
Quantifier Elimination and Information Flow
Control for Software Security

Gregor Snelting1

1Universität Passau, Lehrstuhl Softwaresysteme, 94032 Passau, Germany

Abstract

Program Dependency Graphs and Constraint Solving can be combined to achieve a powerful tool
for information flow control, allowing to check source code for security problems such as external
manipulation of critical computations. The method generates path conditions for critical informa-
tion flows, being conditions over the program variables necessary for flow. As all variables are
existentially quantified, quantifier elimination and in particular the REDLOG system developed
at Volker Weispfenning’s group, are used to solve path conditions for the input variables, thus
generating witnesses for security leaks.

1 Introduction

Software safety and security is more important than ever, and international standards such as
the Common Criteria [Com99] define a comprehensive set of security techniques. Informa-
tion Flow Control (IFC) is one of the technologies required by the Common Criteria. IFC has
two main tasks:

� guarantee that confidential data cannot leak to public variables;
� guarantee that critical computations cannot be manipulated from outside.

State-of-the-art IFC exploits program analysis to assign and propagate security levels to vari-
ables and expressions, guaranteeing that any potential security leak is found [SM03].

But most contemporary analysis methods are based on non-standard type systems, which
are not flow sensitive, context sensitive, or object sensitive. This leads to imprecision and thus
to a high number of false alarms. For example, the well-known program fragment
if confidential=1 then public:=0 else public:=1; public:=0;

is considered insecure by type-based IFC, as it does not see that the potential security leak in
the if-statement is guaranteed to be killed by the following assignment.

We therefore proposed to base IFC on a combination of dependency graphs and constraint
solving. While the original idea was already published in 1996 [Sne96], it took us several
years to make the approach work and scale for full C and realistic programs [RS02, SRK05].



2 G. Snelting

(1) a = u();
(2) while (n>0) {
(3) x = v();
(4) if (x>0)
(5) b = a;
(6) else
(7) c = b;

}
(8) z = c;

Figure 1: A small program and its dependency graph

In this short contribution, we will describe the basic idea, its connection to constraint solving
and quantifier elimination, and our application of Volker Weispfenning’s Redlog system.

2 Dependency Graphs and Path Conditions

Dependency graphs are a standard tool to model information flow through a program. Pro-
gram statements or expressions are the graph nodes. A data dependency edge x � y means
that statement x assigns a variable which is used in statement y (without being reassigned
underway). A control dependency edge x � y means that the mere execution of y depends on
the value of the expression x (which is typically a condition in an if- or while-statement).

A path x ��� y in the graph means that information can flow from x to y; if there is no
path, it is guaranteed that there is no information flow. In particular, all statements influencing
y (the so-called backward slice) are easily computed as

BS
�
y ����� x 	 x � � y 


For the small program and its dependency graph in figure 1, there is a path from statement
1 to statement 8, indicating that input variable a will eventually influence output variable z.
Since there is no path

�
1 � ��� � 4 � , there is definitely no influence from a to x.

But note that the dependency graph is a conservative approximation; due to imprecision
of the underlying program analysis algorithms it may contain too many edges (but never too
few). For the full C language, the computation of precise dependence graphs and slices is
absolutely nontrivial; there is ongoing research worldwide since 15 years. The state of the art
in dependency graphs and slicing is summarized in the recent work by Krinke [Kri03].

In order to make the analysis more precise, we introduced path conditions, which are nec-
essary conditions for information flow between two nodes. The formulae for the generation
of path conditions are quite complex, and only the most fundamental formula will be given



Quantifier Elimination for Software Security 3

here:
PC
�
x � y � � �

P Path x ��� y

�

u node in P

E
�
u �

where E
�
u � is a necessary condition for the execution of u. E

�
u � is defined by a similar

formula containing control conditions from if- and while-statements. Program variables in
a path condition are existentially quantified, as they are necessary conditions for potential
information flow.

In Figure 1, we have

E
�
1 ��� true � E

�
3 ��� � n � 0 �	� E

�
5 ��� � n � 0 ��
 � x � 0 �

PC
�
1 � 5 ��� E

�
1 ��
 E

�
5 ����
 n � x �

�
n � 0 ��
 � x � 0 �

Slightly more interesting are the following path conditions:
(1) a[i+3] = x;
(2) if (i>10)
(3) y = a[2*j-42]; PC

�
1 � 3 ����
 i � j �

�
i � 10 ��
 � i � 3 � 2 j � 42 �

and

(1) a[i+3] = x;
(2) if ((i>10)&&(j<5))
(3) y = a[2*j-42];

PC
�
1 � 3 ��� 
 i � j �

�
i � 10 ��
 � j � 5 �


�
i � 3 � 2 j � 42 �

� false

These examples indicate that path conditions give precise conditions for information flow
and can even determine that such flow is impossible even though there is a path in the graph.
We will not go into the details of path condition generation. The reader should be aware that
making path conditions work for full C and realistic programs required years of theoretical
and practical work [RS02, SRK05, Kri03, Rob05]. Today, our implementation ValSoft can
handle C programs up to approx. 10000 LOC and generate path conditions in a few seconds
or minutes.

3 Solving Path Conditions

Path conditions for realistic programs can be quite complex. But if they can be solved for the
program’s input variables, they act as a witness for a security leak. Providing input values
according to the solved conditions makes any illegal information flow visible immediately.
This feature is helpful e.g. in law suits against vendors of insecure software.

Solving path conditions for realistic programs is not easy, as they consist of huge heaps
of conditions extracted from control statements such as if, while, switch; combined into sub-
stantial amounts of conjunctions and disjunctions with existential quantifiers upfront. As a



4 G. Snelting

first step, a minimal disjunctive normal form is computed for the quantifier body (which is a
propositional formula) before any further constraint solving is attempted.

Since path conditions are existentially quantified, it is a natural idea to apply quantifier
elimination [Wei97, Wei94] and use systems such as Redlog [SW96, DS97]. Quantifier elim-
ination replaces an existentially quantified variable by constraints on other variables, and the
theory guarantees that both formulae are equivalent. Thus, we connected Redlog to ValSoft,
acting as an external solver after simplification.

For small examples, this works fine. Consider the second and third path condition example
from Section 2, and let us assume that j is an input variable but i is an auxiliary variable. Thus
we want to eliminate i and solve for j. Eliminating i in the second path condition yields 2 j �
55, while Redlog immediately says false (i.e. unsatisfyable) for the third path condition. Even
medium-sized conditions can be handled, provided they contain just arithmetic formulae.

The Challenge: Combining Theories

In practice, path conditions not just contain arithmetic formulae, but contain arbitrary expres-
sions from the C language. First of all, C programs contain both integer arithmetic and real
arithmetic, while quantifier elimination was originally designed for real arithmetic only. In
theory, machine integers can be replaced by a finite disjunction, but for ValSoft this approach
is not realistic as it will immediately generate combinatoric explosion in path conditions.

Recently, an elimination algorithm for mixed real-integer arithmetic was proposed [Wei99],
but was not yet integrated into REDLOG. For our purposes real quantifier elimination can be
applied anyway: if there are no real solutions, there are no integer solutions. This is consistent
with the ValSoft principle of conservative approximation, thus possible information flow can
never get lost. Real solutions which are not integer will however lead to false alarms.

Data structures provide even more challenging problems, as arithmetic conditions are
often combined with data structures or function calls. Here is a small example using a stack:

(1) a[i+3] = x;
(2) s = push(s, a[2*j-42]);
(3) if (i>10)
(4) y = top(s);

In the presence of functions, dependencies between parameters must be known. In the ex-
ample, there is a dependency from the second to the first parameter of push. Thus there
is a dependency path

�
1 � ��� � 4 � , indicating a potential information flow. But the standard

path condition is just PC
�
1 � 4 ����
 i � � i � 10 � . This path condition is a necessary condition for

information flow, hence correct, but much less precise than the one from section 2.
If source code for all procedures is available, interprocedural dependences and path con-

ditions [Kri03] will handle this problem. But for library functions, there is a smarter approach
not requiring source code. For standard data types from libraries such as lists, stacks, or trees,



Quantifier Elimination for Software Security 5

an equational specification will often be available, which can be exploited for generating
path conditions. In the example, the equations top

�
push

�
s � x � � � x � pop

�
push

�
s � x � � � s hold.

Application of these equations can be intertwined with path condition generation [SRK05]:

PC
�
1 � 4 ��� 
 i � j �

�
i � 10 ��
 � top

�
push

�
s � a � 2 j � 42 � � � � a � i � 3 � �

� 
 i � j �
�
i � 10 ��
 � a � 2 j � 42 � � a � i � 3 � �

� 
 i � j �
�
i � 10 ��
 � 2 j � 42 � i � 3 �

which is the same conditions as in section 2. Thus source code for library functions need not
be analysed. If nothing is known about a function except its parameter dependencies, this
situation is equivalent to the empty equational specification.

Mathematically, we thus want to apply quantifier elimination not just to arithmetic struc-
tures, but to combinations of arithmetic with either free algebras (containing uninterpreted
function symbols) or with equationally specified algebras. Hence our challenge to the quan-
tifier elimination community:

Challenge: We need quantifier elimination for combinations of arithmetic with free alge-
bras, or with equationally specified algebras.

It is outside the expertise of this author to judge whether the challenge is realistic at all,
or doomed to fail due to undecidability problems. But our experiences with ValSoft show
that many path conditions cannot be solved as they contain not just arithmetic, but other C
expressions as well.

4 Conclusion

Path conditions in dependency graphs are very helpful to discover security leaks in software,
and quantifier elimination is a natural approach for solving path conditions. Our ValSoft
system, implementing this approach, can generate and simplify path conditions for medium-
sized C programs (approx. 10 kLOC) in a few minutes. A version for Java is under way.

Unfortunately, current elimination algorithms do not allow for combinations of arithmetic
expressions with other algebraic structures. If new algorithms can be found, a boom in pro-
gram analysis technology will result. And unsafe software will have a hard time in court as
quantifier elimination will provide witnesses against it.

References

[Com99] Common Criteria Project Sponsoring Organizations. Common criteria for infor-
mation technology security evaluation. ISO/IEC 15408, 1999.

[DS97] Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra meets computer
logic. ACM SIGSAM Bulletin, 31(2):2–9, 1997.



6 G. Snelting

[Kri03] Jens Krinke. Advanced Slicing of Sequential and Concurrent Programs. PhD
thesis, Universität Passau, July 2003.

[Rob05] Torsten Robschink. Pfadbedingungen in Abhängigkeitsgraphen und ihre Anwen-
dung in der Softwaresicherheitstechnik. PhD thesis, Universität Passau, Januar
2005. in German.

[RS02] Torsten Robschink and Gregor Snelting. Efficient path conditions in dependence
graphs. In Proceedings International ACM/IEEE Conference on Software Engi-
neering (ICSE’02), pages 478–488, Orlando, FL, May 2002.

[SM03] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1), January 2003.

[Sne96] Gregor Snelting. Combining slicing and constraint solving for validation of mea-
surement software. In Proc. Static Analysis Symposium, volume 1145 of LNCS,
pages 332–348, 1996.

[SRK05] G. Snelting, T. Robschink, and J. Krinke. Efficient path conditions in dependence
graphs for software safety analysis. ACM Transactions on Software Engineering
and Methodology, to appear 2005.

[SW96] Thomas Sturm and Volker Weispfenning. Computational geometry problems in
REDLOG. In Automated Deduction in Geometry, pages 58–86, 1996.

[Wei94] Volker Weispfenning. Parametric linear and quadratic optimization by elimination.
Technical Report MIP-9404, FMI, Universität Passau, D-94030 Passau, Germany,
April 1994.

[Wei97] Volker Weispfenning. Simulation and optimization by quantifier elimination. Jour-
nal of Symbolic Computation, 24(2):189–208, 1997.

[Wei99] Volker Weispfenning. Mixed real-integer linear quantifier elimination. In ISSAC:
Proceedings of the ACM SIGSAM International Symposium on Symbolic and Al-
gebraic Computation, pages 129–136, 1999.

Gregor Snelting is a full professor for computer science at the University of Passau, lead-
ing the software technology group. He received his Diploma and PhD from the Technical
University of Darmstadt with work on generic type inference in language-based editors.
His current interests include program analysis and deductive techniques for software en-
gineering purposes, such as refactoring, reengineering or security checks.

snelting@fmi.uni-passau.de www.fmi.uni-passau.de/st/


