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Abstract. We combine the static analysis techniques of Program Depen-
dence Graphs (PDG) and Dynamic Pushdown Networks (DPN) to im-
prove the precision of interference analysis for multithreaded Java pro-
grams. PDGs soundly approximate possible dependence between pro-
gram points in sequential programs through data and control dependence
edges. In a concurrent setting a third category of so-called interference
edges captures the potential interferences between memory accesses in
different threads. DPNs model concurrent programs with recursive proce-
dures, dynamic thread creation and nested locking. We use a lock-sensitive
analysis based on DPNs to remove spurious interference edges, and apply
the results to information flow control.

1 Information Flow Control for Multithreaded Java Programs

Information flow control (IFC) analyses check whether information about a
programs (secret) input can possibly flow to public output, e.g. if a secret value
is printed to console. A program is called non-interferent, iff it does not leak secret
information. Non-interference of a given program can be verified with a sound
static analysis that detects possible information flow through dependencies
and interference between program statements using PDGs [1]. If the analysis
detects no illegal information flow, it is guaranteed that during execution of the
program, an attacker observing the public output will learn nothing about the
secret input. However, depending on the precision of the analysis, there may
be false alarms, because the analysis reports spurious information flow that
is impossible during an actual execution of the program. Thus a main goal of
static non-interference analyses is to minimize the number of false alarms, by
improving analysis precision.

In the following example we show which false alarms may arise when a
multithreaded Java program is analyzed for non-interference. The program in
figure 1 does not leak information about the secret value secret to a public
visible output println and should be considered non-interferent: It contains
two threads, the main thread t0 and an instance of MyThread t1. Output to a
public visible channel only occurs through the two println statements in t0. At
a first glance it may seem possible that the value of secret is leaked, because t1



copies its value to shared variable x, but this is not the case. The first println
statement cannot leak the secret, because it is executed before t1 starts. Therefore
x cannot contain the secret value at this time. We call an analysis that can detect
the absence of this leak invocation-sensitive. The second println statement does
also not leak the secret, because of the synchronization through lock l. The lock
l is acquired in t0 before t1 is started. Due to this the write operation in t1 can
only be executed after t0 releases l again which only happens after the second
println. An invocation- and lock-sensitive analysis is able to detect this.

1 class MyThread extends Thread {
2 private Object l;
3 private int secret = 42;
4 private int x = 0;
5

6 public static void main() {
7 Object l = new Object();
8 MyThread t1 = new MyThread(l);
9 System.out.println(t1.x);

10 synchronized (l) {
11 t1.start();

12 System.out.println(t1.x);

13 }

14 }

15 public MyThread(Object l) {
16 this.l = l;
17 }

18

19 public void run() {
20 synchronized (l) {
21 x = secret;

22 }

23 }

24 }

Fig. 1: A non-interferent multithreaded Java program.

Therefore in practice even the very precise invocation-sensitive PDG-based
IFC analysis [1, 2] can only remove the first false alarm and does raise the
second one. We were able to remove this false alarm and proof the program
non-interferent by incorporating the results of a DPN-based analysis [3–6].

2 Concurrent Program Dependence Graphs

A PDG is a graph that captures the dependencies between statements in a
program. Each node corresponds to a statement and potential dependencies
between statements are represented by edges. In a sequential program, two
statements s1 and s2 may either be data dependent, when a s2 uses a value that
s1 has produced, or control dependent, when the outcome of s1 decides if s2 will
be executed. These dependencies are in general a sound overapproximation of
all dependencies that may occur during program execution. So whenever two
statements are not connected in the PDG, they will never depend on each other
during runtime and there is no information flow between them. Figure 2 shows
the PDG of the example program with all data and control dependencies that
may occur.
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Fig. 2: The concurrent PDG of the program in Figure 1 that contains two spurious
interference edges

For concurrent programs, control and data dependencies do not suffice,
because they do not capture interference between different threads. Therefore
the concurrent PDG contains additional interference dependence edges. A write
and a read statement from two different threads are connected with an inter-
ference dependency, iff the value written may be read by the read statement.
The concurrent PDG in Figure 2 shows two interference dependencies between
both println statements and the statement that writes the value of variable x.
As previously mentioned, both of these interferences are spurious and can be
removed.

Giffhorn [2] proposes an invocation-sensitive but lock-insensitive may-hap-
pen-in-parallel (MHP) analysis that keeps track of thread creation and invoca-
tion through a dataflow analysis on the control flow graph. This algorithm is
able to detect that the first println statement may not happen in parallel with
the write operation on x, because the second thread t1 has not been started at this
time. The second interference dependence however is not removed, because the
algorithm does not consider locking.



3 Dynamic Pushdown Networks

In order to achieve lock-sensitivity, we model concurrent Java programs us-
ing Dynamic Pushdown Networks (DPN) [3–6]. DPNs can precisely model
concurrent programs with dynamic thread creation, unbounded recursion, syn-
chronization via well-nested locks and finite abstractions of thread-local and
procedure-local state. Execution trees [5] allow us to represent all the DPN’s lock-
sensitive executions using tree-automata. This allows to check for reachability
of configurations with tree-regular properties e.g. calculating MHP informa-
tion. Note that in the presence of locking MHP is not a sound criteria to remove
interference. In fact Giffhorn [2] defines that two statements may-happen-in-
parallel iff there exists two executions in which they are executed in opposite
order. Recent extensions of DPN-analysis [6] allow to iterate the execution tree
based technique and check whether critical configurations can be reached from
other configurations while retaining a tree-regular property. In particular, we
can check whether there exists an execution that executes the write to x first,
followed by one of the println statements without an intervening killing of
x. Since this is not the case, the DPN-based analysis will remove the spurious
second interference edge.

4 Implementation and Future Work

We have integrated the DPN based interference Analysis in the tool Joana[7].
Joana, based on the Wala framework, implements a flow-, object-, context-
sensitive IFC Analysis based on PDGs. Within the RS3 priority program, we
plan to integrate further analysis technique in order to further improve the
tools precision. In particular, we want to improve on the lock-detection analy-
sis, which in Java is difficult since any object can function as a lock. We plan to
use path conditions and linear invariants to detect further spurious information
flow. Analyses based on PDGs are typically whole-program analyses. In order
to deal with software consisting of several components, we implement modular
PDGs and methods for plugin-time analysis.
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