
Concept Lattices in Software Analysis

Gregor Snelting

Universität Passau

Abstract

About ten years ago, the first serious applications of concept lattices in software

analysis were published. Today, a wide range of applications of concept lattices in

static and dynamic analysis of software artefacts is known. This overview summa-

rizes important papers from the last ten years, and presents three methods in some

detail: 1. methods to extract classes and modules from legacy software; 2. the Snelt-

ing/Tip algorithm for application-specific, semantics-preserving refactoring of class

hierarchies; 3. Ball’s method for infering dynamic dominators and control flow re-

gions from program traces. We conclude with some perpectives on further uses of

concept lattices in software technology.

1 Overview

Concept lattices were already introduced more than 50 years ago in Birkhoff’s first book

on lattice theory.1 More than 20 years ago, Ganter and Wille started to expand the theory

considerably and investigated serious applications of concept analysis e.g. in the social

sciences. But only 10 years ago, a few researchers started to explore the possibilities of

concept lattices for computer science, in particular software technology. Godin, Mili and

their coworkers in Montreal applied concept analysis to software design, in particular

object-oriented design; this line of reasearch is described in Godin’s contribution to the

current book. The current author and his group, then in Braunschweig, came up with the

first applications of concept lattices in software analysis. Meanwhile, a wealth of results

is available, and it is the goal of this article to present important uses of concept lattices

and their structure theory for static and dynamic analysis of software artefacts.

It is very natural to apply concept lattices for software analysis, as every software arte-

fact contains an abundance of relations between “objects” and “attributes”. To explore

hidden structure in such relations is a natural task whenever one wants to understand

old software artefacts, or reengineer legacy systems. As a result, a wave of concept lattice

applications in software technology was proposed. Some of the applications were well-

motivated and based in a thorough understanding of the underlying theory, while others

just generated lattices from “yet another relation”, without validating the resulting struc-

tures. In the following we will concentrate on some substantial contributions; some of

the latest papers are covered as well as “classics”. Thus in the intention of the author, the

current article also serves as a successor to the earlier overview articles [Sne98, Sne00].

1We will not give references to general literature on concept analysis or software technology, but restrict

ourselfes to citations of specific papers which utilize concept lattices in software analysis.
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1.1 Infering configuration structures from source code

One of the very first nontrivial applications of concept lattices for software analysis was

Krone’s and Snelting’s work on the inference of configuration strcutures from source

code. The paper was presented in 1994 at the International Conference on Software En-

gineering (ICSE) [KS94], and an expanded version later appeared in the ACM Transactions

on Software Engineering and Methodology [Sne96]. The authors analysed the relation-

ship between code pieces and preprocessor variables in Unix system software, as the

preprocessor is typically used for configuration management in older Unix programs.

Not only did implications and interferences between configurations become visible in

the lattice; the structure theory of concept lattices (irreducible elements and implication

base) allowed for a restructuring of the preprocessor variables, and the configuration

space could be modularized according to algebraic decompositions of the lattice.

1.2 Identifying modules and classes in legacy software

“Modularization” was also the keyword for a whole series of papers which came out in

the following years; triggered by the Y2K problem and its corresponding reengineering

challenges. Old legacy systems typically have been developed without modern software

technology; in particular, there is no explicit modularization. Identifying modules or

classes in legacy code therefore is an important task in order to make such systems

survive (“software geriatry” [Parnas]), and concept analysis turned out to be quite helpful.

The author’s approach to modularize old Fortran systems, which was presented at

ICSE 1997 [LS97], will be described later in detail. Generally speaking, it explores the

relationship between program variables and procedures in order to identify modules.

At the same time, Siff and Reps presented a similar approach to the restructuring of

C programs [SR97]. Van Deursen and Kuipers applied basically the same idea to Cobol

legacy programs and published it at ICSE 1999 [vDK99]. All three papers have shown that

it is not enough to just compute the lattice, but that background knowledge has to be

exploited for a careful selection of “objects” and “attributes”, and that the lattice must

be simplified, decomposed and interpreted by experts. Other authors have stepped into

the footsteps of these three publications, but not with the same success and impact.

1.3 Software component retrieval

A side line of the work on modularization resulted in support for software component

retrieval. Godin et al. were probably the first authors to apply concept lattices for com-

ponent retrieval [GMA93]. Lindig’s dissertation [Lin99] went a considerable step further:

it carefully engineered concept-based component retrieval and validated its effectiveness

for interactive retrieval. Later Fischer combined Lindig’s approach with formal specifica-

tions, where match relations between specifications are checked beforehand by a theorem

prover in order to obtain the initial table from which the lattice is generated; this work

won the best Paper Award at the Conference on Automated Software Engineering 1998

[Fis98]. Other authors have proposed similar approaches, but not with the same success

and impact.
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1.4 Refactoring class hierarchies

As concept lattices are natural inheritance structures, a natural application field is class

hierarchies for object-oriented languages. The work by Godin as well as Hesse’s ap-

proach to requirements engineering aim at the construction of a class hierarchy from

some requirements and are described elsewhere in this book. But in practice, evolution

of existing systems is more important than the construction of new systems, and in the

object-oriented world, refactoring of class hierarchies is the method of choice. Refac-

toring applies a sequence of (hopefully) semantics-preserving transformations to a class

hierarchy such as moving methods to other classes, splitting classes, or extracting new

methods from statements. The overall goal is to improve the hierarchy according to soft-

ware engineering principles such as high cohesion and low coupling, or to identify design

patterns in existing code.

One approach was proposed by Tonella, who used concept lattices to identify de-

sign pattern in existing code, and reports some success for small examples [TA99]. The

semantics-preserving refactoring method by Snelting and Tip was first published at the

1998 Symposium on Foundations of Software Engineering (FSE) [ST98]; a much more de-

tailed version appeared later in the ACM Transactions on Programming Languages and

Systems [ST00]. It is based on a fine-grained analysis of a given hierarchy together with a

set of applications, and will be explained later in more detail. Work on refactoring using

concept lattices is still ongoing, and we will see more results in the future.

1.5 Dynamic analysis

Only a few years ago, the program analysis community started to pay attention not only

to static program analysis, but also to dynamic program analysis. Static analysis relies on

the source text alone, and precise static analysis is often expensive, if not undecideable.

Dynamic analysis uses a set of execution traces in addition; of course the analysis results

are valid only for a set of specific inputs or program runs, but are much cheaper to

compute and in practice often quite sufficient.

It is therefore not surprising that concept lattices were used for dynamic analysis as

well. The first paper presenting such an approach was Ball’s reconstruction of control

flow graphs from program traces; it was published at FSE 1999 [Bal99] and will be ex-

plained later in this article. A more general (but also less precise) approach was presented

by Koschke in 2001 and received the Best Paper Award at the International Conference

on Software Maintenance [EKS01].

The latest article in this line of research was presented by Ammons, Mandelin, Bodik

and Larus at the Conference on Programming Language Design and Implementation

(PLDI) [AMBL03]. The authors use concept lattices to debug specifications in temporal

logic. The idea is to analyse execution traces (e.g. counterexamples generated by a model

checker) and group similar traces into “concepts”; this reduces the debugging work. The

paper is not only remarkable due to its high-tech combination of temporal specifications,

model checkers, specification extractors, and concept lattices, but also due to the fact

that two authors are academics, one is from Microsoft, and one is from IBM.
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SUBROUTINE R1(...)

COMMON /C1/ V1,V2

...

END

SUBROUTINE R2(...)

COMMON /C2/ V3,V4

COMMON /C3/ V5

...

END

SUBROUTINE R3(...)

COMMON /C2/ V3,V4

COMMON /C4/ V6,V7,V8

...

END

SUBROUTINE R4(...)

COMMON /C2/ V3,V4

COMMON /C3/ V5

COMMON /C4/ V6,V7,V8

...

END

V1 V2 V3 V4 V5 V6 V7 V8

R1 × ×

R2 × × ×

R3 × × × × ×

R4 × × × × × ×

V3,V4

V6,V7,V8
R3

R4

V5
R2

V1,V2
R1

Figure 1: A Fortran fragment, its context table, and its concept lattice

1.6 Impact

These days, citation databases are gaining influence, and we therefore browsed the Cite-

Seer data base, which contains most publications and citations in computer science. The

above overview contains only the most important publications; CiteSeer lists about 40

papers on “concept analysis” or “concept lattices”, and more are coming out. The arti-

cles sketched above have all been published at very selective and influential conferences

and journals (for example, PLDI is according to CiteSeer the most cited of all computer

science conferences), and as a consequence CiteSeer lists more than 400 citations of con-

cept analysis papers in computer science. Ganter and Wille made it into CiteSeer’s list of

the 10000 most cited computer scientists, even though they are mathematicians.

This success would not have been possible without readily available implementations.

In Germany, the concept lattice software from Wille’s group is quite well-known, but on

an international scale the most popular software is Lindig’s implementation of Ganter’s

algorithm for concept lattice generation [Lin], as it is very efficient, robust, and usable

as a background tool without own GUI. The software has been installed at ca. 50 sites

worldwide.

2 Modularization

Let us now describe our work on modularization of old Fortran programs in some detail.

While the above-mentioned later papers by Siff/Reps and vanDeursen/Kuipers were more

successful from a practical viewpoint, our work introduced the basic idea. The project

was based on a cooperation with a national research institution, who aimed at reengineer-

ing their aerodynamics software written in Fortran. Several approaches to modularize the

system had failed, so it was decided to try concept lattices.

The fundamental idea is to investigate the relation between global variables and pro-

cedures. If a set of variables V and a set of procedures P can be identified, where all

procedures in P use only variables in V , and all variables in V are only used by proce-

dures in P , then P together with V is definitely a module candidate. The reason is that

modules implement information hiding, hence a module’s variables may only be accessed
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a b

R

R

a b

Figure 2: Horizontally decomposable lattice and an interference (left); Concept lattice for

Fortran aerodynamics program (right)

through its interface procedures. Figure 1 presents a small example of four procedures,

acting on various global variables which are organized in several “Common” blocks. The

goal was to identify modules as described, and restructure the “Common” blocks such

that there is one “Common” block per module. Figure 1 also presents the context table

extracted from the source code, and the corresponding concept lattice.

The general situation is depicted in figure 2 (left part). Modules correspond to rectan-

gle shapes in the context table, but must not be completely filled rectangles, as not every

procedure accesses all module variables (remember that in the context table, row and

column permutations do not matter!). The corrresponding lattice is horizontally decom-

posable, and every rectangle shape in the table corresponds to one horizontal summand.

Figures 1 and 2 both present horizontally decomposable lattices, hence a modularization

is possible. In case horizontal summands are connected by a few additional infima, these

are called interferences. Interferences prevent modularization (as the information hid-

ing principle is violated), but can usually be removed by some small behavior-preserving

transformations of the source code.

Now let us come back to our project with the national research institution. We anal-

ysed a 106 KLOC Fortran program, which was 25 years old and had undergone countless

modifications. 317 procedures were acting on 492 global variables, distributed over 40

“Common” blocks. After extraction of the context table, the lattice was computed and lay-

outet. The result can be seen in figure 2 (right). The lattice has more than 2000 elements,

is definitely not decomposable, but consists basically of interferences. A modularization

based on a repartitioning of the global variables is therefore not possible. The national

institution decided to cancel the reengineering project and develop a new system.

Let us add that the basic method can be extended in various ways: Siff/Reps not

only used variables and procedures, but also types, and they explicitely coded the fact

that p ∈ P does not use variable v ∈ V or type t. vanDeursen/Kuipers preprocessed

the variables, in order to distingish temporary variables from those relevant to modules.
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class A {

int x, y, z;

void f() {

y = x;

}

}

class B extends A {

void f() {

y++;

}

void g() {

x++;

f();

}

void h() {

f();

x--;

}

}

class Client {

public static void

main(String[] args) {

A a1 = new A(); // A1

A a2 = new A(); // A2

B b1 = new B(); // B1

B b2 = new B(); // B2

a1.x = 17;

a2.x = 42;

if (...) { a2 = b2; }

a2.f();

b1.g();

b2.h();

}

}

A
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A
.z
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B
.g
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B
.g

)
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B
.h

)

d
e
f(

B
.h

)

a1 ×

a2 × ×

b1 ×

b2 × ×

A1

A2 ×

B1 × ×

B2 × ×

A.f.this × × ×

B.f.this × ×

B.g.this × × ×

B.h.this × × ×

Figure 3: A small example program and its member access table

For the Fortran analysis, Wegman proposed to transform the program into static single

assignment form first, as Fortran programs often misuse the same variable for different

purposes. All this will improve the results of modularization. But today, with a few

years distance, the author does not really believe in automatic modularization any more,

because really old programs are just too chaotic. Even concept lattices will not prevent

their entropy death.

3 Automatic refactoring

The Snelting/Tip algorithm is one of the most complex, but also most powerful appli-

cations of concept lattices. It serves to automatically restructure (“refactor”) a given

class hierarchy with respect to a given set of client programs. As clients typically do

not access every feature of a given hierarchy, the result is a refactored hierarchy which

is “specialised” or “taylored” to the specific clients. In particular, all objects will con-

tain only members and methods they really need (with respect to client behaviour). The

method combines program analysis, type constraints and concept analysis to compute

the most fine-grained refactoring which is still preserving client behaviour.

In this section, we recapitulate the basic properties of this algorithm. Full details can

be found in [ST00].

3.1 Collecting member accesses

The algorithm is based on a fine-grained analysis of object access patterns. For all objects

or object references o, it determines whether o does access memberm from class C . The

result is a binary relation, coded in form of a table T .

As an example, consider the program fragment in figure 3 (left). B, being a subclass
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of A, redefines f() and accesses the inherited fields x,y . The main program creates

two objects of type A and two objects of type B, and performs some field accesses

and method calls. Table T for this example contains of rows labelled with object ref-

erences a1, a2, b1, b2, A.f .this, B.f .this, B.g.this, B.h.this as well as object creation sites

A1, A2, B1, B2. Columns are labelled with fields and methods A.x,A.y , A.z,A.f (), B.f (),

B.g(), B.h(). For methods, there is an additional distinction between declarations and def-

initions (dcl(C.f ()) vs. def (C.f ())), which makes the analysis much more precise.

Points-to analysis is used to determine for an object reference o to which object cre-

ation sites it might point to at runtime; this set is denoted pt(o) = {C1, C2, . . .}. pt(o)

may be too big (i.e. unprecise), but never too small (i.e. pt is a conservative approxima-

tion). Now let Type(o) = C be the static type of o, and let member accesses o.m resp.

o.f () be given. Table T will contain entries (o,C.m) resp. (o,dcl(C.f ()). Furthermore,

entries (O,def (C.f ())) are added for all O ∈ pt(o) where C = StaticLookup(Type(O), f ).

For the above example, the resulting table is shown in figure 3 (right).

3.2 Type constraints

In a second step, a set of type constraints is extracted from the program, which are

necessary for preservation of behaviour. The refactoring algorithm computes a new type

(i.e. class) for every variable or class-typed member field, and a new “home” class for

every member. Therefore, constraints for a variable or field x are expressed over the

(to be determined) new type of x in the refactored hierarchy, type(x); constraints for

a member or method C.m are expressed over its (to be determined) new “home class”,

def (C.m).

There are basically two kinds of type constraints:

1. Any (explicit or implicit) assignment x = y; in the program text gives rise to a type

constraint type(y) ≤ type(x). Such constraints are called assignment constraints.

2. If subclass B of A redefines a member or method m, and some object x accesses

both A.m and B.m (that is, ∃x : (x,def (A.m)) ∈ T ∧ (x,def (B.m)) ∈ T ), then

def (B.m) < def (A.m) must be retained in order to avoid ambiguous access to m

from x. Such constraints are called dominance constraints. A more obvious, similar

dominance constraint requires that for all methods C.f , def (C.f ) ≤ dcl(C.f ).

Once all type constraints have been extracted, they are incorporated into table T . To

achieve this, we exploit the fact that a constraint can be seen as an implication between

table rows resp. columns, and that there is an algorithm to incorporate any given set of

implications into a table. First we observe that even in the refactored hierarchy, a subtype

inherits all members from its supertype. Therefore type(y) ≤ type(x) emforces that any

table entry for x must also be present for y ; that is ∀m : (x,m) ∈ T ⇒ (y,m) ∈ T ,

or x → y for short. Second, def (B.m) < def (A.m) enforces that any table entry for

def (B.m) must also be present for def (A.m), which is written as def (B.m) → def (A.m).

Reconsidering figure 3, the following assignment constraints are collected in form of

implications:

A.y → A.x,A.f .this → a2, B.f .this → a2, B.g.this → b1,
B.h.this → b2, a1 → A1, a2→ A2, b1 → B1, b2 → B2, a2 → b2
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a1 ×

a2 × ×

b1 ×

b2 × × × ×

A1 ×

A2 × × × ×

B1 × × × × × × ×

B2 × × × × × × ×

A.f.this × × × ×

B.f.this × × × ×

B.g.this × × × × × × ×

B.h.this × × × × × × ×

dcl(A.f())

a2

A.y

def(B.h())

B2

def(A.f())

A2

dcl(B.g())

b1

A.x

A1
a1

dcl(B.f())

dcl(B.h)

b2

def(B.f())

def(B.g())

B1

A.z

def(A.f())

A2

A.x

A1
a1

dcl(B.g())

b1

def(B.g())

B1

def(B.h())

B2

dcl(B.h())

b2

dcl(B.f())
def(B.f())

dcl(A.f())

a2

A.y

Figure 4: Table after incorporating type constraints for figure 3 (left); corresponding

concept lattice and its simplified version (right)

Furthermore, the following obvious dominance constraints are collected:

def (A.f )→ dcl(A.f ),def (B.f )→ dcl(B.f ), def (B.g)→ dcl(B.g),def (B.h)→ dcl(B.h)

as well as the non-obvious dominance constraints

def (B.f )→ def (A.f ),dcl(B.f )→ dcl(A.f )

These implications are incorporated into the initial table (figure 3 right) by copying

row entries from row y to row x resp. column entries from column def (A.f ) to column

def (B.f ) etc. Note that in general there may be cyclic and mutual dependences between

row and/or column implications, thus a fixpoint iteration is required to incorporate all

constraints into the table. The final table for figure 3 is presented in figure 4 (left).

3.3 The refactored hierarchy as a concept lattice

In a final step, concept analysis is used to construct the refactored hierarchy from the

final table. Concept lattices can naturally be interpreted as inheritance hierarchies. The

concept lattice for figure 3, as constructed from the final table (figure 4 left), is given

in figure 4 (middle). Every lattice element represents a class in the refactored hierarchy.

Method or field names above an element represent the members of this class. Objects or

pointers below an element will have that element (i.e. class) as its new type. In particu-

lar, all objects now have a new type which contains only the members the object really

accesses.

Typically, original classes are split and new subclasses are introduced. This is partic-

ularly true for figure 4 (middle), where the raw lattice introduces 12 refactored classes in-

stead of the original two classes. These new classes represent object behaviour patterns:

a1 and A1 use A.x but nothing else, which is clearly visible in the lattice. a2 additionally

calls a.f () and therefore needs the declaration of this method. b1 calls B.g() and noth-

ing else; b2 calls B.h(), B.f () plus anything called by a2. The “real objects” A2, B2, B1

are located far down in the hierarchy and use various subsets of the original hierarchies’

members. B2 in particular not only accesses everything accessed by b2, but also calls

B.f (), which leads to a multiple inheritance in the lattice. Note that the raw lattice clearly
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distinguishes between a class and its interface: several new classes contain only dcl(...)

entries, but no def (...) entries or fields, meaning that they are interfaces.

As the lattice respects not only the member accesses, but also the type constraints,

it guarantees preservation of behaviour for all clients. The lattice is rather fine-grained,

and in its raw form represents the most fine-grained refactoring which respects the be-

haviour of all clients. But from a software engineering viewpoint, the lattice must be

simplified in order to be useful. Some simplifications are quite obvious: “empty” ele-

ments (i.e. new classes without own members) such as the top and bottom element in

figure 4 (middle) can be removed; multiple inheritance can in many cases be eliminated,

and lattice elements can be merged according to certain (behaviour-preserving) rules. In

particular, the distinction between a class and its interface can be removed by merging

lattice elements. The final result is in general not a lattice anymore, only a partial order

– but for object-oriented programming, this is fine.

Figure 4 (right) presents a simplified version of figure 4 (middle), which can be gen-

erated automatically. Now the empty elements and the interfaces are gone, and the

different access patterns for the objects are visible even better:

• The two objects of original type B have different behaviour, as one calls g and the

other calls h. Therefore, the original B class is split into two unrelated classes.

• The two objects of original type A have related behaviour, as A2 accesses everything

accessed by A1, plus A.f(). Therefore, the original A class is split into a class and

a subclass.

• A1 does only contain A.x and not A.y . A.z is dead, as it appears at the bottom

element in the lattice. Thus objects become smaller in general, as unused members

are physically absent in objects of the new hierarchy.

One might think of simplifying even further by merging the two topmost elements in

figure 4 (right), but that would make A1 bigger than necessary by including A.y as a

member. It is the refactorer’s decision whether this disadvantage is outweighted by a

simpler structure of the refactored hierarchy. If so, the refactoring editor must guarantee

that behaviour of all clients is still preserved after simplification.

3.4 The KABA system

KABA (KlassenAnalyse mit BegriffsAnalyse) is an implementation of the Snelting/Tip

method for Java. KABA consists of four parts: a static analysis, a dynamic analysis, a

graphical class hierarchy editor and a bytecode transformation tool.

KABA will display the (original or simplified) lattice, and offers browsing as well as

back links to the original hierarchy. But the true value of the KABA hierarchy editor lies in

its ability to manipulate the (refactored or original) hierarchy – where of course preserva-

tion of behaviour is always guaranteed. For example, classes can be merged or methods

can be moved to neighbour classes. Eventually, Java code can again be generated. Note

that all original statements remain unchanged – only the hierarchy and the declarations

of variables, fields and methods change, as the classes from the new hierarchy have to

used as computed.

Figure 5 shows a KABA screenshot. The reader should be aware that the implemen-

tation of the Snelting/Tip method for KABA and its application to real Java programs
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Figure 5: Kaba screenshot for figure 3

is much more complex as described above: the full Java language must be handled as

well as libraries; questions of scale-up do matter, etc. Some case studies using KABA on

real-world programs can be found in [SS03].

4 Dynamic Analysis

Ball [Bal99] was the first one to use concept lattices for dynamic analysis. His scenario

assumes that no source code is given, just an executable program, and the task is to

reconstruct the control flow graph (CFG) and its dominator relations. The starting point

is an execution profile which for every test run says which statements or functions have

been executed.

In order to understand Ball’s method more fully, we will have to introduce a few defi-

nitions. CFG’s are well known, and figure 6 (left) presents a small example. In CFG’s, the

definition of a dominator is very important. Statement x is a predominator of statement

y , if x must always be executed before y : every path from the CFG start to y must pass

through x. In the standard example, x is a while loop entry point, and y is a statement in

the loop body; obviously y can never be executed unless x has been executed. Statement

y is a postdominator of x if y must always be executed after x: every CFG path from x

to the CFG exit must pass through y .

Figure 6 (right) presents a few examples for these definitions. Note that e.g. B is not a

predominator for E since E can be reached via D, but B is a predominator for C as there

is no way to reach C except via B. The relations x predom y and y postdom x are partial

orders, and in fact pre- resp. postdominators can always be arranged in a tree.

If x predom y and y postdom x, then x and y are said to be in the same control flow

region. Statements in the same region are always executed together or not at all; it is easy

to see that these regions form an equivalence relation on the CFG nodes. In the example,

A and E are in the same region as A predom E and E postdom A, but other non-trivial

regions do not exist (B,C,D are all in their own singleton region).

As defined above, dominators are static relations: they are valid for every possible

execution. If source code is missing, static dominators cannot be determined. All that
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A?

B?

C

D

E

A predom C, B predom C

¬(B predom D), ¬(B predom E)

E postdom C, E postdom D

Figure 6: A simple control flow graph and some pre- and postdominator relationships

add rotate rem Min Succ DelFix

t1 X X X

t2 X X X X

t3 X X X X

t4 X X X X X X

t5 X X X X X X

add, rem

rotate DelFix

t1

t2t3

t4, t5

Min

Succ

Figure 7: A trace table and its concept lattice

can be said is that for the given test runs, x was always executed before (or after) y .

Such dynamic dominators are valid only for some specific set of executions, but not

for all program executions. The more executions are run, the more likely it is that a

dynamic dominator is in fact a static dominator. Thus dynamic dominators are good

candidates for static dominators and perhaps allow a reconstruction of the CFG! This

was Ball’s idea, together with his insight that dynamic dominators can be determined by

computing concept lattices from program traces.

Let us consider an example. In figure 7 we see a table summarizing the results of pro-

filing 5 test runs. For every test run (i.e. row) we see which functions among 6 functions

were executed. The concept lattice for this table is shown in the same figure. What is

the interpretation of this lattice? First of all, the concepts are dynamic regions: all func-

tions in a concept’s intent are executed together or not at all. Furthermore, upward arcs

are implications: any test that executes min and succ also executes rotate. Therefore,

rotate is a dynamic dominator of both min and succ! (Unfortunately, we cannot tell

whether it is a pre- or postdominator, as the trace table does not say anything about the

temporal order of function executions.)

Next, suprema resp. infima correspond to forks of control flow (“if-statements”): add

dominates both Min and DelFix, but there are tests which distinguish execution of both.

Let us assume that add is in fact a dynamic predominator of min and succ, then there

must be a case distinction at add leading to either min or succ (and the case distinction
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cannot be earlier in the execution, since add is at the supremum!). In this situation, the

infimum of Min and DelFix correponds to the “join point” (dynamic postdominator) in

the CFG, where the two branches of the “if” merge again.

But note that the situation could be the other way round, that is the infimum could

correspond to the “if” predominating the two branches, and the supremum could be the

join point2. In any case, the lattice is an order-preserving image of the CFG according to

the following equations:

x predom y =⇒ µ(x) ≥ µ(y)

x postdom y =⇒ µ(x) ≤ µ(y)

If the trace table can be enriched with information saying which function was executed

earlier, the lattice can definitely distinguish (dynamic) pre- and postdominators. The

more test cases are used, the more fine-grained this lattice will become, and in the

limit case of an infinite number of tests covering all CFG paths, the CFG can be order-

embedded into the lattice. Note that the CFG is only a quasi-order as it usually contains

cycles.

Summarizing this preliminary discussion, we see that the concept lattice allows to

uncover the control flow graph and its regions and dominators from test cases. This is

a very useful method for reengineering old executables where the source code has been

lost – a situation which occurs in practice. Let us hope that Ball will proceed to work out

the details and apply it to real-world examples.

5 Conclusion

This overview article centered around applications of concept lattices in software analy-

sis. Several other applications of concept analysis in software technology are described

elsewhere and have been left out due to space restrictions. Examining the applications we

have discussed, one can clearly distinguish two different “historical” phases: early appli-

cations of concept lattices in software technology centered on design and static analysis,

while later applications are based on program transformation and dynamic analysis.

It is kind of surprising that all these applications stick to the basic theory of con-

cept lattices and their corrresponding implication base, but do not apply more advanced

results, such as the structure theory of concept lattices or fuzzy contexts. In fact the

author believed for a while that these advanced techniques can improve applications in

software technology. But today we know that this is not true. The reason is that realistic

lattices do not have the properties required for the advanced techniques. For exam-

ples, typical lattices in software technology have neither congruences nor block relations

(“weak congruences”); the reason is that congruences have nonlocal effects on the lattice

which have no counterpart in the world of software. Similarly, subdirect or subtensorial

decompositions could not be found in our various applications.

Nevertheless, concept lattices have received a huge wave of attention by software

technology researchers in the last seven years, and proved to be a very helpful instru-

ment. We will see many more concept lattices in software technology in the next seven

years!

2Ball for some reason assumed that suprema always correspond to predominators, but Ganter pointed

out that the dual situation could also be the case.
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