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Abstract

Speicherverwaltung ist eine der anspruchsvollsten Bestandteile der Program-
mierung. Daher wurde die Zuständigkeit für Speicherverwaltung vor allem mit dem
Aufkommen von Garbage-Collectors mehr auf die Laufzeitumgebungen verlagert.
Besonders funktionale Programmiersprachen wie Haskell legen viel Wert auf die
Abstraktion von Speicherverwaltung. Allerdings lässt der Glasgow Haskell Compiler
zurzeit noch viel Raum für Optimierung von Speicherverbrauch und Performanz.

Zur Ermöglichung solcher Optimierungen befasst sich diese Master-Thesis mit der
Entwicklung einer statischen Escape-Analyse für den Glasgow Haskell Compiler. Der
Hauptzweck dieser Analyse soll die Identifikation von Speicherallokation auf dem
Heap sein, die stattdessen auf dem Stack getätigt werden können.

Auswertungen mithilfe eines instrumentierten Interpreters zeigen, dass dank der
Analyse durchschnittlich 13,7 % des Heap-allokierten Speichers auf den Stack verlagert
werden kann.

Memory management is one of the most challenging parts of programming. This
is why the responsibility of memory management is being delegated to the runtime
environments, mainly due to the rise of garbage collectors. Especially functional
programming languages like Haskell are emphasizing the abstraction of memory
management. The Glasgow Haskell Compiler, however, leaves a lot of room for
optimization with regard to memory usage and performance.

To enable such optimization, this master thesis deals with the development of a
static escape analysis for the Glasgow Haskell Compiler. The main purpose of this
analysis shall be the identification of memory allocations on the heap, that can be
performed on the stack instead.

The evaluation via an instrumented interpreter show that due to the analysis, on
average 13.7% of heap allocated memory can be shifted to the stack.
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1. Introduction
Consider this Haskell code:
f p (x:xs) = let px = p x

in case any px xs of True -> Just x
_ -> f p xs

f p [] = Nothing

The body of the function f consists of a let expression, that defines a variable px.
When the function is being called, first a closure gets created, which represents px
at runtime. After that, the let body gets evaluated. Currently, to create a closure,
the GHC will generate a heap allocation. However, by taking a closer look at the
let body, it becomes apparent that px’s closure can only be evaluated during the
evaluation of the let expression. The access to px’s closure is limited to the lexical
scope of px. Hence, a stack allocation would be sufficient.

In a different situation, f may grant its caller access to px’s closure by returning a
value, that contains a reference to px’s closure:
f p (x:xs) = let px = p x

in Just px
f p [] = Nothing

Here, said closure can possibly be accessed outside px’s lexical scope.
The latter case is the exact reason why the GHC, among other compilers for

different languages, would generate a heap allocation for px. However, in the former
case, a stack allocation would be a valid optimization to the code, it would be much
cheaper than a heap allocation. The purpose of an escape analysis is to basically
distinguish these two cases, to identify bindings, that can be allocated on the stack.
To our knowledge, there is no escape analysis for a Haskell compiler or any compiler
for a lazy language yet.

This thesis makes the following contributions:

• We contemplate the benefits an escape analysis might have for a Haskell
Compiler (Section 2.2). We also give an understanding of the challenges to
overcome for the development of an escape analysis in the context of Haskell
(Section 2.5). The most important of them are the identification of memory
allocations in the code, being aware of the lexical scope, how to treat closures
and thunks and how the semantics of join points affect the stack.

• We present the design and specification for an escape analysis algorithm, that
processes STG code to identify bindings, that can be allocated on the stack
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(Section 3.1). To our knowledge, this is the first escape analysis to be developed
for a lazy language like Haskell. We introduce core concepts of the algorithm
and discuss the design decisions that aid overcoming the challenges introduced
previously (Section 3.2).

• To evaluate the soundness and effectiveness of the algorithm, we contemplate
the significance of different metrics (Section 4.1). To measure these metrics, we
introduce a custom profiling feature for an STG interpreter (Section 4.2). The
general approach is to keep track of the access to heap objects at runtime in
consideration of the lexical scope of their binding. We present the measurements
of these metrics for a variety of benchmark programs (Section 4.4).
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2. Basics and related work
First, we cover the basic concepts of escape analysis Then in section 2.2, we discuss
how a compiler can benefit from it. Section 2.3 gives a quick explanation of different
notations that are used in the remainder of this thesis. Section 2.4 provides an
overview of STG language. Lastly, section 2.5 describes the challenges to overcome
when performing an escape analysis.

2.1. Escape analysis
Escape analysis can be seen as a specialization of points-to analysis, in the way
that we statically determine for a program, which data items can be pointed to by
a specific pointer. [1] defines escape analysis as a static analysis that determines,
whether the lifetime of data may exceed its static scope. So basically, we aren’t
interested in the concrete points-to set of a pointer, the only relevant information is,
whether a data item is contained in the points-to set of a pointer, that is located
outside the lexical scope of said data item or not. This relationship between escape
analysis and points-to analysis is demonstrated using an example in Java:
private static Integer create1 () {

Integer p1 = new Integer (1); // o1
System.out.println("Created␣" + p1);
return 1;

}

private static Integer create2 () {
Integer p2 = new Integer (2); // o2
System.out.println("Created␣" + p2);
return p2;

}

public static void main(String [] args) {
Integer p3;

switch (args [1]) {
case "1":

p3 = createInteger1 ();
break;

case "2":
p3 = createInteger2 ();

9



2.2. POSSIBLE OPTIMIZATIONS

break;
}

}

There are data items created in two different places in the program, which are the
objects o1 and o2. After performing a points-to analysis, the points-to sets for the
variables p1, p2 and p3 are:

PT(p1) = {o1}, PT(p2) = {o2}, PT(p3) = {o2}

Also note, that p3 is defined outside the lexical scope of p1 and p2. From the fact,
that o2 is in PT (p3) and o1 isn’t, we can derive that o2 escapes and o1 doesn’t.

All an escape analysis effectively does, is assigning the property escapes or doesn’t
escape to an object’s point of creation in the program code. (e.g. call to malloc in C
or the new operator in most OO languages). However, identifying memory allocations
for non-imperative languages like Haskell, is not as straight forward as just looking
for certain operators in the code. This problem will be discussed in section 2.5.1

2.2. Possible optimizations
For the code produced by the GHC there are two major optimizations, that can be
done based on escape analysis under certain circumstances:

Stack allocation Non-escaping objects can be allocated on the Haskell RTS stack
instead of the managed heap.

Reuse of surrounding closures Non-escaping closures don’t have to capture their
free variables on their own. For variables that are already captured by the
surrounding closure, they can refer to their surrounding closure instead. This
concept is called linked closure.

In imperative languages there might also be the opportunity for the elimination of
synchronization [2], which is less relevant for Haskell, since Haskell programmers are
expected to work with immutable data.

There are some more or less obvious benefits to be achieved by performing these
optimizations: The decrease of allocations on the managed heap takes load off the
garbage collection and therefore reduces performance and memory overhead that
usually comes with GC. Haskell uses a generational copying collector, which [3]
describes in more detail.

A more subtle but not necessarily less relevant advantage of stack allocation in
contrast to heap allocation is the increase of data locality which, according to [4],
can lead to performance improvements.

The reuse of surrounding closures might decrease the memory usage: Usually, a
closure captures its free variables in form of pointers or values. However, a non-
escaping closure can only be entered in the context it has been defined in, the binders
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2.3. NOTATIONS

of the free variables are in scope for at least the entire lifetime of the closure. Hence,
there is no need to capture any of the free variables.

To implement these optimizations, the following conditions must hold for non-
escaping objects:

• To safely allocate an object on the stack, it has to be determined at compile
time to only be used as long as it is present on the stack.

• For a closure to reuse its surrounding closure instead of capturing its own
free variables, it can only be entered while the surrounding closure is alive.
Otherwise, the use of linked closures might keep the surrounding closure alive
for longer than necessary, which would be a threat to the space safety [5].

The escape analysis developed as part of this thesis has many similarities with the
escape analysis for the Caml Special Light compiler [6]. It operates on an abstract
syntax tree which is based on lambda calculus. In addition to that, the analysed
code is being optimized to perform stack allocations where possible. Comparing the
execution of several benchmarks shows a significant speedup and decrease in memory
usage for the optimized code.

2.3. Notations
Overline: A sequence of equal expressions with arbitrary length e1 e2 . . . can be

displayed with overline syntax as e.
This way, a recursive let expression with a sequence of several bindings can be
displayed in a more compact way:

let rec b1 = r1 b2 = r2 . . . in e ≡ let rec b = r in e

To write case expressions, nested overlines are necessary:

case s of K1 a1,1 a1,2 · · · → e1
K2 a2,1 a2,2 · · · → e2
. . .

≡ case s of K a → e

The exact number of elements in the sequence can be specified in the superscript
of the overline. A range can be specified by stating an index:

aj
n≤j≤N ≡ an an+1 . . . aN

The index also makes explicit, where the subscript should be attached:

f(aj)
1≤j ≡ f(a1) f(a2) . . .

Note, that f(a) couldn’t distinguish this from f1(a1) f2(a2) . . .
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2.4. THE STG LANGUAGE

Representation of partial functions: A function f of the type A → B can be
interpreted as a subset of A × B with

f(a) = b ↔ (a, b) ∈ f.

The difference of partial functions is that they aren’t left-total. Wherever a
partial function f ∈ A ⇀ B is not defined, it returns ⊥ (the bottom element):

f(a) = ⊥ ↔ ∄b ∈ B : (a, b) ∈ f

Function updates: For an arbitrary function or partial function f , an updated
version can be created by putting the updated mapping in square brackets:

f [a 7→ b](x) ≡

b if x = a

f(x) else

f [a 7→ b] is a function that behaves like f , except for returning b when a is
being passed to it.

2.4. The STG language
When designing a compiler for a non-strict functional language, a big challenge is
bridging the gap between the functional and the imperative world. An abstract
machine model can be helpful, because it abstracts a lot of details about the source
language and the code generation. For this purpose, the GHC follows the model of the
Spineless Tagless G-machine or short STG-machine. This machine model is special
in the way, that it doesn’t execute a sequence of imperative machine instructions, the
STG-machine’s programming language itself is a non-strict functional language. This
language is called the STG language. [7] introduces both the denotational semantics
and the operational semantics of the STG language based on the STG-machine. It
also discusses, how to map the STG language onto stock hardware.

The Haskell compiler runs through the following stages:

1. Transforming the source language into a smaller Core language by eliminating
Haskell’s syntactic sugar, performing type checks, resolving overloading and
translating pattern matching to case expressions

2. Applying several program analyses to the Core language

3. Translating the Core language to the STG-Language

4. Compiling the STG code to an imperative, portable assembly language such as
C–-

5. Assembling the code to machine instructions

12



2.4. THE STG LANGUAGE

Constructors K ∈ Con
Variables a, b, f, x ∈ Var

Literals l ∈ Lit
Primitive Operations p ∈ Prim

Right-hand sides r ∈ Val ::= x λ π a . e | K a

Update flags π ∈ Upd ::= u | n

Expressions e, s ∈ Exp ::= let b = r in e

| let rec b = r in e

| join b = r in e

| join rec b = r in e

| f a

| p a

| case s of K a → e

Programs P ∈ Prog ::= b = r

Figure 2.1.: Syntax of the STG language

The following sections give a brief introduction to the syntax and semantics of the
STG language.

The Syntax is shown in figure 2.1. Like lots of other intermediate representations
for functional programming languages, STG can be described as enriched lambda
calculus. It is a superset of the lambda calculus [8], which is still very minimal.
Besides the common features of pure functional languages, STG introduces the
following features:

• Primitive operations allow for performance critical functionality to be imple-
mented in a more low-level imperative manner.

• Lambda expressions have the form x λ π a . e. They explicitly mention their
free variables x and their update flag π. Those are relevant for the operational
semantics of allocating and evaluating a lambda expression at runtime. A
lambda expression in combination with this additional information is called a
closure.

• It is made explicit whether a binding or a sequence of bindings is recursive.

• STG also distinguishes between regular let bindings and join points. From a
denotational standpoint there is no difference between them, but operationally
they allow for powerful optimization [9].

• A program is represented simply as a sequence of bindings.
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2.5. ESCAPE ANALYSIS IN THE CONTEXT OF HASKELL

By transforming a program from the Core language to the STG language, further
changes are being made to the code:

• Each argument that is passed to a function or constructor must be an atom
(either a variable or a literal). Since arguments in a Core program can be
arbitrary expressions, new let bindings must be introduced for each non-trivial
argument.

• All constructor calls and primitive operation must be saturated. Unsaturated
constructors and primitive operations must be wrapped in a lambda expression
by performing η-abstractions on them.

• Pattern matching is transformed into case expressions. Each case expression
can only match simple one-level patterns.

• All binders receive a unique identifier, there can’t be any variable shadowing.

This thesis is not meant to explain the operational semantics of the STG language
in its entirety, however, the semantics of let expressions deserves some attention
because the evaluation of a let expression is basically equivalent to a heap allocation.
The heap is represented as a map storing closures and data constructors under
a specific heap address. When the STG-machine encounters a let expression, it
allocates the right-hand side of each binding on the heap before continuing with the
evaluation of the let body.

Once a right-hand side has been allocated on the heap, it never gets deleted
explicitly, so it might be present for the rest of the program’s execution (ignoring the
garbage collection of an actual implementation). The access via its binder, however,
is restricted by its lexical scope: It can only be accessed during the evaluation of the
let body or, if the binding is recursive, in the right-hand side itself.

2.5. Escape analysis in the context of Haskell
Since the escape property of a right-hand side depends on the lexical scope of its
binding and reassigning bindings is not possible in Haskell, we can consider the
binder of an object to be the object’s name. It would therefore be possible and
very convenient to rather assign the escape property to the binder than to the
right-hand side: Considering the binding let b = Just x, the two statements "Just
x escapes" and "b escapes" would be equivalent by this definition, the latter being
much simpler. From now on, when stating that a binder b escapes or doesn’t escape,
we are actually referring to b’s right-hand side. The following sections describe
significant characteristics and challenges to overcome while developing an escape
analysis in Haskell.

14



2.5. ESCAPE ANALYSIS IN THE CONTEXT OF HASKELL

2.5.1. The point of using STG for escape analysis
Most analyses that are performed in the GHC, process programs at the level of Core
which is a very minimal but still high level representation. However, optimizations
that are based on escape analysis usually operate on a relatively low-level: They deal
with memory allocation and other inner workings of the programming languages
runtime. Therefore, the escape analysis itself should be aware of those low-level
features as well. Particularly, if we intend to use the escape analysis to identify
objects, that can be allocated on stack, the intermediate program representation
should have a concept of memory allocation.

Taking this into account, we would favor the STG language over the Core language
for the escape analysis: The STG-machine has the concept of a heap built in and
explicitly specifies, when and how to allocate memory while at Core-level, this
information is supposed to be transparent. Consider the following code in the STG
language:
let rec fac n = let n’ = n - 1

fac ’ = fac n’
in case n of 0 -> 1

_ -> n * fac ’

Operationally, the STG-machine would allocate a closure (more specifically, a thunk)
for n’ and fac’ before evaluating the case expression. This behavior can easily be
derived from the STG code, which is beneficial for an escape analysis.

However, the STG code could have been generated from the following Core code:
let fac n = case n of 0 -> 1

_ -> n * fac (n - 1)

Here, the second argument passed to (*) is an expression (fac (n - 1)) and also
the argument passed to fac is an expression (n - 1). It is not apparent that, in later
stages, the compiler would generate a closure allocation for each arguments. This
makes the Core language inappropriate for our purposes.

2.5.2. Consideration of the lexical scope
If an object is accessed outside the lexical scope of the variable it is bound to at the
object’s allocation, it escapes. In the context of let x = e1 in e2, the expression e1
allocates an object which is bound by the variable x. The object escapes if and only
if it is referred to outside the lexical scope of x, namely e1 and e2.

2.5.3. Challenges caused by closures and thunks
Haskell represents functions as closures at runtime that capture the free variables.
This unfortunately makes escape analysis more complicated: If a closure escapes, it
could cause their free variables to escape as well. The same problem occurs with
thunks which represent values at runtime, that have yet to be evaluated. Thunks

15



2.5. ESCAPE ANALYSIS IN THE CONTEXT OF HASKELL

are used in Haskell for the implementation of laziness. In the following STG code, x
can only be accessed in the outer let body:
let x = 42
in let y = case x of 1 -> True

_ -> False
in Just y

Since x is only used in the definition of y which is of the type Bool, in a strict
language x wouldn’t escape, since booleans can’t contain pointers. But since Haskell
is lazy, y is represented as a thunk at runtime, containing x as a free variable. Since
y escapes without getting evaluated in the lexical scope of x, it might get evaluated
after the evaluation of x’s let body. So we have to classify x as escaping as well.

2.5.4. Escape through data structures
Considering a data structure that contains references to further objects, there are
additional consequences of the escape of said data structure. For example when
analysing the data constructor Just x, bear in mind, that if the constructed object
is being passed outside x’s lexical scopes, it escape as well.

2.5.5. Escape through function calls
Similar to the data constructors, the result of a function application can cause the
function’s arguments to escape. However, the result doesn’t necessarily contain
pointers to all the arguments. There are different cases to consider:

saturated call If the function is known at compile time, it is possible to narrow down
the arguments that can escape through the call by analysing the function’s
code first. Keep in mind that this is only valid if the expected amount of
arguments is provided, so the function’s code can be executed right away.

unsaturated call With currying it is possible to call a function only partially, which
means that there are fewer arguments passed to the function than expected.
In this case the code of the function doesn’t get executed right away, instead a
new closure is being constructed that takes the remaining arguments, that are
necessary to saturate the call. The arguments passed for an unsaturated call
appear as free variables in that closure. The closure resulting from the partial
application also contains a reference to the original closure’s code and free
variables. So if the result of an unsaturated call escapes, both, the arguments
passed to the call and the closure itself must be assumed to escape.

unknown call If the concrete function to be called is dynamically bound, it’s not
generally possible to know if the result has references to the function’s arguments.
Thus, similarly to data constructors, if the result of an unknown function’s
application escapes, all arguments have to be assumed to escape as well. Neither
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2.5. ESCAPE ANALYSIS IN THE CONTEXT OF HASKELL

is it possible to know if an unknown call is saturated or not, therefore the
function itself has to be assumed to escape as well.

over-saturated call If there are more arguments provided to the function than
expected, the expected amount of arguments is being consumed for a saturated
call, the excess arguments are applied to the result of the call. While for the
saturating arguments the call can be handled identically to a saturated call,
the excess arguments are applied to a function, that might not be known at
compile time. Those arguments have to be handled as if they were passed for
an unknown call.

2.5.6. Challenges caused by join points
Join points are described in [9] to resemble points in the program, where control flow
of different branches joins together again. For optimization purposes, join points
have been added to the STG definition in the GHC. From a denotational standpoint,
join points are equivalent to regular bindings and the syntax of defining join points
and calling join points is very similar as well. However, the conditions that must
hold for join points allow for more optimized operational semantics: Join points
are guaranteed to never be captured in a closure or thunk and always be tail-called
with the expected number of arguments. The call to a join point can therefore be
compiled to a simple jump, no closure needs to be allocated. Before the jump occurs,
the current evaluation context is being discarded, which includes all frames on the
stack above the join point. Therefore, special care must be taken, when deciding
whether to allocate variables on stack.

Consider the following example:
join j = \ y -> in case y of True -> 1

_ -> 2
in let x = z == 0

in j x

The join point j gets called in the body of the inner let expression. x is defined in
the caller context and gets passed to j. Since the value of j x doesn’t contain a
reference to it, x wouldn’t escape with the usual let semantics. However, allocating x
on the stack would lead to problems. Since the frame for j would be located lower
on the stack than x, the jump to j would cause x to be deleted and could not access
it via the argument.

2.5.7. Escape through case expressions
There is generally the possibility for objects to escape through the result of a case
expression, namely if the case alternative that is taken at runtime evaluates to an
object containing a reference to another object. If in the following example scrut
evaluates to True, the first case will be taken, which causes x to escape:

17



2.5. ESCAPE ANALYSIS IN THE CONTEXT OF HASKELL

case scrut of True -> x
_ -> ...

It is also possible that the case scrutinee or at least parts of it escape when the
alternative constructor of the case that has been taken binds objects that escape
through the right-hand side:
case scrut of Left y -> y

z -> z

In this example, there are two possible alternatives. In the first one, scrut has
a reference to an object which is accessible from the case alternative through the
name y and, therefore, might escape. In the second case alternative the entire case
scrutinee is accessible through the name z. Since z is being passed outside the lexical
scope of scrut, it has to be classified as escaping.

In general, it is unknown, which case alternative will be taken at compile time. So
every case alternative has to be taken into account for the escape analysis of a case
expression.

18



3. Design and implementation

We are presenting the specification for a flow-sensitive escape analysis algorithm for
Haskell. The design decision are elaborated in section 3.2.

3.1. Escape analysis algorithm

Figure 3.1 shows the syntax used to describe the algorithm. We omit parts of the
STG language that are either irrelevant in the context of the algorithm or don’t
contribute to the understanding of the algorithm.
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3.1. ESCAPE ANALYSIS ALGORITHM

Constructors K ∈ Con
Variables a, b, f, x ∈ Var

Right-hand sides r ∈ Val ::= λ a . e | K a

Expressions e, s ∈ Exp ::= let b = r in e

| let rec b = r in e

| join b = r in e

| join rec b = r in e

| f a

| case s of K a → e

Programs P ∈ Prog ::= b = r

Escaping binders B ⊆ Var
Usage classes t ∈ U ::= E | V | R | N

Free variable usages ϕ ∈ Var → U
Usage signatures σ ∈ Sig ::= t

Signature environments ρ ∈ Var ⇀ Sig
Join point environments ι ∈ Var ⇀ (Var → U)

Function arity α ∈ Val → N

Figure 3.1.: Syntax
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3.1. ESCAPE ANALYSIS ALGORITHM

E JeKι
ρ = ⟨ϕe, Be⟩

E Jlet b = r in eKι
ρ =

let ⟨ϕr, Br, σr⟩ = RJrKι
ρ

ι′ = {(x, y[b 7→ E ]) | (x, y) ∈ ι}
ρ′ = ρ[b 7→ σr]
⟨ϕe, Be⟩ = E JeKι′

ρ′

Blet =

Br ∪ Be ∪ {b} if ϕe(b) = E
Br ∪ Be else

in
〈
ϕe ◁ϕe(b) ϕr, Blet

〉
(3.1)

E
q
let rec b = r in e

yι

ρ
=

let ρ′ = ρ
[
b 7→ N α(r)

]
⟨ϕlet, Blet, ρ′′⟩ = B

q
let b = r in e

yι

ρ′,∅
in

〈
ϕlet, Blet ∪

{
bk | ϕlet(bk) = E

}〉 (3.2)

E Jjoin b = r in eKι
ρ =

let ⟨ϕr, Br, σr⟩ = RJrKι
ρ

ι′ = {(x, y[b 7→ E ]) | (x, y) ∈ ι} [b 7→ ∅]
ρ′ = ρ[b 7→ σr]
⟨ϕe, Be⟩ = E JeKι′

ρ′

Blet =

Br ∪ Be ∪ {b} if ϕe(b) = E
Br ∪ Be else

in
〈
ϕe ◁ϕe(b) ϕr, Blet

〉
(3.3)

E
q
join rec b = r in e

yι

ρ
=

let ρ′ = ρ
[
b 7→ N α(r)

]
⟨ϕlet, Blet, ρ′′⟩ = B

q
join b = r in e

yι

ρ′,∅
in

〈
ϕlet, Blet ∪

{
bk | ϕlet(bk) = E

}〉 (3.4)
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E Jf anKι
ρ =

let σf = ρ(f)
s = σf ̸= ⊥ ∧ |σf | ≤ n

ϕf =




(
aj, σf

j ⊔ ι(f)(aj)
)1≤j≤|σf |

, (aj, E),|σ
f |+1≤j≤n(f, V)

 if s

{
(a, E),n(f, E)

}
else

in
〈
ϕf , ∅

〉
(3.5)

E
q
case s of K a → e

yι

ρ
=

let ⟨ϕs, Bs⟩ = E JsKι
ρ

ϕe = ⊔ let ⟨ϕe, Be⟩ = E JeKι
ρ

in ϕe

t = ⊔
ϕe(a)

ϕcase =

ϕe ◁R ϕs if t ⊑ R
ϕe ◁V ϕs else

Be = ⋃ let ⟨ϕe, Be⟩ = E JeKι
ρ

in Be

in ⟨ϕcase, Bs ∪ Be⟩

(3.6)

B
q
let b = r in e

yι

ρ,ϕ0
=

〈
ϕlet, Blet, ρ′

〉

B
q
let b = r in e

yι

ρ,ϕ0
=

let ⟨ϕr, Br, σr⟩ = RJrKι
ρ

ι′ =
{(

x, y[b 7→ E ]
)

| (x, y) ∈ ι
}

ρ′ = ρ[b 7→ σr]
⟨ϕe, Be⟩ = E JeKι′

ρ′

ϕlet = (ϕ0 ⊔ ϕe)◁ϕe(b) ϕr

in


〈
ϕ0, Br∪Be, ρ

〉
if ρ′ = ρ ∧ ϕlet = ϕ0

B
q
let b = r in e

yι

ρ′,ϕlet else
(3.7)

B
q
join b = r in e

yι

ρ,ϕ0
=

let ⟨ϕr, Br, σr⟩ = RJrKι
ρ

ι′ =
{(

x, y[b 7→ E ]
)

| (x, y) ∈ ι
}

ι′[b 7→ ∅]
ρ′ = ρ[b 7→ σr]
⟨ϕe, Be⟩ = E JeKι′

ρ′

ϕlet = (ϕ0 ⊔ ϕe)◁ϕe(b) ϕr

in


〈
ϕ0, Br∪Be, ρ

〉
if ρ′ = ρ ∧ ϕlet = ϕ0

B
q
join b = r in e

yι

ρ′,ϕlet else
(3.8)
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RJrKι
ρ = ⟨ϕr, Br, σr⟩

RJλ a . eKι
ρ =

let ⟨ϕe, Be⟩ = E JeKι
ρ

ϕλ = ϕe

in
〈
ϕλ, Be, ϕe(a)

〉 (3.9)

RJK aKι
ρ =

〈{
(a, E)

}
, ∅, ⟨⟩

〉
(3.10)

A JP Kι
ρ = BP

A Jb = rKι
ρ = let ⟨ϕr, Br, σr⟩ = RJrKι

ρ

in Br (3.11)

A
r

bj = rj
1≤j≤n

zι

ρ
=

let ⟨ϕr, Br, σr⟩ = RJr1Kι
ρ

ρ′ = ρ[b 7→ σr]
in Br ∪ A

r
bj = rj

2≤j≤n
zι

ρ′

(3.12)

N ⊑ R ⊑ V ⊑ E (3.13)

⊔ ∈ (Var → U) → (Var → U) → (Var → U) (3.14)(
ϕe ⊔ ϕe′) (b) = ϕe(b) ⊔ ϕe′(b) (3.15)

◁ ∈ (Var → U) → (Var → U) → U → (Var → U) (3.16)

(ϕe ◁t ϕe′)(b) =


E if t = E ∧ ϕe′(b) ̸= N
(ϕe ⊔ ϕe′)(b) if t = V
ϕe(b) ⊔ R if t = R ∧ ϕe′(b) ̸= N
ϕe(b) else

(3.17)

3.2. Exploring design decisions
The following sections elaborate on the formal definition of the algorithm and how to
overcome the challenges identified in section 2.5. First, some general design decisions
have to be made:

• For the reasons mentioned in section 2.5.1, the algorithm implemented as part
of this thesis operates on the level of the STG representation.

• Most memory allocations in STG are caused by let expressions. There are
several other ways to allocate memory (e.g. primitive operations), but to
simplify the analysis it is reasonable to only look at let bound objects.
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• When analysing a function, the algorithm doesn’t take into account the call
site, it is therefore context insensitive. While a context-sensitive algorithm is
expected to yield better results it would increase the complexity considerably
and exceed the time limitations for this thesis.

3.2.1. Escape of bound variables
Since the STG language is based on composing expressions, we design a function
E JeK = Be that analyses the STG code on the expression level and returns a set
containing all binders Be that escape through e. Note, that for variables that are
free in e this is not generally possible, because the lexical scope of a free variable
is not entirely visible on the expression level. When, for example, analysing the
expression Just x where x is a free variable, it is unclear if BJust x should contain x
or not. Thus, to define Be as the set that contains the variables that escape through
e, Be can only contain the bound variables of e because for bound variables the
entire lexical scope is visible.

3.2.2. Usage of free variables
On the other hand when, analysing a let expression let b = r in e where b is a bound
variable and the lexical scope is therefore visible, determining whether b should be
in Blet requires more detailed knowledge about e. Since b can be a free variable in e,
E should also provide information about the usage of free variables in the expression
to analyse.

This is why E JeK has to return a tuple ⟨ϕe, Be⟩, where ϕe is defined as the set
of free variables, that escape from the expression e. To demonstrate how this can
be useful, attempt to analyse the previous let expression, in the following referred
to as let. The escaping bindings of the entire let expression Blet can be defined as
either Br ∪ Be or Br ∪ Be ∪ {b}, depending on whether b escapes or not. b can be a
free variable in r and e. To determine if b escapes (if b ∈ Blet holds), e has to be
analysed and only if b is in ϕe, we add b to Blet.

But now the problem arises, how to construct the free variable usage for the entire
let expression ϕlet. The intuitive idea would be to define it as (ϕr ∪ ϕe) \ {b} (note
that b is not free in let). So the analysis of let expressions would be defined as

E Jlet b = r in eK =

let ⟨ϕr, Br⟩ = E JrK
⟨ϕe, Be⟩ = E JeK

in

⟨(ϕr ∪ ϕe) \ {b}, Br ∪ Be ∪ {b}⟩ if b ∈ ϕe

⟨(ϕr ∪ ϕe) \ {b}, Br ∪ Be⟩ else
.

Unfortunately this would not detect escapes caused by closures, which are described
in section 2.5.3. In the following examples the inner let expression will be referred to
as let, the right-hand side as r (\ x -> case. . . ) and the let body as e (f).
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let a = z == 0
in let f = \ x -> case a of True -> 1

_ -> 2
in f

Here f escapes and since it is represented as a closure which contains a as a free
variable, a escapes as well. The approach introduced in the last section would be
able to detect the escape of y but not the escape of a: ϕr doesn’t contain a and the
information about a being referred to by the closure of y gets lost, To prevent that,
E must provide that information as well.

One way to accomplish that, is to represent ϕe as a function that specifies different
usage classes for every binding b that is used in an expression e. These usage classes
are:
E: The value of e may contain b, which enables b’s right-hand side to be evaluated

after the evaluation of e. Thus, the value of e indirectly contains pointers to
each free variable of b’s right-hand side. For example, in the context of Just b,
b is classified as E .

R: The value of e neither contains b nor any pointers coming from b′s return value.
The usage of b doesn’t release any pointers to its free variables in e. This is
the case when b is just being scrutinized in a case expression. For example, in
the context of case b of _ -> Nothing, b is classified as R.

N : b is not being used in e at all (N is the ⊥ element: If ϕ is not explicitly defined
for b, we implicitly define ϕe(b) = N ).

Now analysing the previous example shall lead to the following results:

ϕr = {(x, R)} ϕe = {(f, E)} ϕlet = {(x, E)}
Br = ∅ Be = ∅ Blet = {f}

The information provided by ϕr that x is being used as a free variable in the right-
hand side of the let expression makes it possible to detect, that returning y in the let
body leads to the escape of x.

To construct ϕlet, a new operator ◁t is necessary that combines ϕr and ϕe, where
ϕr is the usage of the free variables in the right-hand side of a binder b′, ϕe is the
usage of free variables in the lexical scope of b′ and t is the usage of b′ in e (t = ϕe(b′)).
It is defined as:

N ⊑ R ⊑ E

(ϕe ⊔ ϕr)(b) = ϕe(b) ⊔ ϕr(b)

(ϕe ◁t ϕr)(b) =


E if t = E ∧ ϕr(b) ̸= N
ϕe(b) ⊔ R if t = R ∧ ϕr(b) ̸= N
ϕe(b) else
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The different cases of ◁t are explained below:

t = E ∧ ϕr(b) ̸= N : The value of e may contain a pointer to a binder b′. Thus, if b
is used as a free variable in r, the value of the expression let b′ = r in e may
contain a pointer to b.

t = R ∧ ϕr(b) ̸= N : b′ may be used as a free variable in e but the value of e cannot
contain a pointer to b′. Thus, if another binder b is used as a free variable in r,
it is consequently used as a free variable in the expression let b′ = r in e (at
least R).

else: b′ is not a free variable in e. Thus, whether another binder b is used in the
expression let b′ = r in e, solely depends on the usage of free variables in e.

Based on this operator, E cold be defined for non-recursive let expressions as follows:

E Jlet b = r in eK =

let ⟨ϕr, Br⟩ = E JrK
⟨ϕe, Be⟩ = E JeK

Blet =

Br ∪ Be ∪ {b} if ϕe(b) = E
Br ∪ Be else

in
〈
ϕe ◁ϕe(b) ϕr, Blet

〉
Keeping track of the usage of all free variables of an expression makes it possible to
detect all escaping objects. However, it is still not clear how to treat the following
case. This example shows the variable in question f being a function that is called:
let f = \ x -> case a of True -> Just b

_ -> Just x
in f y

The value of the let body doesn’t contain a pointer to f because it is being entered
immediately, so it can’t be evaluated outside the let expression. Hence, classify f as
E might be too conservative. Analysing the let expression would lead to the following
result:

ϕr = {(a, R), (b, E)} ϕe = {(f, E), (y, E)} ϕlet = {(a, E), (b, E), (y, E)}
Br = ∅ Be = ∅ Blet = {f}

This is not really optimal since it is apparent that the value of f y may contain a
pointer to the free variable b but not to a. ϕlet(a) should therefore be classified as
R. The call to f is saturated and its closure gets entered right away, which leads
to the evaluation of the case expression. Also f doesn’t escape because can only be
used in the let body.

But classifying f as R actually not be sound because we would ignore the fact,
that the value of f y contains a pointer to either b or y.

To distinguish the usage of a and f, another usage class can be introduced:
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V: The usage of a binder b in the context of an expression e is V if the value of
e doesn’t contain b. So b’s right-hand side can only be accessed during the
evaluation of e. However, the value of e may have a pointer to the return value
of b. This is the case, if e represents a saturated call to b. For example, in the
context of b x where b expects exactly one argument, b is classified as as V .

N ⊑ R ⊑ V ⊑ E

(ϕe ◁t ϕe′)(b) = (ϕe ⊔ ϕe′)(b) if t = V

Now when analysing a saturated call to a free variable f, we classify f as V

ϕr = {(a, R), (b, E)} ϕe = {(f, V), (y, E)} ϕlet = {(a, R), (b, E), (y, E)}
Br = ∅ Be = ∅ Blet = ∅

This improves the accuracy of the result in that we correctly detect, that the value
of the application of f doesn’t contain a pointer to a and also that f doesn’t escape.

3.2.3. Analysing function definitions and applications
For saturated calls, we distinguish the usage of the different arguments passed to
the function. To do so, we need to analyse the entry code of the function first and
examine the usage of the arguments resulting in a usage signature. The analysis of
a function definition r should result in something like ⟨ϕr, Br, σr⟩ where σr is the
usage signature of the function r. The usage signature is defined as a sequence of
usages, where σr

n is the usage of the nth argument passed to r. For example, in the
context of f x y z = case y of _ -> Just z, ρ(f) is N RE .

A lambda definition λ a . e is analysed by a function RJλa 7→ eK, which evaluates
the functions body first and look at the usage of each function argument a in the
body to construct the usage signature:

RJλ a . eK =
let ⟨ϕe, Be⟩ = E JeK
in

〈
ϕe, Be, ϕe(a)

〉
For the call site of that function we want to use that usage signature to examine,

how the arguments passed to the function are being used. To have access to the
usage signature at the call site, a signature environment ρ ∈ Var ⇀ Sig is necessary,
that is being passed to E and R and keeps track of the usage signatures of all binders
that are in-scope.

When analysing a let expression, we analyse the right-hand side r of a let binding
first. If r is a function, σr is the usage signature, which gets added to the signature
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environment. For analysing the let body, we pass the modified signature environment
ρ′ in order have access to the usage signature when analysing the call site:

E Jlet b = r in eKρ =

let ⟨ϕr, Br, σr⟩ = RJrKρ

ρ′ = ρ[b 7→ σr]
⟨ϕe, Be⟩ = E JeKρ′

Blet =

Br ∪ Be ∪ {b} if ϕe(b) = E
Br ∪ Be else

in
〈
ϕe ◁ϕe(b) ϕr, Blet

〉
When analysing a function call, we first look up the function in the signature

environment. If the function is not in the environment (unknown call), we need to
assume every argument passed to the call to escape. Otherwise, by looking at the
number of elements in the signature, it is possible to identify whether the call is
saturated, unsaturated or over-saturated and treat the arguments accordingly as
described in section 2.5.5:

E Jf anKρ =

let σf = ρ(f)
s = σf ̸= ⊥ ∧ |σf | ≤ n

ϕf =




(
aj, σf

j

)1≤j≤|σf |

, (aj, E),|σ
f |+1≤j≤n(f, V)

 if s

{
(a, E),n(f, E)

}
else

in
〈
ϕf , ∅

〉

3.2.4. Analysing case expressions
First, we analyse the case scrutinee: ⟨ϕs, Bs⟩ = E JsKρ. While any of the branches of
a case expression can be chosen at runtime we have to merge the free variable usages
of all branches:

ϕe =
⊔ let ⟨ϕe, Be⟩ = E JeKρ

in ϕe

Since the scrutinee gets matched against the alt constructors K a and the binders a
of those constructors can be used in the branches e of the case expression, we define
the usage t of the case scrutinee as the supremum of the usages of the alt constructor
binders:

t =
⊔

ϕe(a)

If none of the branches’ values contain pointers to the scrutinees or its attributes
(t = R), the value of the entire case expression can’t contain a pointer to the scrutinee
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or its attributes. Hence we merge ϕe and ϕs with ◁R in this case. Otherwise, we use
◁V :

ϕcase =

ϕe ◁R ϕs if t ⊑ R
ϕe ◁V ϕs else

Note, that s can’t be a thunk or a closure, which is why the result of the case
expression can’t contain a pointer to the scrutinees free variables unless their usage
is E That’s why it is possible to use ◁V instead of ◁t.

3.2.5. Analysing recursive bindings via fixed-point iteration
Since bindings can be recursive, it is not generally possible to always analyse the
definition of a variable before its usage. The definition of a recursive binding is part
of its own lexical scope. When analysing recursive let bindings, we don’t only have
to examine how the binding is used in the let body, but also how it is used in all of
the right-hand sides. In this example three bindings refer to each other recursively:
let a = 2:b

b = 0:c
c = 4:a

in c

ϕ2:b = {(b, E)} ϕ0:c = {(c, E)} ϕ4:a = {(a, E)} ϕc = {(c, E)}

If we merge the free variable usage of every right-hand side sequentially in the order
2:b, 0:c, 4:a with the let body, we would get the following result:

ϕ′ := ϕc ◁ϕc(a) ϕ2:b = {(c, E)} ◁N {(b, E)} = {(c, E)}
ϕ′′ := ϕ′ ◁ϕ′(b) ϕ0:c = {(c, E)} ◁N {(c, E)} = {(c, E)}
ϕ′′′ := ϕ′′ ◁ϕ′′(c) ϕ4:a = {(c, E)} ◁E {(a, E)} = {(a, E), (c, E)}

Blet = {a, c}

Processing the bindings in this order, we fail to detect the escape of b. This is why a
fixed-point iteration is necessary to analyse recursive bindings.

It also might happen that, when analysing a recursive function call, the function’s
usage signature might not be known yet. In the following example, the first call to f
that must be analysed is the recursive call. But the usage signature for f can’t be
known at that point:
let f = \ x y -> case x > y of True -> x : f (x + 1) y

False -> []
in f a b

There must be a convention on how to treat known functions, of which the usage
signature is not known for the analysis of the call site. Two possible methods would
be:
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All E

We initially assume the usage signature of a known function f with the arity N to
be σf = EN (worst case). Analysing the following example shows that this method
would actually yield unsatisfactory results:
let f = \ x y -> case x > y of False -> Just x

True -> f (x + 1) y
in f a b

Note, that the return value of f has a pointer to the first argument at most. The
second argument is solely used in the case scrutinee and is always passed to the
recursive call as second argument again. So ideally the usage signature should be
identified as σf = ER.

Before we analyse the recursive call of f we modify the signature environment to
be ρ′ = ρ[f 7→ EE ]. It is apparent that passing y again as the second argument to
the recursive call would cause the final usage signature to still be σf = EE . Even
iterating the analysis of f’s definition wouldn’t lead to any improvement since the
usage signature didn’t change, and thus we already reached a fixed point.

All N

We initially assume the usage signature of a known function f with the arity N to be
σf = N N (best case). Using this method to analyse the previous example would lead
to the desired result, but the next one shows an instance, where multiple iterations
are necessary:
let f = \ x y -> case x > y of False -> Just x

True -> f y (x + 1)
in f a b

Here the arguments of the recursive call are swapped, so when the False branch
is taken, the value of f contains the first argument, if the True branch is taken,
the value contains a pointer to the second one. So the usage signature should be
σf = EE . We get that result after two iterations.

The following example proves that for arbitrary recursive definitions, the number
of necessary iterations depends on the maximum number of arguments:
let f = \ x1 ... xN -> case ... of

... -> Just x1

... -> f x2 ... xN x1
in f z1 ... zN

After the first iteration, the usage signature would be σf = EN N−1. But since
in the recursive call the arguments are rotated by one, in the second iteration we
would get σf = EEN N−2. This pattern continues with the nth iteration resulting in
σf = EnN N−n.

The fixed-point algorithm used for the analysis of recursive bindings is explained
in the following. Before analysing recursive bindings, the signature environment has
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to be extended by an initial usage signatures (all N ) for every binding. We delegate
the analysis of the binders and the let body to a separate function B which performs
the fixed-point iteration. Besides the signature environment, B expects the free
variable usage from the previous iteration ϕ0, which is initialized with ∅:

E
q
let b = r in e

y
ρ

=
let ρ′ = ρ

[
b 7→ N α(r)

]
⟨ϕlet, Blet, ρ′⟩ = B

q
let b = r in e

y
ρ′,∅

in
〈
ϕlet, Blet ∪

{
bk | ϕlet(bk) = E

}〉
In contrast to the analysis of non-recursive binding, B additionally merges ϕe with
the result of the previous iteration ϕ0. At the end of every iteration, B checks if
there are changes in the signature environment or in the free variable usage, in which
case B proceeds with another iteration.

B
q
let b = r in e

y
ρ,ϕ0

=

let ⟨ϕr, Br, σr⟩ = RJrKρ

ρ′ = ρ[b 7→ σr]
⟨ϕe, Be⟩ = E JeKρ′

ϕlet = (ϕ0 ⊔ ϕe)◁ϕe(b) ϕr

in


〈
ϕ0, Br∪Be, ρ

〉
if ρ′ = ρ ∧ ϕlet = ϕ0

B
q
let b = r in e

y
ρ′,ϕlet else

3.2.6. Considering join points
As described in section 2.5.6, a jump to a join point would cause all objects that
have been stack-allocated above the join point’s stack frame to be deleted. This
leads to a problem if one of these objects is being passed to the join point as an
argument. To allow non-escaping binders to allocate their objects on the stack, we
assume an object to escape if it is being passed to a join point which is defined
outside its binder’s lexical scope.

To accomplish that, another environment ι ∈ Var ⇀ (Var → U) is necessary, which
keeps track of all bindings, that are defined inside of the lexical scope of each join
point. ι(f)(b) = E means, that a binder b is defined in the lexical scope of a join
point f . Otherwise, ι(f)(b) returns N which is the bottom element. When analysing
a let binding let b = r in e, we have to add b to each join point currently in the
environment:

ι′ = {(x, y[b 7→ E ]) | (x, y) ∈ ι}

When analysing a join point definition join f = r in e, we also add the join point
to the environment.

ι′ = {(x, y[b 7→ E ]) | (x, y) ∈ ι} [f 7→ ∅]

We use this information during the analysis of a jump to a join point. When a join
point f is being jumped to, every binder that is defined inside the lexical scope of f
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goes out of scope. If any of those binders are being passed as arguments to f , they
escape. To account for that, it is sufficient to define the usage class of those binders
to be E since jumps to join points only occur in tail contexts by definition.

When analysing a jump to a join point f with the arguments a and the usage
signature σf , we construct the free variable usage as follows:

ϕf =
{(

aj, σf
j ⊔ ι(f)(aj)

)1≤j≤|σf |
}

3.2.7. Challenges caused by side effects
In STG primitive operations are allowed to cause side effects. There is for example
an operation putMVar# :: MVar# s a -> a -> State# s -> State# s, which writes
a value of type a into a mutable variable of type MVar# s a that is accessible from
the current thread’s environment.

Note, that a constructor call like Just x makes its argument x only escape, if its
value is demanded outside its lexical scope. But even classifying x with E wouldn’t be
sufficient for the prim-op call putMVar# var x, which would make x accessible from
potentially anywhere in the thread. This can be shown with the following example:
makeXEscape = \ ... -> let x = createObj ...

in case putMVar# var x of
_ -> True

accessXAfterEscape = \ ... -> case readMVar# var of ...

If putMVar# had no side effects, x could not escape even if its usage signature was E ,
since it is only used in the case scrutinee. But actually, x gets put in the mutable
variable var and can therefore be accessed by the second function.

To solve this problem another usage class S is introduced:

N ⊑ R ⊑ V ⊑ E ⊑ S

(ϕe ◁t ϕe′)(b) =



S if ϕe(b) ⊔ ϕe′(b) = S
E if t = E ∧ ϕe′(b) ̸= N
(ϕe ⊔ ϕe′)(b) if t = V
ϕe(b) ⊔ R if t = R ∧ ϕe′(b) ̸= N
ϕe(b) else

Arguments that are being passed to a prim-op, which potentially writes them into
mutable memory areas, have to be classified with S. The escape signature of those
prim-ops has to be SN where N is the arity of the prim-op.
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4. Evaluation
The following sections explain how to instrument a Haskell runtime environment for
evaluation purposes. The most important findings that can be obtained from that
are concerning the effectiveness and the soundness of the escape analysis. Replacing
heap allocations with stack allocation is the most common optimization that can be
based on escape analysis. Therefore, the effectiveness of an escape analysis can be
assessed by determining the amount of stack allocation, that is due to the escape
analysis.

Note, that just statically counting the number of non-escaping bindings in the
analysed program code isn’t representative: In an imperative program, the number
of executions per statement are not distributed equally, because the control flow of
most programs contains branches and loops. The same goes for the evaluation of
expressions in a functional program, which is why some bindings tend to be allocated
more often than others. Another problem is that the number of bytes of an allocation
may depend on the program’s input. It is therefore necessary to measure the amount
of allocated memory for each binding at runtime.

4.1. Metrics
The question arises, how to define metrics that can assess the soundness and the
effectiveness of an escape analysis for a specific program execution. These metrics
have to be conclusive, but we also should be able to calculated then in a feasible
manner. Since no optimization has been implemented as part of this thesis, it
wouldn’t be possible to measure the speedup or reduction of total memory allocation.

On the other hand, we have to recognize that even the effectiveness can’t be
assessed statically, we can’t determine generally, how many times a binding will be
allocated at runtime. This problem can be illustrated by the following example:
f1 x1 n1 y1 = let y1’ = 2 * y1

n1’ = n1 + 1
in case y < x1 of

True -> n1
_ -> f1 x1 n1’ y1’

f2 x2 y2 = let y2’ = 2 * y2
f2’ = f2 x2 y2’

in case y2 < x2 of
True -> [y2 ’]
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_ -> y2’ : f2’

Analysing f1 shows that y1’ can be allocated on the stack. In f2, nothing can be
allocated on the stack. Therefore, f1 would benefit more from an escape analysis
than f2. But in the context of a whole program, the benefit depends heavily on the
usage profile of f1 and f2. More specifically, in the context of the main-function
main = do [a, b] <- getArgs

print $ f1 (read a) 1 1
print $ f2 (read b) 1

, it depends on the command line arguments: The benefit would be higher when the
program is called with 1000000 10 compared to 10 1000000. With this in mind, it
seems unavoidable to make use of profiling functionality for the evaluation.

A conclusive way to evaluate the effectiveness would be to measure the number
of allocations while running the program. Even more interesting to measure would
be the amount of memory, that could have been allocated on the stack during the
runtime.

The main metric we are interested in, is the portion of heap-allocated memory,
that could have been allocated on the stack instead. We are able to measure this
value under two different assumptions:
S: Given a binding b = r in a program P , we assume that an optimizer replaces

the heap allocations of r with a stack allocation, if the escape analysis decides,
that the binding doesn’t escape

(
b /∈ A JP K∅

∅

)
. Making this assumption allows

measuring the effectiveness of the escape analysis for the use of stack allocation.

S∗: Instead of relying on information provided by a static escape analysis, we imagine
an optimizer, which has information about the future: It knows about the
execution path that will be taken during the execution of the program. Given
a binding b = r, we assume that an optimizer replaces the heap allocations of r
with a stack allocation if none of r’s runtime instances will be accessed outside
b’s lexical scope on the specific execution path taken during the measurement.
S∗ represents an upper bound for S: Assuming the algorithm to be sound, we
expect S ≤ S∗. Note, that depending on the path coverage, the value for S∗

can potentially be much higher than S could ever be for a sound algorithm.
To assess the soundness of the escape analysis, we are estimating the set of false

negatives. These come in the form of escaping binders, which aren’t detected by the
escape analysis:
Fs is a set that contains a binding b = r if and only if any of r’s runtime instances

is accessed outside the lexical scope of b on the specific execution path taken
during the measurement despite being classified as non-escaping. This set is
expected to be empty for a sound escape analysis algorithm.

We also might want to be able to identify potential false positives or missed
opportunities. These would provide us direction for further improvement of the
escape analysis algorithm:
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4.2. TRACKING ESCAPING OBJECTS AT RUNTIME BY INSTRUMENTING
A HASKELL INTERPRETER

Fh is a set that contains a binding b = r if and only if any of r’s runtime instances is
not accessed outside the lexical scope of b on the specific execution path taken
during the measurement despite being classified as escaping. Every binding in
this set potentially represents a missed opportunity of the escape analysis.

How these metrics are calculated is explained in appendix A.1.

4.2. Tracking escaping objects at runtime by
instrumenting a Haskell interpreter

To gather the metrics introduced in the last section, it would be desirable to base
the measurements on machine code produced by the GHC. The ticky-ticky profiling
functionality of the GHC provides features that might be helpful for these purposes.
It enables Haskell developers to count several kinds of events that happen during a
program’s execution by injecting the code with instructions that increment certain
counters [10]. Defining new counters for further kinds of events is relatively simple
by customizing the GHC’s runtime environment. This would make it possible to
count the number of allocations for non-escaping bindings that are being performed
and with some more effort, the amount of memory for these allocations.

A much bigger challenge is to catch the event of a binding going out of scope.
The reason for this is that the GHC produces machine code that is in continuation
passing style. An expression doesn’t necessarily return after its evaluation but rather
jumps to a continuation. So locating the exact location in the machine code, where
a binding runs out of scope is quite challenging.

We also want to keep track of bindings that are currently in scope which requires
the use of more complex data structures besides simple counters. Ticky-ticky isn’t
designed for this purpose. Also, keep in mind that relying on data types defined in
Haskell is not an option because those data structures would have to be allocated on
the managed heap and would ultimately interfere with our measurements.

The GHC whole program compiler is a customized version of the GHC that is able
to serialize different intermediate representations and linker metadata and export
it to a file for further analysis [11]. The STG code from such a file can also be
executed by the external STG interpreter. These tools allow for more sophisticated
program analyses by simply extending the interpreter state by new data structures
and modifying them during runtime. The GHC whole program compiler and the
external STG interpreter seem to be adequate tools for the evaluation of the escape
analysis.

The external STG interpreter is being enhanced by profiling functionality to
validate the results of the escape analysis evaluate its effectiveness and potential.
The measurements focus on the use case of allocating non-escaping binders on stack.
Several benchmarks programs from the nofib benchmark suite [12] are being executed
in order to perform these measurements.
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4.3. Measurement
Based on the set of defined binders D in the code of a benchmark P with D ⊆ Var
and the set of escaping binders B resulting from the escape analysis B = A JP K∅

∅
with B ⊆ D, following data is being collected as part of the profiler state Γ during
the execution of said benchmark:

A∗
h: Binders whose objects actually have been accessed outside their lexical scope

during the execution of P

A∗
h ⊆ D

n: Estimated amount of allocated memory in bytes for a specific binder b during the
execution of P

n ∈ D → N

The profiler state Γ is defined as

Γ = (A∗
h, n)

Γinit = (A∗
h = ∅, n = ninit) with ninit(b) = 0

Not part of the profiler state but passed as separate parameters are:

l: Set of all heap addresses, that didn’t exceed the lexical scope of their binder at
the current interpreter state (l ⊆ Addr) If an address is accessed at runtime
while it is not in l, the object escaped.

j: Mapping from an address of a join point that is currently in-scope to the l-state
at the join point’s allocation.

(
j ∈ Addr ⇀ 2Addr

)
Pseudo code is used to show the modifications made to the interpreter to perform

the measurements. For this illustration we reduce the complexity of the interpreter
state to a minimum, leaving out every detail that isn’t directly affected by said
modifications. The relevant parts of the interpreter state Σ are

Σ = (heap, env)

heap The heap is represented as a mapping from an address to an object that is
stored at this address (heap ∈ Addr → Obj).

env The environment keeps track of all binders that are in scope at the current state
and what heap object they point to (env ∈ D → Addr). The most important
operations to perform on the heap are:

The most important operations to perform on the interpreter state are:

36



4.3. MEASUREMENT

store expects a binding to be stored on the heap. It allocates the right-hand side on
the heap and associates the object’s address with the binder in the environment.
The return value is the heap address of the allocated object.

readHeap looks up an address on the heap and returns the value stored at that
address.

defn returns the binder an object is being bound to at its allocation given the
object’s address (defn ∈ Addr ⇀ D).

apply Takes the address of a closure allocated on the heap and a list of arguments
to be passed to the closure and applies them to the closure.

In the following sections the different program points are presented, where the
measurements are taken.

Keeping track of a variable’s scope

The external STG interpreter evaluates expressions with the function eval, which
matches all different types of expressions and performs the according evaluation. In
the instance of a let expression, a binding is being declared by allocating a closure or
thunk on the heap and associating the binder with the heap address of that object.
After that, the let body is being evaluated. The pseudo code for eval is shown
below:

eval (let b = r in e)Σ = let (addr, Σ′) = store(b = r)Σ
in eval(e)Σ′

A newly declared binding has to be added to l with its heap address. In case b hasn’t
been declared before, it also has to be added to A. If the heap object is new, its
access must be compared to the lexical scope of b. Thus, its address has to be added
to p together with b. To calculate how much memory allocation is being caused by
the binder b, the size of the allocated object has to be added to n(b). The pseudo
code of the modified function eval is shown below:

eval (let b = r in e)Γ
Σ l j =

let (A∗
h, n) = Γ

(addr, Σ′) = store(b = r)Σ

l′ = l ∪ {addr}
n′ = n[b 7→ n(b) + ∆(r)]
Γ ′ = (A∗

h, n′)
in eval(e)Γ ′

Σ′ l′ j

An object’s size in bytes is estimated by the operator ∆ according to its structure:

∆ (xf
n λ xa . e) = 8 + 8n

∆(K xn) = 8 + 8n
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The size estimation is based on the assumption of a word size to be 8 bytes. The
first word of a closure is alway the pointer to the statically allocated info table. the
rest of the closures payload consists of its free variables xf , which are either pointers
to other data structures or primitive values. In both cases the size of each variable is
estimated to be 8 bytes. A data constructor also consists of a pointer to its info table
and additionally to its arguments, which are estimated to have a size of 8 bytes.

Keeping track of an object’s access

To access an object at runtime, the function readHeap is used which looks up the
address on the heap:

readHeap(addr)Σ = let (heap, env) = Σ
in heap(addr)

To determine if the access causes an object to escape, we just check if the binder
defn(addr)Σ is in scope. If it isn’t, the object has escaped and we add the binder to
A∗

h:

readHeap(addr)Γ
Σ l j =

let (A∗
h, n) = Γ

A∗
h

′ = A∗
h ∪ {defn(addr)Σ | addr /∈ l}

(heap, env) = Σ
in (heap(addr), (A∗

h
′, n))

Recovering the profiler’s state at the jump to a join points

The external STG interpreter treats join point applications identically to function
calls. However, to evaluate the escape analysis algorithm against the operational
semantics of join points for the GHC, we have to emulate the reset of the evaluation
context described in [9]. This is accomplished by capturing l for every join point
definition:

eval (join b = r in e)Γ
Σ l j =

let (A∗
h, n) = Γ

(addr, Σ′) = store(b = r)Σ
l′ = l ∪ {addr}
j′ = j[addr 7→ l′]
n′ = n[b 7→ n(b) + ∆(r)]
Γ ′ = (A∗

h, n′)
in eval(e)Γ ′

Σ′ l′ j′

Before performing a call to a function f , we check if f is actually a join point by
looking up its address addr in j. If f is a join point, we recover l from the join
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point’s definition by setting it to j(addr):

eval (f a)Γ
Σ l j =

let (A∗
h, n) = Γ

(heap, env) = Σ
addr = env(f)

l′ =

j(addr) if j(addr) ̸= ⊥
l else

in apply(addr, a)Γ
Σ l′ j

4.4. Results
112 benchmarks have been run from the nofib test sets imaginary, spectral, real and
shootout. All benchmarks have been run in fast mode. Since the modified interpreter
consumes a lot of memory, 9 of them have crashed due to not enough main memory
on a machine with 32GB of RAM. One benchmark had to be aborted due to too
long computation time. The raw data produced from running the benchmarks is
provided in appendix A.2.

4.4.1. Soundness of the escape analysis algorithm
As explained in section 4.1, one way to evaluate the soundness of the algorithm is,
to identify the false negatives Fs, which is the set of binders that are wrongfully
assumed to not escape during runtime. For an escape analysis to provide a correct
result, we expect Fs to be empty. During all benchmarks that have been performed
on the final implementation of the escape analysis as part of this thesis, no false
positives have been identified. This favors the hypothesis, that the escape analysis
algorithm is correct.

4.4.2. Effectiveness of the escape analysis algorithm
Figure 4.1 shows the relation of two different metrics: It displays the portion of
binders that could have been allocated on the stack

(
|As|
|A|

)
at the x axis and the

portion of stack allocated memory (S) for each benchmark run at the y axis.
The fact that these two metrics do not correlate, confirms the assumption that the

portion of non-escaping binders isn’t representative of the effectiveness. Surprisingly,
the vast majority of binders in the benchmark programs can be allocated on the stack
(always > 96%). However, in most runs, the few binders that had to be allocated on
the heap were responsible for the majority of the allocated memory.

Figure 4.2 compares the portion of stack allocated memory (S) based on the escape
analysis with the upper bound (S∗) for each benchmark run. For each run, the value
of S and S∗ is visualized by the with of the colored rectangles, which are stacked
vertically. The height of the areas are proportional to the total amounts of allocated
memory for each benchmark run. The portion of blue area represents the value of S
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for each benchmark respectively and also in total. The blue area plus the orange
represents S∗.

Of the total amount of allocated memory, the escape analysis has identified ca.
13.7% of allocated memory that could have been allocated on the stack. The top
ten of the benchmarks are responsible for over 80% of the total stack-allocated
memory. Apparently, there is a small portion of programs that benefit from this
specific escape analysis. The orange area shows a few spikes, which indicates, that
S∗ doesn’t have a strong correlation with S This could indicate, that there are still
missed opportunities for bindings to be allocated on the stack. It could, however,
also be due to a lack of path coverage as mentioned in section 4.1.

These spikes need to be investigated more deeply because for some benchmarks
where the escape analysis didn’t have a significant impact, they shows a large amount
of missed opportunities.

The following two scenarios are possible explanations for this phenomenon:
• A function is never called in a context, where its return value is scrutinized

entirely. A binding defined in that function might be returned, but none of the
callers are demanding the value of that binding. The algorithm wouldn’t be
able to detect this because it is context insensitive.

• A closure is being used as an argument in a primitive operation performing
a side effect. For example, the address of a closure is being written into a
mutable variable that is defined outside the lexical scope. However, the escape
might not be detected at runtime when the mutable variable is never being
read outside the lexical scope.

To identify missed opportunities for some benchmarks that are causing these spikes,
we look at the elements in Fh.

The biggest spike is caused by the benchmark program S. It is also a good example
for the first scenario:
n :: Int
n = 10000000

times :: Monad m => Int -> m a -> m ()
times n ma = go n where

go 0 = pure ()
go n = ma >> go (n - 1)

{-# inline times # -}

main = do

putStrLn "S"
evaluate $ S.runState (times n $ (S.modify (+1))) 0

The program initializes a state monad with 0 and increments it by 1 repeatedly.
By analysing the STG code, it becomes apparent that most allocations are being
performed in the function $wgo:
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ds_r2SI :: GHC. Integer .Type. Integer
src <<no location info >>
[GblId , Unf= OtherCon []] =

CCS_DONT_CARE GHC. Integer .Type.S#! [1#];

Rec {
$wgo [ InlPrag = NOUSERINLINE [2] , Occ= LoopBreaker ]

:: GHC.Prim.Int#
-> GHC. Integer .Type. Integer -> (# (), GHC. Integer .Type. Integer #)

src <<no location info >>
[GblId , Arity =2, Str=<S ,1*U><L,U>, Unf= OtherCon []] =

\r [ ww_s2SO w_s2SP ]
case ww_s2SO of wild_s2SQ [Occ=Once] {

__DEFAULT ->
let {
sat_s2SS [Occ=Once] :: GHC. Integer .Type. Integer
src <<no location info >>
[ LclId ] =

\u [] GHC. Integer .Type. plusInteger w_s2SP ds_r2SI ;
} in
case -# [ wild_s2SQ 1#] of sat_s2SR [Occ=Once] {
__DEFAULT -> $wgo sat_s2SR sat_s2SS ;
};

0# -> (# ,#) [GHC. Tuple .() w_s2SP ];
};

end Rec }

The binding sat_s2SS represents the updated state, which is the previous state
incremented by 1. When running the benchmark, this binding is responsible for
nearly 100% of heap allocations. However, the state is represented as a pair and the
function evaluate evaluates the final state just to weak head normal form, it doesn’t
demand the fields of that pair. Having this knowledge would enable us to allocate
sat_s2SS on the stack.

Note, that allocating sat_s2SS on the stack would only be sound, if all callsites
of $wgo are known and the final state is never evaluated beyond weak head normal
form.

The benchmark reverse-complement shows an example for the second scenario.
The binding sat_sa8M from the package GHC.IO.Handle.Text is responsible for ca.
31% of memory allocations:
let {

sat_sa8M [Occ=Once] :: GHC.IO. Buffer . Buffer GHC.Word. Word8
src <<no location info >>
[ LclId ] =

CCCS GHC.IO. Buffer . Buffer ! [ dt4_sa87
dt5_sa88
ds9_sa89
dt6_sa8a
sat_sa8L
dt8_sa8c ];

} in
case

writeMutVar # [ dt_sa7V sat_sa8M GHC.Prim.void #]
of
s2# _sa8N [Occ=Once]
{
(##) ->
case +# [ ipv_sa8e ipv1_sa8g ] of sat_sa8O [Occ=Once] {
__DEFAULT ->
let {

sat_sa8P [Occ=Once] :: GHC. Types .Int
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src <<no location info >>
[ LclId ] =

CCCS GHC. Types .I#! [ sat_sa8O ];
} in Unit# [ sat_sa8P ];
};

};

Despite being stored in a mutable variable, that is defined outside the binding’s
lexical scope, the closure for sat_sa8M appears to never be accessed outside the
lexical scope during a benchmark run.
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5. Conclusion and future work
The results from the evaluation show that in the context of a lazy language like
Haskell, an escape analysis can have a significant impact on compile time optimization
for some programs. The escape analysis algorithm developed as part of this thesis
produces sound results for every benchmark that has been run during the evaluation.
The data collected from the benchmark runs support the assumption that, how much
heap allocation can be shifted to the stack, depends on a relatively small subset of
bindings. The custom profiling functionality for the external STG interpreter turns
out to be a useful tool to identify missed opportunities of an escape analysis and to
provide direction for the improvement of escape analysis algorithms.

Based on the findings of this thesis, further studies can delve into the following
research topics:

• Evaluating the escape analysis algorithm for the GHC using other, more
practical programs

• Implementing compile time optimizations for stack allocation and closure reuse
for the GHC

• Investigating speedup, memory consumption and space safety for different
compile time optimizations based on escape analysis for the GHC

• Extending the escape analysis algorithm for the GHC to be context-sensitive.
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A. Appendix

A.1. Computation of metrics
The following information can be derived from A∗

h and n after the profiling of the
benchmark P :

A: Binders allocated during the execution of P

A = {b ∈ D | n(b) > 0}

As: Binders that could have allocated their objects on stack during the execution of
P according to the escape analysis

As = A \ B

Ah: Binders that couldn’t have allocated their objects on stack during the execution
of P according to the escape analysis

Ah = A ∩ B

A∗
s: Binders allocated during the execution of P whose objects never got accessed

outside their lexical scope

A∗
s = A \ A∗

h

Fh: Binders that couldn’t have allocated their objects on stack according to the
escape analysis but actually never got accessed outside their lexical scope
during the execution of P (false positives)

Fh = A∗
s \ As

Fs: Binders that are wrongfully assumed to not escape during the execution of P
(false negatives)

Fs = A∗
h \ Ah

This is the essential value indicating the soundness of the escape analysis. For
the result of an escape analysis to be sound, we expect Fs = ∅ to be true.
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Ms: Amount of stack-allocated memory caused by let-bound objects during the
execution of P

Ms =
∑

b∈As

n(b)

Mh: Amount of heap-allocated memory caused by let-bound objects during the
execution of P

Mh =
∑

b∈Ah

n(b)

M∗
s : Upper bound for the amount of stack-allocated memory caused by let-bound

objects during the execution of P

M∗
s =

∑
b∈A∗

s

n(b)

M∗
h : Lower bound for the amount of heap-allocated memory caused by let-bound

objects during the execution of P

M∗
h =

∑
b∈A∗

h

n(b)

S: Portion of stack-allocated memory caused by let-bound objects during the execu-
tion of P

S = Ms

Ms + Mh

S∗: Upper bound for the portion of stack-allocated memory caused by let-bound
objects during the execution of P

S∗ = M∗
s

M∗
s + M∗

h

A.2. Raw data of the Evaluation
P |As| |Ah| |A∗

s | |A∗
h

| |Fh| |Fs| Ms Mh M∗
s M∗

h

n-body 44661 311 44866 106 205 0 44008640 27416 44029304 6752
spectral-norm 44604 305 44809 100 205 0 517952 23296 536880 4368
power 44325 238 44485 78 160 0 107297080 21573776 108015920 20854936
digits-of-e1 44194 238 44366 66 172 0 116827536 28026936 144591944 262528
exact-reals 44467 333 44683 117 216 0 72537200 29385704 84722408 17200496
digits-of-e2 44201 242 44368 75 167 0 96938496 41094560 112921856 25111200
primetest 44225 330 44438 117 213 0 41163992 17778864 51456880 7485976
rsa 44261 214 44391 84 130 0 62700488 31592272 78458320 15834440
pidigits 44201 269 44395 75 194 0 5418112 2754504 6432472 1740144
bernouilli 44235 305 44430 110 195 0 91625800 49145080 122963264 17807616
gcd 44185 226 44345 66 160 0 109028800 62012592 147605088 23436304
integer 44190 212 44326 76 136 0 53382168 64259296 77148616 40492848
mandel2 44217 192 44357 52 140 0 26243080 32747960 55145656 3845384
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P |As| |Ah| |A∗
s | |A∗

h
| |Fh| |Fs| Ms Mh M∗

s M∗
h

gamteb 44657 460 44883 234 226 0 84712184 131379968 116163216 99928936
scs 44861 833 45338 356 477 0 38799872 73815032 62712104 49902800
transform 44685 818 45015 488 330 0 18311944 68184624 24283368 62213200
awards 44248 335 44516 67 268 0 30160640 129579168 58635672 101104136
mate 44531 674 44924 281 393 0 6578496 32327192 22683904 16221784
fluid 45125 1537 45839 823 714 0 12832048 64489416 46617344 30704120
boyer2 44552 295 44728 119 176 0 11046312 55722640 27132536 39636416
nucleic2 48651 400 48863 188 212 0 7944216 45514208 20348104 33110320
dom-lt 52495 473 52799 169 304 0 34088200 204400024 192089112 46399112
tak 44169 216 44329 56 160 0 1392 8528 6840 3080
kahan 45359 183 45488 54 129 0 752 4728 3184 2296
rfib 44186 254 44370 70 184 0 2856 18000 17920 2936
symalg 44699 387 44941 145 242 0 5915096 37730288 8879840 34765544
eliza 44614 321 44816 119 202 0 10371688 79154176 13807464 75718400
mandel 48771 247 48917 101 146 0 11722472 89726696 14598528 86850640
sphere 44435 377 44673 139 238 0 6003296 47353760 31342656 22014400
gg 45916 624 46178 362 262 0 10134096 89353696 17041360 82446432
puzzle 44288 237 44457 68 169 0 12022736 106082128 85863368 32241496
rewrite 44419 426 44683 162 264 0 7177272 63572336 41475800 29273808
parser 45054 383 45291 146 237 0 6796320 63550648 47110488 23236480
maillist 44234 274 44442 66 208 0 6967360 70023720 60591216 16399864
wave4main 44259 308 44450 117 191 0 7648736 83994312 40771696 50871352
para 44332 387 44574 145 242 0 17124568 188802456 75273600 130653424
hidden 44563 122 44657 28 94 0 41704 473592 414016 101280
simple 44631 693 45018 306 387 0 2236824 26014848 7987896 20263776
minimax 45218 254 45365 107 147 0 13119256 169401704 157422712 25098248
fem 44543 659 44953 249 410 0 10931768 156115544 35174528 131872784
VSD 44104 81 44164 21 60 0 192 2832 1600 1424
linear 44769 537 45008 298 239 0 5454048 82311232 8834520 78930760
anna 47801 1851 48372 1280 571 0 2226888 47582464 11922560 37886792
event 44308 274 44478 104 170 0 2958512 64446592 11500304 55904800
scc 44145 106 44220 31 75 0 200 4624 2344 2480
expert 45260 464 45532 192 272 0 2385088 60579000 5807256 57156832
cichelli 44334 317 44560 91 226 0 3343888 88556840 81245784 10654944
fft2 48772 370 48958 184 186 0 1794872 48620816 3538296 46877392
paraffins 44222 329 44446 105 224 0 5232744 156936368 116494504 45674608
circsim 44426 416 44659 183 233 0 3765256 121725224 14239144 111251336
hpg 44932 960 45167 725 235 0 3314408 109600504 7031776 105883136
cse 44294 225 44430 89 136 0 3760672 129124760 14003024 118882408
wang 44251 310 44426 135 175 0 2788096 100690608 27889056 75589648
pic 44343 435 44623 155 280 0 3693360 140395800 120584552 23504608
fibheaps 44270 288 44441 117 171 0 6489680 286455160 102693736 190251104
fft 48767 282 48963 86 196 0 2214824 102323416 39192104 65346136
cryptarithm2 44270 294 44456 108 186 0 3485840 161700960 12234992 152951808
veritas 48471 881 48776 576 305 0 1370392 67726088 3628256 65468224
comp_lab_zift 44455 391 44672 174 217 0 1872104 100734728 19661864 82944968
prolog 44385 422 44586 221 201 0 1629568 90184288 16095496 75718360
atom 44229 291 44434 86 205 0 1396112 77602096 33933392 45064816
typecheck 44535 355 44748 142 213 0 1048712 60820448 5864032 56005128
ida 44318 342 44545 115 227 0 1873536 116285232 18947032 99211736
infer 44621 532 44858 295 237 0 1033944 79742048 9544184 71231808
fasta 49309 251 49474 86 165 0 431080 33719480 17074776 17075784
sorting 44280 374 44521 133 241 0 826296 77305552 25626640 52505208
treejoin 44227 244 44401 70 174 0 2588912 268639480 217082848 54145544
reptile 44909 414 45187 136 278 0 920592 103435032 94594856 9760768
banner 44535 194 44669 60 134 0 978816 117403496 87594232 30788080
cacheprof 46898 599 47270 227 372 0 657856 80372096 14811528 66218424
pretty 44266 160 44370 56 104 0 216 26688 7704 19200
lift 45460 560 45637 383 177 0 615040 77641312 1712176 76544176
lcss 44185 278 44382 81 197 0 1512336 190956800 8251176 184217960
wheel-sieve1 44194 273 44358 109 164 0 70504 9048160 282664 8836000
solid 44428 355 44647 136 219 0 891928 115875784 74293896 42473816
mkhprog 44247 284 44404 127 157 0 712168 98142632 9031096 89823704
lambda 45544 265 45727 82 183 0 304896 52912424 929056 52288264
bspt 46240 527 46463 304 223 0 244608 57219680 1588456 55875832
fulsom 45035 449 45291 193 256 0 568320 181190208 52128224 129630304
life 44219 282 44393 108 174 0 150096 71042608 3291056 67901648
parstof 45458 374 45705 127 247 0 64096 42305120 14209056 28160160
genfft 44265 354 44428 191 163 0 148904 100136576 857864 99427616
multiplier 44357 342 44595 104 238 0 100488 71780696 5185664 66695520
reverse-complement 44137 124 44217 44 80 0 149672 110191408 55585368 54755712
calendar 44257 301 44425 133 168 0 136680 138731976 8455552 130413104
primes 44175 228 44337 66 162 0 60904 74447360 262664 74245600
clausify 44242 268 44424 86 182 0 33336 41792736 3116832 38709240
sched 44360 297 44533 124 173 0 122232 186846776 10046704 176922304
knights 44376 240 44526 90 150 0 21696 36583120 19109056 17495760
boyer 44837 235 45006 66 169 0 47304 143562656 961864 142648096
grep 45185 356 45417 124 232 0 25240 123759416 14302656 109482000
compress2 44224 242 44345 121 121 0 56472 315923400 3859256 312120616
ansi 44308 325 44544 89 236 0 37720 227834696 97388264 130484152
binary-trees 44502 293 44721 74 219 0 28896 253558336 1160232 252427000
compress 44695 192 44804 83 109 0 19504 493907680 5278272 488648912
x2n1 48687 219 48846 60 159 0 896 32005848 16004152 16002592
queens 44172 218 44331 59 159 0 632 47838088 3616 47835104
exp3_8 44210 208 44365 53 155 0 744 64535792 3632 64532904
listcompr 44412 301 44573 140 161 0 736 104326880 11043856 93283760
listcopy 44413 302 44574 141 161 0 736 114342880 11043856 103299760
fish 44437 308 44582 163 145 0 528 215031488 67843584 147188432
S 44106 81 44166 21 60 0 192 80002768 80001584 1376
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nofib test sets

• imaginary

• spectral

• real

• shootout

Crashed due to not enough memory

• gen_regexps

• constraints

• cryptarithm1

• last-piece

• CS

• FS

• CSD

• fannkuch-redux

• k-nucleotide

Aborted due to too long computation time

• VS
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