3.13 −5.63
nbody 2080 2016 1952 −3.08 −6.15
nettle-aes 7776 7712 7344 −0.82 −5.56
nettle-sha256 6288 6080 5760 −3.31 −8.40
nsichneu 17 936 17 408 17 888 −2.94 −0.27
picojpeg 30 864 30 656 29 600 −0.67 −4.10
primecount 448 448 448 0.00 0.00
qrduino 11 776 11 584 11 248 −1.63 −4.48
sglib-combined 25 072 24 320 23 936 −3.00 −4.53
slre 7520 7424 7312 −1.28 −2.77
st 2592 2544 2464 −1.85 −4.94
statemate 11 776 11 664 11 584 −0.95 −1.63
tarfind 624 608 592 −2.56 −5.13
ud 1328 1280 1200 −3.61 −9.64
wikisort 6832 6624 6368 −3.04 −6.79
Aggregated 150 224 147 216 143 936 −2.00 −4.19

SP
EC

CI
N
T2

00
0

164.gzip 56 880 55 184 53 968 −2.98 −5.12
175.vpr 147 520 141 904 140 320 −3.81 −4.88
176.gcc 2 095 488 2 009 072 1 975 584 −4.12 −5.72
181.mcf 9280 8784 8640 −5.34 −6.90
186.crafty 222 288 210 656 204 976 −5.23 −7.79
197.parser 182 240 180 208 173 232 −1.12 −4.94
254.gap 502 752 475 552 467 520 −5.41 −7.01
255.vortex 687 712 664 720 658 000 −3.34 −4.32
256.bzip2 45 344 42 864 42 016 −5.47 −7.34
300.twolf 203 184 193 808 190 672 −4.61 −6.16
Aggregated 4 152 688 3 982 752 3 914 928 −4.09 −5.73

57

5 Evaluation

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

8%

6%

4%

2%

0%

Re
la

tiv
e

ch
an

ge
 in

 te
xt

 se
gm

en
t s

ize

Aggregated change

(a) SPEC CINT2000

ah
a-

m
on

t6
4

cr
c3

2
ed

n
hu

ffb
en

ch
m

at
m

ul
t-i

nt
m

d5
su

m
m

in
ve

r
nb

od
y

ne
ttl

e-
ae

s
ne

ttl
e-

sh
a2

56
ns

ich
ne

u
pi

co
jp

eg
pr

im
ec

ou
nt

qr
du

in
o

sg
lib

-c
om

bi
ne

d
slr

e
st st

at
em

at
e

ta
rfi

nd
ud wi

ki
so

rt

10%

8%

6%

4%

2%

0%

Re
la

tiv
e

ch
an

ge
 in

 te
xt

 se
gm

en
t s

ize

Aggregated change

(b) Embench

Figure 5.3: Relative text segment size change between the compression-aware regis-
ter allocation (result configuration) compared with the previous register
allocation implementation (reference configuration).

58

5.4 Results

0% 20% 40% 60% 80% 100% 120% 140% 160%
Relative text segment size

uncompressed

reference

static

result

133.6%

100.0%

95.9%

94.3%

Figure 5.4: Text segment size for benchmarks from SPEC CINT2000 across di�erent
cparser configurations: not using any compressed instructions (uncom-
pressed), without compiler adjustments for compression (reference), with
static register preference (static), and with the optimization proposed in
this thesis (result).

smaller benchmarks from Embench, the span was larger with changes from −2.7%
to 1.3%, still yielding an overall instruction count with our optimization that was
about 0.2% lower than the reference.

A comparison between all of the compiler configurations from section 5.3 is shown
in figure 5.4. It shows the overall aggregated relative text size of all benchmarks from
the SPEC CINT2000 suite when compared to the reference configuration. Even only
using the incidental compression of the reference configuration, we can observe a
large code size reduction of over 30% versus not using any compressed instructions.
The reasons for this include move instructions which are always compressible and
load/store instructions which often access compressible registers. RISC-V’s compres-
sion extension is designed in a way that allows many of the compression requirements
to be fulfilled by virtue of the calling convention: It prescribes passing the parameters
that are passed in registers in the compressible subset. An evaluation of this effect
was done in 2019 by Li [23], who performed a usage frequency analysis of the RISC-V
register set.
We can also see that only using the static register preference also affords large

code size reductions of about 4.1%, while the full optimization achieves an additional
1.6% on top of this. This shows how much the heuristic depends on the register order
as we discussed in section 4.3.1, especially without any other information related to
compressible instructions.

We also evaluated our optimization with the cparser optimization level Os instead
of O3, yielding a reduction in overall text segment size of about 4.6% for SPEC
benchmarks and about 3.1% for Embench. As expected due to disabled inlining,
the overall text segment size in all configurations was considerably lower than with
optimization level O3: In the reference configuration, the code size for the Embench
benchmarks was about 22% smaller than with O3. For SPEC, the difference was
around 18%. The worse result of our compression optimization with this setting is
expected: Inlined functions afford more opportunities for finding register assignments

59

5 Evaluation

0% 20% 40% 60% 80% 100%
Share of compressed instructions

arithmetic

load/store

branch

jump

other

constant

In
st

ru
ct

io
n

gr
ou

p

71.6%

67.8%

11.2%

50.8%

21.5%

16.5%

49.1%

52.9%

6.2%

50.5%

21.4%

16.5%

Configuration
result
reference

Figure 5.5: Share of compressed instructions among instructions groups, compared
for result and reference configurations, aggregated across all benchmarks
from SPEC CINT2000. Move instructions, comparison, and multiplication
or division instructions are omitted here.

which make additional instructions compressible that were previously not compress-
ible. If calls are not replaced with inlined functions, many register assignments are
already fixed due to the calling convention (which in itself promotes instruction
compression).

Instruction groups The share of compressed instructions among the instruction
groups we introduced in section 5.3 is shown in figure 5.5 for the code generated for
the SPEC benchmarks. Note that groups whose compression ratio did not change
were excluded in this plot: This applies to move instructions which are compressed
for all registers. Comparison, multiplication, and division instructions which do not
have compressed variants are also not shown.
The largest difference in the share of compressed instructions can be seen for

arithmetic instructions, followed by load/store and branch instructions. As expected,
arithmetic instructions especially exhibit potential for improved compression. A large
subset of the instructions in this group are add or addi instructions, which only have a
2-address requirement, but no register subset requirement. For arithmetic instructions,
the improvement in compression ratio for our full compression optimization versus
simple static register preference was also highest among the evaluated instruction
groups.
Load and store instructions have the advantage of having only register subset

requirements that are simple to fulfill. This means they are also more affected by the
static register reordering: We can observe that their compressed instruction share

60

5.4 Results

already increases in the static configuration, and does not increase further with our
full compression optimization.
For branch instructions, only a limited subset is suitable for compression, which

also limits the potential for improved compression in this group: As we described
in chapter 4, only conditional branches which test for equality or inequality with
zero have compressed variants. When examining the frequency of these instructions
in our data set for the benchmarks from SPEC, only around 20% of all branch
instructions are beqz or bnez. This means that the increase of about 5% in the
group of all branch instructions corresponds to an increase of 25% among potentially
compressible branch instructions.

61

6 Conclusion and Future Work

In this work, we extended LibFirm’s SSA-based register allocator to improve code
density in architectures with compressed instructions. This is achieved by explicitly
taking into account register requirements for compressible instructions in LibFirm’s
copy optimization heuristic. We also implemented our optimization for the corre-
sponding RISC-V backend.

Evaluation shows the optimization to be successful in improving the code density of
code compiled for RISC-V: Aggregating across text segment sizes of all benchmarks
we examined, we can observe reductions of around 5.7% compared to the reference
LibFirm implementation or about 1.7% compared to a simple static preference of
compressible registers. Overall, our evaluation shows that relevant improvements in
code compression can be achieved by using a compression-aware register allocator. It
also shows that the approach we use is suitable for modeling compression requirements
of the type used in RISC-V. At the same time, comparing the overall remaining
move instructions, we could not observe any indication of appreciable performance
degradation of the copy optimization itself. The optimization is specifically designed to
not affect register allocation for target architectures without compressed instructions.
We believe that by adapting the existing mode of operation of the copy optimization
heuristic, our optimization does not substantially increase its code complexity. Overall,
we can recommend the optimization also be included in the mainline LibFirm register
allocator.
Note that our optimization specifically interfaces with and extends the copy

optimization heuristic used in the SSA-based register allocator in LibFirm. This may
limit applicability of our approach and implementation in compilers which use a
different strategy for register allocation.
Of course, the topic also provides many other opportunities to expand on the

approach shown in this thesis. Some ideas which may be of interest in the future are
outlined below.

Backend Support Extending the number of backends with support for the optimiza-
tion is desirable. As we described, it is currently only used with LibFirm’s RISC-V
backend. However, as discussed in section 2.1, there are other architectures with a
similar approach for compressed instructions. The optimization presented in this
thesis could also be beneficial for those.

For example, LibFirm does support targeting ARM, but not Thumb (neither the
original nor the extension Thumb-2). Thumb-2 is not a straightforward extension to
ARM the way the C extension is for RISC-V (where all incompressible instructions

63

6 Conclusion and Future Work

can remain unchanged when targeting RVC). This means supporting Thumb-2 would
entail larger changes, e.g. by implementing a backend separate from ARM for it.
This is currently not included in LibFirm and means that evaluating compression for
this architecture was out of scope for this thesis.

Compressed instructions from the Thumb-2 instruction set also use register restric-
tions that are covered by the compressibility specifications presented in this thesis.
Therefore, our approach is also suitable for implementing compression-aware register
allocation for this architecture. We outlined the process for supporting additional
backends in section 4.4: This comprises specifying the compressible register set and
applicable compression requirements for compressible instructions.

Compression and Instruction Caching Smaller static code size is not the only benefit
of improved code compression. For processors which use instruction caching, code
size is also related to cache effects: This means that improved compression may result
in improved runtime performance of the code. Several other works have remarked on
the possibility of this effect [36], [37]. The effects of adding a compressed instruction
extension on instruction cache misses have also been previously investigated [22].
The impact of this may be subtle and highly dependent on the concrete bench-

marks and architecture parameters chosen to evaluate it. Therefore, evaluating the
difference in runtime performance between code generated with compression-unaware
and compression-aware register allocation was not in scope for this thesis.

For many current architectures following the RISC philosophy, compressed instruc-
tions are key to achieving code densities that are competitive with other architectures.
However, we believe their handling in compiler backends still provides plenty of
potential for improved compression. Our work shows that including dynamic han-
dling of compression requirements that goes beyond statically preferring registers
is effective in improving code compresssion in a compiler that previously did not
consider code compression. This suggests that register allocators in other compilers
may also benefit from more explicit modeling of compression requirements.

64

Bibliography

[1] V. M. Weaver and S. A. McKee, “Code density concerns for new architectures”,
in 2009 IEEE International Conference on Computer Design, Lake Tahoe, CA,
USA: IEEE, Oct. 2009, pp. 459–464. doi: 10.1109/ICCD.2009.5413117.

[2] “ARM architecture reference manual: Thumb-2 supplement”. Issue D. (Dec.
2005), [Online]. Available: https://developer.arm.com/documentation/dd
i0308/ (visited on 12/15/2021).

[3] “MIPS32 architecture for programmers: MIPS16e2 application-specific exten-
sion technical reference manual”. Revision 01.00. (Apr. 26, 2016), [Online].
Available: https://www.mips.com/products/architectures/ase/ase16e/
(visited on 12/15/2021).

[4] “MIPS architecture for programmers, Volume II-B: microMIPS32 instruction
set”. Revision 6.05. (Jun. 6, 2016), [Online]. Available: https://www.mips
.com/downloads/the-micromips32-instruction-set-v6-05/ (visited on
12/15/2021).

[5] A. Waterman and K. Asanovic, Eds. “The RISC-V instruction set manual;
Volume I: Unprivileged ISA”. Version 20191213. (Dec. 13, 2019), [Online].
Available: https://riscv.org/technical/specifications/ (visited on
12/15/2021).

[6] A. Waterman, “Improving energy efficiency and reducing code size with RISC-
V Compressed”, M.S. thesis, EECS Department, University of California,
Berkeley, May 2011.

[7] M. Braun, S. Buchwald, and A. Zwinkau, “Firm – a graph-based intermediate
representation”, Karlsruhe Institute of Technology, Tech. Rep. 35, 2011.

[8] G. J. Chaitin, “Register allocation & spilling via graph coloring”, ACM SIG-
PLAN Notices, vol. 17, no. 6, pp. 98–101, Apr. 1982. doi: 10.1145/872726.8
06984.

[9] B. R. Nickerson, “Graph coloring register allocation for processors with multi-
register operands”, ACM SIGPLAN Notices, vol. 25, no. 6, pp. 40–52, Jun. 1,
1990. doi: 10.1145/93548.93552.

[10] L. George and A. W. Appel, “Iterated register coalescing”, ACM Transactions
on Programming Languages and Systems, vol. 18, no. 3, pp. 300–324, May 1,
1996. doi: 10.1145/229542.229546.

65

https://doi.org/10.1109/ICCD.2009.5413117
https://developer.arm.com/documentation/ddi0308/
https://developer.arm.com/documentation/ddi0308/
https://www.mips.com/products/architectures/ase/ase16e/
https://www.mips.com/downloads/the-micromips32-instruction-set-v6-05/
https://www.mips.com/downloads/the-micromips32-instruction-set-v6-05/
https://riscv.org/technical/specifications/
https://doi.org/10.1145/872726.806984
https://doi.org/10.1145/872726.806984
https://doi.org/10.1145/93548.93552
https://doi.org/10.1145/229542.229546

Bibliography

[11] J. Park and S.-M. Moon, “Optimistic register coalescing”, ACM Transactions
on Programming Languages and Systems, vol. 26, no. 4, pp. 735–765, Jul. 1,
2004. doi: 10.1145/1011508.1011512.

[12] P. Briggs, “Register allocation via graph coloring”, Ph.D. dissertation, Rice
University, 1992.

[13] S. Hack and G. Goos, “Optimal register allocation for SSA-form programs in
polynomial time”, Information Processing Letters, vol. 98, no. 4, pp. 150–155,
May 31, 2006. doi: 10.1016/j.ipl.2006.01.008.

[14] S. Hack, Register allocation for programs in SSA Form. Universitätsverlag
Karlsruhe, 2007, 123 pp. doi: 10.5445/KSP/1000007166.

[15] M. Smith and G. Holloway, “Graph-coloring register allocation for irregular
architectures”, 2000.

[16] J. Runeson and S.-O. Nyström, “Retargetable graph-coloring register allocation
for irregular architectures”, in Software and Compilers for Embedded Systems,
A. Krall, Ed., ser. Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer, 2003, pp. 240–254. doi: 10.1007/978-3-540-39920-9_17.

[17] B. Scholz and E. Eckstein, “Register allocation for irregular architectures”, in
Proceedings of the Joint Conference on Languages, Compilers and Tools for Em-
bedded Systems: Software and Compilers for Embedded Systems, ser. LCTES/S-
COPES ’02, New York, NY, USA: Association for Computing Machinery,
Jun. 19, 2002, pp. 139–148. doi: 10.1145/513829.513854.

[18] A. Krishnaswamy and R. Gupta, “Profile guided selection of ARM and Thumb
instructions”, ACM SIGPLAN Notices, vol. 37, no. 7, pp. 56–64, Jun. 19, 2002.
doi: 10.1145/566225.513840.

[19] ——, “Efficient use of invisible registers in Thumb code”, in 38th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’05), Nov.
2005, pp. 30–42. doi: 10.1109/MICRO.2005.19.

[20] T. J. Edler von Koch, I. Böhm, and B. Franke, “Integrated instruction selection
and register allocation for compact code generation exploiting freeform mixing
of 16- and 32-bit instructions”, in Proceedings of the 8th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, ser. CGO ’10,
New York, NY, USA: Association for Computing Machinery, Apr. 24, 2010,
pp. 180–189. doi: 10.1145/1772954.1772980.

[21] J.-H. Lee, S.-M. Moon, and J. Park, “Region-based dual bank register allocation
for reduced instruction encoding architectures”, Microprocessors and Microsys-
tems, vol. 55, pp. 26–43, Nov. 1, 2017. doi: 10.1016/j.micpro.2017.09.005.

[22] B. C. Lopes, L. Ecco, E. C. Xavier, and R. Azevedo, “Design and evaluation of
compact ISA extensions”, Microprocessors and Microsystems, vol. 40, pp. 1–15,
Feb. 1, 2016. doi: 10.1016/j.micpro.2015.09.010.

66

https://doi.org/10.1145/1011508.1011512
https://doi.org/10.1016/j.ipl.2006.01.008
https://doi.org/10.5445/KSP/1000007166
https://doi.org/10.1007/978-3-540-39920-9_17
https://doi.org/10.1145/513829.513854
https://doi.org/10.1145/566225.513840
https://doi.org/10.1109/MICRO.2005.19
https://doi.org/10.1145/1772954.1772980
https://doi.org/10.1016/j.micpro.2017.09.005
https://doi.org/10.1016/j.micpro.2015.09.010

Bibliography

[23] P. Li, “Reduce static code size and improve RISC-V compression”, M.S. thesis,
EECS Department, University of California, Berkeley, Jun. 2019.

[24] M. Perotti, P. D. Schiavone, G. Tagliavini, et al., “HW/SW approaches for
RISC-V code size reduction”, 2020. doi: 10.3929/ETHZ-B-000461404.

[25] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation”, in Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04), Palo Alto, California, Mar.
2004.

[26] LLVM greedy register allocator source code, lines 769–779, (Dec. 13, 2021),
[Online]. Available: https://github.com/llvm/llvm-project/blob/657adc
b0779d2d119737f2ca557a87456024a5ac/llvm/lib/CodeGen/RegAllocGree
dy.cpp (visited on 12/15/2021).

[27] LLVM ARM register definitions, lines 78–99, (Dec. 7, 2021), [Online]. Available:
https://github.com/llvm/llvm-project/blob/63eb7ff47de5df48b6bc0c
f0a6d3d17022634151/llvm/lib/Target/ARM/ARMRegisterInfo.td (visited
on 12/15/2021).

[28] LLVM RISC-V register definitions, lines 71–116, (Dec. 10, 2021), [Online].
Available: https://github.com/llvm/llvm-project/blob/5861cf77da4f
7d235d435dd8fb89b100d1698112/llvm/lib/Target/RISCV/RISCVRegister
Info.td (visited on 12/15/2021).

[29] O. Stannard. “Thumb2: Favor R4-R7 over R12/LR in allocation order when
opt for minsize”. Implemented in https://reviews.llvm.org/rG830b20
344bdd3f8790bb913b9e699a3fa5f446f6. (Jul. 3, 2019), [Online]. Available:
https://reviews.llvm.org/D30324 (visited on 12/15/2021).

[30] D. Green. “Alter the register allocation order for optsize on Thumb2”. Imple-
mented in https://reviews.llvm.org/rG6a858a94250ecf96f849d2b9108e
bacc86be98a9. (Jan. 23, 2019), [Online]. Available: https://reviews.llvm
.org/D56008 (visited on 12/15/2021).

[31] R. C. Lozano, M. Carlsson, G. H. Blindell, and C. Schulte, “Combinatorial
register allocation and instruction scheduling”, ACM Transactions on Pro-
gramming Languages and Systems, vol. 41, no. 3, 17:1–17:53, Jul. 2, 2019. doi:
10.1145/3332373.

[32] C. Schulte and R. C. Lozano, “Unison: Optimization technology for optimizing
compilers”, in Ericsson’s Program Analysis Workshop, (Kista, Sweden), Apr.
2018.

[33] “Embench: Open benchmarks for embedded platforms”. (2021), [Online]. Avail-
able: https://github.com/embench/embench-iot (visited on 12/15/2021).

67

https://doi.org/10.3929/ETHZ-B-000461404
https://github.com/llvm/llvm-project/blob/657adcb0779d2d119737f2ca557a87456024a5ac/llvm/lib/CodeGen/RegAllocGreedy.cpp
https://github.com/llvm/llvm-project/blob/657adcb0779d2d119737f2ca557a87456024a5ac/llvm/lib/CodeGen/RegAllocGreedy.cpp
https://github.com/llvm/llvm-project/blob/657adcb0779d2d119737f2ca557a87456024a5ac/llvm/lib/CodeGen/RegAllocGreedy.cpp
https://github.com/llvm/llvm-project/blob/63eb7ff47de5df48b6bc0cf0a6d3d17022634151/llvm/lib/Target/ARM/ARMRegisterInfo.td
https://github.com/llvm/llvm-project/blob/63eb7ff47de5df48b6bc0cf0a6d3d17022634151/llvm/lib/Target/ARM/ARMRegisterInfo.td
https://github.com/llvm/llvm-project/blob/5861cf77da4f7d235d435dd8fb89b100d1698112/llvm/lib/Target/RISCV/RISCVRegisterInfo.td
https://github.com/llvm/llvm-project/blob/5861cf77da4f7d235d435dd8fb89b100d1698112/llvm/lib/Target/RISCV/RISCVRegisterInfo.td
https://github.com/llvm/llvm-project/blob/5861cf77da4f7d235d435dd8fb89b100d1698112/llvm/lib/Target/RISCV/RISCVRegisterInfo.td
https://reviews.llvm.org/rG830b20344bdd3f8790bb913b9e699a3fa5f446f6
https://reviews.llvm.org/rG830b20344bdd3f8790bb913b9e699a3fa5f446f6
https://reviews.llvm.org/D30324
https://reviews.llvm.org/rG6a858a94250ecf96f849d2b9108ebacc86be98a9
https://reviews.llvm.org/rG6a858a94250ecf96f849d2b9108ebacc86be98a9
https://reviews.llvm.org/D56008
https://reviews.llvm.org/D56008
https://doi.org/10.1145/3332373
https://github.com/embench/embench-iot

Bibliography

[34] J. Bennett, C. Garlati, G. Madhusudan, T. Mudge, and D. Patterson, “Embench:
A free benchmark suite for embedded computing from an academic-industry
cooperative (towards the long overdue and deserved demise of dhrystone)”, in
RISC-V Workshop Zurich, Zurich, Switzerland, Jun. 12, 2019.

[35] Standard Performance Evaluation Corporation. “SPEC CPU2000”. V1.3.1.
(Nov. 20, 2006), [Online]. Available: https://www.spec.org/cpu2000/ (visited
on 12/15/2021).

[36] H. Lozano and M. Ito, “Increasing the code density of embedded RISC applica-
tions”, in 2016 IEEE 19th International Symposium on Real-Time Distributed
Computing (ISORC), May 2016, pp. 182–189. doi: 10.1109/ISORC.2016.33.

[37] P. Steenkiste, “The impact of code density on instruction cache performance”,
in Proceedings of the 16th Annual International Symposium on Computer
Architecture, ser. ISCA ’89, New York, NY, USA: Association for Computing
Machinery, Apr. 1, 1989, pp. 252–259. doi: 10.1145/74925.74954.

68

https://www.spec.org/cpu2000/
https://doi.org/10.1109/ISORC.2016.33
https://doi.org/10.1145/74925.74954

Erklärung

Hiermit erkläre ich, Maximilian Stemmer-Grabow, dass ich die vorliegende Masterar-
beit selbstständig verfasst habe und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche
kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher
Praxis beachtet habe.

Ort, Datum Unterschrift

69

A Appendix

A.1 RISC-V Instruction Groups
The instruction groups used in the evaluation and the instructions included in them
are listed in table A.1.

Table A.1: Instruction groups and included instructions.

Instruction group Included instructions
Load/store lw, sw, flw, fld, fsd, fsw, lb, lbu, lh, lhu, sb
Arithmetic add, addi, and, andi, neg, not, or, ori, sll, slli,

sra, srai, srl, srli, sub, xor, xori
Compare slt, slti, sltiu, sltu, snez, seqz
Mult/div div, divu, mul, mulh, mulhu, rem, remu
Branch beq, beqz, bge, bgeu, bgez, bgtz, blez, blt, bltu,

bltz, bne, bnez
Jump j, jal, jalr, jr, ret
Move mv
Constant generation li, lui, constant generation instructions that in-

clude unlinked references in object files (decompiled
to mv instructions)

Others All other instructions

71

	Introduction
	Foundations
	Related Work
	Compression Optimization
	Evaluation
	Conclusion and Future Work
	Appendix

