
Program Comprehension and Software ReengineeringDagstuhl Seminar, Marh 9th-13th, 1998Hausi M�uller Thomas Reps Gregor SneltingUniversity of Vitoria University of Wisonsin Universit�at BraunshweigCanada USA Germanyhausi�sr.uvi.a reps�s.wis.edu snelting�ips.s.tu-bs.deIntrodutionAnalyzing old software systems has beome an importanttopi in software tehnology. There are billions of lines oflegay ode whih onstitute substantial orporate assets.Legay systems have been subjet to ountless modi�ationsand enhanements and, hene, software entropy has typiallyinreased steadily over the years. If these systems are notrefurbished they might die of old age|and the knowledgeembodied in these systems will be lost forever.As a �rst step in \software geriatris" one usually tries tounderstand the old system using program understanding orprogram omprehension tehniques. In a seond step, one re-onstruts abstrat onepts (e.g., the system arhiteture,business rules) from the soure ode, the doumentation, andorporate knowledge; this is alled software reverse engineer-ing. Given an abstrat representation of the system, one anthen re-implement the system. This forward engineering stepranges from fully automati approahes to manual reimple-mentations inluding restruturing tehniques, formal trans-formations, injeting omponent tehnologies, replaing olduser interfae or database tehnology. The proess of movingfrom an old legay system to a new implementation is alledsoftware reengineering.It was the aim of this seminar to bring together researherswho are ative in the areas of program omprehensionand software reengineering regardless of their partiular ap-proahes and researh avenues. However, one of the areas ofonentration for this seminar was sliing tehnology whihis an important tehnique for software understanding andmaintenane ativities. Another topi of inreased inter-est have been empirial studies for software reengineering.Mathematial onept analysis gained some attention as anew framework for program understanding.Several talks were aompanied by system demonstrations,giving partiipants �rst-hand experiene of new analysis andreengineering tehnology. A panel session ompiled a list ofopen problems, both tehnial and methodologial. The tra-ditional Dagstuhl walk o�ered an opportunity for topologialomprehension and map reengineering.We are grateful to the partiipants who made the seminaran exiting week. We also aknowledge the �nanial supportprovided by the European Union in the sope of the TMRprogram. As always in Dagstuhl, the sta� was doing a terri�job looking after us and everything surrounding the seminar.

AbstratsCoping with Software Change Using Infor-mation TransparenyWilliam Griswold, University of California, San DiegoDesigns are frequently unsuessful in designing for hangeusing traditional modularity tehniques. It is diÆult to an-tiipate exatly how tehnology will advane, standards willarise, and features from ompetitor's produts will inuenefuture features. Market pressures ditate that most time beinvested in timely release of the urrent produt, not in a-omodating future hanges.One way to inrease the overage of relevant design deisionsis to use a design priniple alled information transpareny :Write ode suh that all uses of an exposed design deisionare easily visible to a programmer using available tools. Theoding onventions inlude tehniques like variable namingonventions, ode formatting, and enoding software arhi-teture into the program soure. As a onsequene of usingsuh tehniques, a programmer an use a searhing tool likegrep to view all the related objets together, reating loalityout of similarity.Flow-Insensitive Pointer AnalysisSusan Horwitz, University of Wisonsin, MadisonMost stati analysis rely on knowing what objets are usedand de�ned at eah point in the program. In a languagewith pointers, determining this information an be non-trivial. Lars Andersen de�ned a ow-insensitive algorithmfor omputing points-to information that is O(n3) in theworst ase. More reently, Bjarne Steensgard gave anotherow-insensitive algorithm that is faster (essentially O(n)),but less preise (omputes larger points-to sets than Ander-sen's algorithm).In the talk, we �rst de�ne a new points-to analysis algorithmthat an be \tuned" to provide resolutions that fall all alongthe spetrum from Steensgard to Andersen (both in termsof runtime and preision). We then present the results ofexperiments that measure how the algorithms perform inpratie, measuring both the \diret" results (sizes of points-to sets) as well as \transitive" results (the size of the setsomputed by GMOD), live, and truly-live dataow analysis,1

using the results of the di�erent pointer analyses. We �ndthat (as expeted) better points-to analysis leads to betterdataow analysis results, also (surprisingly) that, at leastfor the harder dataow problems, the extra time requiredfor the better points-to analysis is not then made up for bya derease in the time required for the subsequent dataowanalysis.Class Hierarhy Speialization1Frank Tip, IBM. T.J. Watson Researh Center2Class libraries are typially designed with an emphasis ongenerality and extensibility. An appliation that uses a li-brary typially exerises only part of the libraries funtion-ality. As a result, objets reated by the appliation mayontain unused (user-de�ned or ompiler-generated) mem-bers. We present an algorithm for speializing a lass hier-arhy with respet to its usage in a program P . That is, thealgorithm analyzes the member aess patterns for P 's vari-ables, and reates distint lasses for variables that aessdi�erent members. The algorithm addresses the inheritanemehanisms of C++ in their full generality, inluding multi-ple inheritane and virtual (shared) inheritane. Class hier-arhy speialization redues objet size, and may be viewedas a spae optimization. However, exeution time may alsobe redued through redued objet reation and destrutiontime, and ahing and paging e�ets. Class hierarhy speial-ization may also reate new opportunities for existing opti-mizations. In addition, we believe that speialization may beuseful in tools for software maintenane and understanding.Reengineering Class Hierarhies Using Con-ept AnalysisGregor Snelting, Tehnishe Universit�at Braunshweig3Class hierarhies in legay ode may be imperfet. For exam-ple, a member may be loated in a lass that does not needit, indiating that it may be eliminated or moved to a di�er-ent lass, or di�erent instanes of a given lass C may aessdi�erent subsets of C's members, an indiation that it mightbe appropriate to split C into di�erent lasses. We presentan approah for deteting suh design problems based onlass hierarhy speialization and onept analysis. Exam-ples demonstrate that our tehnique an provide remarkableinsight into member aess patterns of old C++ programs.1Paper appeared in the proeedings of OOPSLA'972Joint work with Peter Sweeney3Joint work with Frank Tip

Program Analysis via Graph ReahabilityThomas Reps, University of Wisonsin, Madison4This talk desribes how a number of program analysis prob-lems are all examples|when viewed in the right way|ofa ertain kind of generalized graph-reahability problem:ontext-free language reahability (CFL-reahability). In aCFL-reahability problem, we are given (i) a graph in whihthe edges are labeled with letters from some alphabet and(ii) a ontext-free language L (given, say, via a grammar). Apath p from node s to node t only ounts as a valid onnetionfrom s to t when the word formed by onatenating (in order)the letters among the edges of p is a word in L. This gener-alizes ordinary graph reahability in the sense that L servesto �lter out ertain paths in a graph. A CFL-reahabilityproblem an be solved in time O(n3), where n is the numberof nodes in the graph.In the talk, I desribe how problems suh as interproeduralsliing, interproedural dataow analysis, and shape analy-sis (for a language without destrutive update) an all beonverted into CFL-reahability problems. I also disuss therelationship between CFL-reahability and a ertain lass ofset-onstraint problems.Sliing Methods for Large Programs5Tibor Gyimothy, Joszef Attila University of Szeged6A method is presented for the omputation of the summaryedges representing the interproedural dependenes at allsites. The advantage of this method is that the memory re-quirement an be redued for large programs. The reasonfor it is that the algorithm omputes summary informationfor eah strongly onneted omponent of program one at atime. Hene only dependene information for one stronglyonneted omponent is stored instead of for the whole pro-gram. Moreover, the method redues the number of nodesof the dependene graphs.VALSOFT { Validation of Measurement Sys-tem Software: an Appliation of Sliing andConstraint SolvingJens Krinke, Tehnishe Universit�at Braunshweig7We show how to ombine program sliing and onstraint solv-ing in order to obtain better slie auray. The method isused in the VALSOFT sliing system. One partiular ap-pliation is the validation of omputer-ontrolled measure-ment systems. VALSOFT will be used by the Physikalish-4This represents joint work with Susan Horwitz, Mooly Sagiv,Genevieve Rosay, and David Melski.5Paper appeared in the proeedings of SEKE'976Joint work with Istvan Forgas7Joint work with Gregor Snelting

Tehnishe Bundesanstalt for veri�ation of legally requiredalibration standards. We desribe the VALSOFT sliing sys-tem, its arhiteture and its appliation. In partiular, wedesribe our �ne-grained version of the underlying systemdependene graph. We also desribe how to generate andto simplify path onditions based on program slies. Thetehnique an indeed inrease slie preision and reveal ma-nipulations of the so-alled alibration path.Towards Dataow Minimal SliingMark Harman, Goldsmiths College, University of London8Consider this programwhile i < 3 dobeginif = 2 thenbegin x := 17, := 25 end;i := i+1endwhat primitive statements and prediates a�et the �nalvalue of x ? (that is, what is the end slie on fxg?) Most sli-ing algorithms (all?) will leave in the assignment to . Thisis not a speial ase; it applies to all data ow equivalentprograms. So its true of the program shemawhile {i} dobeginif {} thenbegin x := {} ; := {}end;i := {i}endwhere the sets denote the variables upon whih an expres-sion depends. The question we ask is \at this dataowlevel of abstration is minimal sliing omputable?" Weiserasked this question in his PhD thesis, having observedthat his algorithm was not minimal in this sense. Webelieve the answer is \yes". We have an algorithm(http://www.unl.a.uk/�11daniis/) and are workingon a proof. The algorithm uses an unonventional approahto data and ontrol ow analysis based upon repeated (but�nite) instanes of prediate nodes together with their \de-pendene history".Experiene Building an Industrial-StrenghtProgram Understanding ToolJohn Field, IBM Researh9In early 1996, G. Ramalingam and I beame involved withdesigning and implementing a program understanding tool8Joint work with Sebastian Danii9Joint work with G. Ramalingam

for use in IBM's Cobol tool suite. The funtional require-ments for the tool were modest (entered around ontrol-ow rationalization and a restrited form of sliing), andour original intent was to use well-understood algorithms inits design. However, we soon disovered that despite thelimited goals, Cobol posed tehnial hallenges that to ourknowledge have not been previously addressed. In additionto a large number of endearing, but tehnially inonsequen-tial design quirks, Cobol possesses several distintly peu-liar ontrol-ow and data manipulation onstruts. TypialCobol programs also use ertain otherwise unremarked on-struts in atypial ways; For example, programs tend to on-tain vast quantities of global data and frequent use of non-disjoint unions. In this talk, I disuss the original designgoals for the tool and desribe ertain tehnial hallengesposed by Cobol and our approah to solving them. In parti-ular, I desribe an eÆient algorithm to transform instanesCobol's PERFORM onstrut to semantially equivalent pro-edural representations used for program sliing. Further,I desribe speial tehniques for omputing interproeduralreahing de�nitions and onstruting pseudo-parameters forthe proedural representations omputed during PERFORManalysis; these tehniques are neessitated by the unusualproperties of Cobol data manipulations.A Model of Change PropagationValav Rajlih, Wayne State UniversityChange in programs starts with programmer a spei� om-ponent. After the hange, the omponent may no longer�t with the next, beause it may no longer provide what theother omponents require, or it may now require di�erent ser-vies from the omponents it depends on. The dependeniesthat no longer satisfy the require{provide relationships arealled inonsistent dependenies, and they may arise when-ever a hange is made in software. When these inonsisten-ies are �xed, they may introdue additional inonsistenies,et. The paper desribes a formal model of hange propaga-tion, and two spei� examples of it: hange-and-�x senario,and top-down senario.Software MigrationHausi M�uller, University of VitoriaSoftware migration is a subset of software reengineering andinvolves moving existing system to a new platform. Impor-tant problems are migrating to objet tehnology from an im-perative language, to GUI tehnology from a text-based userinterfae; to a network-entri environment from a stand-alone appliation, to Year 2000 ompliant software. Automa-tion is a key requirement for these proesses and wrappingseems to be a promising tehnology.CESR is a Canadian Centre for Exellene for Software

Engineering Researh. The IBM CSER projet whih in-volves John Mylopoulos, University of Toronto, Ri Holtand Kostas Kontogiannis, University of Waterloo and myresearh group, urrently investigates how PL/I programsan be automatially and inrementally migrated to C++.The target appliation is about 300 klo written in a PL/Iderivative. As a pilot projet we onverted a subsystem of3000 lines to C++. The resulting subsystem was integratedinto the existing PL/I appliation. Early performane testsrevealed that the new subsystem was 50% slower. SimpleC++ optimizations were performed resulting in signi�antspeedup and a subsystem that is 5-20% faster than the orig-inal ode. Using Re�ne from Reasoning Systems we thenbuilt an automated solution to onvert the entire system im-plementing the optimizations.Task-aware Program Understanding Teh-niquesGail C. Murphy, University of British Columbia10Many software engineering tools attempt to fully automatetasks that software engineers must perform on software sys-tems. Even more tools exist to analyze ode without anynotion of how the analyzed information will be used. In thistalk, I argue that there is a useful set of tools and approahesthat fall in the middle of this spetrum. These tools aretask-aware. Task-aware tools may be more amenable to ex-ploiting partial and approximate information about soure.This type of information an help engineers more e�etivelyperform software engineering tasks on large systems withinthe time onstraints plaed on the task.I desribe two task-aware tehniques we have developed toinvestigate if an approah of overlaying logial struture onexisting soure an aid a software engineer in quikly andeasily assessing appropriate soure information for a taskat hand. The software reexion model tehnique helps anengineer gain an overall 'gestalt' of the soure by using ahigh-level strutural model as a lens through whih to sum-marize the ode for a system. This tehnique has been usedto drive an experimental reengineering of the million lines-of-ode Mirosoft Exel spreadsheet produt. The oneptualmodule tehnique provides diret support for performing areengineering task by enabling soure-level queries about adesired, rather than the existing, soure struture. This teh-nique has been used to help reengineer an over �fty thousandlines-of-ode binary deision diagram pakage prior to thesoure being parallelized.
10The reexion model work is joint with David Notkin(U.Washington) and Kevin Sullivan (U.Virginia). Coneptualmodules are joint with Elisa Baniassad (U. of British Colombia)

The AST Toolkit and ASTLOGRoger F. Crew, Mirosoft ResearhThe AST Toolkit provides the developer/tester with a C++appliation programmer interfae to data strutures usedby the front end of Mirosoft's C/C++ produt ompiler,spei�ally the abstrat syntax trees (ASTs), symbols (in-luding symbol tables and sopes), and the type desrip-tions. Given the variations in possible AST strutures andompiler idiosynraies that produt groups often take ad-vantage of, it is often important that one have aess to theatual strutures of the ompiler one is using. The toolkit hasalready been used to solve a variety of elementary program-omprehension, problems and meta-programming (e.g., au-tomati generation of stub funtion and thunks) tasks.In addition to providing a diret C++ API, the toolkit alsoprovides aess via a query language, ASTLOG. ASTLOG wasinspired by grep/awk-style tools that allow the programmerto loate program artifats without inurring the overheadof writing an entire C++ appliation. In ontrast with priorsuh tools, our goal is to provide a pattern language withsuÆiently general abstration/omposition failities so thatprogrammers an write queries/abstrations tailored to spe-i� ode bases and re-use them for later works. The lan-guage itself is a Prolog variant for whih we have written asmall, fast interpreter. The exeution model, in whih termsare treated as patterns to be mathed against an impliiturrent objet rather than as simple prediates leads to a"reverse funtional" programming style distint from boththe usual relational Prolog style and the usual "forward"style found in Algol-Family languages, one that is well-suitedto the partiular appliation of querying ASTs and relatedstrutures.GUPRO - Generi Unit for Program Under-standingAndreas Winter, University of KoblenzThe aim behind GUPRO is to develop an adaptable toolto support program understanding even in a multiple lan-guage environment. This adaptability is based on an user-de�ned oneptual model whih de�nes the internal data-struture of the tool (whih ould be viewed as an instaneof a MetaCARE-tool) and the parsing proess into the repos-itory struture. Analysis is done by a soure ode indepen-dent Query-mehanism.The formal foundation of GUPRO is given by theEER/GRAL-approah on graph based, oneptual modeling.A presentation of GUPRO inluding queries to a oarse-grained multi-language oneptual model, a �ne grained C-model and the aording meta model was given after thetalk.

A Range Equivalene Algorithm and its Ap-pliation to Type InfereneG. Ramalingam, IBM T.J.Watson Researh Center11A ommon program maintenane ativity is that of hang-ing the representation/implementation of an abstrat type.A well-known example is that of making programs "year 2000ompliant", whih requires ensuring that the implementationof the abstrat type "YEAR" an adequately distinguish be-tween years belonging to di�erent enturies.Ideally, appropriate use of "abstrat data types" would makesuh hanges easy, requiring appropriate modi�ations onlyto the (single) implementation of the abstrat daty type. Inpratie, suh hanges turn out to be very expensive andtime-onsuming beause of inadequate use of abstrations.In fat, muh of the existing legay ode is written in lan-guages suh as Cobol that do not provide adequate abstra-tion failities.Consequently, a programmer faing the problem of makingsuh a hange needs to �nd all variables in a program thatbelong to some abstrat type. This talk desribes a type in-ferene algorithm that partitions the variables in a programinto equivalene lasses, where all variables in an equiva-lene lass are likely to have the same abstrat type. Ouralgorithm is partiularly suited for languages suh as Coboland PL/I. The primary tehnial problem that our algorithmsolves is that in a Cobol or PL/I program the set of all "log-ial" variables in a program may not be apparent from thedelarative setion of the program. For example, what wasdelared to be a single (unstrutured salar) variable may infat be a reord onsisting of a sequene of �elds, eah withits own abstrat type. . . and this fat has to be inferred fromhow the variable is used in the program.Our algorithm is based on an extension of the well-knownUNION-FIND data-struture/algorithm that enables us to ef-�iently reate equivalenes between "sub-ranges" and map-valued variables.Software Reengineering: Finding Leveragefor Existing TehnologiesDennis Smith, Carnegie Mellon University, Software Engi-neering InstituteBased on experienes with the analysis and reengineering oflarge system, we have been fousing on large grain issuesof strategy reuse. One partiular fous has been the use oflegay system as ore assets for the development of produtlines, or families of systems. Although signi�ant tehnialproblems exist in this type of migration, a number of su-essful examples exist, inluding suh ompanies as CelsinaTeh, HP and Motorola. The reengineering issues of mostrelevane for produt line tehnologies inlude:11Joint work with J. Field and F. Tip

1. Identi�ation of the enterprise wide issues of relevane,suh as the organizational goals, projet, legay and tar-get systems, tehnology and SW engineering.2. System understanding, inluding program understand-ing and arhitetural extration.3. Distributed objet tehnology and wrapping approahes4. Net entri approahes and levereraging of web teh-nologies.Our work is reengineering that addresses these issues wasdesribed.Evaluating Software Maintenane Tools fortheir Support of Program ComprehensionAnneliese von Mayrhauser, Colorado State UniversityThe talk presented deliberations, possibilities and limitationsof various approahes to evaluate tool tehnologies with re-spet to their support for software understanding. It usedtwo types of maintenane tasks as examples, debugging andenhanement. We ompared two stati analysis environ-ments and showed that an environment that inludes evenlimited data ow analysis and sliing apabilities has thepotential of dereasing neessary omprehension ativitiesby between 19-50% depending on the type of maintenanetasks. Related publiation an be found in Proeedings ofIEEE Aerospae Conferene, Marh 21-28, 1998, Snowmass,CO.Approahes to detet abstrat data types andabstrat state enapsulationsRainer Koshke, University of StuttgartOne of the �rst ativities in software arhiteture reovery isto detet atomi omponents in the soure ode. Examplesof these are abstrat data types and abstrat state enapsu-lations (global state variable or objets). They are atomi inthe sense that they onsist of routines, variables, and typesrespetively. They do not have any further subomponentsother than these programming entities. These atomi om-ponents are building bloks for larger omponents and somust be understood �rst. They are andidates for re-useand in the ase of a migration to an objet-oriented systemthey have to be deteted before one an take are of theinheritane relationship. Older programming languages donot let the programmer speify them. So, in order to detetthem in legay ode ertain other relationships have to beonsidered. Several heuristis were proposed in the litera-ture to detet them. We implemented six of them, namelySame Module (Koshke, Girard 1997), Part Type (Ogando,Yan, Wilde 1994), Internal Aess (Yan, Harris, Reuben-stein 1994), Delta IC (Canfora, Cimible, Munro, 1993), and

Similarity Clustering (Girard, Koshke, Shied 1997; our en-hanement of Shwanke's approah to detet subsystems). Inorder to ompare them quantitatively we asked �ve softwareengineers to ompile a list of atomi omponents manuallyfrom three C systems (altogether 100,000 LOC). These ref-erenes were ompared with the andidate omponents bya metri for the detetion quality. The results show thatPart Type and Similarity Clustering reover most ADT's andSame Module and Similarity Clustering most abstrat stateenapsulations. However, the overall result is that none ofthe heuristis is suÆient. To improve the results the teh-niques should be ombined, in a post analysis many falsepositives an be removed, and also dataow information anbe taken into aount.Program TukingArun Lakhotia, Univ. of Southwestern Louisiana12To tuk a set of program statements is to "gather and fold"these statements into a funtion without hanging the ex-ternal behavior of the system. We present a transformationto tuk non-ontiguous program fragments. Tuk has threesteps: wedge, split and fold. One �rst drives a wedge in theode, then splits the wedged ode, and then folds the splitode. Folding replaes the split ode, a single-entry single-exit subgraph with ertain onstraints, into a funtion. Thattuk does not alter the behavior of the original funtion fol-lows from the semantis preserving property of the othertransformations.The tuk transformation was developed to aid in programrestruturing. The �rst prototype developed used the trans-formation to split non-ohesive funtions into ohesive fun-tions. We are now developing an interative environmentthat provides this transformation as a primitive aessible toa programmer through mouse liks.Finding Objets in COBOL CodePeter Reihelt, GMD (German National Researh Center forComputer Siene)We often �nd a split of paradigms in ompanies: Here are theCOBOL guys, there are the OO-guys programming in C++or Smalltalk et. Our aim is to bring together these twoworlds. The new COBOL standard inluding OO stu� willhelp. In the projet ROCOCO (Reengineering for Objet-Orientation and Reuse for COBOL Code) (arried out withpartners IBM and CAI, funded by BMBF) we develop a toolto �nd objets in COBOL Code. The existing ode an beobjeti�ed, but our main goal is to just extrat the found ob-jets, and store the resulting lasses in a lass library. Ourhope is that we an do some work of generalization and stan-dardization on these lasses, so that they an be o�ered for12Joint work with Jean-Christophe Deprez

reuse in the ompany. To support that reuse we do not onlystore the COBOL lass, but also data about the struture ofthe lass, so we all it a repository. Our tool is highly user-oriented. The user an do all the needed transformations byliking around with the mouse in the program text. Butthe user will want to use our proposal generator whih willreate proposals for what part of the program the user maywant to selet.Analysis of Software VariantsChristian Lindig, TU BraunshweigSoftware omes in variants beause omputer platforms areso diverse. When this diversity an not be enapsulated intomodules it gets into the atual soure �les. Soure �le pre-proessing then reates a variant for eah platform. Undersome simplifying assumptions over the C preproessor (CPP)all variants that an be generated from a spei� soure �leusing the CPP an be eÆiently omputed. The tehniquefor this is formal onept analysis. Formal onept analysisis an algebrai theory for binary relations. Its main theo-rem states that there exists a lattie of so-alled onepts forevery binary relation. The idea to use it for the analysis isto reord the dependenies of soure ode segments on CPPexpressions in a binary relation. Then onept analysis anbe used to analyze this relation. Eah onept of the result-ing onept lattie desribes a variant and thus this lattie isalled the variant lattie of the original soure. Besides thata onept desribes a anonial way how to generate the a-tual variant from the atual soure. The original expressionsthat desribe all variants may ontain redundanies. Theseredundanies also show up in the onept lattie. After theyare deteted there they an re removed from the originalsoure. It is guaranteed that this will not lead to a loss ofvariants.Rewriting \poor" (design) patterns by\good" (design) patternsA. Z�undorf, U. Paderborn13Gamma and his \Gang of 4" proposed a number of \good"solutions to frequently reurring problems. Along with the\good" solutions they desribe \poor", i.e. naive solutionsto these problems and why these are faulty. Our goal is toemploy program analysis tehniques for deteting poor so-lutions of a problem and rewriting them to good solutions.We onsider this as an interation engineering task and pro-pose to support this with an 'CARE' environment, driven bya high level (reengineering) proess desription, i.e. GeneriFuzzy Reasoning, Nets + Petri Nets + Programmed CrashRewriting Rules.13Joint work with J. Jahnke and W. Sh�afer

Classi�ation and Retrieval of Software Com-ponents using Semanti NetsHans-J�urgen Ste�ens, FH Kaiserslautern - StandortZweibr�ukenThe possibilities of a semanti net for lassifying SM entitiesin a repository are disussed. In omparison to the ompleteKL-ONE language only a small number of features are usedto onstrut the net: starting with a �xed set of unde�nedonepts and a �xed set of binary relations new oneptsare de�ned reursively by mapping a given onept C andrelation n to a new intermediate onept op(r; C). Thusstarting with two onepts C1 and C2 a new onept \C1 andop(r; C2)" �nally is de�ned whih is a subonept of C1 anda \side onept" of C2. Thus we have introdued an expliitISA-link between \(C1 and op(r; C2))" and "C1". Duringonstrution of the net impliit ISA-links emerge in additionand should be deteted by a "lassi�er". When we restritto the above rules the lassi�er is omputable but may benp-hard, when we hoose op = some instead of op = all.Using some we have more expressive power, but our speialappliation may justify using "all", thus having a lassi�erof lower omplexity.Analysis and Conversion Tools for Applia-tion Software Reengineering to EMURainer Gimnih, IBM Sienti� Center, Heidelberg and IBMEMU Transition Servies, StuttgartThe European Eonomi and Monetary Union (EMU) willbe e�etive from 1st January 1999 and probably inlude 11member states at the beginning. Over a transition periodof 3 years both Euro and eah national urreny (NC) maybe used and need to be dealt with, also by business partnersoutside Europe. Probably on January 1st 2002, the Eurobills and oins will be introdued to replae the NC moneyphysially. This time table, along with strit EU regulationsto guide the transition, lead to wide-ranging and tehniallyhallenging software reengineering tasks whih are ompara-ble to the year 2000 (Y2K) transition. Though EMU entailsonly �nanial proessing and data, the analysis and onver-sion tasks are harder to solve than in Y2K projets.We approah the EMU problem area by a dediated method-ology alled IBM EuroPath, whih is supported in IBM'sprojet management tool world-wide. EuroPath aounts forboth the business aspets and the IT aspets of the transi-tion. From this methodology, we derive the tool requirementsfor eah phase and onsider existing reengineering tehnolo-gies to meet these requirements for instane a "memory-level" dataow analyzer for COBOL and PL/I, with built-inheuristis of amount �eld propagation, will be used duringdetailed analysis. The EMU tools portfolio urrently onsistsof some 25 tools, subset of these are hosen to best meet in-dividual projet needs.

The Use of Program Pro�ling for SoftwareMaintenane with Appliations to the Year2000 ProblemThomas Reps, University of Wisonsin14A path pro�le is a �nite, easily obtainable haraterizationof a program's exeution on a dataset, and provides a be-havior signature|a kind of spetrum|for a run of the pro-gram. When di�erent runs of a program produe di�erentpath spetra, the spetral di�erenes an be used to identifypaths in the program along whih ontrol diverges in the dif-ferent runs. By hoosing input datasets to hold all fatorsonstant exept one, any suh divergene an be attributedto this fator. The point of divergene itself may not bethe ause of the underlying problem, but provides a start-ing plae for a programmer to begin his exploration. In thetalk, I desribe how this idea an be applied to the Year 2000problem: In this ase, the input datasets should be hosen tokeep all fators onstant exept the (ranges of) dates that ap-pear. Appliations to other software-maintenane problemsare also desribed.
DemosDemos supporting talks were presented by R. Crew,J. Krinke, P. Reihelt, A. Winter / J. Ebert, A. Z�undorf/ W. Sh�afer.In addition, the following independent demos were given:Demonstration of a Prototype CommerialSliing ToolTim Teitelbaum, GrammaTeh, In. (and Cornell Univer-sity)GrammaTeh is ommerializing the University of Wisonsinpreise interproedural sliing tehnology developed over thepast deade by Reps and Horwitz. It will o�er this tehnol-ogy in two forms: an end-user understanding tool, and a ol-letion of omponents to be integrated into the tools of oth-ers. The prototype end-user tool provides forward and bak-ward sliing, hopping, and immediate predeessor/suessorinformation by suitable highlighting on program text andvarious summary information thereof.14Joint work with Manuvir Das, Tom Ball and Jim Larus

Demonstration of Serving ASTs with the Syn-thesizer GenerationTim Teitelbaum, Cornell University and GammaTeh, In.Eah edition/interfae generated by the Synthesizer Genera-tor (SG) represents edit bu�ers as pretty printed attributedabstrat syntax trees (ASTs). These ASTs are available toend users in Sheme, the SG's sripting language. Constru-tions and destrutions on these terms are dynamially typeheked, and attributes on these terms are updated inre-mentally upon mutations (unless disabled). End users ofgenerated tools, e.g., Ada-ASSURED, use omputations onASTs in lieu of the text-oriented manipulations of languagessuh as PERC.IBM Visual Age for Cobol Professional Rede-veloper (I)Menagerie: A Prototype sliing, symbolianalysis, and debugging tool (II)John Field, IBM Researh15In (I), I demonstrate IBM's Cobol program understandingtool. The tool provides eÆient data dependene sliing, aode browser with various navigation failities, and a graph-ial view of rationalized ontrol ow.In (II), I demonstrate the failities of a prototype tool devel-oped at IBM's Watson Researh Center. The tool operates bytranslating the program soure (written in a subset of the Clanguage) to an intermediate representation alled PIM. PIMhas an aompanying equational logi, a subset of whih pro-vides an operational semantis. By normalizing PIM graphsusing term graph rewriting, the graph may be simpli�ed toa anonial form. Using a tehnique alled dynami depen-dene traking, a slie an be omputed by traversing theanonial form graph, whih has been annotated with ori-gin information during rewriting. The normalized graph analso be displayed in a form that simpli�es the semantis ofthe original soure to aid program understanding.Open ProblemsAn evening session was devoted to open problems. The par-tiipants olleted the following list of open problems, whihwas edited by John Field:Coneptual� How to push the world to use languages for whih it iseasy to obtain useful analysis? (J. Krinke)15Joint work with F.Tip and G.Ramalingam

� How an we pakage analysis tools so as to be usefulto non-experts (queries and results must be intuitive)?(J. Krinke)� What is the role of domain-spei� type information inre-engineering? (A. Goldberg)� Infrastruture/pakaging issue: - exhange formats(both textual and in-ore) - sripting/query languagesfor omputing on intermediate program representations(H. Mueller)� Replaement of #ifdefs for version ontrol in the Clanguage (S. Horwitz)� Design a "sane", analyzable preproessor for the C lan-guage (M. Ernst)� Can design information or user assertions be used to feedinto and improve program analysis (E. Ploedereder)� De�ne a taxonomy or vision of tasks, senarios and or-responding information-gathering needs (D. Notkin)� Can dynamially-gathered pro�le information be usedfor program understanding (C. Lindig)Experimental� Do we reoup osts of early analysis phases (e.g., pointeranalysis) when analysis phases are solved in a demand-driven fashion (T. Reps)� Why are slies large? Is it pointers, array usage, infea-sible paths? (A. Goldberg)� How useful are data-dependene slies? (J. Field)� How useful are non-onservative analyses? (G. Rama-lingam)� To what extent does stati analysis really reet whatgoes on at run-time? (T. Reps/J. Krinke)� Can we �nd better experimental benhmarks or test-beds for programming tools (e.g., Netsape, Emas)(H. Mueller)Algorithms� Can we have an algorithm/framework for programanalysis that exploits adaptive granularity (e.g., thatmathes "e�ort" to program region (a�la multi-grid�nite-element analysis) (G. Murphy/T. Reps)?� Exploit synergisti integration of analysis results (fromdi�erent analyses) (G. Snelting)� Cheap ways of obtaining analysis results when the pro-gram artifat hanges, e.g., eagerly/lazily (E. Ploed-ereder)

� How an "antiipatory" or "speulative" analyses beused in programming tools? (F. Tip)� How an probabilisti algorithms be used in program-ming tools? (T. Reps)� How an heuristi algorithms be used in programmingtools? (M. Harman)� Are there useful algorithms for reovering design infor-mation from legay ode? (J. Ebert)� Distilling slies by reognizing lihes or design patternswithin them (E. Ploedereder)� Can CFL-reahability be solved in less than ubi time?If so, by a pratial algorithm? (T. Reps)� Can pratial demand-driven pointer analysis algo-rithms be developed? (S. Horwitz)� Can ow-sensitive analysis be engineered to apply togreater than 1M line programs? (J. Field)� How an we do whole-program analysis on programswhen the information does not �t in ore? (F. Tip)� What analysis tehniques are useful in supporting pro-gram design (e.g., an onept analysis be used forobjet-oriented design)? (T. Teitelbaum/ D. Notkin)
CALL FOR PROBLEMS: nPPPA { n PathologialProblems in Program Analysis16Jens Krinke, University of BraunshweigDuring the \Open Problems" session of the workshop theneed for benhmarks or testbeds for Program analysis toolsbeame obvious. On the other side, some interesting ex-amples were presented during the workshop whih repre-sents unsolved or hard-to-solve problems. There are manymore of those problems|both users and developers of pro-gram analysis tools disover 'interesting' examples fromtime to time. These examples often get lost again, asnobody ollets them. Therefore we all the developersand users of program analysis to submit their problems tokrinke�ips.s.tu-bs.de.Requests for the atual list of problems may use the sameaddress.

16At this time, n � 5

Taxonomy of partiipants and theirinterestsThe following onept lattie was generated from a booleantable whih enoded the interests of the partiipants. Thelattie reveals a hierarhial struture of both partiipantsand interests. A person x is interested in topi y, i� x appearsbelow y in the lattie. Suprema fator out ommon interests,in�ma display multi-interested partiipants.

W. Griswold V. Rajlich

T. Teitelbaum T. RepsR. Gimnich

G. Snelting

F. Tip
J. Field

G. Ramalingam

Y2000

D. Smith

Process

D. Notkin

E. Ploedereder
G. Murphy
R. Koschke

Concept
Analysis

A. Zündorf
 W. Schäfer

Design

A. Winter
H. Steffens
J. Ebert

Queries

R. Crew

Empirical
Studies

A. Lakhotia

S. Horwitz

H. Müller
P. Reichelt

Program
Transformation

GrouperSlicer

A. Goldberg
J. Krinke
M. Harman
T. Gyimothy

C. Lindig A. Mayrhauser

