
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Generalized
Jump Threading in

libFIRM

Masterarbeit von

Joachim Priesner

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr.-Ing. Jörg Henkel
Betreuender Mitarbeiter: Dipl.-Inform. Andreas Zwinkau

Bearbeitungszeit: 5. Oktober 2016 – 23. Januar 2017

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Zusammenfassung/Abstract

Jump Threading (dt. „Sprünge fädeln“) ist eine Compileroptimierung, die statisch
vorhersagbare bedingte Sprünge in unbedingte Sprünge umwandelt. Bei der Ausfüh-
rung kann ein Prozessor bedingte Sprünge zunächst nur heuristisch mit Hilfe der
Sprungvorhersage auswerten. Sie stellen daher generell ein Performancehindernis dar.
Die Umwandlung ist insbesondere auch dann möglich, wenn das Sprungziel nur

auf einer Teilmenge der zu dem Sprung führenden Ausführungspfade statisch be-
stimmbar ist. In diesem Fall, der den überwiegenden Teil der durch Jump Threading
optimierten Sprünge betrifft, muss die Optimierung Grundblöcke duplizieren, um
jene Ausführungspfade zu isolieren.

Verschiedene aktuelle Compiler enthalten sehr unterschiedliche Implementierungen
von Jump Threading. In dieser Masterarbeit wird zunächst ein theoretischer Rahmen
für Jump Threading vorgestellt. Sodann wird eine allgemeine Fassung eines Jump-
Threading-Algorithmus entwickelt, implementiert und in diverser Hinsicht untersucht,
insbesondere auf Wechselwirkungen mit anderen Optimierungen wie If Conversion.
Anhand von Benchmarks werden schließlich die Optimierungsparameter festgelegt
und es wird verifiziert, dass Jump Threading sich auch auf modernen Prozessoren
noch lohnt. Auf einem aktuellen Intel-Prozessor verzeichnen wir beim SPECint2000-
Benchmark eine Beschleunigung von bis zu 3%.

Jump Threading is a compiler optimization which transforms statically predictable
conditional branches into unconditional branches. During the execution, a processor
can initially evaluate conditional branches only heuristically using branch prediction.
Therefore, they generally form a performance obstacle.

In particular, the transformation is possible even if the branch target is only
statically determinable on a subset of the execution paths leading to the branch. In
those cases, which constitute the predominant part of the branches optimized by
Jump Threading, the optimization must duplicate basic blocks in order to isolate
those execution paths.

Diverse current compilers contain very different implementations of Jump Thread-
ing. In this master’s thesis, we first introduce a theoretical framework for Jump
Threading. Then, we develop and implement a generalized version of a Jump Thread-
ing algorithm and analyze it in various respects, particularly on its interaction with
other optimizations like If Conversion. Finally, using benchmarks, we set the opti-
mization parameters and verify that Jump Threading is still profitable on modern
processors. On a current Intel processor, we observe a speedup of up to 3% in the
SPECint2000 benchmark.

Erklärung
Hiermit erkläre ich, Joachim Priesner, dass ich die vorliegende Masterarbeit selbst-
ständig verfasst, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt,
wörtlich oder inhaltlich übernommene Stellen als solche kenntlich gemacht und die
Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis beachtet habe.

Ort, Datum Unterschrift

4

Contents

1. Introduction 7

2. Basics and Related Work 11
2.1. Branch prediction mechanisms . 11
2.2. Related work . 12

3. Design 13
3.1. Preliminaries . 13

3.1.1. Limitations on the CFG structure 13
3.1.2. CFG execution semantics . 13
3.1.3. Duplicating blocks . 14

3.2. Threading Opportunities . 15
3.2.1. Definition . 15
3.2.2. Critical edges . 16
3.2.3. Irreducible control flow . 17
3.2.4. Threading multiple TOs . 19

3.3. Finding TOs . 25
3.3.1. Data flow analysis . 25
3.3.2. Properties . 26
3.3.3. Reconstructing TOs . 27

3.4. Interaction with other optimizations 31
3.4.1. If Conversion . 31
3.4.2. Block scheduling . 36

4. Analysis of existing algorithms 39
4.1. LLVM . 39
4.2. GCC . 39
4.3. libFirm . 41

4.3.1. Confirm nodes and optimization pass 41
4.3.2. The existing Jump Threading algorithm 42
4.3.3. Limitations . 45
4.3.4. Non-termination . 46

5. Implementation 47
5.1. General structure . 47
5.2. Wrap-around intervals . 47

5

Contents

5.3. Implementation details . 51
5.3.1. Use of bit sets for cond sets 51
5.3.2. Edge annotations . 51
5.3.3. Usage of the link field . 51

5.4. Validation . 52
5.5. SSA reconstruction . 52
5.6. Cost model . 53

6. Evaluation 55
6.1. Experimental setup and methodology 55

6.1.1. Platform . 55
6.1.2. Compiler . 55
6.1.3. Benchmarks . 56
6.1.4. Methodology . 56

6.2. Experimental results and discussion 56
6.2.1. FSM microbenchmark . 56
6.2.2. Execution time . 58
6.2.3. Opcode mix . 59
6.2.4. Compile time . 62
6.2.5. Number of conds . 62

7. Conclusion and Further Work 65

A. Jump Threading source code 69

6

1. Introduction
In order to increase throughput, all modern processors use a pipelined execution
model, where processor instructions are not executed sequentially, but multiple
consecutive instructions are in different stages of the pipeline at the same time. The
elaborate pipelines of today’s processors might contain more than a dozen stages.

One obstacle of the pipelined execution model is branching. The instruction to be
executed after a branch instruction1 is not known for sure until the branch instruction
is decoded (for unconditional branches) or its data dependencies are evaluated (for
conditional and indirect branches).

To avoid holding off the instruction fetch until then (called stalling the pipeline),
a predictor first guesses the branch target, which is then fetched and executed
speculatively until the branch target is known for sure. If the guess was correct,
the results of the speculative execution are retired, i.e. made permanent; if not, the
pipeline has to be flushed and the pipeline restarted at the correct branch target.
The latter case has a negative impact on application performance. A question

on the programming Q&A site StackOverflow, “Why is it faster to process a sorted
array than an unsorted array?”2, illustrates this. In fact, this is by far the most
popular question of all time on StackOverflow, with 22 596 upvotes at the time of
writing. The problematic code looks roughly like this:

for element in array:
if element > threshold:

do something

Sorting the array results in a very regular pattern for the condition (always false
at first, then always true), which causes the branch predictor to guess correctly
almost all of the time. If the array is unsorted, the pattern is essentially random,
and the branch misprediction penalty increases the running time of the program
almost sixfold in this particular case.
Even though this anecdotal evidence is a somewhat extreme case, it might be

desirable to eliminate branches statically, i.e. at compile time, wherever possible.
Especially conditional branches should be avoided, and if possible converted into
unconditional ones.
One optimization that does this is Jump Threading. In contrast to Constant

Folding, the target needs to be known only on some of the code paths leading to
1We distinguish unconditional branches, which always jump to a constant location; conditional
branches, which jump to a constant location but depending on a condition are taken or not;
and indirect branches, which jump to a dynamically calculated location.

2http://stackoverflow.com/q/11227809, retrieved 2017-01-06

7

http://stackoverflow.com/q/11227809

the conditional branch. Jump Threading duplicates these paths, and then converts
conditional into unconditional jumps, as shown in Figure 1.1.

The elimination of conditional branches by Jump Threading comes at the cost of
increased code size. Furthermore, the change in code structure might influence other
optimizations.

x← 0
x = 0?

x← φ(0, y)
x = 0?

x← 0 x← y
x = 0?

a) b) c)

x1 ← 0 x2 ← y
x2 = 0?

d)

x← φ(x1, x2)

A B A B A B

C C ′ C C ′ C

D E
y n y n y n y n

E

E

D D

Figure 1.1. Simple Jump Threading example.
a) The outcome of the conditional branch is statically known on all code paths. Using
Constant Folding and subsequent simplification, the dotted edge can be removed,
transforming the branch into an unconditional one.
b) The outcome of the conditional branch is statically known only on the code paths
that enter C via A. The jump A→ C will always be followed by C → D: they can
be threaded together. We say ACD is a Threading Opportunity.
c) Jump Threading has duplicated block C, separating the code path on which the
branch is always taken. In the duplicate, the conditional branch has been replaced by
an unconditional branch. Throughout this thesis, we will designate duplicated blocks
by shading them gray.
d) Duplicating C has introduced a second definition of x. To preserve the SSA
property, a φ function is inserted at the iterated dominance frontier of C ′ and C.

Compilers have been implementing Jump Threading for a long time, and little
scientific attention has been devoted to it because it is a seemingly basic optimization.
However, what compiler authors mean by Jump Threading differs wildly between
compilers.
The aim of this thesis is as follows:

• to provide a theoretical framework in which different Jump Threading variants
can be analyzed,

• to develop a generalized Jump Threading algorithm, based closely on that
theoretical model, that captures the theoretical maximum of what Jump
Threading can do,

8

• to analyze this Jump Threading variant under various aspects, in particular
the interaction with other optimizations,

• to implement this Jump Threading variant in the libFirm compiler library,

• to benchmark the implemented algorithm in real-world situations, in order to
find which of the theoretical possibilities are useful in practice and how param-
eters should be tuned; also, in order to determine whether this optimization is
still worth the trade-offs considering that branch predictors get more and more
sophisticated.

9

2. Basics and Related Work
In this chapter, we present basic information about branch prediction, as well as
previous work related to Jump Threading.

2.1. Branch prediction mechanisms
Branch prediction is a performance critical part of a modern microprocessor, and
its inner workings are (in the best case) heavily patented or (in the worst case)
heavily guarded secrets. Additionally, with every subsequent processor architecture
generation, they are optimized further and sometimes fundamentally redesigned.
However, some basic mechanisms remain the same.
We briefly summarize the introduction to [1, Chapter 3], which gives a good

overview of branch prediction mechanisms in current processors.
We distinguish the related, but distinct concepts of branch target prediction and

branch prediction, which may be implemented in the same unit of a processor. Branch
target prediction, also called fetch prediction, uses a cache called a Branch Target
Buffer (BTB) to detect whether the current instruction—which at this point is not
even decoded yet—is likely to be a branch, and if yes, what the branch target will be
if it is taken. This allows the pipeline to fetch and decode the instructions following
an unconditional branch and is especially important in super-scalar processors with
multiple instruction fetch and decoding units.
A BTB entry contains the target address of a taken jump and is created every

time a branch is taken. Indirect branches with multiple possible targets may occupy
multiple BTB entries. As the BTB has a limited set of entries, different branches
may replace each other’s BTB entries, causing a BTB miss or misfetch. Thus also
unconditional branches and—depending on how the BTB is addressed—even the
location of branches in the compiled code can affect performance, although a misfetch
penalty is typically lower than a misprediction penalty.
The second concept, branch prediction, applies only to conditional branches and

predicts whether the branch will be taken or not. A variety of information can be
used to make the guess as educated as possible. Static information that can be used
may include

• the direction of the branch (whether it jumps forwards or backwards)

• the opcode of the branch instruction

• hints inserted by the programmer or the compiler (“likely”/“unlikely” instruc-
tion prefixes)

11

2.2. RELATED WORK

and the (perhaps more important) dynamic information may include

• branch history: whether or not it has been taken in the past, even factoring in
multiple recent executions of the branch instruction. The branch history may
be local to that specific branch instruction, or global across all branches, or a
combination thereof.

• loop counters, counting the number of iterations in previous executions of a
loop, and predicting the same number of executions

The operating principles of a branch prediction unit are good to keep in mind
when interpreting the evaluation results later. For example, restructuring the code
might trigger cache effects such as cache conflicts in the BTB and thus may affect
performance.

2.2. Related work
Few papers have been published that deal with the theoretical aspects of Jump
Threading. Mueller et al. [2] present a basic version of Jump Threading. They
describe an algorithm for finding threading paths as well as for creating block
duplicates. However, they concentrate exclusively on finding threading paths within
a loop, processing the graph from the innermost to the outermost loop. They also
study the optimization on its own and not in interaction with other optimizations.

Bodík et al. [3] extend this to an interprocedural analysis, creating multiple entry
and exit points of a procedure if needed.

Finally, compilers like GCC and LLVM contain Jump Threading implementations
that are tuned very well and consider many special cases. Anyone wishing to study
Jump Threading more closely will find these implementations very valuable.

12

3. Design
In this chapter, we describe patterns in control-flow graphs (CFG) that are relevant
for Jump Threading, as well as the transformation of a CFG by Jump Threading, in
a formal way. This theoretical framework serves as a basis for analyzing the different
flavors of Jump Threading.

3.1. Preliminaries

3.1.1. Limitations on the CFG structure
Throughout this thesis, we will assume that a sequence of CFG blocks uniquely
determines the path taken. This is not strictly necessary, but facilitates notation;
otherwise we would have to define Threading Opportunities, executions, etc. in terms
of edges instead of blocks, impairing readability.
Therefore we forbid the existence of more than one edge between two blocks P

and Q of a CFG. Otherwise, the execution sequence (P,Q) would be ambiguous as
to which output edge of P and which input edge of Q was taken, which is relevant
e.g. for the evaluation of φ functions in Q.
This condition is fulfilled if the graph contains no critical edges, as each of the

multiple edges between P and Q would be critical. The implementation of Jump
Threading presented in Chapter 5 does not have that limitation and can deal with
critical edges and even multiple edges between two blocks, as it stores information
on a per-edge basis.

3.1.2. CFG execution semantics
We use an intuitive small-step operational semantics to describe executions in a CFG
G. An state σ ∈ Σ is some abstract entity that captures all local and global state of
the program. The transfer function transfer : V (G)→ Σ→ Σ describes the effect of
a block’s instructions. The successor function succ : V (G)→ Σ→ V (G) determines
the successor block of a CFG block given the state at the end of the block—on a
real-world processor, this could e.g. correspond to reading the flags register in order
to determine whether to take a conditional branch that terminates a block.

The execution of a CFG with initial state σ is a sequence (Pi)i∈N of blocks in the
CFG so that Pi+1 = succ(Pi, σi), where σ0 = σ and σi = transfer(Pi, σi−1). We are
normally only interested in the block sequence in the CFG rather than the actual
state modifications that lead to it, thus the exact format of σ is not relevant to us.

13

3.1. PRELIMINARIES

By definition of transfer and succ, an execution is deterministic and depends only
on the initial state.

3.1.3. Duplicating blocks

Throughout this section, we will apply a transformation to a CFG G = (V,E),
yielding a CFG G′ = (V ′, E ′). One operation we perform often is duplicating blocks.

Definition 3.1.1. We say G′ is obtained from G by duplicating a block P if
V ′ = V ∪ P ′, with transfer(P ′) = transfer(P) and succ(P ′) = succ(P)
E ′ = E ∪ {P ′Qi | PQi ∈ E} ♦

We say that P ′ is a duplicate of P and an edge P ′Q is a duplicate of the cor-
responding edge PQ. Note that P ′ initially has no incoming edges and the same
outgoing edges as P .
In SSA-based CFGs, we have to take additional steps to preserve semantics.

Firstly, duplicating blocks means introducing additional definitions of that block’s
variables. This in turn requires SSA form to be reconstructed; this will be detailed
in Section 5.5. Secondly, adding or removing an incoming edge to/from a block
requires modifications of that block’s φ functions. Clearly, this must be handled by
the implementation (and it is); however, in this chapter, we assume that all edge
manipulation operations do the right thing automatically. That is, if PQ is the
i’th predecessor edge of block Q and is rerouted to become the j’th predecessor
edge of block Q′, then the j’th input of a φ function in Q′ is the i’th input of the
corresponding φ function in Q.

We require a block P and its duplicate P ′ to have the same transfer function, i.e.
the same execution semantics. This is an actual constraint, albeit not a severe one:
imagine that an instruction that accesses the instruction pointer and does arithmetic
with it—its results would be different depending on whether it resides in the original
or duplicate block. However, such an instruction would not be expected to survive
an optimizing compiler anyway.
We distinguish original blocks, which are all blocks of the original graph G, and

duplicate blocks. We will only create new blocks by duplicating existing blocks, so all
elements of V (G′)\V (G) will be duplicate blocks. The function orig : V (G′)→ V (G)
links an original or duplicate block to itself or its original block respectively: We
have orig|V (G) = id, and when duplicating a block P ′, for the resulting block Q′ we
have orig(Q′) = orig(P ′). The function Orig is the lifting of orig to sequences of
blocks.
A word on notation: Throughout this chapter, we write P for an original block

and P ′ for a block that is either an original or duplicate block. We also omit the
orig function by just writing P for the original block of P ′.

14

3.2. THREADING OPPORTUNITIES

3.2. Threading Opportunities
We introduce the concept of Threading Opportunities, which are paths in the CFG
that, when followed during an execution, guarantee that a specific successor of a
block will be taken. The task of the Jump Threading optimization pass is a) to find
such Threading Opportunities by performing static analysis on the CFG, and b) to
transform the CFG in order to take advantage of the information contained in them.

3.2.1. Definition
Definition 3.2.1 (Threading Opportunity). Let n ≥ 2. A walk1 T = P0P1 . . . Pn in
G is called a Threading Opportunity (TO) if

(T1) no execution (Pi)i∈N of G contains a subsequence P0P1 . . . Pn−1X for X 6= Pn.
That is, after executing P0, P1, . . . , Pn−1 in that order, independent of the
program state or the execution path taken before reaching P0, the program
will always jump to Pn.

(T2) if n 6= 2, P1 does not have exactly one incoming edge

(T3) Pn−1 has more than one outgoing edge

We call P0 the start block, Pn−1 the condition block, Pn the target block of T .
The edge Pn−1Pn is called the target edge. ♦

While (T1) is the actual characterization of a TO, (T2) and (T3) serve only to
eliminate trivial or redundant TOs: If a walk P0P1 . . . Pn does not fulfil (T2), i.e. P1
has only one incoming edge and n > 2, then the sub-walk P1 . . . Pn fulfils (T1) as
well since P1 must be preceded by P0 in any execution of the program. If (T3) is not
fulfilled, then there is nothing left for Jump Threading to do; the branch of Pn−1 is
already unconditional.

If n = 2 and P1 = Pn−1 has only one incoming edge (but multiple outgoing edges),
then (T2) is fulfilled and removing all of Pn−1’s outgoing edges except the target
edge does not change the program’s semantics. This is however a very special case,
and we would like to take advantage of the TOs in the general case by making the
branch that a TO predicts unconditional:

Definition 3.2.2 (Respecting a TO). Let T = P0P1 . . . Pn be a TO in G. We say
that the transformed graph G′ respects T if for any subsequence P ′0P ′1 . . . P ′n−1 of an
execution of G′ (where the P ′i are duplicates of the respective Pi), P ′n−1 has only one
outgoing edge.
G′ respects a set T of TOs if it respects every element of T . ♦

For one TO, this is very straightforward to fulfil using path duplication:
1A path in a graph is a sequence of connected nodes with no repeated nodes, while a walk may
contain nodes more than once.

15

3.2. THREADING OPPORTUNITIES

Definition 3.2.3 (Threading algorithm for a single TO). T = P0P1 . . . Pn be a TO
in G = (V,E). We say the CFG G′ = (V ′, E ′) is obtained from G by threading T if
V ′ = V ∪ {P ∗1 , . . . , P ∗n−1}, where P ∗i is a duplicate of Pi.
E ′ = (E \ {P0P1})∪ {P0P

∗
1 } ∪ {P ∗i P ∗i+1 | i = 0, . . . , n− 2} ∪ {P ∗i Q | i = 0, . . . , n−

2, PiQ ∈ E,Q 6= Pi+1} ∪ {P ∗n−1Pn} ♦

Threading T preserves a CFG’s semantics and the resulting graph respects T :

Theorem 3.2.4. Let G′ be the CFG obtained from G by threading a TO T :=
P0P1 . . . Pn. Let (Qi)i∈N be an execution of G, and let (Q′i)i∈N be an execution of G′
with the same initial state σ. Then for the intermediate states σi, σ′i of the executions,
we have σi = σ′i for all i.

Furthermore, G′ respects T .

Proof. Semantics preservation: We show that for i ∈ N, Q′i is a duplicate of Qi.
Then transfer(Q′i) = transfer(Qi), and the result follows from the definition of the
execution semantics.

We perform induction over i. For i = 1, we have Q1 = StartG and Q′1 = StartG′ =
StartG: Note that the Start block is never duplicated by threading, as only the blocks
P1, . . . , Pn−1 are duplicated. These all have a predecessor (else T would not be a
walk in G) and thus are unequal to the Start block.

For i > 1, assume that Q′i is a duplicate of Qi. If Qi = Pj for 0 ≤ j ≤ n − 1,
it follows from the definition of E ′ in Definition 3.2.3 that the successor of Q′i is
a duplicate of Qi+1 (for j = n − 1 or Qi+1 6= Pi+1, it is Qi+1 itself, otherwise the
duplicate P ∗i+1 of Pi+1).
If Qi is not one of these blocks, its successor edges are not changed by threading

T , therefore Q′i+1 = Qi+1.
G′ respects T : We show that for 1 ≤ i ≤ n− 1, if (Qi)i∈N contains a subsequence

P ′0 . . . P
′
i , then P ′i = P ∗i . The result then follows because P ∗n−1 has only one control

flow successor.
We perform induction over i. For i = 1, the statement holds because P0P

∗
1 is the

only edge from P0 to a duplicate of P1. For i > 1, assume that P ′i = P ∗i . Then
P ′i+1 = P ∗i+1 because P ∗i P ∗i+1 is the only edge from P ∗i to a duplicate of Pi+1. (Here
we use that the successor edge of a block is uniquely determined by its successor
block, as noted in Section 3.1.1.)

3.2.2. Critical edges
Note that in G′ the edge Pn−1Pn will be a critical edge: Pn−1 has multiple outgoing
edges by definition of T , and Pn has at least Pn−1Pn and P ∗n−1Pn as incoming edges.

Critical edges interfere with SSA deconstruction and are therefore undesirable to
have in a CFG. A critical edge PQ can be removed by splitting it, that is by inserting
a new, empty block S into the CFG and replacing the edge PQ by edges PS and
SQ. Splitting an edge modifies the TOs containing that edge, but do not create or
destroy TOs:

16

3.2. THREADING OPPORTUNITIES

Lemma 3.2.5. Let G be a CFG, and let G′ be the CFG obtained from G by splitting
an edge PQ in G. Then there is a one-to-one mapping between TOs in G and TOs
in G′.

Proof. The new block S has one control flow predecessor and one control flow
successor. Thus in any execution of G′ it is always preceded by P and succeeded
by Q. Its transfer function is the identity function. Replacing all occurrences of
the subsequence PSQ in an execution of G′ by PQ therefore yields an equivalent
execution of G and vice versa.
Thus transforming a TO T in G as follows yields a TO T ′ in G′:

• If the TO begins with PQ . . . , change the first block to S.

• If the TO ends with . . . PQ, change the last block to S.

• Replace all occurrences of PQ in the TO by PSQ.

This operation does not change the second block P1 or the second-to-last block
Pn−1 of the TO and therefore preserves the restrictions on those blocks made in
Definition 3.2.1. The resulting walk T ′ is still a TO in G′, as an execution of G′ that
contradicts T ′ could be transformed into an execution of G that contradicts T .
It is easy to see that this operation yields a bijective function between TOs in G

and TOs in G′.

3.2.3. Irreducible control flow
In some cases, such as in Figure 3.1, Jump Threading can create irreducible control
flow, which might prevent other optimizations from being applied.
Currently, no optimization in libFirm depends on the CFG being reducible, and

loops are represented internally using strongly connected components, which also
cover irreducible loops. Other compilers, however, represent loops as natural loops
using loop headers and backedges, and some optimizations demand reducible control
flow. In these compilers, Jump Threading usually avoids creating irreducible loops.
In this section, we give a necessary condition for Jump Threading introducing

irreducible control flow. First, we recall the definition of reducibility.
A depth-first search (DFS) path P0 . . . Pn of a graph G is a path from the Start

node in which P0, . . . , Pn−1 are mutually distinct (as a depth-first search stops at
already seen nodes). If Pn is equal to one of P0, . . . , Pn−1, then Pn−1Pn is called a
retreating edge of the DFS (more commonly a backedge, but using this term would
create confusion with backedges in the CFG).
There are multiple equivalent definitions of reducibility of a CFG G, the one we

use here is:

Definition 3.2.6 (Reducibility of a CFG). A CFG G is reducible if any retreating
edge PQ in a DFS path in G is a backedge of G, i.e. Q dominates P . ♦

17

3.2. THREADING OPPORTUNITIES

B

a)

C

D

E

F G

B

b)

C

D

E

F G

D′

E ′

B C

D

E ′

G

E

F

c)

Figure 3.1. Example of an irreducible loop created by Jump Threading
a) A graph which contains a natural loop consisting of the blocks E (loop header)
and G.
b) After threading the TO BDEG, an irreducible loop is formed; the loop now has
two entry points.
c) Duplicating a loop header does not always create an irreducible loop. After
threading the TO DEG in graph a), the resulting graph’s control flow is still
reducible.

We now assume that G is reducible and applying Jump Threading results in an
irreducible graph G′.

Lemma 3.2.7. If threading a TO in a reducible CFG G creates an irreducible CFG
G′, then G′ contains two blocks that are a duplicate of a loop header block in G.

Proof. AsG′ is irreducible, there exists a depth-first search path P ′ := P ′0 . . . P
′
i . . . P

′
nP
′
i

in G′ with 0 < i < n so that P ′i does not dominate P ′n. (We know that 0 < i because
P0 = StartG′ has no incoming edges, and i < n because if i = n, then P ′i = P ′n would
dominate itself. In particular, P ′i 6= P ′n.)
We examine the corresponding path P := Orig(P ′) = P0 . . . Pi . . . PnPi in G and

distinguish two cases.

Case 1: P is not a depth-first search path in G.
Let Q := P0 . . . Pk for 0 < k < n be the longest prefix of P that is a DFS
path in G. Q ends in a retreating edge (else it could be extended), so Q =
P0 . . . Pj . . . Pk−1Pk with Pj = Pk for some j < k.
Because G is reducible, Pk−1Pk is a backedge in G, therefore Pk domPk−1 and
Pk is a loop header. Furthermore, because P ′j 6= P ′k, P ′j is a duplicate of Pk

that is distinct from P ′k.

18

3.2. THREADING OPPORTUNITIES

Case 2: P is a depth-first search path in G.
Because P ends in a retreating edge PnPi and G is reducible, we have Pi domPn.
In particular PnPi is a backedge in G and Pi is a loop header.
On the other hand, ¬(P ′i domP ′n), so there exists a path Q′ from StartG′ to P ′n
that does not contain P ′i . However, Q′ does contain some duplicate P ′′i of Pi,
as the corresponding path Q = Orig(Q′) in G is a path from StartG to Pn and
thus contains Pi.

In both cases, there exist two blocks in G′ that are a duplicate of a loop header
block in G. (One of these block could be the original loop header, as we view an
original block as being a duplicate of itself.)

The two cases in the proof of Lemma 3.2.7 can be seen in Figure 3.1 b): The
path Start . . . BDE ′G′EG is a DFS path leading to Case 1, while the DFS path
Start . . . CDEGE leads to Case 2.

Lemma 3.2.7 yields a necessary condition for the introduction of irreducible control
flow. The condition is not a sufficient one, as illustrated in Figure 3.1 c). Nevertheless,
it can be used as a heuristics to avoid irreducible loops. This is for example done in
LLVM.

3.2.4. Threading multiple TOs
A single CFG may contain multiple TOs, and while threading them one after another
certainly preserves the program’s semantics, it might create more block duplicates
than necessary, as demonstrated in Figure 3.2. It is therefore beneficial to consider
(finite) sets of TOs together.

B C

D

E

a)

F

c)b) d)

A B C

D′

E F

A

D

B C

D′

E F

A

D′′ D

B C

D′

E F

A

D

Figure 3.2. Disadvantage of threading TOs one after another
a) The original graph, with TOs {ADE,BDE}.
b) By threading {ADE}, a duplicate of D is created. BDE is a TO in the resulting
graph.
c) Threading BDE in graph b) results in another duplicate of D being created.
d) If the set {ADE,BDE} is instead threaded in one step, the TOs can share the
duplicate block D. The resulting graph is semantically equivalent to graph c).

19

3.2. THREADING OPPORTUNITIES

Restrictions on sets of TOs

We do not want a set of TOs to contain conflicting or redundant information:

Definition 3.2.8. Let T1 and T2 be suffixes of TOs. T1 forbids T2 if T2 contains
an edge that is forbidden by T1, i.e. if T1 = P0P1 . . . Pn−1Pn and T2 contains a
subsequence P0P1 . . . Pn−1X for X 6= Pn. ♦

We impose the following restrictions on a set T of TOs we consider:

(A1) No element of T is a suffix of another element of T .

(A2) For all P0P1 . . . Pn ∈ T , a predecessor Q of P1 exists with QP1 . . . Pn 6∈ T .

(A3) No element of T forbids another element of T .

Because of the semantics associated with a TO, a set of TOs by definition cannot
contain conflicting information. Therefore, (A1) implies the following stronger
condition:

(A1’) For all P0P1 . . . Pn, Q0Q1 . . . Qn ∈ T , P0 . . . Pn−1 is not a suffix of Q0 . . . Qn−1.

Figure 3.3 illustrates these conditions.

A B

C

D

E

a)

F

A B

C

D

E

c)

F

A B

C

D

E

b)

F

A B

C

D

E

d)

F

G H

Figure 3.3. Examples of forbidden sets of TOs.
a) The set {ACDE,CDE} is forbidden by (A1), since CD is a suffix of ACD. The
TO ACDE is redundant.
b) The set {ACDE,BCDE} is forbidden by (A2), since it is equivalent to {CDE}.
c) The set {ACDFH,CDE} is forbidden by (A3), since ACDFH contains the
edge DF which is forbidden by CDE.
d) The set {ACDE,CDF} is not a valid set of TOs because it does not fulfil (A1’),
since CD is a suffix of ACD. The TO CDF conflicts with ACDE.

20

3.2. THREADING OPPORTUNITIES

Annotation of CFGs

Given a graph G and a set T of TOs, our goal is to transform G into a semantically
equivalent CFG that respects T (Definition 3.2.2).

To better understand when two TOs can share a duplicated block, we take a step
back and look at what the block duplication in Definition 3.2.3 actually accomplishes.
As the original’s and the duplicate’s transfer functions are equivalent, some other
kind of information must be (implicitly) associated with the duplicated block. That
information, for a block Pi of a TO, is the statement “In any execution, when this
block is followed by Pi+1, . . . , Pn−1, then the next block after that will be Pn”.
This statement holds unconditionally for the original block P0 (by definition of

the TO). It does not hold in general for P1, . . . , Pn−1, which is why the the duplicate
block P ′i is needed that has the same execution semantics but may assume that the
statement holds.

When threading multiple TOs, we make this information carried by a duplicated
block explicit. This is done by means of the annotation function S (for suffixes),
which assigns to every block P ′ in G′ a set S(P ′) containing walks in G that are
guaranteed by this duplicate of P . That is, if P0P1 . . . Pn−1Pn ∈ S(P ′0), then any
execution subsequence of G′ that starts at P ′0 and continues with duplicates of P1,
. . . , Pn−1 will be continued with a duplicate of Pn.
S(P ′) will contain proper suffixes of TOs, thus by (A1), T ∩ S(P ′) = ∅ for all P ′.
Furthermore, we write T |P := {T ∈ T | T starts with P}. Those are the walks

guaranteed by every duplicate of P (including P itself). Then for any block P ′ of
G′, S(P ′) ∪ T |P = S(P ′) ∪̇ T |P is the set of guarantees made by the duplicate P ′.
In order to produce the minimum amount of duplicate blocks, we additionally filter
out redundant information, yielding

S ′(P ′) := S(P ′) ∪ {T ∈ T |P | no element of S(P ′) forbids T}. (3.1)

(See Definition 3.2.8 for the definition of one TO suffix forbidding another.)

Propagation of TO suffixes

Next, we discuss how sets of TO suffixes are propagated across control flow edges.
Note that if S ′(P ′) contains a two-element walk PQ, then all outgoing edges of P ′
except the one to a duplicate of Q can be removed without changing the CFG’s
semantics.
We define a function ShortenFilter which propagates sets of TO suffixes along a

control flow edge PQ. Given a set of TO suffixes in P , we filter out the TO suffixes
that concern edges not leading to Q. The remaining TO suffixes are shortened, i.e.
their first element, which is always P , is removed.

21

3.2. THREADING OPPORTUNITIES

For a TO suffix T := PP1 . . . Pn, and for a set S of TO suffixes, we define

ShortenFilterQ(T) :=
P1 . . . Pn if n > 2 ∧ P1 = Q

⊥ otherwise
(3.2)

ShortenFilterQ(S) :=
∅ if ∃PX ∈ S : X 6= Q

{ShortenFilterQ(T) | T ∈ S} \ {⊥} otherwise
(3.3)

The first case of the second definition ensures that we do not try to propagate
information across an edge that will be removed.
We note the following necessary condition for the preservation of the CFG’s

semantics: For any edge P ′Q′ in the transformed graph G′, we need

S(Q′) ⊆ ShortenFilterQ(S(P ′) ∪̇ T |P). (3.4)

Otherwise there exists a walk W := QP1 . . . P
′
n so that a) W ∈ S(Q′) but b)

PQP1 . . . Pn 6∈ S(P ′) ∪ T |P , i.e. it is not guaranteed by P ′. We know from b) that
an execution of G′ may contain a subsequence P ′Q′P ′1 . . . X ′ for X ′ 6= P ′n, however
a) forbids this.

On the other hand, the desired property of a CFG that respects T is that the
guarantees made by a block duplicate preserve as much information as possible from
its predecessors, i.e. for any edge P ′Q′ in G′,

S ′(Q′) ⊇ ShortenFilterQ(S ′(P ′)). (3.5)

From (A1) we have T |Q ∩ ShortenFilterQ(S ′(P ′)) = ∅, as ShortenFilter produces
suffixes of TOs. Using Equation (3.1), we can therefore replace S ′(Q′) by S(Q′) on
the left hand side of the equation, and with Equation (3.4) we obtain that after
threading, G′ should fulfil

∀P ′Q′ ∈ E(G′) : S(Q′) = ShortenFilterQ(S ′(P ′)). (3.6)

Data-flow analysis

We formulate the problem of finding the necessary block duplicates as a data flow
problem. The analysis is a forward may analysis, with the data flow equations

outP = fP (inP)
inP =

⊔
Q∈predP

outQ.

For each block P ∈ V (G), we want to obtain S ′(P ′) for all block duplicates P ′.
Thus the value lattice is the power set of the set of suffixes of TOs in T , with the
natural partial order “⊆” and the join operator “⋃”. This lattice has finite height
because all TOs are finite and T contains finitely many elements.

22

3.2. THREADING OPPORTUNITIES

The transfer function fP of a block P is derived from Equations (3.1) and (3.6)
and defined by

fP (inP) = {gP (S) | S ∈ inP}, where
gP (S) = ShortenFilterP (S) ∪

{T ∈ T (P) | no T ′ ∈ ShortenFilterP (S) forbids T}.

Threading algorithm

The data flow equations lead to Algorithm Thread, which performs a fixpoint
iteration to compute the block duplicates and performs the necessary control flow
changes in the same step:

Algorithm 1: Algorithm Thread
input : a graph G and a set T of TOs in G

1 while ∃P ′Q′ ∈ E(G′) : S(Q′) 6= ShortenFilterQ(S ′(P ′)) do
2 if ∃ duplicate Q∗ of Q with S(Q∗) = ShortenFilterQ(S ′(P ′)) then
3 Q∗ ← that duplicate
4 else
5 Create a duplicate Q∗ of Q with S(Q∗) = ShortenFilterQ(S ′(P ′)) ;

/* Q∗ has no incoming edges and an outgoing edge Q∗R for
all edges QR in G */

6 end
7 Replace the edge P ′Q′ by P ′Q∗ ;
8 end
9 foreach block P ′ with a two-element walk PQ ∈ S ′(P ′) do

10 Remove all outgoing edges of P ′ except the one to (a duplicate of) Q ;
11 end

The caveats in connection with rerouting edges when executing this algorithm in
an SSA-based CFG have been mentioned above.

Note that we can postpone the removal of outgoing edges until after the While loop:
For each edge P ′Q′ so that PX ∈ S ′(P ′) for X 6= Q, we have ShortenFilter(S ′(P ′)) =
∅ by Equation (3.3). Hence this edge does not cause any block duplicates to be
created.

When executed with a one-element set T , this algorithm yields the same result as
Definition 3.2.3.

Lemma 3.2.9. Algorithm Thread terminates.

Proof. The algorithm terminates iff the While loop terminates. Note that in Line 7
the edge PQ that fulfilled the loop condition is removed and a new edge is added that
does not fulfil the loop condition. Newly created edges that fulfil the loop condition
can therefore only result from the block duplication in Line 5. Thus it suffices to

23

3.2. THREADING OPPORTUNITIES

show that the algorithm creates finitely many blocks, which follows from the fact
that the value lattice, which contains the possible values for S(Q′), is finite.

As in the case of threading a single TO, this algorithm optimizes the graph without
changing its execution semantics. We prepare two auxiliary lemmas:

Lemma 3.2.10 (Start and End duplication). Algorithm Thread does not duplicate
the Start or End block of the input graph.

Proof. A block Q′ is duplicated only if it has a predecessor P ′ so that S(Q′) 6=
ShortenFilterQ(S ′(P ′)).

The Start block has no predecessors and is thus never duplicated.
For any block Q, ShortenFilterQ(·) contains walks of length ≥ 2 that start with

Q. Any element of ShortenFilterEnd(·) would therefore contain a successor of End as
second element, a contradiction. Thus ShortenFilterEnd(·) = ∅ and no duplicate of
End is created.

Lemma 3.2.11 (Following TO suffixes along a path). Let G′ be a CFG that fulfils
Equation (3.6), let P ∗0 be a duplicate of P0 with P0P1 . . . Pn−1Pn ∈ S ′(P ∗0).

If there is an execution of G′ that contains a subsequence P ∗0P ′1 . . . P ′n−1, where
P ′i is a duplicate of Pi for all i and P ′0 = P ∗0 , then for 0 ≤ i ≤ n − 1 the suffix
Pi . . . Pn−1Pn is an element of S ′(P ′i).

Proof. Induction over i. The case i = 0 follows from the assumption.
For 1 < i < n− 1, assume that U := Pi . . . Pn−1Pn ∈ S ′(P ′i). As the edge P ′iP ′i+1

is contained in the execution of G′ and therefore is an edge in G′, we have PiX 6∈
S ′(P ′i) for X 6= Pi+1. Because G′ fulfils Equation (3.6), ShortenFilterPi+1(U) =
Pi+1 . . . Pn−1Pn ∈ S(P ′i+1) ⊆ S ′(Pi+1).

Now we are ready to prove the main result:

Theorem 3.2.12. The graph G′ created by Algorithm Thread has the same execu-
tion semantics as the original graph G and respects T .

Proof. Semantics preservation: Let (Qi)i∈N and (Q′i)i∈N be executions of G and G′
respectively with same initial state. As in Theorem 3.2.4, it suffices to show that for
i ∈ N, Q′i is a duplicate of Qi.

We perform induction over i. The case i = 1 follows from Lemma 3.2.10. For i > 1,
assume Q′i is a duplicate of Qi. As all duplicates created by Algorithm Thread
have the same outgoing edges as their original block, and Algorithm Thread only
reroutes outgoing edges to duplicates of their target blocks, Q′i+1 is a duplicate of
Qi+1.
G′ respects T : Let T := P0P1 . . . Pn ∈ T be a TO. Consider any execution of G′

that contains a subsequence of the form P ′0P
′
1 . . . P

′
n−1.

24

3.3. FINDING TOS

We show that T ∈ S ′(P ′0). Then by Lemma 3.2.11, Pn−1Pn ∈ S ′(P ′n−1), therefore
by Line 10 of Algorithm Thread, P ′n−1 has only one outgoing edge.
As we have T ∈ T |P0 , by Equation (3.1) it remains to show that no element of
S(P ′0) forbids T . Assume that there is such an element. It has the form P0 . . . PiX,
with 0 ≤ i < n− 1 and X 6= Pi+1. By Lemma 3.2.11, we have PiX ∈ S ′(P ′i), thus P ′i
has no outgoing edge to a duplicate of Pi+1. However, we assumed that the execution
of G′ contains the edge P ′iP ′i+1, a contradiction.

Theorem 3.2.13. Algorithm Thread computes an optimal solution to the data
flow problem, and the order in which the edges are processed does not matter.

Proof. As Algorithm Thread performs a fixpoint iteration, its result does not
depend on the order in which the edges are processed (however, its running time
does).
Furthermore, as the transfer functions fP are defined element wise on the input

set, we have fP (in1 ∪ in2) = fP (in1) ∪ fP (in2), i.e. they are distributive. By a
result of Kam and Ullman [4], the fixpoint iteration computes the optimal solution
(meet-over-all-paths solution).

3.3. Finding TOs
Until now, we have assumed a graph together with a set of TOs as input to our
algorithms. We have not yet considered the problem of actually finding these TOs.
It is important to note that static analysis can only ever find a subset of all

theoretically possible TOs in a graph. We describe an algorithm that finds a
reasonably large subset of TOs.

3.3.1. Data flow analysis
We formulate the problem as a data flow analysis problem. The analysis is a
backwards may analysis, with the data flow equations

outP =
⊔

Q∈succP

inQ

inP = fP (outP)

The value lattice is the power set of Conds := {x � c | x ∈ Vars, � ∈ Rels, c ∈
Consts}, with partial order “⊆” and join operator “⋃”. Here Vars are the variables
in the CFG, Consts is the set of all constant values (not just those occurring in the
CFG) and Rels is the set of all comparison relations that may occur in a CFG.
The global transfer function fP of a block P is defined in terms of the the local

transfer functions of its instructions, i.e. fP = f0 ◦ · · · ◦ fn, where fi is the local
transfer function of instruction i.

25

3.3. FINDING TOS

The local transfer function fi : P(Conds) −→ P(Conds) of an instruction i returns
its input C ⊆ Conds modified as follows:

• If i is a conditional branch, then for each branch target block X so that the
edge PX is taken iff a condition x � c ∈ Conds is fulfilled, add x � c to C.
(For a simple conditional branch depending on x � c, we would add x � c and
x �′ c, where �′ is the inverse relation if �. More complicated examples are
possible when Switch statements are involved.)

• If i has the form “x := e”, where e is any expression, for any condition x�c ∈ C,
remove x � c from C.
If e satisfies x � c, we have found a TO starting point. In particular, this is the
case if e is a constant value c′ that satisfies c′ � c, or if e is an arbitrary value y
annotated with an assertion specifying that it fulfils some condition C, and
the condition “y fulfils C” implies y � c.2

Else, if e = f(y) for a bijective unary function f and a variable y, add y �f−1(c)
to C. This especially covers simple assignments x := y (for f = id), but also
functions of the form f(x) = x+ c, f(x) = c− x, etc.

3.3.2. Properties
This analysis finding a “reasonably large subset of TOs” is justified as follows: When
encountering a conditional branch, we insert a condition that is fulfilled iff the
branch is taken. When encountering an assignment to a variable, we insert a new
condition C2 that is fulfilled iff an existing condition C1 for that variable is fulfilled.

For correctness, we clearly need C2 ⇒ C1, but requiring only this property would
allow C2 = false, which would be correct but yield no Threading Opportunities. We
want C2 to be fulfilled for as many values as possible, and because f is bijective,
this is the case if C1 ⇒ C2. In a sense, we do not throw away information when
transforming conditions.
It would be easy to extend the algorithm to include non-bijective functions. For

example, for the condition x = 0 and the instruction x := y·z, the conditions y = 0
and z = 0 could be inserted.
The data flow analysis is distributive: For a local transfer function fi, we have

fi(C1 ∪ C2) = fi(C1) ∪ fi(C2), as fi(C) operates element-wise on C. Therefore the
global transfer functions are distributive as well. Likewise, the transfer functions are
monotone, that is X ⊆ Y −→ fP (X) ⊆ fP (Y).

As the sets Vars and Rels are finite, the set Conds is finite (and has finite height)
iff Consts is finite. Together with the monotonicity of fP , this yields that a fixpoint
iteration computing the solution of the data flow equations terminates iff Consts is
finite.

2The latter case corresponds to the Confirm nodes of libFirm which are presented in Section 4.3.1.

26

3.3. FINDING TOS

If in a theoretical analysis of this algorithm, one assumes that Consts contains e.g.
Z, and is therefore infinite, we could restrict the size of Consts by letting fi consider
only assignments x := y instead of allowing functions on the right hand side. Then
it would suffice to consider only the constants c that appear in instructions of the
form if x � c. However, this would unnecessarily limit the usefulness of the analysis.

For a more practical analysis, the set Const would consist of target machine values
and therefore be finite. However, the lattice’s height would still be enormous. If we
use fixpoint iteration for the analysis, we should therefore limit it according to some
cost function, e.g. by terminating it after a fixed number of iteration steps.

3.3.3. Reconstructing TOs
Reconstructing TOs from the conditions the above algorithm finds seems straightfor-
ward. One would simply reverse the effects of the local transfer functions fi, building
the TOs along the way. In our case, as the original analysis is a backward analysis,
this would entail a forward analysis constructing prefixes of TOs:

• At each TO starting point (an instruction where we determined a condition x�c
to be always fulfilled), create a new TO prefix containing only the instruction’s
block and mark it as belonging to the condition x � c.

• For an assignment instruction x := f(y) and a TO prefix belonging to y � c,
mark the TO prefix as belonging to x � f−1(c).

• For an edge AB and a TO prefix P0 . . . PnA belonging to x � c, extend the
prefix to form the TO prefix P0 . . . PnAB. This should only be performed if
the condition in question is relevant to a path containing B, which is the case
if x � c ∈ inB.

• For a conditional branch in a block B which jumps to a block C if a condition
x � c is fulfilled, and a TO prefix P0 . . . PnB belonging to that condition, add
P0 . . . PnBC to the set T of complete TOs.

This algorithm certainly computes correct TOs. However, the naïve approach fails
if the CFG contains loops, such as in Figure 3.4. If the start block of a TO lies
before a loop, and its condition block lies after it, the algorithm will create a TO for
each possible number of loop iterations, which could be infinitely many. In fact, in
Figure 3.4 there are infinitely many TOs, yet by duplicating the loop completely we
can thread all of them in finitely many steps.

We thus need a better representation of TOs. The set Conds used in the data flow
analysis lends itself for that purpose because there is a straightforward correspondence
between elements of Conds and TOs. We will show this after introducing some
notation:
Given an execution of the above data flow analysis, we write y � c′ i−→ x � c if the

local transfer function fi of an instruction i transforms the condition x � c into y � c′.

27

3.3. FINDING TOS

x← φ(0, ?)

x = 0? x = 0?

A

B

C D

E F

A[x = 0] A

BB[x = 0]

C
D

E F∗D[x = 0]

C[x = 0]
∗

x← 0 x← ?

Figure 3.4. Example of a CFG with infinitely many TOs. The set
{ABCE,ABDBCE,ABDBDBCE, . . .} is an infinite set of TOs in the left graph.
Still, we can thread all these TOs in a finite number of steps by duplicating the loop
completely, as shown in the right graph. To this end, we annotate the blocks using
the conditions found by the data flow analysis of Section 3.3.1.

Regarding a program execution, this can be read as “If y � c′ holds for an execution
state σ, then executing i in state σ yields a state in which x � c holds”.
For example, if i has the form x := f(y) we have y � f−1(c) i−→ x � c for all

conditions concerning variable x, while for all other conditions c we have c i−→ c.
Similarly, we write x�c i−→ X for a condition inserted by fi because of a conditional

branch that jumps to block X if x � c is fulfilled, and true i−→ x � c for a condition
deemed always true by fi. This covers all three cases in the local transfer function of
the above data flow analysis.

As we prefer not to deal with individual instructions, we lift this notation to basic
blocks: We write y�c′ P−→ x�c if the global transfer function fP of block P transforms
x � c into y � c′ (possibly via some intermediate steps). We write x � c P−→ X if there
is an instruction i in P so that x � c i−→ X, and analogously for true P−→ x � c.

Again, this can be read as “If y � c′ (or true) holds for an execution state σ, then
x � c holds for transfer(σ)” and “. . . , then succ(transfer(P, σ)) = X” respectively.

Relationship between conditions and TOs

We are now ready to examine the link between conditions and TOs. We claim that
a condition represents a (possibly infinite) set of TO suffixes. As a condition may be
present in inP for several blocks P , we additionally need to specify the start block in
order to obtain those suffixes:

Definition 3.3.1 (TO suffixes for a condition in a block). Let P be a block and let
A ∈ Conds ∪ {true}. Then we define a set T (A,P) of walks in G as follows:

28

3.3. FINDING TOS

T (A,P) = {PX | A P−→ X}

∪
⋃
{P + T (x � c,Q) | A P−→ x � c ∧Q ∈ succP ∧ x � c ∈ inQ}

where P + S = {PP1 . . . Pn | P1 . . . Pn ∈ S} for a set S.
The restriction x � c ∈ inQ ensures that we only traverse paths on which the

condition is relevant. ♦

We can use this definition to obtain the set of TOs starting at a block, given an
execution of the above data flow analysis:

Lemma 3.3.2. For any block P0 of G, the set T (true, P0) is a set of TOs in G.

Proof. Let W ∈ T (true, P0). We observe that any element of T (·, P0) contains P0
as its first element, so W = P0 . . . PnX.
From Definition 3.3.1 we obtain that W induces C1, . . . , Cn ∈ Conds so that

true P0−→ C1
P1−→ . . .

Pn−1−−−→ Cn
Pn−→ X. (3.7)

We have to show that any execution of G that contains P0 . . . Pn as a subsequence
will continue to X. We prove the following statement: For all i, if Pn−i . . . Pn is a
subsequence of an execution where Cn−i holds for the state σn−i at the start of the
execution of Pn−i, then the execution will continue to X. The result then follows
because true holds for all states, in particular for σ0.
We perform induction over i. For i = 0, i.e. n− i = n, assume that Cn holds at

the start of the execution of Pn. From Equation (3.7), we know that Cn
Pn−→ X, thus

after executing Pn, the condition that causes the branch to X to be taken will be
fulfilled.
For i > 0, assume as induction hypothesis that if Cn−i holds at the start of the

execution of Pn−i, the execution will continue to X. Now assume that Cn−(i+1) holds
at the start of the execution of Pn−(i+1). From Equation (3.7) we have that Cn−i

holds after the execution of Pn−(i+1) and hence at the start of Pn−i, and the result
follows with the induction hypothesis.

Threading algorithm

The reward for this very technical work is that we can now use infinite sets of TO
suffixes in Algorithm Thread by representing them using finitely many conditions.

Instead of a set S(P ′) of TO suffixes, we annotate each block duplicate with a set
C(P ′) of conditions fulfilled at the start of this block. We define an equivalent to
S ′(P ′) that takes into account the TOs starting in P :

C ′(P ′) = C(P ′) ∪ {c | true P−→ c} (3.8)

29

3.3. FINDING TOS

Finally, we redefine the ShortenFilter function which transforms sets of TO suffixes
along a control flow edge to deal with sets of conditions instead:

ShortenFilter ′P Q(C) =∅ if ∃c ∈ C : c P−→ X ∧X 6= Q

{c′ | c ∈ C ∧ c P−→ c′ ∧ c′ ∈ inQ} otherwise
(3.9)

This leads to Algorithm Thread’, which is the algorithm we implemented in
libFirm and which we describe in Chapter 5:

Algorithm 2: Algorithm Thread’
input : a graph G and the results of the data flow analysis of Section 3.3.1

1 while ∃P ′Q′ ∈ E(G′) : C(Q′) 6= ShortenFilter ′P Q(C ′(P ′)) do
2 if ∃ duplicate Q∗ of Q with C(Q∗) = ShortenFilter ′P Q(C ′(P ′)) then
3 Q∗ ← that duplicate
4 else
5 Create a duplicate Q∗ of Q with C(Q∗) = ShortenFilter ′P Q(C ′(P ′)) ;

/* Q∗ has no incoming edges and an outgoing edge Q∗R for
all edges QR in G */

6 end
7 Replace the edge P ′Q′ by P ′Q∗ ;
8 end
9 foreach block P ′ with ∃c ∈ C ′(P ′) : c P−→ Q do

10 Remove all outgoing edges of P ′ except the one to (a duplicate of) Q ;
11 end

As with Algorithm Thread, the definition of ShortenFilter ′ allows us to postpone
the edge removal until after the While loop.

In order to demonstrate that Algorithms Thread and Thread’ perform a similar
transformation, we show a connection between the two variants of ShortenFilter
(Equations (3.3) and (3.9)), namely that they are interchangeable with regard to the
TO suffix function T (c, P) of Definition 3.3.1:

Lemma 3.3.3. For an edge PQ in G, we have

T (ShortenFilter ′P Q(C), Q) = ShortenFilterQ(T (C,P)),

where we use the shorthand notation T (C,Q) := ⋃
c∈C T (c,Q).

Proof. For X 6= Q we have ∃c ∈ C : c P−→ X ⇐⇒ ∃c ∈ C : PX ∈ T (c, P), thus the
case distinctions in Equations (3.3) and (3.9) both yield the same case.

30

3.4. INTERACTION WITH OTHER OPTIMIZATIONS

For the first case both definitions yield the empty set. For the second case, let
c ∈ C and show T (ShortenFilter ′P Q({c}), Q) = ShortenFilterQ(T (c, P)), i.e. consider
C element-wise.
Unfolding Definition 3.3.1, we have

ShortenFilterQ(T (c, P)) =
⋃
{T (c′, Q) | c P−→ c′ ∧ c′ ∈ inQ}, (3.10)

as ShortenFilterQ removes two-element walks, removes the first element of each walk
and filters out walks whose second element is not Q.
On the other hand, eliminating the shorthand notation from above, we have

T (ShortenFilter ′P Q(C), Q) =
⋃
{T (c′, Q) | c′ ∈ ShortenFilter ′P Q({c})} (3.11)

and using the second case of Equation (3.9), we see that the right-hand sides of
Equations (3.10) and (3.11) are equal.

3.4. Interaction with other optimizations
Jump Threading is not the only optimization applied by a modern compiler. It
is therefore important to examine how this optimization interacts with other op-
timizations applied before or after it. In this chapter, the theoretical aspect of
the interactions is emphasized. Nevertheless, for practical reasons, we study the
optimization variants implemented in libFirm.

3.4.1. If Conversion
Many instruction set architectures support predicated instructions, which are executed
only if some condition is met (e.g. a processor flag is set), otherwise ignored. In
particular, they can be used as an alternative to conditional branches if the code
that is executed conditionally is short enough.

Intel x86 and x64 do not allow every instruction to be predicated, but provide the
CMOVcc (conditional move) and SETcc (conditional set bit) instruction classes. These
two predicated instruction types can be used to implement speculative execution,
where the two possible values of a variable are both calculated, then the predicate is
calculated and the correct value is moved into the variable’s storage position. This
requires that both values are computable without side effects.
In libFirm, the Mux node type is used for a value that takes one of two possible

values depending (directly) on a condition. A φ node can be seen as a more generalized
form of this node, as it takes one of several values depending on control flow, which
in turn may depend on a condition. If the control flow is simple enough, a φ node
can be converted to a Mux node.
An If Conversion opportunity consists of a “diamond structure”: a block B with

two predecessors B1 and B2 that are both control dependent on the same block C.
Additionally, C must contain a conditional branch with condition cond (and thus
have two successors), and B, B1, B2 need to be mutually distinct.

31

3.4. INTERACTION WITH OTHER OPTIMIZATIONS

If all φ nodes in B can be converted to Mux nodes3, they are replaced by Mux nodes
in block C that depend on cond. The conditional branch of C can be removed and
B, B1, B2, C merged into one block. The transformation is illustrated in Figure 3.5.

We recall the definition of the control dependence relation between two blocks X
and Y in a CFG:

Definition 3.4.1. Y is control-dependent on X if Y does not not postdominate X
and there exists a path P from X to Y so that Y postdominates all elements of P
except X. ♦

In our case there exist two such paths, one from C to B1 and one from C to
B2. They lead over different successor blocks of C, else one successor of C would
be postdominated by both B1 and B2, thus B1 postdomB2 or B2 postdomB1, a
contradiction because B1 and B2 are two predecessors of the same block.

For i ∈ {1, 2}, let Ci be the successor of C over which the path to Bi leads. Then
we have B1 postdomC1 and B2 postdomC2. Furthermore, all C1-B1-paths and all
C2-B2 paths are disjoint.

Interaction between Jump Threading and If Conversion

Both If Conversion and Jump Threading seek to reduce the number of conditional
branches, but the methods used are different: If conversion converts control depen-
dencies to data dependencies, allowing it to eliminate control flow and φ functions,
which usually reduces code size. Although the conditional branch is eliminated,
its condition must still be evaluated for the predicated move instruction. Jump
Threading usually increases code size, but removes conditional branches along with
their condition, at least on some (but sometimes on all) code paths.

The most straightforward way to influence the interaction of the two optimizations
is to change the order in which they are applied. However, both optimizations, when
applied first, affect the respective other one:

Threading opportunities destroyed by If Conversion We examine which Firm
nodes removed or modified by If Conversion would have been optimized away by
Jump Threading.

Firstly, If Conversion removes the conditional branch in block C, but retains
the condition cond on which it depends (e.g. a comparison) as input to the Mux
node. The condition will now be evaluated on all code paths containing C, even if
Jump Threading could have made the evaluation redundant on some of these paths.
Figure 3.5 shows such a situation.
If cond’s evaluation is costly, this might have a negative effect on performance.

However, values which Jump Threading can statically evaluate are normally calculated
by simple operations (e.g. addition or subtraction of a constant). Additionally, If

3Whether a conversion is possible is backend specific, although to satisfy the “no side effects”
condition, φ nodes with mode M can never be converted.

32

3.4. INTERACTION WITH OTHER OPTIMIZATIONS

Conversion removes the conditional branch on all code paths, while Jump Threading
might remove it only for a subset thereof. It seems therefore reasonable that these
kinds of CFG structures should be handled by If Conversion.
Secondly, If Conversion modifies the φ nodes of block A, replacing them by Mux

nodes in C. The two possible values of the Mux now lie on the same code path
and are no longer distinguishable using control flow information. Therefore, Jump
Threading usually cannot thread across Mux nodes. If some other conditional branch
depended on such a φ node, e.g. by comparing its value with a constant, a Threading
Opportunity might be lost.

x = 0?

y ← φ(0, z)

y n

y n
y = 0? y = 0?

y ← (x = 0 ? 0 : z)

a) b)use y use y

B

B1 B2

C

y n

D E

F

Figure 3.5. Example of If Conversion destroying a Threading Opportunity
a) In the original graph, the predecessors B1 and B2 of B are both control dependent
on C. This constitutes an If Conversion opportunity. Additionally, the graph contains
a TO B1BD.
b) Applying If Conversion to the graph transforms the φ in B into a conditional move
in C and merges the blocks between B and C. The two possible values of y are not
discernible via control flow any more, thus the graph contains no TO any more.

If Conversion opportunities destroyed by Jump Threading Jump Threading can
destroy opportunities for If Conversion either by modifying control dependence or by
introducing side effects. Given an If Conversion opportunity with blocks B, B1, B2,
C, we consider the following situations (omitting obvious symmetrical cases for each
situation), which are illustrated in Figure 3.6:
Situation 1: C is the condition block of a TO. Then Jump Threading creates a

duplicate C ′ and removes one of the two outgoing edges of C ′. Wlog. let C1 be the
remaining successor of C ′.

33

3.4. INTERACTION WITH OTHER OPTIMIZATIONS

B1 and B2 are both still control dependent on C. But C1, having gained a new
predecessor C ′, now lies in the dominance frontier of {C,C ′}. Because the predecessor
B2 of B is reachable from C1 but not from C2, B lies in the iterated dominance
frontier of {C,C ′}.

When reconstructing SSA form, Jump Threading therefore inserts φ functions in
B for all variables defined in C (and possibly in other duplicated blocks) if such φ
functions are not already present.

If one of the blocks duplicated by Jump Threading contains side effects, a Memory
φ must be inserted into B, preventing all φ nodes in B from being optimized by If
Conversion.
Situation 2: There is a TO that starts with the edge B1B. Then Jump Threading

reroutes the edge B1B to a duplicate B′ of B. Thus B1 and B2 are no longer
predecessors of the same block.
The φ functions in B are removed because B and B′ have only one predecessor

each. Instead, new φ functions for the corresponding variables are inserted at the
iterated dominance frontier of {B,B′}.

While it is possible that If Conversion can optimize those φ functions instead, this
is not guaranteed: Firstly, the predecessors of a block in which they are inserted
need not be control dependent on the same node. Secondly, if B or some other block
of the TO contains a side effect, a Memory φ will have to be inserted into the block,
again preventing If Conversion to act on the block.
Situation 3: There is a TO whose start block lies between C1 (exclusive) and B1

and which contains B1 (except as target block).
Then Jump Threading creates a duplicate B′1 of B1, and both B1 and B′1 are

reachable from C1. Therefore, neither postdominates C1 and neither is control
dependent on C, preventing φ nodes in B from being optimized by If Conversion.

Conclusion We have shown that Jump Threading and If Conversion influence each
other no matter which one is performed first. In Chapter 6, we have therefore
included both variants in the benchmarks.

If one instead wanted to modify Jump Threading to avoid TOs that interfere with
If Conversion, one would have to duplicate almost the entire logic of If Conversion
including the backend-specific parts. In this case, combining the two optimizations
could be a more favorable solution.

From a theory standpoint, If Conversion lends itself to be performed first: Because
of the restrictions on the control flow it considers, especially the exclusion of side
effects on either control flow path, it shows its strengths best inside small loops.
These are usually the most performance critical parts of the code4 and both the
control flow elimination and the code size reduction performed by If Conversion
should be most beneficial there.

4The anecdotal “90—10 rule” of programming states that 90 % of processor time is spent in loops.
Modern processors are also optimized for them, for example by including a small µop cache for
loops.

34

3.4. INTERACTION WITH OTHER OPTIMIZATIONS

C

C1

E

a)

F

C2 = B2

B1

B

C

C1

E

b)

F

C2 = B2

B1

B

C ′

c)

C

C1

E F

C2 = B2

B1

B′ B

C

C1

E

d)

F

C2 = B2

B′
1

B

B1

Figure 3.6. Examples of Jump Threading destroying If Conversion opportunities
a) The original graph. The predecessors B1 and B2 of B are both control dependent
on C, in particular they each postdominate one of C’s successors C1 and C2.
b) Threading a TO ending with . . . CC1 duplicates C. For any variable definition in
C that is duplicated into C ′, a φ must be inserted in B. If C contains side effects, a
Memory φ is inserted into B.
c) Threading a TO starting with B1B . . . duplicates B. B1 and B2 are no longer
predecessors of the same block.
d) Threading the TO EB1B duplicates B1. B1 is no longer control dependent on
C, as it does not postdominate any successor of C.

35

3.4. INTERACTION WITH OTHER OPTIMIZATIONS

3.4.2. Block scheduling
The block scheduling phase of a compiler computes a linearization of the blocks in
the CFG. As Jump Threading modifies control flow, and in particular adds new
blocks, it affects block scheduling.

When computing the block schedule, one quantity we can try to maximize is the
number of fall-throughs, i.e. the number of times a block is placed directly before a
control flow successor. In this case, an unconditional branch at the end of the block
can be eliminated.
Naturally, at most one predecessor of a block can be scheduled in this way. A

positive effect of Jump Threading is that it often reduces the number of predecessors
in both the original and the duplicate blocks. We consider the case of threading a
single TO from Definition 3.2.3:

Observation 3.4.2. When threading a TO T := P0P1 . . . Pn using Definition 3.2.3,
the duplicate blocks P ∗1 , . . . , P ∗n−1 each have only one control flow predecessor.

Additionally, threading T reduces the number of control flow predecessors of
the original block P1 by one. For example, if P1 previously had two control flow
predecessors P0 and P , both P1 and P ∗1 now have one control flow predecessor, and
both P0 and P can now fall through to their respective successor.

On the other hand, Jump Threading adds an additional predecessor to blocks that
lie outside the TO but have a predecessor that lies in the TO. Nevertheless, there
are cases in which block duplication can increase the number of fall-throughs, as
shown in Figure 3.7.

The block duplication and edge rerouting performed by Jump Threading may also
result in edges leading from a block P ′ with one successor to a block Q′ with one
predecessor. In this case, P ′ and Q′ can be merged to form a single basic block,
which is done by the control flow optimization pass. Nonetheless, we mention this in
the section on block scheduling because even if the control flow optimization pass
did not run, the mergeable blocks would be scheduled after another.

As shown in Figure 3.7, this phenomenon may affect not only duplicate blocks, but
also original blocks, in particular the original block P1 which has one less predecessor
after threading.

We conclude by showing a condition under which Jump Threading does not need
to duplicate any blocks, but can merge the duplicated instructions right into the
start block of the TO.

Lemma 3.4.3. Let T := P0P1 . . . Pn be a TO in G, and let G′ be the graph obtained
by threading T according to Definition 3.2.3.

Then the duplicate blocks P ∗1 , . . . , P ∗n−1 in G′ each have one control flow predecessor
and one control flow successor if and only if P1, . . . , Pn−2 each have one control flow
successor in G.

Proof. The number of control flow predecessors follows from Observation 3.4.2. From
the definition of E(G′) in Definition 3.2.3, we see that P ∗1 , . . . , P ∗n−2 have the same

36

3.4. INTERACTION WITH OTHER OPTIMIZATIONS

A B

G

H I

E

C D

F

A B

G

H I

E

C D

FE ′ F ′

G′ G′′

A B E C D F G H I A B E C DF G H IE ′ G′ F ′ G′′

Figure 3.7. Left: A graph with two TOs (AEGH and DFGI), and a linearization
of its blocks that maximizes the number of fall-throughs. Dotted lines indicate
conditional branches, while solid lines indicate unconditional branches.
Right: The same graph after threading the two TOs. All duplicate blocks have
only one control flow predecessor. The original blocks E and F that previously had
two predecessors each now have only one predecessor, while H and I each gain an
additional predecessor. In the linearization, we can save one unconditional branch.
Additionally, several basic blocks can now be merged, as indicated by a dotted line,
reducing the number of basic blocks from 9 to 7.

number of successors as their respective original block. The duplicate P ∗n−1 of the
condition block always has only one successor.

Corollary 3.4.4. If and only if P0, P1 . . . Pn−2 each have one successor in G, all
duplicate blocks created by Definition 3.2.3 can be merged into the start block P0.

Proof. With Lemma 3.4.3, we have that all duplicate blocks can be merged to form
a block P with one control flow predecessor. If P0 has one control flow successor, P
and P0 can be merged as well.

This effectively eliminates the need to create any block duplicates for certain TOs.
The current Jump Threading implementation of libFirm makes use of that, as we
will see in Section 4.3.

37

4. Analysis of existing algorithms
In this section, we sketch the Jump Threading implementations of the currently
biggest two compilers and examine the implementation in libFirm more closely.

4.1. LLVM
LLVM implements a conservative version of Jump Threading. As explained in the
source comment, it “looks at blocks that have multiple predecessors and multiple
successors. If one or more of the predecessors of the block can be proven to always
jump to one of the successors, we forward the edge from the predecessor to the
successor by duplicating the contents of this block.” [5, l. 64–68] In terms of our
theoretical framework, the length of TOs that are being considered is restricted to 3.
LLVM avoids creating infinite loops by not threading if the target block is equal

to the condition block [5, l. 1456].
It also does not create irreducible loops from natural loops. To this end, any TO

whose condition block is a loop header (as identified by a backedge leading to it) is
discarded [5, l. 1464]. This guarantees that no loop header is duplicated and hence no
irreducible loop is created, as seen in Lemma 3.2.7. However, the authors are aware
that this is a conservative heuristics and that there are cases in which threading
across a loop header would be profitable [5, l. 332–339].

The cost model is based on the estimated cost of duplicating the condition block
(which in this case is the only block that needs to be duplicated). The maximum
block size is a very conservative 6 instructions. However, threading a Switch or an
indirect jump incurs a bonus of 6 and 8 instructions respectively that is subtracted
from the cost.

The optimization pass consists of a loop that terminates only after the graph has
not been changed during an iteration. However, due to the conservative nature of
the threading, there is no obvious danger of an endless loop.

4.2. GCC
GCC’s jump threading implementation for SSA-based graphs is implemented in three
source files, of which [6] is the main file concerned with finding threading paths.
Frequently, the original node “FSM (finite state automaton) jump threading” of
the optimization is present in the code. This hints at one application for Jump
Threading, which is to optimize a certain implementation pattern of finite state
machines shown in Figure 4.1.

39

4.2. GCC

i = 0; /* index in the input string */
state = INITIAL_STATE;
while (state != END_STATE) {

switch (state) {
case 1:

state = ...;
break;

case 2:
state = ...;
break;

...
}
i++;

}

Figure 4.1. Example for the implementation of a Finite State Machine in C. Without
Jump Threading, the break statements jump to the condition block of the loop.
With Jump Threading, not only can the condition state != END_STATE possibly be
statically evaluated, but even the switch statement, effectively making the break
statements jump directly to the next case.

GCC’s implementation differs from LLVM’s in a number of ways, most prominently
it does not limit itself to threading paths of length 3. It also does not change the
graph iteratively but collects threading paths, then in a second pass modifies the
graph. The threading paths are sequences of basic blocks as described in Chapter 3.
Similar to our implementation and the one in libFirm, GCC follows data depen-

dency edges. However, it requires that only a single path exists between a definition
and a usage of a variable, i.e. it does not duplicate control flow. In this regard it
is stricter than our implementation, which allows arbitrary control flow between
definition and usage, but less strict than the current libFirm implementation, which
allows no blocks at all between definition and usage.

The cost model is also based on the estimated code size increase. There are several
parameters used to control the amount of code duplicated by Jump Threading,
among which are the maximum number of threading paths (default 50) and the
maximum number of blocks (10) and statements (100) to duplicate.

Although there is a limit on the number of threading paths, the optimization does
not try to find the most profitable paths first; instead, the graph is traversed block
by block, looking for threading paths to the current block.

GCC, like LLVM but unlike libFirm, stores loops as natural loops internally. Thus
creating irreducible loops would pose a disadvantage to later optimizations. GCC’s
Jump Threading therefore employs a heuristics to detect possible irreducible loops,
preventing them from being created except in special cases where it deems the loss
negligible:

40

4.3. LIBFIRM

Assume that each loop has exactly one backedge LH, where L is called the loop
latch and H is called the loop header. (The natural loop is then formed by all blocks
that can reach L without going through H.) Then a threading path would create
an irreducible loop if a) it contains the backedge LH of a loop, and b) its target
block lies inside the loop, and c) its target block does not dominate the loop latch [6,
l. 282–284].

This alone would not be sufficient to detect an irreducible loop being created. For
example, the TO in Figure 3.1 a) does not contain the backedge of a loop but still
causes an irreducible loop. However, GCC additionally requires that threading paths
do not cross loop boundaries, i.e. all blocks of a threading path except for the start
block must lie in the same loop. These conditions together are sufficient to detect
the creation of irreducible loops.

4.3. libFirm
Jump Threading was added to libFirm in September 2006 (the initial libFirm revision
dates from May 2000), and was then simply called “partial condition evaluation”.
In July 2009, it was renamed to “Jump Threading”. Its basic functionality has not
changed much since the initial version. In the following we will also refer to the
existing implementation as JTOld.

4.3.1. Confirm nodes and optimization pass
Both JTOld and the new implementation make use of Confirm nodes, a special
feature of libFirm. A Confirm node annotates an arbitrary value with a condition
it is guaranteed to fulfil in all basic blocks dominated by the Confirm node’s block.
A dedicated optimization pass inserts these nodes, replacing usages of the value

node by usages of the Confirm node. For example:

if (i == 2) {
foo(i);

} else {
bar(i);

}
baz(i);

would be turned into

if (i == 2) {
foo(Confirm(i, = 2))

} else {
bar(Confirm(i, 6= 2))

}
baz(i); // unchanged: neither Confirm node dominates this block

41

4.3. LIBFIRM

Optimization passes which do not need the additional semantics of a Confirm
node simply ignore it by viewing the data dependency edge leading to a Confirm
node as going to its value. A cleanup phase removes all Confirm nodes before code
generation.

4.3.2. The existing Jump Threading algorithm
JTOld transforms the graph in an iterative fashion, finding and threading one TO to
each block in each iteration and terminating when no TO was found in one iteration.
The essential parts of the implementation are presented in a simplified fashion in
Algorithms Iterate, ThreadJumpsToBlock and FindAndThreadTO.

Algorithm 3: Algorithm Iterate, implemented in the opt_jumpthreading
function [7, l. 635–665]

1 Ensure that graph contains no critical edges;
2 repeat
3 changed ← false;
4 foreach block ← graph.basicblocks do
5 changed ← changed ∨ ThreadJumpsToBlock(block)
6 end
7 until ¬ changed;

Algorithm 4: Algorithm ThreadJumpsToBlock, implemented in the
thread_jumps function [7, l. 560–633]
input : block, the candidate for a target block of a TO
output :Whether the graph was changed

1 if block has more than one control flow predecessor then
2 return false // Limitation
3 end
4 if predecessor of block is not a ProjX with a Cond then
5 return false // Limitation: Switch nodes
6 end
7 cond ← the condition causing the jump to block to be taken ;
8 var ← the variable compared against cond;
9 startblock ← FindAndThreadTO(var, cond, block.predecessor, block);

10 if startblock 6= ⊥ then
11 Keep block alive ;

// might have created an infinite loop
12 return true
13 end
14 return false

42

4.3. LIBFIRM

Algorithm 5: Algorithm FindAndThreadTO, implemented in the
find_candidate [7, l. 467–545] and find_const_or_confirm [7, l. 397–465]
functions
input : var, the variable to be compared against cond
input : cond, the condition to compare against
input : block, the currently first block of the TO suffix we are constructing
input : target-block, the target block of the TO suffix we are constructing
output :The start block of the constructed TO, or ⊥ if no TO is found

1 if var has been visited before then
2 return ⊥ // Avoid endless loops
3 end
4 switch var do
5 case Const or Confirm that fulfils cond do

// block is the start block of a TO
6 Reroute the outgoing edge of block to target-block;
7 Split the original predecessor edge of target-block, which may have

become critical;
8 return block
9 end

10 case φ with > 1 argument in block do
11 foreach argument no. i of the φ do
12 start-block ← FindAndThreadTO(argument i of the φ, cond, pred. i of

block, target-block);
13 if start-block 6= ⊥ then
14 Copy contents of block into start-block;

// Limitation: Do not look at any more predecessors
of the φ during this iteration

15 return start-block
16 end
17 return ⊥
18 end
19 end
20 end
21 return ⊥

43

4.3. LIBFIRM

Analyzing Algorithm FindAndThreadTO, we see that once a recursive call
returns a block other than ⊥, the recursion is terminated and that block is returned
to the caller of the outermost invocation. That return value is the start block of the
TO this algorithm implicitly constructs:

Lemma 4.3.1. If an execution of Algorithm FindAndThreadTO returns a block
P 6= ⊥, then P is the start block of a TO, and that TO is induced by the recursive
calls of Algorithm FindAndThreadTO.

Proof. The only base case not returning ⊥ is in Line 8, while the only recursive
invocation is in Line 12.
Let ThreadJumpsToBlock(X) → FindAndThreadTO(vn, Pn) → . . . →

FindAndThreadTO(v0, P0) be the recursive invocations leading to the base
case FindAndThreadTO(v0, P0), along with their respective variable and block
parameters. We only look at the invocation sequence, ignoring the control flow
changes made by the algorithm.
We show that P0 . . . PnX is a TO. To this end, assume P0 . . . Pn occurs as a

subsequence in an execution of the CFG. We claim that for 0 ≤ i ≤ n, after
executing block Pi, vi fulfils the condition cond that causes the branch in Pn to
lead to X. The result then follows for i = n because vn is the variable used in the
conditional branch.
Note that cond is passed along as an input parameter to all calls of FindAnd-

ThreadTO. Thus for i = 0, v0 fulfils cond because of the If statement guarding
Line 8.
For i > 0, assume that after executing block Pi−1, vi−1 fulfils cond. The call

FindAndThreadTO(vi−1, Pi−1) is a recursive call and thus happens in Line 12.
Hence, vi is a φ whose argument for predecessor block Pi−1 is vi−1. In the execution,
Pi is entered via the edge Pi−1Pi, therefore we have vi = vi−1 and vi fulfils cond as
well.

This TO is however never made explicit (unlike for example in GCC) as it is
threaded immediately.
JTOld also requires that the CFG is free of critical edges at all times. This is vital

for correctness: In Line 14 of Algorithm FindAndThreadTO, the contents of the
current block are duplicated not into a new block, but into the start block of the
TO. This is correct if and only if the conditions of Corollary 3.4.4 are met, which is
the case:

Lemma 4.3.2. If the graph is free of critical edges, then in any TO P0P1 . . . Pn

found by JTOld, all blocks Pi except the condition block Pn−1 and the target block Pn

have only one control flow successor.

Proof. Suppose for the sake of contradiction that there is one block Pi, i < n− 1,
with multiple control flow successors. Let Pj be the successor block from which
FindAndThreadTO was called recursively. As FindAndThreadTO is only

44

4.3. LIBFIRM

recursively called when the current node is a φ with more than one argument1, there
is such a φ node in Pj. Therefore, Pj has more than one predecessor, and PiPj is a
critical edge, a contradiction.

We need to verify that the graph is free of critical edges at all times. Algorithm It-
erate ensures this only at the beginning; it remains to show that this property
holds after each execution of FindAndThreadTO:

Lemma 4.3.3. FindAndThreadTO does not introduce new critical edges in a
graph.

Proof. The only control flow change is the rerouting of the start block’s outgoing
edge to the target block. The rerouted edge is not critical as the start block has only
one successor. As the target block previously had only one predecessor, the only
edge that could have become critical is the edge from that predecessor to the target
block, which is split.

From Lemma 3.2.5, we know that splitting the critical edge does not influence
the number of TOs in G. However, it does influence the number of TOs that
Algorithm FindAndThreadTO finds, as we will see in Section 4.3.4.

4.3.3. Limitations
There are a number of restrictions on the TOs that JTOld finds:

• The target block of a TO must not have more than one control flow predecessor.
This is to make sure that there are no φ functions in the target block that
would have to be modified (only new ones are created).

• When finding TOs, the algorithm follows only data dependency edges that
have a corresponding control flow edge; i.e. it does not skip over blocks. This
makes the algorithm much easier to implement because no control flow needs
to be duplicated, but also restricts it quite a bit.

• Each invocation of FindAndThreadTO returns once it has found a TO start
block. For two TOs with a shared suffix but with different start blocks, the
contents of all blocks (including those in the shared suffix) are therefore dupli-
cated twice, as they are copied once into each start block. This corresponds to
threading the TOs one after another as illustrated in Figure 3.2 of Section 3.2.4.

Some less severe limitations that could be overcome without drastically modifying
the algorithm:

1At the time of writing, the implementation does not check that the φ has more than one argument.
However, φ nodes with one argument only occur in degenerate graphs.

45

4.3. LIBFIRM

• The algorithm does not process addition, subtraction and/or multiplication
nodes.

• The algorithm does not deal with Switch branches, only with simple if-then-else
branches.

4.3.4. Non-termination
The biggest issue with JTOld (and the initial motivation to start this thesis) is that
it is not guaranteed to terminate. More specifically, the algorithm will sometimes
unroll endless loops. There is a very simple example program that causes JTOld to
loop endlessly when compiled with cparser -O0 -fthread-jumps:

#include <stdio.h>
#include <stdlib.h>

int main() {
int i = rand();

if (i < 10) {
i = 42;
goto inloop;

}

while (i < 100) {
inloop:

printf(".");
}

}

Interestingly enough, not even one iteration of the loop in Algorithm Iterate is
completed. Instead, it is the iteration over all blocks inside that loop which does
not terminate: When splitting the critical edge in Line 7 of Algorithm FindAnd-
ThreadTO, a new block is created which in this case happens to be the target
block of a TO, creating yet another critical edge split block, etc.
However, not splitting critical edges is not an alternative, as we have seen that

the algorithm’s correctness depends on the absence of critical edges.
In the end, the infinite loop is only a symptom of the algorithm’s failure to restrict

the increase in code size, as it can easily be seen that this happens only if the original
graph contained infinitely many TOs to begin with.

46

5. Implementation

The Jump Threading algorithm developed in Chapter 3 was implemented in libFirm
in about 1200 lines of C. Some specifics of the implementation are noted here.

5.1. General structure

The data flow analysis introduced in Section 3.3.1 is performed by the get_conds
function. Each condition is represented by an instance of the jt_cond structure.
Because the libFirm intermediate representation is based on explicit data dependency
edges, we do not need to perform a classical data flow analysis. Instead, we start
the analysis at conditional branches and follow data dependency edges until either
reaching a node where a condition is fulfilled or until exceeding a cost threshold (see
Section 5.6).

For finding the necessary block duplicates, we implement Algorithm Thread’ intro-
duced in Section 3.3.3. The algorithm is implemented in the get_succ_duplicates
function. The ShortenFilter function is integrated into this function, using the
relevant_conds and forbidden_conds annotations of control flow edges.

5.2. Wrap-around intervals

To represent conditions, we would like to re-use the lattice Conds := {x � c | x ∈
Vars, � ∈ Rels, c ∈ Consts} from Section 3.3.1. We need a way to represent elements
thereof, in particular elements of Rels, in a meaningful way.

We have to take into account that libFirm’s data types are machine-oriented and
have defined wrap-around semantics. For example, assuming Z as a data type, as
one would do in a theoretical model, the local transfer function of the instruction
x← y−42 would transform the cond C1 : x > 0 into C2 : y > 42, and we would have
C1 ⇔ C2 as desired.

However, in reality x and y are of a datatype I that wraps around at Imax to some
constant Imin. It is still true that C2 ⇒ C1, the necessary condition for correctness,
but equivalence now holds only for C ′2 := y > 42 ∨ y < Imin + 42. In order to fully
process addition, subtraction and similar instructions, we need a better representation
for relations.

47

5.2. WRAP-AROUND INTERVALS

Definition

In the following, we restrict ourselves to integral datatypes with wrap-around seman-
tics, such as integral numbers or pointers. We also consider Boolean values, which
are a native data type of libFirm, but do not consider any operations on them, thus
wrap-around semantics are not needed for them.

The exclusion of floating-point numbers is reasonable, as their semantics is much
more complicated than those of integers and even depends on runtime factors (the
FPU control word controls e.g. arithmetic precision).
Let the data type’s value range be an interval I := [Imin, Imax], with Imin < Imax,

and let arithmetic operations ⊕, 	 be defined on I so that Imax ⊕ 1 = Imin and
Imin 	 1 = Imax.

We represent each Cond as x ∈ Ja, bK, where Ja, bK is a wrap-around interval. The
set of wrap-around intervals is

IntW rap := {[a, b] | Imin ≤ a ≤ b ≤ Imax}∪{[Imin, a]∪̇[b, Imax] | Imin ≤ a < b ≤ Imax}.

We write both types of intervals as Ja, bK with

Ja, bK =
[a, b] if a ≤ b

[Imin, b] ∪̇ [a, Imax] if a > b
(5.1)

This allows the intervals to be represented internally in an efficient way, using just
two values of the same data type.
Note that the empty set is not contained in IntW rap. This is a side effect of the

internal representation. The empty set corresponds to an “always false” condition in
the program, which we can handle separately, thus an explicit representation of the
empty set is not needed.

As comparison relations, we allow any subset of {<,=, >, unordered}, as libFirm
does. Intervals are easily constructed from comparisons against a constant. For
example, the set of values that fulfil the condition x < 10 are represented by the
interval JImin, 9K. The function get_interval, given a comparison against a constant
value, computes the interval of values for which the comparison evaluates to true.

Membership

Equation (5.1) translates directly to the following interval membership function for
a single value x ∈ I:

x ∈ Ja, bK⇔

a ≤ x ≤ b if a ≤ b

x ≤ b ∨ x ≥ a if a > b

This function is implemented as is_tv_in_interval.

48

5.2. WRAP-AROUND INTERVALS

Subset relation

To determine whether one jump subsumes another, we need a subset relation on
IntW rap. For example, if a condition x ≥ 0 is reached from the true branch of a jump
that is guarded by the condition x ≥ 10, we know that the jump will be taken on
this path because [10, Imax] ⊆ [0, Imax].
In general, given two intervals Ja, bK and Ja′, b′K, we want to determine whether

Ja, bK ⊆ Ja′, b′K. Unfolding Equation (5.1) yields four cases:

Case 1: a ≤ b ∧ a′ ≤ b′.
[a, b] ⊆ [a′, b′]⇐⇒ a′ ≤ a ∧ b ≤ b′:
“⇐” Let x ∈ [a, b]. From a ≤ x and a′ ≤ a we have a′ ≤ x. From x ≤ b and
b ≤ b′ we have x ≤ b′. Thus x ∈ [a′, b′].
“⇒” Assume a′ > a or b > b′. In the first case, a ∈ [a, b], but a 6∈ [a′, b′]. In
the second case, b ∈ [a, b], but b 6∈ [a′, b′].

Case 2: a ≤ b ∧ a′ > b′.
[a, b] ⊆ [Imin, b

′] ∪̇ [a′, Imax] ⇐⇒ a′ ≤ a ∨ b ≤ b′: As the union is disjoint, the
left-hand side is equivalent to [a, b] ⊆ [Imin, b

′] ∨ [a, b] ⊆ [a′, Imax]. From the
first case, we know this is equivalent to (Imin ≤ a∧ b ≤ b′)∨ (a′ ≤ a∧ b ≤ Imax).
Two of these inequalities are always true and can be removed, yielding the
desired result.

Case 3: a > b ∧ a′ > b′.
[Imin, b] ∪̇ [a, Imax] ⊆ [Imin, b

′] ∪̇ [a′, Imax]⇐⇒ a′ ≤ a ∧ b ≤ b′: As both unions
are disjoint, and because each two of the intervals share an endpoint, the
left-hand side is equivalent to [Imin, b] ⊆ [Imin, b

′] ∧ [a, Imax] ⊆ [a′, Imax]. Using
the result of the first case and removing inequalities that are always true yields
the right-hand side.

Case 4: a > b ∧ a′ ≤ b′.
[Imin, b] ∪̇ [a, Imax] ⊆ [a′, b′]⇐⇒ [a′, b′] = I:
“⇒” Both Imin and Imax are contained in the interval union on the left. From
the subset relation, we have Imin ∈ [a′, b′] and Imax ∈ [a′, b′]. As Imin ≤ x for
all x ∈ I, we have a′ = Imin. Similarly, we have b′ = Imax.
“⇐” Obviously, any interval or union thereof is a subset of I.

Two of the cases yield identical results, thus we have

Ja, bK ⊆ Ja′, b′K⇔


a′ ≤ a ∧ b ≤ b′ if (a ≤ b↔ a′ ≤ b′)
a′ ≤ a ∨ b ≤ b′ if a ≤ b ∧ a′ > b′

Ja′, b′K = I otherwise
(5.2)

This function is implemented as is_interval_subseteq.

49

5.2. WRAP-AROUND INTERVALS

Set complement

As I is a member of IntW rap but the empty set is not, IntW rap is not closed under
set complement. However, that is the only exception, and IntW rap \ I is closed under
set complement:
Let a ≤ b with (a, b) 6= (Imin, Imax). Then

I \ Ja, bK = {x ∈ I | ¬(a ≤ x) ∧ ¬(x ≤ b)} = {x ∈ I | Imin ≤ x < a ∧ b < x ≤ Imax}
= [Imin, a− 1] ∪̇ [b+ 1, Imax] = · · ·

When making the strict inequalities non-strict, we use that I is an integral datatype.
Note that the addition and subtraction operations used here are not those of I, hence
we cannot guarantee that a− 1 and b+ 1 are members of I. Three cases remain to
be proven:

Case 1: a 6= Imin ∧ b 6= Imax. Then a− 1 = a	 1 ∈ I and b+ 1 = b⊕ 1 ∈ I, thus
· · · = Jb⊕ 1, a	 1K

Case 2: a = Imin ∧ b 6= Imax. Then [Imin, a− 1] = ∅, thus
· · · = x ∈ [b+ 1, Imax] = Jb⊕ 1, a	 1K

Case 3: a 6= Imin ∧ b = Imax. Then [b+ 1, Imax] = ∅, thus
· · · = x ∈ [Imin, a− 1] = Jb⊕ 1, a	 1K

The case a > b is proven similarly, and we have Ja, bK{ = Jb⊕1, a	1K for Ja, bK 6= I.
This partial function is implemented as interval_complement, where the partial
nature of the function is reflected by an assertion.

Arithmetic operations

Finally, we need to make sure these intervals are compatible with basic arithmetic
operations.

Lemma 5.2.1. If Ja, bK 6= I, then x ∈ Ja, bK⇐⇒ x⊕ c ∈ Ja⊕ c, b⊕ cK.

Proof. It suffices to show the case c = 1. If a⊕ 1 and b⊕ 1 do not wrap around, i.e.
both a and b are unequal to Imax, the statement is easily verified for both interval
types. The wrap-around case Imax ∈ {a, b} is verified by case distinction:

Case 1: a = b = Imax. Then x ∈ [a, b] ⇔ x = Imax ⇔ x ⊕ 1 = Imin ⇔ x ⊕ 1 ∈
[Imax ⊕ 1, Imax ⊕ 1].

Case 2: a < b = Imax. Then x ∈ [a, Imax]⇔ x⊕1 ∈ [a⊕1, Imax]∨x ∈ [Imin, Imin]⇔
x⊕ 1 ∈ Ja⊕ 1, IminK

Case 3: b < a = Imax. Then x ∈ [Imin, b] ∪̇ [Imax, Imax]⇔ x⊕ 1 ∈ [Imin ⊕ 1, b⊕ 1] ∪̇
[Imin, Imin]⇔ x⊕ 1 ∈ [Imin, b⊕ 1]

50

5.3. IMPLEMENTATION DETAILS

Note that the case Ja, bK = I is handled quite easily, as x ∈ I⇔ x⊕ c ∈ I.
Thus if x = y ⊕ c, we have x ∈ Ja, bK⇔ y ∈ Ja	 c, b	 cK.
As subtraction is usually represented in libFirm as addition of a negative number,

that case does not need to be handled separately.

5.3. Implementation details
In the following, we note some specifics of the implementation that might be of
interest.

5.3.1. Use of bit sets for cond sets
In order to perform fast operations on sets of conds, we use the built-in bit set data
type of libFirm to represent such sets. Common set operations such as set difference
can be executed in a few clock cycles if the number of conds is smaller than the word
size of the processor.
There is one drawback however—as bit sets are statically allocated, we need to

know the number of conds before writing any edge information. This means that we
cannot annotate edges with a cond right after creating it, but instead must do so in
a separate pass.

5.3.2. Edge annotations
As control flow edges in libFirm are not explicit, we need a way to identify a
given control flow edge in order to store associated information. Using a tuple
(block, predecessor index) would be enough, but cumbersome to implement using
libFirm’s predefined data structures.
Instead, we assume that every control flow node has only one user. This way,

we can associate a control flow edge with the node from which it originates. This
assumption is reasonable for all control flow nodes except for the IJmp node, which
is used for indirect jumps to a computed address. In C code, this node is used to
implement the “labels as values” GCC extension.

We therefore do not currently thread across edges to IJmp nodes. This is accom-
plished by stopping the recursion in annotate_edges_rec if a control flow node with
more than one user is encountered. However, if the edge information representation
was changed, it would be possible to thread across indirect jumps as well.

5.3.3. Usage of the link field
Each node (including each block) in libFirm has a pointer which is usable for any
purpose. Jump Threading uses the link field as follows:

51

5.4. VALIDATION

• On Block nodes, the link field points to a jt_block_dupl structure containing
annotations of this block—namely the set of conds that are associated with it,
corresponding to the set S ′, as well as its original block.

• On all other nodes, the link field points to the original node from which it was
duplicated. That original node serves as the representative of the set of its
duplicates and is used e.g. as key in the hash map of dominating definitions
per block.

5.4. Validation
In terms of correctness, the implementation was validated using libFirm’s internal
test suite. The unmodified version of cparser failed 106 tests with Jump Threading
enabled, while the new version failed 103, none of which were new failures. Without
Jump Threading enabled, cparser fails 102 tests. The additional failure is triggered by
enabling either the old or new Jump Threading and occurs in the Inlining optimization
pass.

5.5. SSA reconstruction
As briefly mentioned in Chapter 3, duplicating a block creates multiple definitions of
that block’s variables. The resulting graph does not fulfil the SSA property. In order
to restore it, we must update all usages of a variable to point to a definition of the
variable whose block dominates the usage block. If this is not possible, we need to
insert φ functions at the iterated dominance frontiers of the definitions.

However, recomputing the dominator tree after each control flow change would be
too expensive. Braun et al. [8] presented a SSA reconstruction algorithm that does
not depend on dominance information. This algorithm is presented in a more detailed
fashion in [9, chapter 5]. JTOld also uses this algorithm for SSA reconstruction. We
briefly sketch it here.
Given a definition def in block def .block, and a usage block useblock with prede-

cessors pred1, . . . , predn, the following function yields a definition that dominates
useblock:

dominating-def(def , useblock) =
def if def .block = useblock
the copy of def in useblock if useblock is a duplicate of def .block
φ(d1, . . . , dn) otherwise

where di = dominating-def(def , pred i).

Some of the φ functions generated by the third case will be superfluous. This is
the case especially if a φ function’s arguments consist only of itself, the undefined

52

5.6. COST MODEL

value ⊥ and one other value v, in which case it can be replaced by v. However, we do
not know in advance whether a φ function will be superfluous. Therefore, if useblock
has more than one predecessor we insert a pending φ function into useblock, then
after computing its arguments we check whether it is superfluous.

This approach is not perfect, as it depends on the order in which blocks are visited
and does not eliminate all superfluous φ functions. However, removing all superfluous
φ functions even in irreducible control flow graphs is a task warranting a master’s
thesis of its own [10], one result of which is a dedicated optimization pass for libFirm
which could be run after Jump Threading if desired.

5.6. Cost model
Like with most other implementations, our cost model is based on the estimated code
duplication cost. The search for TOs is aborted if its cost exceeds a configurable
threshold. The duplication cost is estimated based on the number of nodes in the
blocks between two conditions.
More fine-grained cost models are conceivable, for example sorting the TOs

according to their estimated cost-benefit ratio and duplicating only the first few.
However, interactions between TOs are quite complex. For example, if a set of TOs,
taken together, determines the target of a branch instruction for all predecessors of
its containing block, it makes sense to thread these TOs together, eliminating the
conditional branch in all duplicates of the block.

In general however, considering all possible combinations of TOs for threading is
not feasible from a performance standpoint.

53

6. Evaluation

6.1. Experimental setup and methodology

6.1.1. Platform

The main evaluation system (Haswell system) uses a 64-bit Intel Core i5-4460 CPU
of the “Haswell” microarchitecture generation, with 4 physical cores, each running
at a frequency of 3.20 GHz. When using only 1 or 2 cores, as is the case with
the SPECint2000 benchmarks, “TurboBoost” technology can increase the frequency
to 3.40 GHz. Each core contains two 32 KB 8-way set associative L1 caches for
instructions and data respectively, as well as a 256 KB 8-way set associative L2 cache.
Shared between the code is a 6 MB 12-way set-associative L3 cache.1 Additionally, a
small µop cache, acting as a L0 cache, stores decoded instructions. The µop cache
was introduced in the Sandy Bridge microarchitecture.

Not much is known about Haswell’s branch prediction. Agner Fog [1] suspects that
it contains “two branch prediction methods: a fast method tied to the µop cache and
the instruction cache, and a slower method using a branch target buffer” [1, p. 29].
The branch misprediction penalty varies from 15–20 clock cycles.

The system is equipped with 8 GB (2×4 GB) of DDR3 RAM with a clock speed
of 1600 MHz, and with a 250 GB SSD. All benchmarks were performed under Linux,
Kernel version 3.16.7.
For some benchmarks, a Nehalem generation system (Intel Core i5 750 CPU,

20 GB of RAM) was used. On this system, no root privileges were available, thus
some temci options could not be activated.

6.1.2. Compiler

The compiler used in all benchmarks is cparser, version cparser-1.22.0-192-g4ebb0b8,
using libFirm version libfirm-1.22.0-509-g64e6f36. The new Jump Threading algo-
rithm was implemented in libFirm on top of this version, replacing the old algorithm.
The unmodified cparser version was used both for benchmarks using the old Jump
Threading algorithm and for benchmarks without Jump Threading.

1CPU data taken from http://www.cpu-world.com/CPUs/Core_i5/Intel-Core%20i5-4460.
html, retrieved 2016-12-30.

55

http://www.cpu-world.com/CPUs/Core_i5/Intel-Core%20i5-4460.html
http://www.cpu-world.com/CPUs/Core_i5/Intel-Core%20i5-4460.html

6.2. EXPERIMENTAL RESULTS AND DISCUSSION

6.1.3. Benchmarks
We mainly used the SPECint20002 benchmarking suite. It consists of twelve 32-bit
applications that test a system’s integer performance on real-work workloads such
as data compression, combinatorial optimization, and compiling source code with
GCC3. The “252.eon” benchmark was excluded as it requires a C++ compiler while
cparser supports only C.

As mentioned in Section 4.2, one application of Jump Threading is the optimization
of finite state machines. As a motivational example and microbenchmark, we used
an implementation of a FSM with 6 states analogous to Figure 4.1. The FSM checks
if a given string is a decimal, octal or hexadecimal number, or not a number at all.
Each invocation of the program runs 1000 iterations of the state machine on an
in-memory string containing the first million digits of π. The program was compiled
with all optimizations but If Conversion enabled.

6.1.4. Methodology
We ran all benchmarks using temci [11, 12]. This tool facilitates benchmarking by
conducting statistical tests on the benchmark results and formatting them for easier
processing, as well as trying to minimize external factors like caching effects and
other programs running on the same machine. An overview of temci options used is
given in Figure 6.1.
Quantities such as branch misses and execution time were read from hardware

counters by the perf tool. Information on compile time and compilation statistics
were taken from cparser’s statistics output (--time and --statev command line
options). The static and dynamic opcode mixes were obtained using the Intel Pin
dynamic instrumentation tool [13].

6.2. Experimental results and discussion
Out of the many possible variants of the new Jump Threading implementation, we
used loop-ifconv-t30 and loop-no-ifconv-t30. This means that TOs may cross loop
boundaries and each TO is restricted to duplicate at most 30 instructions (Firm
nodes). In order to test the interaction with If Conversion, we distinguish two
variants: ifconv, where an additional If Conversion pass is performed before Jump
Threading, and no-ifconv, which employs the standard order of optimizations.

6.2.1. FSM microbenchmark
As apparent from Figure 6.2, Jump Threading can certainly have a big performance
effect even on current processors, simply because it eliminates some branch instruc-

2https://www.spec.org/cpu2000/CINT2000/
3Of course, the “176.gcc” benchmark contains GCC’s Jump Threading implementation, and yes,
Jump Threading finds Threading Opportunities in it.

56

https://www.spec.org/cpu2000/CINT2000/

6.2. EXPERIMENTAL RESULTS AND DISCUSSION

Option Explanation [11, temci exec --help]
--stop_start Stops almost all other processes running on the

system.
--sleep --sleep_seconds 10 Sleep for 10 seconds before each benchmark run,

in order to ensure that the system is quiescent.
--nice --other_nice Increases the scheduling priority for the bench-

marking process and decreases it for other pro-
cesses of the system. The default values were
kept, which are 19 for other processes and −15
for the benchmarking process. (Needs root
privileges)

--disable_hyper_threading Disable hyper-threaded cores on the CPU
(while this particular CPU does not support
hyper-threading anyway, this option would
make sense on a CPU that does, as the bench-
marks used are CPU bound). (Needs root
privileges)

--drop_fs_caches Drops the page cache, directory entry cache
and inode cache before each benchmarking run.
(Needs root privileges)

--disable_swap Disables swapping on the system before bench-
marking (and re-enables it afterwards). (Needs
root privileges)

--discarded_runs 1 Performs an additional benchmarking run at
the beginning whose results are discarded.

--preheat Before benchmarking, pre-heats the CPU for
10 seconds using a CPU bound task

--shuffle Randomize the order of the benchmarks in each
run

--cpuset_active
--cpuset_parallel 0

Pins the benchmarked programs to one CPU
and all other tasks to the rest; disables par-
allel execution of benchmarks. (Needs root
privileges)

Figure 6.1. Command line options for temci used for the benchmarks in this chapter.
The options in the bottom section are enabled by default in temci, the options in
the top section are not. The options that need root privileges were not used on the
Nehalem test system. The sleep option was not used for the FSM microbenchmark.

57

6.2. EXPERIMENTAL RESULTS AND DISCUSSION

tions (whether conditional or not) altogether. The decrease in execution time is
correlated with the overall decrease in branch instructions. While branch prediction
seems to have improved in Haswell, it is not a limiting factor at all on either of the
systems.
The decrease in unconditional branches also supports our theoretical results

about block scheduling from Section 3.4.2. In this case, Jump Threading very
aggressively splits blocks at which control flow converges, enabling many opportunities
to merge blocks with their predecessors and resulting in a program that jumps almost
exclusively from one conditional branch to the next.

Quantity no JT JTOld new JT
speedup speedup

Instructions 94.994 50 G 79.995 93 G 44.999 34 G
15.79% 52.63%

Branches 39.996 98 G 34.997 45 G 14.999 41 G
12.50% 62.50%

Percentage of 87.5% 85.7% 100.0%
cond. branches
Branch misses 74 k 65 k 39 k
(Nehalem) (11.76%) 47.09%
Execution time 12.54 s 10.97 s 4.72 s
(Nehalem) 12.52% 62.32%
Branch misses 23.3 k 22.9 k 21.8 k
(Haswell) (1.63%) 6.39%
Execution time 5.932 s 5.192 s 2.227 s
(Haswell) 12.48% 62.45%

Figure 6.2. Benchmark results for the Finite State Machine microbenchmark on
both the Nehalem and Haswell test system. The dynamic instruction and branch
count are the same on both systems. Numbers that lie in the uncertainty range
(0–15%) of the t-test are printed in parentheses.

6.2.2. Execution time
The execution time results for the SPECint2000 benchmark are shown in Figure 6.3,
and the change in the number of branches and branch misses is shown is Figure 6.4.

On all benchmarks but perlbmk and twolf, Jump Threading achieves a speedup
relative to the variant without Jump Threading of at least 0.48 % for loop-ifconv-t30
and 0.86 % for loop-no-ifconv-t30. In most of the cases we also either outperform
JTOld or achieve a speedup in the same range.

58

6.2. EXPERIMENTAL RESULTS AND DISCUSSION

The perlbmk and twolf benchmarks each have characteristics that make optimiz-
ing them particularly difficult. As twolf is heavily cache dependent, duplicating
code in the wrong place can have negative effects. The performance of perlbmk
depends crucially on the regular expression match function where approximately
50% of the benchmark’s execution time is spent. It contains a small inner loop that
provides both If Conversion and Jump Threading opportunities. Here running If
Conversion first is preferable, as it reduces both the number of branches and the
code size, as conjectured in Section 3.4.1. However, in most other cases executing If
Conversion before Jump Threading seems to impair performance.
The speedups are also not directly correlated with the change in branch misses.

The total number of branches executed seems to play a more important role. In the
next section we will break down these branches by type.

6.2.3. Opcode mix

In order to verify that Jump Threading fulfils its main promise, which is to reduce
the number of dynamically executed conditional branches, we evaluated both the
static and dynamic opcode mix. The results are presented in Figure 6.5.

As expected, the static number of conditional branches increases, as our variant of
Jump Threading duplicates control flow structures.

The dynamic number of conditional branches decreases in all benchmarks but
twolf. This fits in with the fact that twolf is the only benchmark in which Jump
Threading produces a slowdown. It seems that the conditional branches that were
eliminated lay on seldom used code paths, so that the increase in code size is not
offset by an improvement in performance.
Jump Threading also decreases the number of unconditional branches (both

static and dynamic). As seen in Section 3.4.2, the path duplication performed by
Jump Threading provides opportunities for the block scheduler to produce more
fall-throughs and often even allows blocks both on the original and the duplicated
code paths to be merged.

To verify this, we measured the percentage of duplicated blocks that can be merged
with their predecessor. We did this by running a control flow optimization pass
directly before and directly after Jump Threading, counting the number of merged
blocks for the second run. The result is shown in Figure 6.5. We see that on average,
a large number of blocks can be merged.
Note that no statement is made about whether the merge possibility affected an

original or a duplicate block. We therefore included the maximum percentage of
blocks merged relative to the number of block duplicates. In some cases, this is
greater than 100 %, meaning that the merge possibilities affected more blocks than
were duplicated.

59

6.2. EXPERIMENTAL RESULTS AND DISCUSSION

Be
nc
hm

ar
k

no
JT

J
T

O
ld

sp
ee
du

p
lo
op

-if
co
nv
-t3

0
sp
ee
du

p
lo
op

-n
o-
ifc
on

v-
t3
0

sp
ee
du

p
16
4.
gz
ip

66
.1

s
±
0.
18

%
66
.2

s
±
0.
36

%
=

65
.6

s
±
0.
28

%
0.
88

%
65
.6

s
±
0.
13

%
0.
78

%
17
5.
vp

r
50
.5

s
±
0.
23

%
49
.7

s
±
0.
12

%
1.
64

%
49
.9

s
±
0.
3%

1.
18

%
50
.1

s
±
0.
35

%
0.
88

%
17
6.
gc
c

23
.0
0s

±
0.
08

%
22
.6
2s

±
0.
07

%
1.
64

%
22
.7
1s

±
0.
08

%
1.
23

%
22
.3
1s

±
0.
09

%
2.
98

%
18
1.
m
cf

23
.7

s
±
0.
61

%
23
.7

s
±
0.
31

%
=

23
.5

s
±
0.
45

%
0.
86

%
23
.3

s
±
0.
44

%
1.
57

%
18
6.
cr
af
ty

28
.4

s
±
0.
20

%
28
.4

s
±
0.
26

%
=

28
.2
8s

±
0.
1%

0.
48

%
28
.1

s
±
0.
19

%
0.
86

%
19
7.
pa

rs
er

63
.4

s
±
0.
11

%
63
.3
2s

±
0.
07

%
0.
25

%
62
.8
3s

±
0.
06

%
1.
03

%
62
.4

s
±
0.
10

%
1.
66

%
25
3.
pe

rlb
m
k

51
.1
2s

±
0.
05

%
52
.0
9s

±
0.
07

%
−
1.
88

%
51
.1

s
±
0.
1%

=
53
.0

s
±
0.
12

%
−
3.
84

%
25
4.
ga
p

28
.5

s
±
0.
27

%
27
.9

s
±
0.
29

%
1.
95

%
28
.0

s
±
0.
33

%
1.
71

%
28
.0

s
±
0.
30

%
1.
66

%
25
5.
vo

rt
ex

43
.5

s
±
0.
77

%
43
.1

s
±
0.
75

%
(0
.9
3%

)
42
.8

s
±
0.
49

%
1.
68

%
42
.4

s
±
0.
28

%
2.
42

%
25
6.
bz
ip
2

53
.1

s
±
0.
47

%
52
.5

s
±
0.
39

%
1.
18

%
52
.3

s
±
0.
19

%
1.
40

%
52
.5

s
±
0.
54

%
1.
08

%
30
0.
tw

ol
f

70
.1

s
±
0.
15

%
70
.2

s
±
0.
28

%
=

70
.8

s
±
0.
24

%
-0
.9
9%

69
.9

s
±
0.
20

%
(0
.2
4%

)
av
er
ag
e

0.
52

%
0.
86

%
0.
94

%

Fi
gu

re
6.
3.

Be
nc
hm

ar
k
re
su
lts

fo
rS

PE
Ci
nt
20
00

on
th
e
Ha

sw
ell

sy
st
em

.
O
nl
y
th
e
sig

ni
fic
an
td

ig
its

ar
e
sh
ow

n.
Sp

ee
du

p
va
lu
es

fo
rw

hi
ch

th
e
t-t

es
tr

et
ur
ne
d
an

un
ce
rta

in
ty

va
lu
e
>

15
%

ar
e
de
no

te
d
by

“=
”,

wh
ile

va
lu
es

in
th
e
un

ce
rta

in
ty

ra
ng

e
of

5–
15

%
ar
e
pr
in
te
d
in

pa
re
nt
he
se
s.

60

6.2. EXPERIMENTAL RESULTS AND DISCUSSION

loop-ifconv-t30 [%] loop-no-ifconv-t30 [%]
Benchmark branches branch-misses branches branch-misses
164.gzip −0.67 +1.29 −0.67 +1.97
175.vpr +0.87 −2.44 +0.87 −2.18
176.gcc −3.33 −3.77 −3.09 −3.84
181.mcf −5.56 +2.82 −13.15 +4.52
186.crafty −1.17 −0.76 −1.12 −0.16
197.parser −5.41 +0.41 −5.48 −0.97
253.perlbmk −0.22 −0.83 −0.04 −1.10
254.gap −3.82 −16.63 −3.81 −16.92
255.vortex −8.41 = −8.39 =
256.bzip2 −3.01 = −3.70 −1.25
300.twolf (0.00) −1.36 = −2.17

Figure 6.4. Changes in the dynamic number of branches and branch misses for
loop-ifconv-t30 and loop-no-ifconv-t30 relative to no JT.

branch insts static [±%] branch insts dynamic [±%]
Benchmark cond. uncond. cond. uncond.
164.gzip +2.19 −8.47 −0.60 −2.10
175.vpr +1.73 −1.22 −0.91 +4.40
176.gcc +0.56 −10.48 −2.52 −12.89
181.mcf +2.86 −1.69 −3.92 +13.42
186.crafty +2.93 −2.91 −1.00 −3.10
197.parser +4.04 −9.36 −5.58 −11.36
253.perlbmk +0.03 −3.29 −0.26 −0.42
254.gap +3.28 −9.45 −2.98 −13.42
255.vortex +0.60 −1.49 −10.47 −14.08
256.bzip2 +2.46 −4.19 −2.72 −6.06
300.twolf +1.02 −1.78 −0.00 +0.03

Figure 6.5. Comparison of the opcode mix for loop-ifconv-t30 relative to no JT.
Static values refer to the instructions as present in the text section of the binary,
while dynamic values refer to the actual number of instructions executed during a
run of the benchmark.

61

6.2. EXPERIMENTAL RESULTS AND DISCUSSION

Benchmark Block duplicates avg. mergeable max. mergeable
164.gzip 208 17.80% 100 %
175.vpr 250 30.84% 100 %
176.gcc 6234 52.92% 200 %
181.mcf 24 32.5 % 100 %
186.crafty 552 25.10% 100 %
197.parser 777 61.35% 200 %
253.perlbmk 1155 66.90% 200 %
254.gap 2363 64.46% 200 %
255.vortex 617 43.18% 200 %
256.bzip2 166 20.07% 100 %
300.twolf 435 35.27% 150 %

Figure 6.6. Total number of blocks duplicated by Jump Threading (loop-no-ifconv-
t30), and number of blocks mergeable with control flow predecessor after Jump
Threading, relative to the number of block duplicates created by Jump Threading.

6.2.4. Compile time
The compile time for all benchmarks is listed in Figure 6.7. As expected, the new
Jump Threading pass, doing more work, is also slower.

An analysis of the Jump Threading pass using the callgrind tool of valgrind shows
that the SSA reconstruction employed by the new implementation is particularly
costly, consuming up to 65% of the time spent in Jump Threading. The SSA
reconstruction used is not very optimized, as it traverses the whole program graph
once. Some performance optimization in this area is certainly possible and would
reduce the gap between the two implementations.
As Jump Threading increases the code size, other optimizations naturally have

to process more code and are thus slowed down as well. This leads to an overall
slowdown of less than 5 % on average.
It is therefore justified that Jump Threading is enabled by default only when

compiling with -O3, which is described as “Aggressively optimize at the expense of
compilation speed and code size”.

6.2.5. Number of conds
Finally, in Figure 6.8 we give an overview of the number of jt_conds found by the
analysis. We see that in approximately 80% of all invocations, Jump Threading
finds no threading opportunities. However, Jump Threading is run twice on each
function that is not completely inlined into other functions, and in the second pass
might not find new threading opportunities. By summing up the number of conds
found during both passes for each function, it can be seen that the percentage of

62

6.2. EXPERIMENTAL RESULTS AND DISCUSSION

Jump Threading [s] Σ optimization phases [s]
Benchmark JTOld loop-ifconv-t30 JTOld loop-ifconv-t30
164.gzip 0.0490 0.0838 5.710 6.102
175.vpr 1.228 1.743 15.545 16.255
176.gcc 2.356 4.145 189.3 199.3
181.mcf 0.010 63 0.0164 0.978 0.956
186.crafty 0.1423 0.294 21.3 22
197.parser 0.2317 0.384 18.38 19.53
253.perlbmk 0.8524 1.245 66.8 70.4
254.gap 0.7340 1.233 76.79 80.81
255.vortex 0.4835 0.754 35.43 37.51
256.bzip2 0.0383 0.0647 4.77 5.02
300.twolf 0.3096 0.3668 37.00 40.30

Figure 6.7. Compile time: Time spent in the Jump Threading optimization pass
and in all optimization passes during a compilation of the whole benchmark suite.
The average slowdown of the Jump Threading pass relative to JTOld is 61.17 % or
311.89 ms while the average slowdown of the whole compilation is 4.94 % or 2.451 s.
On average, 1.01 % of compile time is spent in the old Jump Threading, while with
the new Jump Threading it is 1.55 %.

functions that remain unchanged by Jump Threading is about 70%.
We now consider only the executions in which Jump Threading finds something.

In more than 50 % of these cases it finds 1 or 2 conditions. As expected, If Conversion
destroys some Jump Threading opportunities, therefore loop-ifconv-t30 has more
instances of 1–3 conditions being found, while for 4 or more conditions, loop-no-
ifconv-t30 starts finding more.

In Section 5.3.1 we mentioned the use of bit sets for performance reasons. Opera-
tions on these bit sets take time linear in the maximum size of the set, which in this
case is the number of conds. In the overwhelming majority of cases, the number of
conds is 32 or less, meaning that the bitsets almost always fit into a single processor
word even on 32-bit systems. Correspondingly, the set operations are the fastest part
of the implementation.

63

6.2. EXPERIMENTAL RESULTS AND DISCUSSION

Number of conds Occurrences (loop-no-ifconv-t30) Occurrences (loop-ifconv-t30)
0 9732 79.26% 9855 80.24%
1 652 25.61% 675 27.81%
2 669 26.27% 667 27.48%
3 232 9.11% 241 9.93%
4 307 12.06% 250 10.30%
5 133 5.22% 124 5.11%
6 125 4.91% 101 4.16%
. . .
1–32 2520 98.98% 2411 99.34%
33–64 24 0.94% 15 0.66%
72 1
80 1
87 1

Figure 6.8. All executions of the Jump Threading optimization pass during a full
build of the SPECint2000 suite grouped by the number of conds they produce. In the
topmost row (number of conds = 0), the percentages are relative to all executions
of Jump Threading. For all other rows, they are relative to all executions of Jump
Threading that find one or more conds.

64

7. Conclusion and Further Work
In this thesis, we presented a theoretical analysis of the Jump Threading com-
piler optimization, as well as a generalized algorithm for Jump Threading and an
implementation thereof.
We have seen how Jump Threading interacts—both positively and negatively—

with other compiler optimizations, especially with If Conversion. Simple changes
like changing the order of optimizations can drastically change performance, in one
case by more than 3 %.

Using the SPECint2000 benchmark suite, we have shown that Jump Threading is
still a profitable optimization. Our implementation outperforms the existing libFirm
implementation in many of the benchmarks, achieving a higher average speedup of
0.86 % vs. 0.52 % and, depending on the configuration, a much higher maximum
speedup of 2.98 % vs. 1.95 %.

Further work on the Jump Threading optimization itself would include the im-
provement of the cost model. There are a number of factors that could be taken into
account to determine whether a TO is profitable to thread:

• Profiling information (either estimated or using profile-guided optimization)
could be used to determine the reduction in execution frequency of the condi-
tional branch, or to estimate whether the branch is easy or hard to predict.

• More structural information of the CFG could be taken into account; for
example the optimization could detect whether it is currently unrolling a loop.

• The heuristics for the duplication costs could be improved, taking into account
that control flow nodes are eliminated.

Finding optimal values for all these parameters seems a challenging task. Simpler
improvements could include finding more Threading Opportunities, such as including
supporting “x× y = 0” conditions where neither x nor y is a constant, or supporting
comparisons against non-constant values.
As we have seen, the interaction between compiler optimizations is very relevant

to performance, and further research could for example devise a way to make Jump
Threading and If Conversion coexist more productively. One could also try to
determine whether register allocation can take advantage of the block annotations
provided by Jump Threading, which are currently discarded.

65

Bibliography
[1] A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs,” An optimization

guide for assembly programmers and compiler makers. Copenhagen University
College of Engineering, 2016.

[2] F. Mueller and D. B. Whalley, “Avoiding conditional branches by code replica-
tion,” in ACM SIGPLAN Notices, vol. 30, pp. 56–66, ACM, 1995.

[3] R. Bodik, R. Gupta, and M. L. Soffa, “Interprocedural conditional branch
elimination,” in ACM SIGPLAN Notices, vol. 32, pp. 146–158, ACM, 1997.

[4] J. B. Kam and J. D. Ullman, “Monotone data flow analysis frameworks,” Acta
Informatica, vol. 7, no. 3, pp. 305–317, 1977.

[5] “Source code of the LLVM compiler infrastructure.” http://llvm.org/viewvc/
llvm-project/llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp?
revision=287488&view=markup. Revision 287488, 20 Nov. 2016.

[6] “Source code of the GNU compiler collection (GCC).” https://gcc.gnu.org/
git/?p=gcc.git;a=blob;f=gcc/tree-ssa-threadbackward.c;hb=5fd049.
Revision 5fd049, 15 Nov. 2016.

[7] “Source code of libFirm.” http://pp.ipd.kit.edu/git/libfirm/tree/ir/
opt/jumpthreading.c?id=aa7c5. Revision aa7c5, 19 Sep. 2016.

[8] M. Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, and A. Zwinkau, “Sim-
ple and efficient construction of static single assignment form,” in Compiler
Construction (R. Jhala and K. Bosschere, eds.), vol. 7791 of Lecture Notes in
Computer Science, pp. 102–122, Springer, 2013.

[9] F. Rastello, SSA-based Compiler Design. Springer Publishing Company, Incor-
porated, 2016.

[10] M. Wagner, “Minimal static single assignment form,” Master’s thesis, Karls-
ruhe Institute of Technology (KIT), Nov. 2016. http://pp.ipd.kit.edu/
publication.php?id=wagner16masterarbeit.

[11] J. Bechberger, “temci documentation.” http://temci.readthedocs.org/en/
latest/.

67

http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp?revision=287488&view=markup
http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp?revision=287488&view=markup
http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp?revision=287488&view=markup
https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/tree-ssa-threadbackward.c;hb=5fd049
https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/tree-ssa-threadbackward.c;hb=5fd049
http://pp.ipd.kit.edu/git/libfirm/tree/ir/opt/jumpthreading.c?id=aa7c5
http://pp.ipd.kit.edu/git/libfirm/tree/ir/opt/jumpthreading.c?id=aa7c5
http://pp.ipd.kit.edu/publication.php?id=wagner16masterarbeit
http://pp.ipd.kit.edu/publication.php?id=wagner16masterarbeit
http://temci.readthedocs.org/en/latest/
http://temci.readthedocs.org/en/latest/

Bibliography

[12] J. Bechberger, “Besser benchmarken,” Bachelor’s thesis, Karlsruher Institut für
Technologie (KIT), Apr. 2016. http://pp.ipd.kit.edu/publication.php?
id=bechberger16bachelorarbeit.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: building customized program analysis tools
with dynamic instrumentation,” in Acm sigplan notices, vol. 40, pp. 190–200,
ACM, 2005.

68

http://pp.ipd.kit.edu/publication.php?id=bechberger16bachelorarbeit
http://pp.ipd.kit.edu/publication.php?id=bechberger16bachelorarbeit

A. Jump Threading source code
1 /*
2 * This file is part of libFirm.
3 * Copyright (C) 2017 Karlsruhe Institute of Technology.
4 */
5
6 /**
7 * @file
8 * @brief Path-Sensitive Jump Threading
9 * @date 2017-01-23

10 * @author Joachim Priesner
11 */
12 #include "debug.h"
13 #include "irargs_t.h"
14 #include "iredges.h"
15 #include "irnode_t.h"
16 #include "irgmod.h"
17 #include "irgwalk.h"
18 #include "iroptimize.h"
19 #include "irtools.h"
20 #include "raw_bitset.h"
21 #include "tv.h"
22
23 DEBUG_ONLY(static firm_dbg_module_t *dbg;)
24
25 // Various ways of controlling the types of threading opportunities found
26 // #define JT_NO_ADD /* Ignore Add nodes */
27 // #define JT_NO_CF /* Do not duplicate control flow */
28 // #define JT_NO_CRITICAL_EDGES /* Require the graph to contain no critical edges before optimizing */
29 // #define JT_NO_SWITCH /* Do not thread through Switch nodes */
30 // #define JT_NO_LOOP_BOUNDARIES /* Start and target block of a TO must lie in the same loop */
31
32 // #define JT_DUMP_COND_GRAPH
33
34 #ifndef JT_COST_THRESHOLD
35 #define JT_COST_THRESHOLD 30
36 #endif
37
38 /* Represents the condition that the given Phi node's value is in the interval [[a, b]]. */
39 typedef struct jt_cond {
40 ir_node *node;
41 ir_tarval *a, *b;
42
43 struct jt_cond **preds; /* List of predecessor conds by control flow predecessor of the Phi */
44
45 unsigned int max_cost; /* The maximum cost for which this cond has been evaluated */
46 ir_visited_t visited; /* Visited counter */
47 size_t index; /* Index in the global list of conds */
48 } jt_cond;
49
50 #define COND_UNKNOWN ((jt_cond*)NULL)
51
52 static void debug_cond(jt_cond *cond)
53 {
54 if (cond == COND_UNKNOWN) {
55 DB((dbg, LEVEL_1, "COND_UNKNOWN"));
56 } else if (cond->node == NULL) {

69

57 DB((dbg, LEVEL_1, "COND_ALWAYS_TRUE"));
58 } else {
59 DB((dbg, LEVEL_1, "%+F \\in [[%+F, %+F]]" , cond->node, cond->a, cond->b));
60 }
61 }
62
63 /* Global state for one Jump Threading pass */
64 typedef struct jt_environment {
65 ir_graph *irg;
66 jt_cond cond_always_true; /**< special predecessor condition that is always true */
67 jt_cond **conds;
68 unsigned orig_last_idx; /**< original value of get_irg_last_idx(irg) --
69 nodes with index >= orig_last_idx are duplicates */
70 struct obstack obst; /**< obstack for temporary data */
71 pmap *cf_edge_info; /**< edge annotations, type node -> jt_edge_info*
72 (each node represents the CF edge starting at that node) */
73 pmap *thread_successors; /**< Successor edge -> cond that guarantees that edge's execution */
74 pmap *block_dupls; /**< block -> [jt_block_dupl*] **/
75 pmap *dominating_defs; /**< node -> [block -> node] **/
76 #ifdef JT_DUMP_COND_GRAPH
77 FILE *cond_graph;
78 #endif
79 int num_node_dupls_exact;
80 } jt_environment;
81
82 static void debug_cond_set(jt_environment *env, unsigned *cond_set)
83 {
84 if (cond_set != NULL) {
85 rbitset_foreach(cond_set, ARR_LEN(env->conds), cond_idx) {
86 debug_cond(env->conds[cond_idx]);
87 DB((dbg, LEVEL_1, ", "));
88 }
89 }
90 }
91
92 /** Information about a block duplicate */
93 typedef struct jt_block_dupl {
94 unsigned *conds; /**< The conds valid in this block duplicate */
95 ir_node *orig_block; /**< The Block node of the original block */
96 ir_node *dupl_block; /**< The Block node of the duplicate block */
97 } jt_block_dupl;
98
99 typedef struct jt_edge_info {

100 unsigned *relevant_conds; /**< Conds to propagate along this edge */
101 unsigned *always_true_conds; /**< Conds that are true when entering the successor block along this edge */
102 unsigned *forbidden_conds; /**< Conds that cause another edge of the same block to be taken */
103 } jt_edge_info;
104
105 /** Computes a closed interval [[@p a, @p b]] that contains exactly the ir_tarvals
106 * of the given mode that satisfy @p relation with regard to the constant @p cnst_val. */
107 static bool get_interval(ir_relation relation, ir_tarval *cnst_val, ir_tarval **a, ir_tarval **b)
108 {
109 ir_mode *mode = get_tarval_mode(cnst_val);
110 ir_tarval *one = new_tarval_from_str("1" , 1, mode == mode_P ? mode_Is : mode);
111 assert(tarval_is_one(one));
112 *a = get_mode_min(mode);
113 *b = get_mode_max(mode);
114 switch (relation & ~ir_relation_unordered) {
115 case ir_relation_equal:
116 *a = cnst_val;
117 *b = cnst_val;
118 break;
119 case ir_relation_less:
120 *b = tarval_sub(cnst_val, one);
121 break;
122 case ir_relation_greater:

70

123 *a = tarval_add(cnst_val, one);
124 break;
125 case ir_relation_less_equal:
126 *b = cnst_val;
127 break;
128 case ir_relation_greater_equal:
129 *a = cnst_val;
130 break;
131 case ir_relation_less_greater:
132 *a = tarval_add(cnst_val, one);
133 *b = tarval_sub(cnst_val, one);
134 break;
135 case ir_relation_true:
136 break;
137 default:
138 return false;
139 }
140 assert(get_tarval_mode(*a) == mode);
141 assert(get_tarval_mode(*b) == mode);
142 return true;
143 }
144
145 /** Returns whether the condition of the given @p cmp is expressible as "@p var in [[@p a, @p b]]
146 * and if yes, fills the output parameters accordingly. */
147 static bool get_cmp_interval(ir_node *cmp, ir_node **var, ir_tarval **a, ir_tarval **b)
148 {
149 assert(is_Cmp(cmp));
150
151 *var = get_Cmp_left(cmp);
152 ir_relation rel = get_Cmp_relation(cmp);
153 ir_node *cnst = get_Cmp_right(cmp);
154 if (is_Const(*var)) {
155 ir_node *tmp = cnst; cnst = *var; *var = tmp;
156 rel = get_inversed_relation(rel);
157 }
158 if (!is_Const(cnst)) {
159 return false;
160 }
161
162 ir_mode *mode = get_irn_mode(*var);
163 return (mode_is_int(mode) || mode == get_modeP()) && get_interval(rel, get_Const_tarval(cnst), a, b);
164 }
165
166 #define is_tv_leq(tv1, tv2) ((tarval_cmp(tv1, tv2) & ir_relation_less_equal) != 0)
167 #define is_tv_geq(tv1, tv2) ((tarval_cmp(tv1, tv2) & ir_relation_greater_equal) != 0)
168 #define is_wraparound(a, b) (!is_tv_leq(a, b))
169
170 /* Returns true if @p tv is guaranteed to be in the interval [[@p a, @p b]].
171 * If a > b, this is interpreted as ">= a || <= b",
172 * otherwise (as usual) as ">= a && <= b".
173 */
174 static bool is_tv_in_interval(ir_tarval *tv, ir_tarval *a, ir_tarval *b)
175 {
176 assert(get_tarval_mode(tv) == get_tarval_mode(a));
177 assert(get_tarval_mode(tv) == get_tarval_mode(b));
178 bool geq_a = is_tv_geq(tv, a);
179 bool leq_b = is_tv_leq(tv, b);
180 return is_wraparound(a, b) ? geq_a || leq_b : geq_a && leq_b;
181 }
182
183 /* Returns whether [[@p a1, @p b1]] is a subset of [[@p a2, @p b2]] */
184 static bool is_interval_subseteq(ir_tarval *a1, ir_tarval *b1, ir_tarval *a2, ir_tarval *b2)
185 {
186 bool a2_leq_a1 = is_tv_leq(a2, a1);
187 bool b1_leq_b2 = is_tv_leq(b1, b2);
188 if (is_wraparound(a1, b1) == is_wraparound(a2, b2)) {

71

189 return a2_leq_a1 && b1_leq_b2;
190 } else if (!is_wraparound(a1, b1)) {
191 return a2_leq_a1 || b1_leq_b2;
192 } else {
193 return a1 == get_mode_max(get_tarval_mode(a1)) && b1 == get_mode_min(get_tarval_mode(b1));
194 }
195 }
196
197 /* Returns whether the value of the given @p node is guaranteed to be in the interval [[@p a, @p b]]. */
198 static bool is_const_or_confirm_in_interval(ir_node *node, ir_tarval *a, ir_tarval *b)
199 {
200 if (is_Const(node)) {
201 return is_tv_in_interval(get_Const_tarval(node), a, b);
202 } else {
203 assert(is_Confirm(node));
204 ir_node *bound = get_Confirm_bound(node);
205 if (!is_Const(bound)) {
206 return false;
207 }
208 ir_tarval *confirm_a, *confirm_b;
209 return get_interval(get_Confirm_relation(node), get_Const_tarval(bound), &confirm_a, &confirm_b)
210 && is_interval_subseteq(confirm_a, confirm_b, a, b);
211 }
212 }
213
214 /* Transforms the interval [[@p a, @p b]] into the interval [[@p b + 1, @p a - 1]],
215 * which is its inverse. The input interval may not be equal to [mode_min, mode_max],
216 * i.e. the whole universe. */
217 static void interval_complement(ir_tarval **a, ir_tarval **b)
218 {
219 ir_mode *mode = get_tarval_mode(*a);
220 assert(mode == get_tarval_mode(*b));
221 assert(*a != get_mode_min(mode) || *b != get_mode_max(mode));
222 // Use mode_Is for mode_P because subtracting mode_P from another mode_P
223 // yields a tarval of "reference offset" mode, which is something we don't want.
224 ir_tarval *one = new_tarval_from_str("1" , 1, mode == mode_P ? mode_Is : mode);
225 ir_tarval *tmp = *a;
226 *a = tarval_add(*b, one);
227 *b = tarval_sub(tmp, one);
228 assert(get_tarval_mode(*a) == get_tarval_mode(*b));
229 }
230
231 static int get_chop_size_rec(ir_node *def_block, ir_node *cur_block)
232 {
233 int result = get_irn_n_edges(cur_block);
234 if (cur_block != def_block) {
235 for (int i = 0, len = get_Block_n_cfgpreds(cur_block); i < len; i++) {
236 ir_node *pred_block = get_Block_cfgpred_block(cur_block, i);
237 if (pred_block != NULL && !irn_visited_else_mark(pred_block)) {
238 result += get_chop_size_rec(def_block, pred_block);
239 }
240 }
241 }
242 return result;
243 }
244
245 /** Returns the number of nodes whose block lies on a path between @p def_block and @p use_block,
246 * not including @p use_block itself. */
247 static int get_chop_size(ir_node *def_block, ir_node *use_block)
248 {
249 if (def_block == use_block || def_block == NULL || use_block == NULL) {
250 return 0;
251 }
252 inc_irg_visited(get_irn_irg(use_block));
253 mark_irn_visited(use_block);
254 int result = 0;

72

255 for (int i = 0, len = get_Block_n_cfgpreds(use_block); i < len; i++) {
256 ir_node *pred_block = get_Block_cfgpred_block(use_block, i);
257 if (pred_block != NULL && !irn_visited_else_mark(pred_block)) {
258 result += get_chop_size_rec(def_block, pred_block);
259 }
260 }
261 return result;
262 }
263
264 /** Returns the number of nodes whose block lies on a path between @p def_block and @p use_block. */
265 static int get_chop_size_incl(ir_node *def_block, ir_node *use_block)
266 {
267 return get_irn_n_edges(use_block) + get_chop_size(def_block, use_block);
268 }
269
270 /** Returns a jt_cond that represents the condition "@p node \\in [[@p a, @p b]]" if there is at least
271 * one path on which the condition is true whose cost together with @p cost does not exceed JT_THRESHOLD.
272 * @p start is a node in the condition block of the TO to be constructed. */
273 static jt_cond *get_cond(jt_environment *env, ir_node *node, ir_tarval *a, ir_tarval *b, unsigned int cost,
274 ir_node *start)
275 {
276 assert(node != NULL);
277
278 DB((dbg, LEVEL_1, "-get_cond(%+F \\in [%+F, %+F], cost %d \n" , node, a, b, cost));
279
280 // Base cases
281 if (is_Const(node)) {
282 if (is_const_or_confirm_in_interval(node, a, b)) {
283 DB((dbg, LEVEL_1, "Found a Const node: comparison %+F \\in [[%+F, %+F]] is true \n" , node, a, b));
284 return &env->cond_always_true;
285 } else {
286 DB((dbg, LEVEL_1, "Found a Const node: comparison %+F \\in [[%+F, %+F]] is false \n" , node, a, b));
287 return COND_UNKNOWN;
288 }
289 } else if (is_Confirm(node) && is_const_or_confirm_in_interval(node, a, b)) {
290 DB((dbg, LEVEL_1, "Found a Confirm node %+F: {x | x %s %+F} \\subseteq [[%+F, %+F]] is true \n" , node,
291 get_relation_string(get_Confirm_relation(node)), get_Confirm_bound(node), a, b));
292 return &env->cond_always_true;
293 }
294
295 // Recursive cases
296 if (cost > JT_COST_THRESHOLD) {
297 DB((dbg, LEVEL_1, "Condition %+F \\in [[%+F, +%F]]: Cost %d >= threshold \n" , node, a, b, cost));
298 return COND_UNKNOWN;
299 }
300
301 #ifndef JT_NO_ADD
302 if (is_Add(node)) {
303 #else
304 if (false) {
305 #endif
306 ir_node *var = get_Add_left(node), *add_cnst = get_Add_right(node);
307 if (is_Const(var)) {
308 ir_node *tmp = add_cnst; add_cnst = var; var = tmp;
309 }
310 if (is_Const(add_cnst)) {
311 #ifdef JT_NO_CF
312 if (!is_Const(var) && !is_Confirm(var) && get_nodes_block(var) != get_nodes_block(node)) {
313 return COND_UNKNOWN;
314 }
315 #endif
316 DB((dbg, LEVEL_1, "Found an Add node %+F with const: %+F \n" , node, add_cnst));
317 ir_tarval *new_a = a, *new_b = b;
318 if (a != get_mode_min(get_tarval_mode(a)) || b != get_mode_max(get_tarval_mode(b))) {
319 new_a = tarval_sub(a, get_Const_tarval(add_cnst));
320 new_b = tarval_sub(b, get_Const_tarval(add_cnst));

73

321 }
322 return get_cond(env, var, new_a, new_b,
323 cost + get_chop_size(get_nodes_block(var), get_nodes_block(node)), start);
324 } else {
325 return COND_UNKNOWN;
326 }
327
328 } else if (is_Confirm(node)) {
329 // We have a Confirm node that does not guarantee the condition: simply continue searching.
330 #ifdef JT_NO_CF
331 if (get_nodes_block(get_Confirm_value(node)) != get_nodes_block(node)) {
332 return COND_UNKNOWN;
333 }
334 #endif
335 ir_node *val = get_Confirm_value(node);
336 return get_cond(env, val, a, b,
337 cost + get_chop_size(get_nodes_block(val), get_nodes_block(node)), start);
338
339 } else if (!is_Phi(node)) {
340 return COND_UNKNOWN;
341 }
342
343 assert(is_Phi(node));
344 jt_cond *cond = NULL;
345 for (size_t i = 0, len = ARR_LEN(env->conds); i < len; i++) {
346 jt_cond *entry = env->conds[i];
347 assert(entry != NULL);
348 if (entry->node == node && entry->a == a && entry->b == b) {
349 cond = entry;
350 break;
351 }
352 }
353
354 bool new_cond = cond == NULL;
355 if (new_cond) {
356 cond = OALLOC(&env->obst, jt_cond);
357 cond->index = ARR_LEN(env->conds);
358 cond->node = node;
359 cond->a = a;
360 cond->b = b;
361 cond->preds = OALLOCN(&env->obst, jt_cond *, get_irn_arity(node));
362 cond->max_cost = 99999;
363 cond->visited = 0;
364
365 DB((dbg, LEVEL_1, "Adding new condition \\in [%+F, %+F] to node %+F \n" , a, b, node));
366 ARR_APP1(jt_cond *, env->conds, cond);
367 } else if (cond->max_cost <= cost) {
368 return cond;
369 }
370
371 // Search for predecessor conditions
372 cond->max_cost = cost;
373
374 DB((dbg, LEVEL_1, "Found a Phi node %+F \n" , node));
375 bool always_true = true;
376 bool always_unknown = true;
377 for (int j = 0, len = get_irn_arity(node); j < len; j++) {
378 ir_node *pred = get_irn_n(node, j);
379 ir_node *cfpred = get_Block_cfgpred_block(get_nodes_block(node), j);
380 if (cfpred == NULL) {
381 // do not set always_true to false: if the predecessor is a Bad, we may ignore its value
382 cond->preds[j] = COND_UNKNOWN;
383 continue;
384 }
385 #ifdef JT_NO_CF
386 if (!is_Const(pred) && !is_Confirm(pred) && get_nodes_block(pred) != cfpred) {

74

387 #else
388 if (false) {
389 #endif
390 cond->preds[j] = COND_UNKNOWN;
391 } else {
392 cond->preds[j] = get_cond(env, get_irn_n(node, j), a, b,
393 cost + get_chop_size_incl(get_nodes_block(pred), cfpred), start);
394 }
395
396 #ifdef JT_NO_LOOP_BOUNDARIES
397 if (cond->preds[j] == &env->cond_always_true &&
398 get_loop_depth(get_irn_loop(cfpred)) != get_loop_depth(get_irn_loop(get_nodes_block(start)))) {
399 cond->preds[j] = COND_UNKNOWN;
400 }
401 #endif
402 always_true &= cond->preds[j] == &env->cond_always_true;
403 always_unknown &= cond->preds[j] == COND_UNKNOWN;
404 }
405
406 if ((always_unknown || always_true) && new_cond) {
407 /* Free all conds obtained in recursive calls, i.e. allocated after this cond,
408 * as those are always unknown/always true as well.
409 * However, we can do this only if we created the cond in this call. */
410 debug_cond(cond);
411 if (always_unknown) {
412 DB((dbg, LEVEL_1, " is always unknown, removing \n"));
413 } else {
414 DB((dbg, LEVEL_1, " is always true, removing \n"));
415 }
416 ARR_RESIZE(jt_cond *, env->conds, cond->index);
417 obstack_free(&env->obst, cond); /* frees cond and all conds+pred-arrays that were allocated after it */
418 return always_unknown ? COND_UNKNOWN : &env->cond_always_true;
419 }
420
421 assert(cond->index <= ARR_LEN(env->conds));
422
423 #ifdef JT_DUMP_COND_GRAPH
424 if (cond->node != NULL) {
425 ir_obst_vprintf(env, "node: {title: \"n%p \" label: \"%+F \\in [%+F, %+F] \"} \n" ,
426 cond, cond->node, cond->a, cond->b);
427 obstack_1grow(&env->obst, '\0');
428 char *res = (char *)obstack_finish(&env->obst);
429 fprintf(env->cond_graph, "%s" , res);
430 obstack_free(&env->obst, res);
431
432 for (size_t i = 0, len = get_irn_arity(cond->node); i < len; i++) {
433 if (cond->preds[i] != COND_UNKNOWN) {
434 fprintf(env->cond_graph, "edge: {sourcename: \"n%p \" targetname: \"n%p \" label: \"%d \"} \n" ,
435 cond, cond->preds[i], (int)i);
436 }
437 }
438 }
439 #endif
440
441 return cond;
442 }
443
444 /** A block walker which finds threading opportunities that end in @p block. */
445 static void init_and_find_cmps(ir_node *block, void *_env)
446 {
447 jt_environment *env = _env;
448 set_irn_link(block, NULL);
449
450 for (int i = 0, n_cfgpreds = get_Block_n_cfgpreds(block); i < n_cfgpreds; i++) {
451 ir_node *projx = get_Block_cfgpred(block, i);
452 if (!is_Proj(projx)) {

75

453 continue;
454 }
455
456 jt_cond *cond = NULL;
457 ir_node *cond_node = get_Proj_pred(projx);
458 if (is_Cond(cond_node)) {
459 if (get_Proj_num(projx) != pn_Cond_true && get_Proj_num(projx) != pn_Cond_false) {
460 continue;
461 }
462 ir_node *selector = get_Cond_selector(cond_node);
463 #ifdef JT_NO_CF
464 if (!is_Const(selector) && get_nodes_block(selector) != get_nodes_block(cond_node)) {
465 continue;
466 }
467 #endif
468 if (is_Cmp(selector)) {
469 ir_node *var;
470 ir_tarval *a, *b;
471 if (!get_cmp_interval(selector, &var, &a, &b)) {
472 continue;
473 }
474
475 #ifdef JT_NO_CF
476 if (get_nodes_block(var) != get_nodes_block(selector)) {
477 continue;
478 }
479 #endif
480
481 ir_mode *mode = get_irn_mode(var);
482 if (a == get_mode_min(mode) && b == get_mode_max(mode)) {
483 cond = get_Proj_num(projx) == pn_Cond_true ? &env->cond_always_true : COND_UNKNOWN;
484 } else {
485 if (get_Proj_num(projx) == pn_Cond_false) {
486 interval_complement(&a, &b);
487 }
488
489 DB((dbg, LEVEL_1, "Found a Cmp node %+F, var %+F, interval [[%+F, %+F]], dest %+F \n" ,
490 selector, var, a, b, projx));
491 cond = get_cond((jt_environment *)env, var, a, b,
492 get_chop_size_incl(get_nodes_block(var), get_nodes_block(projx)), projx);
493 }
494 } else if (is_Const(selector)) {
495 ir_tarval *needed_tv = (get_Proj_num(projx) == pn_Cond_true ? tarval_b_true : tarval_b_false);
496 if (get_Const_tarval(selector) == needed_tv) {
497 DB((dbg, LEVEL_1, "Found a Const b node %+F \n" , selector));
498 cond = &env->cond_always_true;
499 }
500 } else if (is_Phi(selector)) {
501 ir_tarval *needed_tv = get_Proj_num(projx) == pn_Cond_true ? tarval_b_true : tarval_b_false;
502 DB((dbg, LEVEL_1, "Found a Phi b node %+F \n" , selector));
503 cond = get_cond(env, selector, needed_tv, needed_tv,
504 get_chop_size_incl(get_nodes_block(selector), get_nodes_block(projx)), projx);
505 }
506
507 #ifndef JT_NO_SWITCH
508 } else if (is_Switch(cond_node)) {
509 ir_node *selector = get_Switch_selector(cond_node);
510 if (!is_Phi(selector) && !is_Const(selector) && !is_Confirm(selector)) {
511 continue;
512 }
513 ir_mode *mode = get_irn_mode(selector);
514 if (!mode_is_int(mode) && mode != get_modeP()) {
515 continue;
516 }
517 #ifdef JT_NO_CF
518 if (get_nodes_block(selector) != get_nodes_block(cond_node)) {

76

519 continue;
520 }
521 #endif
522
523 ir_switch_table *switch_table = get_Switch_table(cond_node);
524 for (size_t j = 0, len = ir_switch_table_get_n_entries(switch_table); j < len; j++) {
525 if (ir_switch_table_get_pn(switch_table, j) == get_Proj_num(projx)) {
526 continue;
527 }
528 DB((dbg, LEVEL_1, "Found a Switch node %+F, var %+F, interval [%+F, %+F], dest %+F \n" ,
529 cond_node, selector, ir_switch_table_get_min(switch_table, j),
530 ir_switch_table_get_max(switch_table, j), projx));
531 cond = get_cond(env, selector, ir_switch_table_get_min(switch_table, j),
532 ir_switch_table_get_max(switch_table, j),
533 get_chop_size_incl(get_nodes_block(selector), get_nodes_block(cond_node)), projx);
534 }
535 #endif
536 }
537
538 if (cond != COND_UNKNOWN) {
539 pmap_insert(env->thread_successors, projx, cond);
540
541 #ifdef JT_DUMP_COND_GRAPH
542 ir_obst_vprintf(env, "node: { title: \"n%p \" label: \"%+F \" } \n" , projx, projx);
543 obstack_1grow(&env->obst, '\0');
544 char *res = (char *)obstack_finish(&env->obst);
545 fprintf(env->cond_graph, "%s" , res);
546 obstack_free(&env->obst, res);
547 fprintf(env->cond_graph, "edge: { sourcename: \"n%p \" targetname: \"n%p \" } \n" , projx, cond);
548 #endif
549 }
550 }
551 }
552
553 static jt_edge_info *get_edge_info(jt_environment *env, ir_node *edge)
554 {
555 jt_edge_info *edge_info = pmap_get(jt_edge_info, env->cf_edge_info, edge);
556 if (edge_info == NULL) {
557 edge_info = OALLOC(&env->obst, jt_edge_info);
558 edge_info->relevant_conds = rbitset_obstack_alloc(&env->obst, ARR_LEN(env->conds));
559 edge_info->always_true_conds = rbitset_obstack_alloc(&env->obst, ARR_LEN(env->conds));
560 edge_info->forbidden_conds = rbitset_obstack_alloc(&env->obst, ARR_LEN(env->conds));
561 pmap_insert(env->cf_edge_info, edge, edge_info);
562 }
563
564 return edge_info;
565 }
566
567 /** Adds @p cond to the "relevant_conds" field of all edges between @p block and
568 * the block of cond->node, then calls itself recursively for all predecessor conds. */
569 static void annotate_edges_rec(jt_environment *env, ir_node *block, jt_cond *cond)
570 {
571 if (block == NULL) {
572 return;
573 }
574
575 for (int i = 0, len = get_Block_n_cfgpreds(block); i < len; i++) {
576 ir_node *cfpred = get_Block_cfgpred(block, i);
577 if (block == get_nodes_block(cond->node)) {
578 jt_cond *pred_cond = cond->preds[i];
579 if (pred_cond == &env->cond_always_true) {
580 rbitset_set(get_edge_info(env, cfpred)->always_true_conds, cond->index);
581 } else if (pred_cond != COND_UNKNOWN && pred_cond->visited < get_irg_visited(env->irg)) {
582 pred_cond->visited = get_irg_visited(env->irg);
583 annotate_edges_rec(env, get_nodes_block(cfpred), pred_cond);
584 }

77

585 } else if (get_irn_n_edges(cfpred) <= 1 /* "> 1" happens for IJmp nodes, we skip those */
586 && !rbitset_is_set(get_edge_info(env, cfpred)->relevant_conds, cond->index)) {
587 rbitset_set(get_edge_info(env, cfpred)->relevant_conds, cond->index);
588 annotate_edges_rec(env, get_nodes_block(cfpred), cond);
589 }
590 }
591 }
592
593 /** Annotates all edges in the graph with the conds that are relevant for them
594 * (i.e. should be propagated along them). */
595 static void annotate_edges(jt_environment *env)
596 {
597 foreach_pmap(env->thread_successors, entry) {
598 ir_node *projx = (ir_node *)entry->key;
599 ir_node *projx_block = get_nodes_block(projx);
600 if (projx_block == NULL) {
601 continue;
602 }
603
604 jt_cond *cond = (jt_cond *)entry->value;
605 foreach_block_succ_safe(projx_block, edge) {
606 ir_node *dst = get_irn_n(get_edge_src_irn(edge), get_edge_src_pos(edge));
607 if (dst != projx) {
608 if (cond == &env->cond_always_true) {
609 // Edges that are never taken are removed right away.
610 set_irn_n(get_edge_src_irn(edge), get_edge_src_pos(edge), new_r_Bad(env->irg, mode_X));
611 add_End_keepalive(get_irg_end(env->irg), projx_block);
612 } else {
613 rbitset_set(get_edge_info(env, dst)->forbidden_conds, cond->index);
614 }
615 }
616 }
617
618 if (cond->node != NULL) {
619 annotate_edges_rec(env, projx_block, cond);
620 }
621 }
622 }
623
624 /** Returns whether the duplicate of predecessor @p pred_no of @p succ_block_dupl that is
625 * annotated with @p pred_conds is a predecessor of @p succ_block_dupl.
626 */
627 static bool is_predecessor(jt_environment *env, jt_block_dupl *succ_block_dupl, int pred_no,
628 unsigned *pred_conds)
629 {
630 jt_edge_info *edge_info = get_edge_info(env, get_Block_cfgpred(succ_block_dupl->dupl_block, pred_no));
631 if (rbitsets_have_common(pred_conds, edge_info->forbidden_conds, ARR_LEN(env->conds))) {
632 return false;
633 }
634
635 unsigned *succ_conds_expected = rbitset_alloca(ARR_LEN(env->conds));
636 rbitset_copy(succ_conds_expected, pred_conds, ARR_LEN(env->conds));
637 rbitset_and(succ_conds_expected, edge_info->relevant_conds, ARR_LEN(env->conds));
638
639 /* From here on, only new bits are set in succ_conds_expected. Exit early if we don't have
640 * a subset of succ_block_dupl->conds. */
641 if (!rbitset_contains(succ_conds_expected, succ_block_dupl->conds, ARR_LEN(env->conds))) {
642 return false;
643 }
644
645 rbitset_or(succ_conds_expected, edge_info->always_true_conds, ARR_LEN(env->conds));
646
647 /* For each cond in pred_conds that is a predecessor of a cond in the successor block,
648 * activate that cond if the corresponding predecessor cond is activated. */
649 for (size_t i = 0, len = ARR_LEN(env->conds); i < len; i++) {
650 jt_cond *cond = env->conds[i];

78

651 if (cond->node != NULL && get_nodes_block(cond->node) == succ_block_dupl->orig_block) {
652 if (cond->preds[pred_no] != &env->cond_always_true &&
653 cond->preds[pred_no] != COND_UNKNOWN &&
654 rbitset_is_set(pred_conds, cond->preds[pred_no]->index)) {
655 rbitset_set(succ_conds_expected, cond->index);
656 }
657 }
658 }
659
660 return rbitsets_equal(succ_block_dupl->conds, succ_conds_expected, ARR_LEN(env->conds));
661 }
662
663 /** Returns whether the given array contains a jt_block_dupl* with the given cond set. */
664 static bool contains_cond_set(jt_environment *env, jt_block_dupl **block_dupls, unsigned *cond_set)
665 {
666 for (size_t i = 0, len = ARR_LEN(block_dupls); i < len; i++) {
667 if (rbitsets_equal(block_dupls[i]->conds, cond_set, ARR_LEN(env->conds))) {
668 return true;
669 }
670 }
671 return false;
672 }
673
674 /** Computes the duplicates needed for the successors of `block_dupl`. */
675 static void get_succ_duplicates(jt_environment *env, jt_block_dupl *block_dupl)
676 {
677 ir_node *block = block_dupl->orig_block;
678 assert(is_Block(block));
679
680 unsigned *cond_set = block_dupl->conds;
681 assert(cond_set != NULL);
682
683 DB((dbg, LEVEL_1, "get_succ_duplicates %+F '" , block));
684 debug_cond_set(env, cond_set);
685 DB((dbg, LEVEL_1, "' \n"));
686
687 unsigned *cond_set2 = rbitset_alloca(ARR_LEN(env->conds));
688
689 foreach_block_succ(block, edge) {
690 rbitset_copy(cond_set2, cond_set, ARR_LEN(env->conds));
691
692 ir_node *succ_block = get_edge_src_irn(edge);
693 if (get_irn_idx(succ_block) >= env->orig_last_idx) {
694 continue;
695 }
696 int succ_pos = get_edge_src_pos(edge);
697
698 jt_edge_info *edge_info = get_edge_info(env, get_irn_n(succ_block, succ_pos));
699 if (rbitsets_have_common(cond_set2, edge_info->forbidden_conds, ARR_LEN(env->conds))) {
700 continue;
701 }
702
703 rbitset_and(cond_set2, edge_info->relevant_conds, ARR_LEN(env->conds));
704 rbitset_or(cond_set2, edge_info->always_true_conds, ARR_LEN(env->conds));
705
706 for (size_t i = 0, len = ARR_LEN(env->conds); i < len; i++) {
707 jt_cond *cond = env->conds[i];
708 if (cond->node != NULL && get_nodes_block(cond->node) == succ_block
709 && cond->preds[succ_pos] != &env->cond_always_true
710 && cond->preds[succ_pos] != COND_UNKNOWN
711 && rbitset_is_set(cond_set, cond->preds[succ_pos]->index)) {
712 rbitset_set(cond_set2, cond->index);
713 }
714 }
715
716 ir_node *dupl_block = succ_block;

79

717 jt_block_dupl **succ_duplicates = pmap_get(jt_block_dupl *, env->block_dupls, succ_block);
718 if (succ_duplicates == NULL) {
719 succ_duplicates = NEW_ARR_F(jt_block_dupl *, 0);
720 } else {
721 if (contains_cond_set(env, succ_duplicates, cond_set2)) {
722 continue;
723 }
724 dupl_block = exact_copy(succ_block);
725 DB((dbg, LEVEL_1, ">>> Duplicating %+F for '" , succ_block));
726 debug_cond_set(env, cond_set2);
727 DB((dbg, LEVEL_1, "' as %+F \n" , dupl_block));
728 }
729
730 jt_block_dupl *entry = OALLOC(&env->obst, jt_block_dupl);
731 entry->orig_block = succ_block;
732 entry->dupl_block = dupl_block;
733 entry->conds = rbitset_duplicate_obstack_alloc(&env->obst, cond_set2, ARR_LEN(env->conds));
734 set_irn_link(dupl_block, entry);
735 ARR_APP1(jt_block_dupl *, succ_duplicates, entry);
736
737 pmap_insert(env->block_dupls, succ_block, succ_duplicates); // ARR_APP1 might modify the array pointer
738
739 get_succ_duplicates(env, succ_duplicates[ARR_LEN(succ_duplicates) - 1]);
740 }
741 }
742
743 static ir_node *get_original_node(ir_node *node)
744 {
745 return irn_visited(node) ? get_irn_link(node) : node;
746 }
747
748 static bool is_original_node(jt_environment *env, ir_node *node)
749 {
750 return get_irn_idx(node) < env->orig_last_idx;
751 }
752
753 /**
754 * Adjusts the control flow predecessors for the given @block_dupl. It can gain additional predecessors
755 * if it is reachable from more than one duplicate of an original predecessor; it can lose predecessors
756 * if one of its predecessors now jumps to another duplicate of the same block.
757 *
758 * If @block_dupl is an original block, we do not remove any predecessors, but instead replace them
759 * by Bad nodes so that the predecessors of Phi nodes can be determined correctly.
760 *
761 * This operation need only be performed once per block and is therefore guarded by the visited flag.
762 * If the block has not been visited yet, it has the same predecessors as its original block.
763 */
764 static void get_predecessors(jt_environment *env, jt_block_dupl *block_dupl)
765 {
766 assert(block_dupl != NULL);
767 assert(is_Block(block_dupl->dupl_block));
768 assert(is_Block(block_dupl->orig_block));
769
770 if (irn_visited_else_mark(block_dupl->dupl_block)) {
771 return;
772 }
773
774 ir_node **preds = NEW_ARR_F(ir_node *, get_Block_n_cfgpreds(block_dupl->dupl_block));
775 for (size_t i = 0, len = get_Block_n_cfgpreds(block_dupl->dupl_block); i < len; i++) {
776 ir_node *pred_node = get_Block_cfgpred(block_dupl->dupl_block, i);
777 ir_node *pred_block = get_nodes_block(pred_node);
778 if (pred_block == NULL) {
779 preds[i] = pred_node;
780 mark_irn_visited(pred_node);
781 continue;
782 }

80

783
784 jt_block_dupl **pred_duplicates = pmap_get(jt_block_dupl *, env->block_dupls, pred_block);
785 if (pred_duplicates == NULL) {
786 // pred_block is not reachable from Start block
787 preds[i] = new_r_Bad(env->irg, mode_X);
788 mark_irn_visited(pred_node);
789 add_End_keepalive(get_irg_end(env->irg), pred_block);
790 continue;
791 }
792
793 bool found = false;
794 for (size_t j = 0, len = ARR_LEN(pred_duplicates); j < len; j++) {
795 assert(is_Block(pred_duplicates[j]->orig_block));
796 assert(is_Block(pred_duplicates[j]->dupl_block));
797 if (is_predecessor(env, block_dupl, i, pred_duplicates[j]->conds)) {
798 jt_block_dupl *new_pred_block = pred_duplicates[j];
799 ir_node *new_pred;
800
801 jt_cond *fulfilled_cond = pmap_get(jt_cond, env->thread_successors, pred_node);
802 if (fulfilled_cond != NULL && (fulfilled_cond == &env->cond_always_true ||
803 rbitset_is_set(new_pred_block->conds, fulfilled_cond->index))) {
804 new_pred = new_r_Jmp(new_pred_block->dupl_block);
805 } else if (get_nodes_block(pred_node) == new_pred_block->dupl_block) {
806 new_pred = pred_node;
807 } else {
808 new_pred = exact_copy(pred_node);
809 set_nodes_block(new_pred, new_pred_block->dupl_block);
810 env->num_node_dupls_exact++;
811 }
812 set_irn_link(new_pred, pred_node);
813 mark_irn_visited(new_pred);
814
815 // The first predecessor can be inserted at the original position, all others are appended at the end.
816 if (!found) {
817 preds[i] = new_pred;
818 found = true;
819 } else {
820 ARR_APP1(ir_node *, preds, new_pred);
821 }
822 }
823 }
824 if (!found) {
825 preds[i] = new_r_Bad(env->irg, mode_X);
826 }
827 }
828
829 set_irn_in(block_dupl->dupl_block, ARR_LEN(preds), preds);
830 }
831
832 static ir_node *get_dominating_def(jt_environment *env, ir_node *node, ir_node *block,
833 pmap *dominating_def_cache);
834
835 static void get_pred_dominating_defs(jt_environment *env, ir_node *node)
836 {
837 assert(!is_Phi(node));
838 for (int i = 0, len = get_irn_arity(node); i < len; i++) {
839 ir_node *pred_node = get_original_node(get_irn_n(node, i));
840 if (!is_Bad(pred_node) && !is_Dummy(pred_node) && !is_Const(pred_node)) {
841 set_irn_n(node, i, get_dominating_def(env, pred_node, get_nodes_block(node), NULL));
842 }
843 }
844 }
845
846 /** Returns a definition of @node (either @node itself, or a duplicate, or a newly created Phi node)
847 * whose block dominates @block. */
848 static ir_node *get_dominating_def(jt_environment *env, ir_node *node, ir_node *block,

81

849 pmap *dominating_def_cache)
850 {
851 assert(is_Block(block));
852 jt_block_dupl *block_dupl = get_irn_link(block);
853
854 if (block_dupl == NULL) {
855 // If no duplicates for this block have been created, it is not reachable
856 // from the Start node and can therefore be removed.
857 return new_r_Bad(env->irg, get_irn_mode(node));
858 }
859
860 assert(block_dupl->dupl_block == block);
861 if (is_original_node(env, block)) {
862 assert(block_dupl->dupl_block == block_dupl->orig_block);
863 } else {
864 assert(block_dupl->dupl_block != block_dupl->orig_block);
865 }
866
867 assert(is_original_node(env, node));
868
869 // Try to fetch a cached result.
870 ir_node *result = NULL;
871 if (dominating_def_cache == NULL) {
872 dominating_def_cache = pmap_get(pmap, env->dominating_defs, node);
873 }
874
875 if (dominating_def_cache == NULL) {
876 // Shortcut: if the original node's block has not been duplicated, there is only one definition.
877 // We still need to fix this node's predecessors though.
878 if (ARR_LEN(pmap_get(jt_block_dupl *, env->block_dupls, get_nodes_block(node))) == 1) {
879 result = node;
880 block = get_nodes_block(node);
881 block_dupl = get_irn_link(block);
882 } else {
883 dominating_def_cache = pmap_create();
884 pmap_insert(env->dominating_defs, node, dominating_def_cache);
885 }
886 } else {
887 result = pmap_get(ir_node, dominating_def_cache, block);
888 }
889
890 if (result == NULL) {
891 // No cached result found
892 if (get_nodes_block(node) == block) {
893 // Same block -- return the original node
894 result = node;
895 } else if (get_nodes_block(node) == block_dupl->orig_block) {
896 // Duplicate of the definition block -- we need to duplicate the definition
897 result = exact_copy(node);
898 set_nodes_block(result, block);
899 env->num_node_dupls_exact++;
900 } else {
901 // None of the above -- we might need to insert a Phi node here, but we know that only after
902 // recursing. Insert a pending Phi for now, except if we have only one control flow predecessor.
903 get_predecessors(env, block_dupl);
904 size_t n_cfgpreds = get_Block_n_cfgpreds(block);
905
906 if (n_cfgpreds == 1) {
907 ir_node *pred_block = get_Block_cfgpred_block(block, 0);
908 result = pred_block == NULL ? new_r_Bad(env->irg, get_irn_mode(node)) :
909 get_dominating_def(env, node, pred_block, dominating_def_cache);
910 block = get_nodes_block(result);
911 if (block == NULL) {
912 return result;
913 }
914 block_dupl = get_irn_link(block);

82

915 } else {
916 ir_node *dummy = new_r_Dummy(env->irg, get_irn_mode(node));
917 ir_node **phi_ins = ALLOCAN(ir_node *, n_cfgpreds);
918 for (size_t i = 0; i < n_cfgpreds; i++) {
919 phi_ins[i] = dummy;
920 }
921 result = new_r_Phi(block, n_cfgpreds, phi_ins, get_irn_mode(node));
922 }
923 }
924 }
925
926 assert(result != NULL);
927
928 // Recursively fix the arguments of the result. If it is a Phi, we might additionally need to adjust
929 // the number of arguments to match the number of the block's cfpreds. We needd to do this only once.
930 if (!irn_visited_else_mark(result)) {
931 set_irn_link(result, node);
932 if (dominating_def_cache != NULL) {
933 // Insert result into the cache before making any recursive calls.
934 pmap_insert(dominating_def_cache, block, result);
935 }
936
937 get_predecessors(env, block_dupl);
938 size_t n_cfgpreds = get_Block_n_cfgpreds(block);
939
940 if (!is_Phi(result)) {
941 get_pred_dominating_defs(env, result);
942 } else if (block_dupl->orig_block == get_nodes_block(node)) {
943 // result is equal to node or a duplicate thereof
944
945 // All predecessor blocks are duplicates of the first n blocks, where n is the number of
946 // predecessors of the original block before Jump Threading. We do not know the value of n, but we know:
947 // (1) If result == node, then n == get_irn_arity(result), because at this point, result still has the
948 // original number of arguments
949 size_t known_n_cfgpreds = result == node ? get_irn_arity(result) : 0;
950 assert(n_cfgpreds >= known_n_cfgpreds);
951
952 // (2) From the definition of get_predecessors, Bad predecessors can only occur within the first n
953 // predecessors of the original or duplicate block, so when encountering a Bad at position i,
954 // we know that 0 <= i <= n-1.
955
956 // Adjust the number of Phi preds
957 if ((size_t)get_irn_arity(result) != n_cfgpreds) {
958 ir_node **phi_ins = ALLOCAN(ir_node *, n_cfgpreds);
959 ir_node *dummy = new_r_Dummy(env->irg, get_irn_mode(result));
960 for (size_t i = 0; i < n_cfgpreds; i++) {
961 phi_ins[i] = i < known_n_cfgpreds ? get_irn_n(result, i) : dummy;
962 }
963 set_irn_in(result, n_cfgpreds, phi_ins);
964 }
965
966 // Adjust the first "known_n_cfgpreds" predecessors
967 for (size_t i = 0; i < known_n_cfgpreds; i++) {
968 assert(is_original_node(env, get_irn_n(result, i)));
969
970 if (get_Block_cfgpred_block(block, i) != NULL) {
971 set_irn_n(result, i, get_dominating_def(env, get_irn_n(result, i),
972 get_Block_cfgpred_block(block, i), NULL));
973 } else {
974 // Even though this duplicate block's cfpred has been replaced by a Bad,
975 // the Phi pred is still relevant in block duplicates where this is not the case.
976 // Still have to call get_dominating_def on the pred to trigger control flow changes.
977 get_dominating_def(env, get_irn_n(result, i), get_nodes_block(get_irn_n(result, i)), NULL);
978 }
979 }
980

83

981 // Adjust the rest of the predecessors. For every i, find a j in 0..n-1 so that
982 // cfgpred i is a duplicate of cfgpred j
983 size_t orig_n_cfgpreds = get_Block_n_cfgpreds(block_dupl->orig_block);
984 for (size_t i = known_n_cfgpreds; i < n_cfgpreds; i++) {
985 ir_node *cfgpred = get_original_node(get_Block_cfgpred(block, i));
986 if (is_Bad(cfgpred)) { // see (2) above
987 set_irn_n(result, i, new_r_Bad(env->irg, get_irn_mode(result)));
988 } else if (i < orig_n_cfgpreds && is_Bad(get_Block_cfgpred(block_dupl->orig_block, i))) {
989 set_irn_n(result, i, get_dominating_def(env,
990 get_original_node(get_irn_n(node, i)),
991 get_Block_cfgpred_block(block, i), NULL));
992 } else {
993 bool found = false;
994 for (size_t j = 0; j < n_cfgpreds && j < orig_n_cfgpreds; j++) {
995 ir_node *orig_pred_j = get_Block_cfgpred(block_dupl->orig_block, j);
996 ir_node *dupl_pred_j = get_Block_cfgpred(block_dupl->dupl_block, j);
997
998 if ((!is_Bad(orig_pred_j) && get_original_node(orig_pred_j) == cfgpred)
999 || (!is_Bad(dupl_pred_j) && get_original_node(dupl_pred_j) == cfgpred)) {

1000 found = true;
1001
1002 set_irn_n(result, i, get_dominating_def(env,
1003 get_original_node(get_irn_n(node, j)),
1004 get_Block_cfgpred_block(block, i), NULL));
1005 break;
1006 }
1007 }
1008 assert(found);
1009 }
1010 }
1011 } else {
1012 // We have a pending Phi. Eliminate it if all its non-Bad, non-self predecessors are the same.
1013 ir_node *first_nonbad_pred = NULL;
1014 bool need_phi = false;
1015 for (size_t i = 0; i < n_cfgpreds; i++) {
1016 ir_node *pred_block = get_Block_cfgpred_block(block, i);
1017 ir_node *pred_dominating_def = pred_block == NULL ?
1018 new_r_Bad(env->irg, get_irn_mode(node)) :
1019 get_dominating_def(env, node, pred_block, dominating_def_cache);
1020 set_irn_n(result, i, pred_dominating_def);
1021 if (!is_Bad(pred_dominating_def)) {
1022 if (first_nonbad_pred == NULL) {
1023 first_nonbad_pred = pred_dominating_def;
1024 } else {
1025 need_phi |= (i > 0 && pred_dominating_def != result && pred_dominating_def != first_nonbad_pred);
1026 }
1027 }
1028 }
1029 if (!need_phi) {
1030 ir_node *result_old = result;
1031 result = first_nonbad_pred;
1032 assert(irn_visited(result));
1033 assert(get_irn_link(result) == node);
1034 exchange(result_old, result);
1035 // The dummy Phi might linger around somewhere in the cache from recursive calls.
1036 // Exchange it there as well.
1037 foreach_pmap(dominating_def_cache, entry) {
1038 if (entry->value == result_old) {
1039 entry->value = result;
1040 }
1041 }
1042 }
1043 }
1044
1045 // We might have created a new loop block.
1046 if (is_Phi(result) && get_irn_mode(node) == mode_M) {

84

1047 set_Phi_loop(result, 1);
1048 add_End_keepalive(get_irg_end(env->irg), result);
1049 }
1050 }
1051
1052 assert(result != NULL);
1053 return result;
1054 }
1055
1056 void opt_jumpthreading(ir_graph *irg)
1057 {
1058 FIRM_DBG_REGISTER(dbg, "firm.opt.jumpthreading");
1059 DB((dbg, LEVEL_1, "===> Performing jumpthreading on %+F \n" , irg));
1060
1061 assure_irg_properties(irg,
1062 IR_GRAPH_PROPERTY_NO_UNREACHABLE_CODE
1063 | IR_GRAPH_PROPERTY_CONSISTENT_OUT_EDGES
1064 #ifdef JT_NO_CRITICAL_EDGES
1065 | IR_GRAPH_PROPERTY_NO_CRITICAL_EDGES
1066 #endif
1067 | IR_GRAPH_PROPERTY_CONSISTENT_LOOPINFO
1068);
1069
1070 ir_reserve_resources(irg, IR_RESOURCE_IRN_LINK | IR_RESOURCE_IRN_VISITED);
1071
1072 jt_environment env;
1073 env.irg = irg;
1074 env.orig_last_idx = get_irg_last_idx(irg);
1075 obstack_init(&env.obst);
1076 env.cond_always_true.node = NULL;
1077 env.conds = NEW_ARR_F(jt_cond *, 0);
1078 env.cf_edge_info = pmap_create();
1079 env.thread_successors = pmap_create();
1080 env.block_dupls = pmap_create();
1081 env.dominating_defs = pmap_create();
1082 env.num_node_dupls_exact = 0;
1083
1084 #ifdef JT_DUMP_COND_GRAPH
1085 obstack_printf(&env.obst, "%s-%02u-jt-conds.vcg" , get_irg_dump_name(irg), irg->dump_nr++);
1086 obstack_1grow(&env.obst, '\0');
1087 char *file_name = (char *)obstack_finish(&env.obst);
1088 env.cond_graph = fopen(file_name, "wb");
1089 obstack_free(&env.obst, file_name);
1090 #endif
1091
1092 // Find threading opportunities
1093 inc_irg_visited(irg);
1094 #ifdef JT_DUMP_COND_GRAPH
1095 fprintf(env.cond_graph, "graph: { title: \"cond graph of %s \"\n" , get_entity_name(get_irg_entity(irg)));
1096 fprintf(env.cond_graph, "node: { title: \"n%p \" label: \"COND_ALWAYS_TRUE \" } \n" , &env.cond_always_true);
1097 #endif
1098 irg_block_walk_graph(irg, init_and_find_cmps, NULL, &env);
1099 #ifdef JT_DUMP_COND_GRAPH
1100 fprintf(env.cond_graph, "} \n");
1101 fclose(env.cond_graph);
1102 #endif
1103
1104 // Exit early if no threading opportunities found
1105 if (ARR_LEN(env.conds) == 0) {
1106 ir_free_resources(irg, IR_RESOURCE_IRN_LINK | IR_RESOURCE_IRN_VISITED);
1107 obstack_free(&env.obst, NULL);
1108 return;
1109 }
1110
1111 inc_irg_visited(irg);
1112 annotate_edges(&env);

85

1113
1114 // Compute the needed duplicates for each block. The start and end block are never duplicated.
1115 jt_block_dupl **start_dupl = NEW_ARR_F(jt_block_dupl *, 1);
1116 start_dupl[0] = OALLOC(&env.obst, jt_block_dupl);
1117 start_dupl[0]->orig_block = get_irg_start_block(irg);
1118 start_dupl[0]->dupl_block = get_irg_start_block(irg);
1119 start_dupl[0]->conds = rbitset_obstack_alloc(&env.obst, ARR_LEN(env.conds));
1120 pmap_insert(env.block_dupls, get_irg_start_block(irg), start_dupl);
1121 set_irn_link(get_irg_start_block(irg), start_dupl[0]);
1122
1123 jt_block_dupl **end_dupl = NEW_ARR_F(jt_block_dupl *, 1);
1124 end_dupl[0] = OALLOC(&env.obst, jt_block_dupl);
1125 end_dupl[0]->orig_block = get_irg_end_block(irg);
1126 end_dupl[0]->dupl_block = get_irg_end_block(irg);
1127 end_dupl[0]->conds = rbitset_obstack_alloc(&env.obst, ARR_LEN(env.conds));
1128 pmap_insert(env.block_dupls, get_irg_end_block(irg), end_dupl);
1129 set_irn_link(get_irg_end_block(irg), end_dupl[0]);
1130
1131 get_succ_duplicates(&env, start_dupl[0]);
1132 inc_irg_visited(irg);
1133
1134 // Fix control flow predecessors for each block duplicate
1135 inc_irg_visited(irg);
1136 foreach_pmap(env.block_dupls, entry) {
1137 jt_block_dupl **dupls = entry->value;
1138 for (size_t i = 0, len = ARR_LEN(dupls); i < len; i++) {
1139 get_predecessors(&env, dupls[i]);
1140
1141 for (size_t j = 0, len = get_Block_n_cfgpreds(dupls[i]->dupl_block); j < len; j++) {
1142 ir_node *cfpred = get_Block_cfgpred(dupls[i]->dupl_block, j);
1143 ir_node *pred_block = get_nodes_block(cfpred);
1144 if (pred_block != NULL) {
1145 // Recursively get the dominating definitions of nodes reachable via regular control flow
1146 get_pred_dominating_defs(&env, cfpred);
1147 }
1148 }
1149 }
1150 }
1151
1152 // We need to keep the duplicate block alive if the original was kept alive.
1153 // Also we need to get the predecessor definitions of kept alive non-Block nodes.
1154 for (int i = 0, len = get_End_n_keepalives(get_irg_end(irg)); i < len; i++) {
1155 ir_node *keepalive = get_End_keepalive(get_irg_end(irg), i);
1156 if (!is_original_node(&env, keepalive)) {
1157 continue;
1158 }
1159 if (is_Block(keepalive)) {
1160 jt_block_dupl **block_dupls = pmap_get(jt_block_dupl *, env.block_dupls, keepalive);
1161 if (block_dupls != NULL) {
1162 for (size_t j = 0, len = ARR_LEN(block_dupls); j < len; j++) {
1163 if (block_dupls[j]->dupl_block != keepalive) {
1164 add_End_keepalive(get_irg_end(irg), block_dupls[j]->dupl_block);
1165 }
1166 }
1167 }
1168 } else if (get_nodes_block(keepalive) != NULL) {
1169 jt_block_dupl **block_dupls = pmap_get(jt_block_dupl *, env.block_dupls, get_nodes_block(keepalive));
1170 if (block_dupls != NULL) {
1171 for (size_t j = 0, len = ARR_LEN(block_dupls); j < len; j++) {
1172 // might need to adjust Phi inputs
1173 ir_node *dom_def = get_dominating_def(&env, keepalive, block_dupls[j]->dupl_block, NULL);
1174 if (block_dupls[j]->dupl_block != get_nodes_block(keepalive)) {
1175 add_End_keepalive(get_irg_end(irg), dom_def);
1176 }
1177 }
1178 }

86

1179 }
1180 }
1181 inc_irg_visited(irg);
1182
1183 ir_free_resources(irg, IR_RESOURCE_IRN_LINK | IR_RESOURCE_IRN_VISITED);
1184 obstack_free(&env.obst, NULL);
1185 confirm_irg_properties(irg, IR_GRAPH_PROPERTIES_NONE);
1186 }

87

	Introduction
	Basics and Related Work
	Branch prediction mechanisms
	Related work

	Design
	Preliminaries
	Limitations on the CFG structure
	CFG execution semantics
	Duplicating blocks

	Threading Opportunities
	Definition
	Critical edges
	Irreducible control flow
	Threading multiple TOs

	Finding TOs
	Data flow analysis
	Properties
	Reconstructing TOs

	Interaction with other optimizations
	If Conversion
	Block scheduling

	Analysis of existing algorithms
	LLVM
	GCC
	libFirm
	Confirm nodes and optimization pass
	The existing Jump Threading algorithm
	Limitations
	Non-termination

	Implementation
	General structure
	Wrap-around intervals
	Implementation details
	Use of bit sets for cond sets
	Edge annotations
	Usage of the link field

	Validation
	SSA reconstruction
	Cost model

	Evaluation
	Experimental setup and methodology
	Platform
	Compiler
	Benchmarks
	Methodology

	Experimental results and discussion
	FSM microbenchmark
	Execution time
	Opcode mix
	Compile time
	Number of conds

	Conclusion and Further Work
	Jump Threading source code

