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Abstract

Die meisten modernen Prozessoren sind um eine Instruktionspipeline herum gebaut.
Moderne Compiler produzieren aber nicht immer Maschinencode, welcher diese Pipe-
line maximal ausnutzt. Die resultierenden Kompilate verschwenden Prozessorzyklen.
In diesem Paper betrachten wir einen alternativen Schedulingansatz, welcher auf
eine maximale Pipelineauslastung optimiert ist. Anschließend bewerten wir dessen
Resultate auf einem SPARC V8 - LEON3 Prozessor. Die erreichten Verbesserungen
betragen bis zu ~3% in manchen Tests.

Most modern processors are built around an instruction pipeline at their core.
Modern compilers however don’t schedule instructions utilizing this pipeline to its
fullest potential. The resulting pipeline errors waste processor cycles unnecessarily.
This paper explores an alternative scheduling approach which focuses on reducing
these errors and evaluates its performance on the SPARC V8 - LEON3 Processor,
finding improvements of up to ~3% in some tests.
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1 Introduction
Most modern processors are build with pipelines as an underlying microarchitecture
[1]. The execution of an instruction is broken down in multiple stages which are
stepped through sequentially. Once an instruction has completed one such stage, it
is moved to the next and the following instruction may proceed to the previously
occupied stage. This allows for multiple instructions to be executed in parallel,
albeit shifted by one stage. However, problems arise if a later instruction depends
on the result of a preceding one: Waiting for its completion negates the advantages
of the pipeline, effectively reverting back to a purely sequential model. Architecture
designers combat this by introducing backtracking paths from later stages to previous
ones, allowing for less delay waiting for results of previous instructions. For example
once a calculation is done, its result may be available for the proceeding instruction
immediately, without writing it back to a register and later reading it from there
again. Some instruction pairings however still incur additional delay. By ordering
instructions with the timings of the instruction pipeline in mind this delay can be
reduced or mitigated. In this paper we propose an alternative scheduler doing just
this for the libFirm compiler, by interleaving independent instructions into such
pairings, breaking up the delay-producing dependencies. We explore this concept on
the LEON3 Processor, an open source processor design made available for free by
Cobham Gaisler under the GNU GPL license [2].
First, we explain the prerequisites necessary for this thesis in chapter 2. Then

we introduce the problem at hand, our theoretical solution to it and present our
practical implementation in chapter 3. After that, we evaluate our solution using
static analysis and dynamic measurements in chapter 4. Finally, we close with a
critical view of our results and propose further optimizations possible in chapter 5.
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2 Basics
First, we are going to introduce some basic concepts necessary for this paper:

2.1 Compilers
A compiler’s job is the translation of human-readable and human-writable, high-
level code into instructions executable by a processor. Like most large software
projects, compilers are built with a layered architecture increasing maintainability
and reducing code duplication amongst other advantages. Sharing data between
layers is handled through a a common language, the intermediate representation (IR).
Generally a compiler following this approach is constructed from three layers: The
front-ends translate from a higher level language into the IR, the middle-end applies
generic optimizations and the back-end applies further target-specific optimizations
and emits binaries runnable on the target. Each of these layers consists of multiple
stages run through in sequence. For the back-end, theses are the most important
ones: The code selection phase searches for known patterns in the IR, replacing them
with target specific instructions. The scheduling phase works out the execution path
through the instructions. It will be discussed in more detail in the following section.
In the register allocation phase generic registers used as operands are replaced by
specific ones available in the target architecture. Finally, the assembly emission
phase converts the IR into actual assembly runnable on the target.
libFirm is the compiler middle- and back end used and modified by this paper.

It is combined with different front ends to form a fully-featured compiler, like the
cparser front end for the C language.

2.1.1 Intermediate Representation (IR)
The intermediate representation is the common language used by all layers and
phases of the compiler. The compiler front-end translates the source language into
the IR. Any later compiler stage (including scheduling) operates on this IR only.

One property an IR can uphold is static single assignment (SSA). With SSA every
variable has to be assigned once and only once and must be defined before first use.
If a variable is originally assigned to multiple times, converting it to SSA Form will
result in multiple differently named copies as seen in Figure 2.1. The φ-Operator
merges variables from different control flows by choosing one or the other based on
the path taken. SSA Form allows for easier implementation of many optimization
strategies as finding the definition and value of any variable becomes trivial.
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2.2. INSTRUCTION PIPELINE

a := 3
i f a > 2

b := 1
e l s e

b := 3
c := a + b

(a) Pre-SSA code

a1 := 3
i f a1 > 2

b1 := 1
e l s e

b2 := 3
b3 := φ(b1 , b2)
c1 := a1 + b3

(b) Post-SSA code

Figure 2.1: Example code and its equivalent in SSA form

A control flow graph (CFG) describes all possible paths execution flow could take
in a program. It consists of blocks and directed edges connecting those blocks. Each
block is made up of a set of instructions that are to be executed in sequence, and
must not contain any jumps, branches, nor jump targets. The edges model execution
paths between blocks.

Firm is a graph-based intermediate representation [3] used by the libFirm compiler
[4]. Its graph is a combination of a CFG, as well as a data dependency graph.

It upholds SSA at any point in time by design since dependencies are represented
by edges, which can only point to one node at a time, thus not allowing multiple
definitions for the same variable.

2.1.2 Scheduling
The compiler phase most important to this thesis is the scheduling phase, since it
determines the ordering of instructions. In libFirm, scheduling is performed on a
block-by-block basis. While optimizing for best resource utilization is obviously the
goal, computing a perfect schedule is infeasible. Different schedulers approach this
goal with different approaches: libFirm’s default scheduler optimizes for minimal
number of registers used. This is a sensible goal since writing and later reading
register contents to and from memory (spilling registers) unnecessarily wastes time.
Many programs however don’t need all registers, thus never coming close to register
spilling. In such cases, different scheduling algorithms, like the one proposed, can
result in better utilization of resources.

2.2 Instruction Pipeline
The instruction pipeline is a central part of most modern processors [1]. The pipeline
consists of multiple stages through which each instruction steps sequentially. Once an
instruction has completed one such stage, it is moved to the next and the following
instruction may proceed to the previously occupied stage. This allows for overall faster
execution time since multiple instructions are executed in parallel albeit shifted by
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2.2. INSTRUCTION PIPELINE

one stage. The exact makeup of the pipeline varies from architecture to architecture.
Most pipelines however include the following stages: In the instruction fetch stage
(IF) the next instruction to be executed is read from memory and the instruction
pointer is incremented. The decode stage (DE) decodes the instruction and fetches
the required operands from the registers. The execution stage (EX) performs the
actual calculation required by the instruction. Finally, in the write-back stage (WB)
results are written back into registers. Depending on the architecture, reading and
writing memory, emitting exceptions and other auxiliary tasks are either integrated
directly into these stage or externalized into their own stage each. Problems arise
however if one instructions operands depend on the result of a previous instruction,
as seen in Figure 2.2:

l d i $rax , 3
add $rax , $rcx

Figure 2.2: Example code showing one instruction depending on the previous one:
The add instruction uses the $rax register, which is written by the
immediately preceding ldi instruction. This could produce a hazard,
depending on the architecture of the pipeline.

When the add instruction reaches the decode stage, the load instruction is in the
executing stage. The value of $rax has not been set to 3 yet as the load instruction
has not reached write-back. The result of the computation would be wrong. To
combat this the processor introduces a pipeline stall to give the load instruction time
to write into $rax. It does so by inserting so-called bubbles after the load, delaying
each following instruction by one stage. When a bubble reaches a stage, it is ignored
processing-wise, introducing effectively only a delay. This process can be seen in
Figure 2.3. The purple instruction depends on the result of the green instruction
which is not ready when needed, so the processor inserts a bubble. The execution
takes one cycle longer.

Since instructions depending on each other is extremely common, most processor
include hardware remedies for some of these stalls. Backtracking paths from later
stages to previous once allow later instructions to use results without waiting for
write-back and then reading from the register themselves. Such paths would make
the result of the load available as soon as possible, allowing the add to be executed
without any pipeline stalls.

Some pipeline stalls however can’t be remedied by the processor in this way and
still remain. These can only be reduced by ordering the instructions differently.

1Derivative of https://commons.wikimedia.org/wiki/File:Pipeline,_4_stage_with_
bubble.svg licensed under CC-BY-SA-3.0. Original by Colin M.L. Burnett licensed under
CC-BY-SA-3.0.
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2.2. INSTRUCTION PIPELINE
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Figure 2.3: Simple five stage instruction pipeline exhibiting bubbling: The purple
instruction depends on the result of the green instruction which is not
ready when needed, so the processor inserts a bubble. The execution
takes one cycle longer. 1
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2.3. SPARC ARCHITECTURE & LEON3

2.3 SPARC Architecture & LEON3
The LEON3 is a ’synthesisable VHDL model of a 32-bit processor compliant with
the SPARC V8 architecture’ [5]. Its instruction pipeline consists of seven stages:
Instruction Fetch (FE), Decode (DE), Register Access (RA), Execution (EX), Memory
(ME), Exception (XC) and Write (WR). It is also equipped with backtracking paths
XC ⇒ RA, XC ⇒ EX, ME ⇒ RA and EX ⇒ RA [6, Section 83.2.1], which keep
most dependency pairs hazard-free as explained in section 2.2. Which instruction
pairing still produce hazards will be discussed in the next chapter. The LEON3 has,
like other SPARC processors, a branch delay slot: As part of processing any branch
instruction, the immediately following instruction is executed first. This behavior
has to be considered in our optimization as well.

The LEON3 was chosen as target processor for this paper based on its reasonably
well documented instruction timings, especially regarding pipeline stalls [6, Section
83.2.2][7].
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3 Design and Implementation

In this chapter we first explore the different instructions timings affecting the
instruction pipeline. Then we explain how to mitigate these effects in theory. Finally
we show how this theory has been implemented in practice.

3.1 SPARC Instructions and their Pipeline Effects

Most SPARC instruction cause no further pipeline delay, as their result is immediately
available for proceeding instructions, thanks to the backtracking paths mentioned
above. Some instructions however do cause delay. They can be broken up timing-wise
into several groups [6][7]:

Load instructions incur an additional load delay when the result of a load is
used by following instructions. Depending on configuration parameters set prior to
synthesis the load delay may be 1-2 cycles. If the following instruction is a store and
the load result is used only for address calculation, no delay is inserted.

Multiplication requires one cycle of delay if the next instruction uses its result.
When used only for address calculation in a store no delay is necessary. The content
of the Y register, the most significant 32 bit of the result, can be used without
incurring any additional delay.

Division always requires one additional cycle of delay.
Conditional branches can incur additional delay of 1-2 cycles called branch

interlock. If the immediately preceding instruction modifies condition codes, two
delay cycles are inserted, if only the second preceding one does, one cycle.

3.1.1 The delay slot

Additionally the compiler is required to fill the delay slot of any branch instruction.
If no suitable instruction is found, a NOP is inserted. Scheduling with this in mind,
some NOP insertions can be mitigated by placing one such suitable instruction
immediately preceding the branch in the scheduling phase, allowing the assembly
emitter to fill the delay slot productively.

15



3.1. SPARC INSTRUCTIONS AND THEIR PIPELINE EFFECTS
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(b) SPARC-specific scheduling

Figure 3.1: Sample program exhibiting both branch interlock and load delay. In
the conventional schedule, the branch is scheduled right after compare,
forcing the processor to insert 2 cycles of delay. The first Add is
scheduled right after the load it depends on. This leads to 1 cycle of
load delay. In addition, no instruction to fill the delay slot is found,
so a “nop” is inserted. Conventional wastes 4 cycles in total while
SPARC-specific scheduling wastes none.
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3.2. DESIGN

3.2 Design
Scheduling decisions are made on a block-wise basis in libFirm. Mitigating the
different kinds of delay requires different approaches:
Branch-related delays can be reduced or eliminated by scheduling ideally up to

three instructions between the last instruction that modifies condition codes and
the branch of the block. Two of those instructions will fill the time window between
compare and branch, allowing the condition codes to propagate properly. The third
instruction is later emitted in the branch delay slot, preventing the filling with a NOP.
To be suitable, each instruction has to satisfy the following constraints: Firstly, it
must not modify condition codes as that would falsify the branch decision. Secondly,
it must not be depended on by any node in the current block that is not also in the
three nodes selected. Finally, it can not be a predecessor to the last node modifying
condition codes, as that would restrict its position to strictly above the same. Any
such node can be scheduled directly before the branch, reducing the branch delay
and allowing the delay slot to be filled. All other delays can be mitigated on-the-fly
by respecting the rules of section 3.1.

In the sample schedule shown in Figure 3.1a both load delay and branch interlock
are encountered: The value returned by the sparc_Ld is used by the immediately
proceeding sparc_Add instruction, forcing the processor to insert a bubble in between.
The SPARC-specific scheduling however interleaves the first sparc_Sll instruction
which can be executed at that time since it doesn’t depend on the sparc_Ld. The
resulting machine code can be processed without inserting any bubbles after the
sparc_Ld, saving one cycle. The same applies to the sparc_Bicc: since it follows
directly after the sparc_Cmp, two bubbles are inserted by the processor. In the im-
proved schedule in Figure 3.1b three instructions are scheduled in between, providing
enough time for the condition codes to propagate, saving two cycles. In Addition the
emitter might not be able to fill the branch delay slot productively in Figure 3.1a,
depending on the available common instructions in the branched-to basic blocks
(not shown) that could be pulled up. In the SPARC-specific schedule the emitter is
presented with a fitting instruction by scheduling it just before the branch. Overall,
four cycles are saved in schedule Figure 3.1b.

3.3 Implementation
The SPARC scheduler is, just as the conventional scheduler, based on the already
existing list scheduler. Its interface provides a set of all possible nodes that could be
scheduled next, ensuring that all necessary dependencies have already been scheduled
prior. This provides any implementing scheduler with some sense of correctness, as
any choice made from that set is factually correct, although possibly not optimal.
The SPARC scheduling consists of two phases:

The preprocessing phase searches for candidates to resolve branch interlock. This
is done through an upwards DFS starting from the branch. Since the DFS visits all
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3.3. IMPLEMENTATION

predecessors of the last conditional, any node not visited is not a predecessor and
therefore a possible candidate for resolving branch interlock. Three such instructions
are chosen, making sure that neither of them violate the rules laid out in section 3.2.
Additionally, the total number of nodes is tallied up for later use.

The main scheduling phase performs the actual scheduling. First, each of the
choices offered by the list scheduler is scored according to their characteristics in
section 3.1: Instructions that are the first node of a hazard-producing pair are scored
highly, resulting is earlier scheduling. The second node of a hazard-producing pair
is scored negatively, allowing for different, non-hazarding nodes to take the spot,
breaking up the hazard. Nodes that modify condition codes (excluding the last
one just before the branch) are scored slightly above average. This schedules them
slightly earlier which is preferred since they are useless in resolving branch interlock.
Any other node is scored neutral. Nodes reserved by the preprocessing phase are
excluded from being chosen and will be handled separately. This includes the actual
branch and the last node modifying condition codes as well.
Once all non-reserved nodes have been scheduled, branch interlock is resolved

by scheduling the remaining, reserved nodes in the correct order. This point is
determined through the total number of nodes found by the DFS.

18



4 Evaluation
In the following section we analyze the the results of the SPARC-specific scheduling
and compare it to the conventional scheduling previously used. First, we explain
the methodology used in our tests. Then we look at some of the non-resolved
hazard-producing dependencies still found by the static analysis, and reason their
existence. Finally, we compare the SPARC-specific scheduling versus the conventional
scheduling in some dynamic tests.

4.1 Methodology
In order to provide a point of comparison to any dynamic results measured, we
employ a primitive static analysis tool written in Python based on the Capstone
Disassembly Framework [8]: Starting at the binary entry point, we explore all possible
execution paths using a depth-first approach. When reaching a conditional jump,
both possible paths are explored. Any jump target is only visited once, preventing
infinite looping. Indirect jumps are ignored since static analysis of them is difficult.
Our samples do not contain any indirect jumps, so our results below are unchanged
by this restriction. While exploring, a list of the last few visited instructions is kept,
allowing us to find any hazard-producing dependencies. At the end, the number
of them is tallied up by group as in section 3.1 and printed. This method can not
give a concrete number of cycles wasted, as determining that statically is hard, it
however does provide an overview of opportunities missed. Furthermore we can get
a rough estimate of cycles wasted by matching up each missed dependency with its
cycle count in section 3.1. This however makes the following assumptions: Firstly no
jump target is visited twice, loops are treated as linear code paths only taken once.
Secondly, the likelihood of execution is treated as equal for all code paths. These
assumptions are obviously violated even by basic programs, the resulting numbers
however offer still a meaningful point of comparison.
Dynamic measurements were taken by executing test code under the operating

system OctoPOS [9], providing clock cycle accurate time stamping and preventing
preemption of our sample. OctoPOS itself ran on an FPGA chip, loaded with a
LEON3 synthesis running at 50MHz.
As test programs we used a small, standalone implementation of AES [10] and a

selection of samples from the "Computer Language Benchmarks Game" [11], namely
fasta, nbody, recursive and partial. Each sample was linked with stubbed printf,
puts and putchar functions in order to reduce variance in measurements. We chose
stubbing instead of removing these function calls from samples to ensure data
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4.2. STATIC ANALYSIS

dependencies stayed the same and no runtime-contributing parts where optimized
out.

4.2 Static Analysis
For our static analysis each sample was compiled once with the SPARC-specific
scheduling and once without. Then the number of hazard-producing dependencies
left and cycles wasted on them was measured as explained in section 4.1. The
results can be seen in Table 4.1. Load, Multiply and Divide Delay are resolved
fairly easily by the local prioritization described in section 3.3. Manual inspection of
the generated schedule graph confirms this. The branch delay is the most common
type of delay still encountered for most samples. This is expected as resolving it
is trickier than the other delay forms: Only if other instructions, not participating
in the branch-deciding result, are available in the same block, branch delay can be
resolved. This however seems less common, as the cparser front end groups dependent
instructions together into the same block, seldom leaving a few suitable instructions
dangling into the next one. In addition, many non-counting (e.g. while) loops can’t
be improved since calculations done inside often influence the loop condition, thus
becoming unsuitable in resolving branch delay. In general the scheduler can only
improve, if there are opportunities to do so: Code samples with tiny basic blocks
don’t provide interleavable instructions to resolve conflicts. The same goes for large
basic blocks which contain only one long dependency chain. If the scheduler is only
offered one choice, no improvements are possible.

Table 4.1 hints at most improvement possible for n-body, as the difference of total
delay between SPARC and conventional scheduling is the largest. This however
might be deceiving since static analysis does not account for multiple passes taken
in loops. In addition this static analysis provides a sense of maximum improvements
possible: If the difference between SPARC and conventional scheduling is small to
none, no dynamic improvement can be expected.

4.3 Dynamic Analysis
In our dynamic analysis we compared the actual cycle count of our sample programs
with and without SPARC-specific scheduling. This shows the actual time improve-
ment, taking into account the multiple times one piece of code might be executed.
The results can be seen in Table 4.2. By stubbing function calls like printf, we
removed most of the variation in measurements, resulting in acceptable interquartile
ranges of IRQtinyAES = 8, IRQfasta = 3967, IRQn−body = 21705, IRQrecursive = 65
and IRQpartial = 43. Contrary to the results of section 4.2, tinyAES exhibits the
largest improvement. This can be explained by its internal structure typical for AES,
large loops containing multiple passes of long code blocks. Any improvement in one
of these blocks gets multiplied by each loop pass taken over in, which leads to an
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4.3. DYNAMIC ANALYSIS

overall larger improvement. In addition, multiple AES modes are tested by tinyAES,
amplifying this effect further.
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4.3. DYNAMIC ANALYSIS

Sample Delay (cycles)
Load Branch Delay slot Multiply Divide Total

SPARC-sched.
tinyAES 8 53 3 0 0 64
fasta 5 14 2 1 0 22
n-body 20 16 2 0 0 38
recursive 4 9 1 0 0 14
partial 15 18 3 0 0 36
conv. sched.
tinyAES 10 55 5 0 0 70
fasta 9 16 2 2 0 29
n-body 33 16 3 0 0 52
recursive 7 9 3 0 0 19
partial 18 20 6 0 0 44

Table 4.1: Statically found cycles wasted by all hazards grouped by delay type for
SPARC and conventional scheduling. This assumes that each hazard is
hit exactly once.

Sample Cycle count scheduled with improvement in %
SPARC-specific. conventional

tinyAES 213 797 219 520 2.607
fasta 1 047 583 1 057 520 0.940
n-body 30 464 185 30 604 208 0.458
recursive 197 620 158 197 620 149 −0.000
partial 38 910 567 38 771 068 −0.360

Table 4.2: Median cycle count of 1000 runs of each sample, with and without
SPARC-specific scheduling
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5 Conclusion and Future Work
While SPARC-specific scheduling offers greater improvements than initially expected,
all samples tested where rather small. For most samples, improvements made where
so small, that even a single printf statement in the original code hid any cycles
saved in its noise. The abundance of remaining hazards found after SPARC-specific
scheduling shows, that a block-based scheduling approach does not offer the flexibility
necessary to resolve a large percentage of them. Given that even small programs as
those tested exhibited plenty of hazards, inter-block approaches might be able to yield
better results. In larger programs register pressure increases and any improvements
made are quickly outweighed by cycles lost due to register spilling. Here, a hybrid
scheduling approach may increase performance, scheduling like proposed in this thesis
while determining register pressure and falling back to the conventional scheduling
algorithm in hopes of evading register spilling.

The LEON3 used in this thesis was synthesized with the “GRFPU Lite - IEEE-754
Floating-Point Unit”[6, Section 49], which is not pipelined and can only executes
one floating point instruction at a time. It can however alternatively be synthesized
with the “RFPU - High-performance IEEE-754 Floating-point unit”[6, Section 49],
which is fully pipelined, executing in parallel with the main core. Scheduling with
this in mind might offer further room for improvement in float-heavy operations.
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Figure .1: Block diagram of the LEON3 instruction pipeline [6, Section 83.2]
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