
Report on "Software and Mind" by A. Sorin
Reviewed by G. Snelting

April 2019

Summary. In Eco's famous book "The Name of the Rose", inquisition victim Salvatore claims "If
one's true enemies are too powerful, one must search for weaker enemies". This is exactly what
Sorin is doing in his 900 page book. His ultimate goal is to defend human freedom and creativity.
Unaware of today's true enemies of freedom & creativity, he constructs a weaker enemy: the
mechanistic world view, as found in software engineering, mathematics, physics, behaviourism,
structuralism, and Chomsky's generative grammar. Sorin fights this enemy on 900 pages, but his
enemy is like Don Quichottes windmill.

I can understand him, though. Sorin was a software developer in the 90's, and is traumatized by
software techniques such as "Jackson structured programming" which, together with questionable
CASE tools, back then were agressively hyped and forced upon application developers. Indeed, the
"million monkey approach" was quite popular at IBM and elsewhere. Naturally, Sorin didn't want to
be a monkey. Later, he discovered that similar mechanistic, hierarchical schemes as in 90's
software can be found everywhere in modern science. But Sorin claims that mechanistic world
views and techniques can deliver only hierarchical "entities within entities" models, and cannot
handle complex interactions between entities. Mechanism, says Sorin, thus provides a modern,
popular science myth, but is in fact designed to dehumanize people, transform them into dumb
assembly line workers, and exercise totalitarian control.

2/3 of the book deal with general aspects of mechanistic views. The book has well-written, interes-
ting sections on modern myths, Popper, behaviourism (I liked the behaviourism chapter a lot),
totalitarism and more. But it is very redundant. The book's structure reminds me of the TVangelist
who explained: "First I tell them what I will tell them; then I tell them what I have to tell them, then
I tell them what I've told them." And the windmill fight by and by transforms into a true conspiracy
theory, such as in the claim (p. 196) "prevention of true expertise is the final goal of software
elites". Worse, Sorin, obsessed with his "entity within entity" furor, is unaware of the deep non-
hierarchical results in e.g. general relativity, quantum entanglement or modern software technology.

I will provide below detailed comments on specific claims in the book, in particular claims about
software engineering and mathematics. Here in my summary, I present just one example why
Sorin's fight in fact favours modern totalitarian positions. Sorin claims that Chomsky's generative
grammar - which Chomsky supposed to have a biological basis -- is an example of simplistic,
mechanistic thinking, which limits creativity and freedom; and that "there is no innate language
faculty" (p. 273). The latter argument has also been put forward by some contemporary linguists:
they claim that language structures do not have a common, biologically based fundament, but it's all
learning (like car driving). And it is certainly true that Chomsky's original proposal was simplistic.
Chomsky later held a much weaker position, however Sorin does not tolerate "improvements" of
mechanistic theories (p. 284ff).

Sorin -- accidentially -- thus takes position in the nature vs nurture debate. In fact he supports those
who condemn behaviour-influencing structures developed in biological evolution as "biologistic".
These modern "constructivists" create a new totalitarian world view: "it's all cultural, and those who

deny this are biologistical". Today, the irrational claims by both left and right wing radicals, namely
that there is no objective truth, and everything is just a "construct" (or "fake news") is much more
dangerous for freedom than Chomsky or any mechanistic philosophy ever could be. Sorin however
is obsessed with his weak enemy from the 90's, "dolls within dolls", and misses todays epistemo-
logical challenges. Like his ancestor Salvatore, he will one day wake up and face his true enemies.

The Software Chapter. The 300-page software chapter was the starting point of the book, and one
might think of publishing it separately (with perhaps one introductory chapter). But the chapter is
not "provocative" by today's standards, it is just out of date. It was begun in the 90's, and as
mentioned, the author was victim of the back-then hype of some back-then software methods. Let
us consider his explanations in some detail.

Concerning structured programming, Sorin rattles pages on pages about presumed inconsistencies,
namely that some authors recommend 6 basic constructs, others only 2 etc. He did not really
understand that the essence of structured programming is „one entry, one exit" per construct. The
actual number of constructs is a matter of taste (or hype). But it is essential that all flowgraphs
remain reducible. GOTOs can be tolerated as long as reducible flowgraphs result. Sorin has not
heard about reducible flowgraphs, so his ranting about the Böhm-Jacopini theorem is just
ridiculous. Even when I was a student (80's), the Böhm-Jacobini theorem was clearly presented as
"theoretically interesting, practically useless". This was and is the academic position, regardless of
all the hype Sorin has been suffering from. Looking back, structured programming was an
important step away from the horrible spaghetti coding of the time. Hence Dijkstra is another of
Sorin's "weak enemies".

I would also like to note again that Sorin's notorious denial of "improvement" (or "evolution") of
theories is not Popperian, but Un-Popperian. Consider Einsteins "falsification" of Newton: In fact
Newton's gravity was not abandoned by Einstein, in fact general relativity includes Newton's theory
as a limit case (small masses & speeds). Even today, Newton's theory is of great importance in
practical applications, and Einstein cannot be understood without Newton. In a strict ("Sorin") sense
however Einstein falsified Newton. But such a formal view is disconnected from historical and
practical reality, and that is why Popper argued for "evolution of knowledge". Likewise, today's
extremely successful software verification techniques such as model checking cannot be understood
without structured programming etc, and the corresponding (historical) fight against software
entropy. Evolution of knowledge is not pseudo-scientific, but very scientific.

Concerning relational databases, it is true that for some (or many) applications the 3rd normal form
is too restricted (and new concepts have been developed since the 90's). But Sorin fails to see that
the main task of databases is not to store & access data, but to keep them consistent in a distributed
multi-user environment of perhaps thousands of simultaneous accesses per second. Thus relational
databases were a huge advantage over Cobol files not due to the 3rd normal form Sorin despises so
much, but due to the „ACID (atomicity, consistency, isolation, durability)" properties.

Concerning object-oriented programming, again I can understand Soron's disgust about all the 90's
hype. Indeed, inheritance hierarchies are often too unexpressive (this problem became known in
1992 as the "tyranny of the dominant decomposition"). Today smart answers are available such as
Traits and Mixins in Scala, or Virtual Classes. Sorin has not heard about these, but might find them
appealing for competent programmers. And even for original OO, dynamic dispatch (perhaps in
combination with multiple inheritance as in C++) was a big step. Dynamic dispatch is definitely
better than explicit case-switching, and modern books explain why. But it seems Sorin does not
know about dynamic dispatch, he only talks about single inheritance - another "weak enemy".

Some Detailed Remarks.

 PLUS: well-written history of mechanics & corresponding epistemology
 PLUS: criticism of meachanistic psychology, sociology (behaviourism)
 PLUS: it is true that often expertise is replaced by software tools, destroying expertise &

creativity. Another example: music composition / production!
 PLUS: praising Popper
 but every succesful use case is a failed falsification, so Sorins completely negative attitude

towards positive examples is distorted
 often theories are probabilistic, and then a single counterexample cannot falsify a theory. For

example a new medical drug might work for 99 patients, but not work for 1. Sorin would
call the latter case a falsification. By statistical standards, it is a positive use case.

 It is unfair and distorted to describe the evolution of a theory as a trick to integrate or
neutralize falsifications. Initial theories are often too limited, but still provide important
breakthroughs. Thus theory evolution is not escaping refutation! Popper himself clearly
identified refutation as a tool to stimulate evolution of knowledge, where evolution of
knowledge is NOT "escaping refutation".

 Sorin only knows trees and "entities within entities". Has he ever heard about graphs?
Modern science is full of graphs.

 Sorin claims that "mechanistic thinking cannot handle interactions between entities" and that
"physic is mechanistic thinking". Has he ever heard about quantum mechanics,
entanglement, and the EPR paradox? It seems not, which explains his ridiculous
simplifications.

 Sorin (like Wittgenstein in his Tractatus!) thinks that mathematics is tautologic, because
every theorem is -- presumably -- already born in the axioms. But this view is very
distorted. It is true that mathematical proofs are hierarchically structured, but that is just the
surface. Think e.g. of the deep and beautiful properties of holomorphic functions in complex
analysis. These took centuries to find, and still there are questions open for more than 150
years (e.g. Riemann conjecture). Advanced mathematics is full of deep, nonhierarchical
properties. The deep insights in many theorems can only be obtained by creative experts.
Thus mathematics is not mechanistic. And since complex analysis is so important for eg
quantum physics, many scientists believe that complex numbers are much more than just a
formal construction or an „approximation“, namely that they are part of reality.

 Chomsky: it's true that phrase structure grammars are too restricted, and that Chomsky
ignored semantic aspects. But today's successful ML based machine translators still use
simple grammars, and replace semantics simply by statistical coincidence (aka deep
learning)! That's mechanistic, and very successful!

 Wirth + Dijkstra, who promoted structured programming, were not "academic bureaucrats,
who cannot make a real contribution" (p. 274). Both made eminent contributions to e.g.
algorithmics and compilers. Both received a Turing award for this.

