
Int J STTT (1998) 2: 1–5  1998 Springer-Verlag

The opinion corner

Paul Feyerabend and software technology

Gregor Snelting

TU Braunschweig, Abteilung Softwaretechnologie, Bültenweg 88, D-38106 Braunschweig, Germany;
E-mail: snelting@ips.cs.tu-bs.de

Abstract. The following contribution is a plea for more
stringent methodological standards in software technol-
ogy. Certain basic scientific principles are often neglected,
principles such as the fact that predictions need to be
falsifiable. This appears to confirm the theses of the so-
called “constructivists” that “objective truths” are in re-
ality just social constructs. It is thus argued here that
one needs a stronger empirical foundation for software
technology.

Key words: Software technology – Methodology – The-
ory of science – Constructivism

1 Introduction: so-called constructivism

The official affirmative action report of the Ministry for
Science and Arts in the state of Lower Saxony (West Ger-
many) contains a chapter on every field of science. The
chapter on physics, mathematics, and computer science –
entitled Shaking the objectivity postulate – states: “Many
so-called scientific facts, which were considered objective,
will perhaps be recognized as hierarchy-centered, control-
obsessed, life-antagonistic, since subjective-androcentric
interpretations” [5, p. 117]. In other words: the so-called
laws of nature are male inventions in order to suppress
women. Indeed, Newton’s recently discovered secret tes-
tament reveals that he invented gravity just to prevent his
wife from breaking the glass ceiling.

But let’s stay serious. The above statements represent
just the feminist version of an epistemological view known

This article appeared in the Journal of the German Computer
Science Society [10], and some observations apply solely to the
situation in Germany. English translation and adaptation by the
author.

as constructivism, which was co-founded by Paul Feyer-
abend [2]. Constructivists do not believe in objective
knowledge, let alone laws of nature and their (perhaps
approximate) cognizability by humans. Instead, they con-
sider the “laws of nature”, roughly speaking, to be the
results of an agreement, the product of complex commu-
nication processes, that is: a social construct. Of course,
“construction” of the “natural laws” is driven by inter-
ests: scientists who call themselves truth seekers are in
fact just protecting their funding.

Feyerabend wanted to demonstrate “how easy it is
to tease people in the name of reason”; he denied philo-
sophical foundations of reliable knowledge with his slo-
gan “anything goes”. His ultimate verdict could be found
in the 1991 Who’s Who: “All scientists are criminals”.
Indeed, many educated people in Germany believe that
(1) Einstein has proven that everything is relative, and
(2) Gödel has proven that nothing can be proved.

Now one could argue that science works: airplanes fly,
light bulbs glow, atomic bombs explode. How then can
the underlying theories be just social constructs? In a re-
cent interview that the science journalist J. Horgan con-
ducted with Feyerabend [3], it becomes clear that Feyer-
abend in fact did not deny the epistemological power of
the natural sciences – he was afraid of the “tyranny of
objectivism”, which in his perception leaves no space for
human creativity and diversity. Only this angst makes
Feyerabend’s dadaistic epistemology understandable.

2 Construct and reality

In this article, I would like to point out that in soft-
ware technology sometimes things happen in quite the
way Feyerabend and the Lower-Saxonian ladies describe
them. I will illustrate this statement with some examples,
and then proceed to present some methodological conse-



2 G. Snelting: Paul Feyerabend and software technology

quences. But first of all, we have to take a look at some
epistemology and its relationship to computer science.

Let us first study the problem of how to distinguish
between constructs and reliable knowledge. Some people
believe that the essence of science is to explain things: it
is the task of science to deliver understandable, or even
mechanical models of specific circumstances. Indeed, suc-
cessful theories and methods also generate explanations
for the observed phenomena. But explanations alone can
never distinguish between constructs and reliable know-
ledge and hence have little value. Mankind in history has
delivered quite a bunch of “explanations”: why does the
sun rise in the east? Because it rotates around the earth.
Why do I feel sick? Because a spirit possessed my body.
What will help? Spiritual homeopathy.

The critical criterion is a different one, namely pre-
dictive power . If my theory predicts that the moon will
appear at point x in exactly one year, and one year later
this prediction indeed becomes true, then I can trust my
theoretical model: it is reliable enough to serve as a foun-
dation for technical systems. In other fields like medicine
or psychology predictive power is the critical indicator as
well, predictions being e.g., “the medicine will help” or
“the rapist will not do it again”. It is not a shortcom-
ing that many predictions are only of a statistical nature,
such as in quantum physics or psychology: if I can predict
that 10 out of 100 persons will behave in such-and-such
a way, or that one out of 1000 electrons will tunnel, I have
a reliable theory – even though the predictions only apply
to collectives and not to individuals.

In order to be able to test predictions, they must be
refutable by experiments. This is Popper’s well-known
falsifiability criterion. Predictions which are not falsifi-
able are, according to Popper, not scientific statements.
However, this should not be taken too dogmatically. Pop-
per himself conceded in an interview shortly before his
death that falsifiability is not an absolute principle, but
a methodological guideline [3].

Often it is argued that human knowledge is limited
by (a) the structure of the cognitive apparatus itself and
(b) social context (e.g., education, prejudices, imprint-
ing, conditioning). Indeed, context-dependent statements
cannot fulfill the falsifiability criterion; context depen-
dency is just typical for constructs. But those who deny
the possibility of context-independent human knowledge
do in fact advocate airplanes which are carried by their
builder’s belief systems, and not by the laws of aerody-
namics. This we have seen before – in the Middle Ages.

The first argument however carries more weight and
was first put forward by Kant. Today we know that in-
deed human perception is actively constructed by the
brain. But this does not imply that there is only loose
coupling between the “inside” and “outside” world. Evo-
lutionary Epistemology [9, 12], as introduced by Lorenz
and Popper, correctly points out that the human brain
has developed in adaptation to reality – if our cogni-
tive apparatus made too many false predictions, mankind

would not have survived. Hence it is certainly true that,
say, a bat experiences a room completely differently from
a human. But it is also true that bat and human develop
just different mental representations of the same real spa-
tial topology.

3 Computer science and epistemology

3.1 Abstraction as a standard tool

Now what about computer science? Computer science is
not a natural science, because it partially creates its own
reality itself. Computer scientists invent or construct ab-
stract concepts or devices, which in turn enable (or limit)
the specific applications. In Germany, it is popular to call
computer science and mathematics “structural sciences”;
recently, however, computer science is seen more as an en-
gineering science.

The ability to find good abstractions is in fact an out-
standing skill of computer scientists. Every algorithm
already is an abstraction (of specific input values). In soft-
ware technology, one might think of abstract data types,
software architectures, object-oriented design, generic
OO-classes, design patterns. Abstractions must not only
be sound, but should also be elegant. Experience from
the natural sciences indicates that elegant theories have
a higher correctness probability. This is the principle of
Occam’s razor: “Do not introduce superfluous concepts”
(counterexample: “an operating system is a 17-tuple”).

3.2 Prediction and experiment

What is the computer science version of predictions
and falsifying experiments? Predictions in computer sci-
ence are (as in other fields) obtained from abstractions
and theories. Every computer scientist knows statements
about the behavior and complexity of algorithms, which
are obtained by analytical methods (program verifica-
tion, complexity analysis) from the algorithm text. Such
statements are predictions about the behaviour of an
algorithm, when implemented as a program. They are
however not always experimentally validated, and some
computer scientists in fact consider this needless. For ex-
ample, Dijkstra only reluctantly concedes that programs
may be executed at all; the task of the computer scientist
is, according to Dijkstra, to formally verify an algorithm
he has constructed [1].

In practice, however, a program runs in a specific tech-
nical environment, and therefore a specific form of experi-
ment – testing – is indispensable. For formal correctness
describes only part of the algorithm’s behaviour, just like
Newton’s mechanics only approximately describes celes-
tial systems. Often, theoretical assumptions, such as cor-
rect compilers or Euclidian spatial geometry, are not re-
ally valid. Even complexity statements such as “O(n2.81)
is better than O(n3)” do not hold in practice if the



G. Snelting: Paul Feyerabend and software technology 3

break-even point is beyond tractable problem sizes. Tests,
in particular field tests, can uncover errors in specifica-
tion, design, verification, and interaction with the tech-
nical/sociological environment. (The popular method of
using tests to find implementation bugs can however in
principle be replaced by correctness proofs.)

But testing, like all experiments, can only be used to
refute a specific prediction: Dijkstra’s dictum “Testing
can only demonstrate the presence of errors, not their ab-
sence” is a special case of Popper’s falsifiability principle.

Recently, predictions are generated by more sophis-
ticated tools. Model checking is a good example: model
checking is a method to check a (finite-state) machine
against a (formal) specification, and generates counterex-
amples if the specification is violated. Thus model check-
ing makes predictions about the machine’s behaviour in
the real world, and has become a very succesful method
for hardware verification.

Other predictions in computer science do not consider
specific algorithms, but the development methodology it-
self. Examples in software technology include:

1. “GOTOs increase code entropy” (Dijkstra)
2. “Strong typing reduces run-time errors” (Wirth)
3. “Good modularization reduces maintenance costs”

(Parnas)

The advantages of GOTO-free, strongly typed, modular
or object-oriented software development are not imme-
diately visible – on the contrary: usually costs increase
in the early stages of adoption. Hence the above state-
ments have been heavily attacked when published. But
only few explicit falsification attempts have been made
such as Knuth’s defense of the GOTO or Brooks’ defense
of process against modules. Both attempts failed (see e.g.,
Brooks’ invited talk at ICSE 95: “Parnas was right, and I
was wrong”), and eventually the “weight of experience” –
that is, accumulated missing falsifications – led to a gen-
eral acceptance years later. (Funnily enough, German so-
ciologists have blamed the GOTO damnation to be a cap-
italist trick in order to squeeze more productivity out of
programmers. Perhaps the Lower-Saxonian ladies could
explain to them that the GOTO is just an androcentric
construct to please control(flow)-obsessed machos.)

3.3 Axiomatic versus empirical approaches

New abstractions in computer science are often intro-
duced in an axiomatic style, but must later demonstrate
their usefulness empirically. An outstanding example of
this dichotomy is polymorphism in functional languages.
Originally created in response to two obviously contra-
dictory requirements, namely type safety and reusability,
the Damas–Milner type system guarantees “well-typed
programs can’t go wrong” even for code which can be
used in different application contexts. The axioms are
constructed in a subtle way such that typeability remains
decidable, even though functions may be used with argu-
ments of different type. While in theory polymorphic type

inference is NP-hard, in practice it is efficient. Polymor-
phism is an important concept today, and Milner received
the Turing award.

In cotrast to that, a purely axiomatic approach in
mathematics, as exemplified by Bourbaki, hides the fact
that mathematics has a connection to reality and is not
just a super-smart “Glasperlenspiel” (glass bead game).
Neo-platonists such as Penrose even consider entities like
the Schrödinger equation to be Kant’s thing-in-itself: the
unbelievable predictive power of mathematical models
cannot, according to Penrose, just be the result of formal
sand-table exercises [8].

4 Some observations

4.1 Empirical studies are rare

In 1994, W. Tichy investigated 400 papers which ap-
peared in 1993 in software-technological conferences and
journals [11]. He found that

– 43% of all papers did not contain any experiments;
– only 31% of all papers devoted more than 20% of their

content to case studies or experimental validations;
– in the IEEE Transactions on Software Engineering

55% of the articles presented new concepts without
any empirical validations;

– in the ACM Transactions on Programming Languages
and Systems 45% fell into this category;

– only 20% of software engineering papers contained
more than 20% of experimental research;

– a comparison with the fields of optical engineering and
neural computation showed that 70% of their articles
contained a substantial experimental part.

Tichy draws alarming conclusions: “The results suggest
that large parts of computer science may not meet stan-
dards long established in the natural and engineering sci-
ences”. Since computer science is more than half a cen-
tury old, juvenile immaturity cannot be the reason.

Certainly, big case studies or extensive experiments as
in pharmacology can not be demanded from every soft-
ware technology paper. Even Parnas, Wirth and Dijk-
stra did not present any experimental data supporting
their predictions. Ordinary mortals, sitting in a university
computer science laboratory, usually have neither time
nor money for experimental validations. And some fal-
sification attempts are just needless: the superiority of
graphical user interfaces, compared to ASCII command
lines, usually leaps to the eye. But still, there is clearly an
empirical deficit in software technology.

4.2 The increasing chasm between theory and practice

The recent article “Strategic directions in software qual-
ity” states: “The chasm between research and practice
seems particularly wide and increasingly inculturated, to



4 G. Snelting: Paul Feyerabend and software technology

the detriment of both communities. Practice is not as ef-
fective as it must be, and research suffers from the valida-
tion of good ideas and redirection that inevitably results
from serious use” [7].

Industry people like to blame academics that they are
spaced out and ignore real problems, while professors like
to state that managers cannot tell a paper model from
an initial model. Different reasons are put forward to ex-
plain this phenomenon. SIGSOFT chair David Notkin
believes that often academic researchers sneer at appli-
cations, while at the same time industry demands that
research should deal with their specific business prob-
lems [6]. Tichy refers to missing empirical foundations,
which make it impossible for practitioners to evaluate
new results.

Indeed, modern software technology is only used
in innovative institutions, and not every big software
company sticks to well-established software engineer-
ing principles. Commercial data processing has largely
ignored computer science; instead Cobol and six-week-
wonder programmers were employed. Only recently have
the (German) commercial mainframers understood that
they have a problem, and are considering object-oriented
methods, for example.

It is also true that many theoretically oriented re-
searchers have limited interest in applications. But it is
not impossible that theoretical results are useful in prac-
tice, and the author would like to warn against dismant-
ling fundamental research, just because category theory
cannot be transformed directly into dollars.

4.3 Constructivism in software technology

Theory-oriented scientists are wrongfully blamed the
sometimes missing the practical relevance of software
technology research. Theoretical models (e.g., formal lan-
guages) have enormously contributed to the progress of
computer science. Neither formal specifications, func-
tional languages, model checking, nor other “esoterica”
are the cause of the unsatisfactory state of software engin-
eering. Theoretical models can be checked against reality;
many theoretical methods are efficient in practice.

The problem comes in fact from practical scientists,
who ignore theory, and at the same time avoid empirical
validation. Such researchers practice constructivism. An
example: software reengineering is a hot topic in software
technology. Many reengineering methods employ heuris-
tics in order to reconstruct structural information from
old source code. Heuristics always contain free param-
eters, which must be calibrated using real legacy code.
This requires empirical studies. Thus the methodolog-
ical minimum for papers presenting new reengineering
methods is to conduct several case studies. Tool-building
actionism alone generates methodological doubts [4].

Anyway, if new methods are difficult to formalize, the
least one can expect is that a prototype implementation

exists, which can be used for empirical studies. But some-
times software engineering papers present new methods
which can neither be described mathematically, nor does
an implementation exist.

Correspondingly, not always does the best idea suc-
ceed in practice, but the one which has the most market
power. In computer science, this phenomenon is stronger
than in other fields, partially because – as explained
above – computer science is not a natural science; hence
there is often more than one technical solution.

But this phenomenon is also due to methodological
shortcomings. While Popper demanded that one should
try to falsify one’s favorite theory every morning dur-
ing shaving, some software researchers desperately try to
“sell” their latest toy, but avoid validation. This leads to
a loss in credibility and to constructivist criticism.

5 Some consequences

The preceding discussion argued that the fundamental
science-theoretic concept of falsifiability is as valid in soft-
ware technology as it is in the natural sciences, but is
often ignored. In this last section, I would like to pro-
pose some practical consequences, in order to improve
the situation.

5.1 Theoretical versus empirical research

Contributions which just present an idea, without sup-
plying a mathematical model or an implementation, are
of questionable value. Thus methods and tools should be
implemented, in order to allow evaluation. (However, uni-
versity labs are not software companies, hence one should
not require professional quality from a research proto-
type.) Research results must be reproducible, therefore
even prototypes should be publicly available. (The Elec-
tronic Tool Integration platform associated with this jour-
nal provides a valuable service to the community in this
respect.)

Contributions which introduce new concepts and
present theoretical studies are definitely legitimate, if the
theoretical model generates falsifiable predictions. Theor-
etical studies are even worthwhile, if certain phenomena
can be more simply described or better explained, even
without generating new predictions (that is, possible
practical consequences). Theory, however, is questionable
in software technology, if it becomes self-contemplation
unrelated to applications.

We do not have enough studies about the real value of
new theories, methods, and tools. Such studies of course
must respect the fact that a new method cannot have the
same maturity as an established one. Extensive experi-
ments will rarely be possible, but there will always be
enough money for a case study.

Empirical studies can produce surprising results. For
example, empirical studies have clearly demonstrated



G. Snelting: Paul Feyerabend and software technology 5

that inspections are an efficient technique for finding
flaws in specification, design, and implementation.

Cooperation with industry often makes sense in order
to try new methods in a realistic environment. Ameri-
can companies such as IBM or (more recently) Microsoft
maintain exchange with fundamental research at univer-
sities, to the profit of both sides.

5.2 Scientific activity

It happens that software researchers do not apply their
own principles when developing tools. Self-application is
an important technique in computer science, and should
also be practised in software technology. In teaching, stu-
dents should heavily exercise modern software technology
in student projects. Graduates who practice the art of
hacking or have limited programming abilities will not in-
crease our reputation.

Often the same idea is published several times with
slight variations (so-called “cut-copy-paste papers”).
Correspondingly, there is a proliferation of conferences
and workshops, while the quality of many events de-
creases steadily. Sometimes people who cannot get their
papers accepted at major conferences just set up their
own conference. Furthermore, citation networks can be
observed: papers of competing groups are never cited,
while papers of good friends (and of course, one’s own ear-
lier contributions) always appear in the list of references.

This phenomenon has its roots in the publish-or-
perish setup of today’s research business. I strongly be-
lieve that the publish-or-perish principle damages sci-
ence. I have seen tenuring committees which used an
“importance factor” for every conference or journal, and
then evaluated candidates by counting the publications,
each multiplied with the corresponding factor. Such silly
procedures would have refused tenure to Newton and
Galileo. Quality in research can (and should) be meas-
ured, but not by simplistic numbers such as importance
factors and citation counts.

Funding policy is another issue. Some funding agen-
cies, such as the German Deutsche Forschungsgemein-
schaft , have excellent review processes which make rea-
sonably sure that only high-quality proposals get funded.
But other (German/European) agencies are easily influ-
enced by political factors, and funding decisions are sub-
ject to lobbying. This has a destructive effect on the over-
all quality of research.

But perhaps the most important factor is the indi-
vidual researchers themselves. Some scientists are indeed

driven by a desire for career and reputation, and not by
the desire to improve knowledge and share it with one’s
students. Career and reputation (which are not a bad
thing) will come automatically if one values good scien-
tific principles – political trickery does not necessarily
have the same effect.

6 Conclusion

The natural sciences have always been devoted to high
methodological standards, and after 2000 years of epis-
temology we have good criteria in order to distinguish
between constructs and reliable knowledge. It would be
nice if software-technological results would adhere to the
same solidity.

Then, after all, there would be just one remaining task
for constructivism: self-application (a standard technique
in computer science). We leave it as an exercise to the
reader to derive the result of such self-application.

References

1. Dijkstra, E.D.: On the cruelty of really teaching computer sci-
ence. Commun. ACM 32(12), 1398–1404, 1989

2. Feyerabend, P.: Against Method: Outline of an Anarchistic
Theory of Knowledge. Atlantic Highlands, 1974

3. Horgan, J.: The End of Science. Reading, MA: Addison Wes-
ley, 1996

4. Müller, H., Reps, T., Snelting, G.: Program comprehension
and software reengineering. Dagstuhl Seminar Report No. 204.
Also in: SIGSOFT Notes, September 1998, pp. 36–43

5. Frauenförderung ist Hochschulreform – Frauenförderung ist
Wissenschaftskritik (Affirmative action is university reform
– affirmative action is science critique). Ministry for Science
and Arts, Lower-Saxony, 1993 (in German)

6. Notkin,D.:Adopting software engineering research: a consumer
problem or a producer problem? In: Tracz, W. (ed.): ICSE-19
Window to the World. http://www.webjammers.com/wow

7. Osterweil, L., et al.: Strategic directions in software quality.
In: Strategic directions in computing research. ACM Comput-
ing Surveys 28(4), 1996

8. Penrose, R.: The Emperor’s New Mind. Oxford University
Press, 1989

9. Radnitzky, G., Bartley, W. (eds.): Evolutionary Epistemology,
Rationality, and the Sociology of Knowledge. Open Court, La
Salle, 1987

10. Snelting, G.: Paul Feyerabend und die Softwaretechnologie.
Informatik-Spektrum, October 1998, pp. 273–276 (in German)

11. Tichy, W., Prechelt, L.: Experimental evaluation in computer
science: a quantitative case study. J. Systems Software 28(1),
9–18, 1995

12. Vollmer, G.: Evolutionäre Erkenntnistheorie (Evolutionary
Epistemology). Hirzel Wissenschaftliche Verlagsgesellschaft,
Stuttgart 1992 (in German)


