
Program Comprehension and Software ReengineeringDagstuhl Seminar, Mar
h 9th-13th, 1998Hausi M�uller Thomas Reps Gregor SneltingUniversity of Vi
toria University of Wis
onsin Universit�at Brauns
hweigCanada USA Germanyhausi�
sr.uvi
.
a reps�
s.wis
.edu snelting�ips.
s.tu-bs.deIntrodu
tionAnalyzing old software systems has be
ome an importanttopi
 in software te
hnology. There are billions of lines oflega
y
ode whi
h
onstitute substantial
orporate assets.Lega
y systems have been subje
t to
ountless modi�
ationsand enhan
ements and, hen
e, software entropy has typi
allyin
reased steadily over the years. If these systems are notrefurbished they might die of old age|and the knowledgeembodied in these systems will be lost forever.As a �rst step in \software geriatri
s" one usually tries tounderstand the old system using program understanding orprogram
omprehension te
hniques. In a se
ond step, one re-
onstru
ts abstra
t
on
epts (e.g., the system ar
hite
ture,business rules) from the sour
e
ode, the do
umentation, and
orporate knowledge; this is
alled software reverse engineer-ing. Given an abstra
t representation of the system, one
anthen re-implement the system. This forward engineering stepranges from fully automati
 approa
hes to manual reimple-mentations in
luding restru
turing te
hniques, formal trans-formations, inje
ting
omponent te
hnologies, repla
ing olduser interfa
e or database te
hnology. The pro
ess of movingfrom an old lega
y system to a new implementation is
alledsoftware reengineering.It was the aim of this seminar to bring together resear
herswho are a
tive in the areas of program
omprehensionand software reengineering regardless of their parti
ular ap-proa
hes and resear
h avenues. However, one of the areas of
on
entration for this seminar was sli
ing te
hnology whi
his an important te
hnique for software understanding andmaintenan
e a
tivities. Another topi
 of in
reased inter-est have been empiri
al studies for software reengineering.Mathemati
al
on
ept analysis gained some attention as anew framework for program understanding.Several talks were a

ompanied by system demonstrations,giving parti
ipants �rst-hand experien
e of new analysis andreengineering te
hnology. A panel session
ompiled a list ofopen problems, both te
hni
al and methodologi
al. The tra-ditional Dagstuhl walk o�ered an opportunity for topologi
al
omprehension and map reengineering.We are grateful to the parti
ipants who made the seminaran ex
iting week. We also a
knowledge the �nan
ial supportprovided by the European Union in the s
ope of the TMRprogram. As always in Dagstuhl, the sta� was doing a terri�
job looking after us and everything surrounding the seminar.

Abstra
tsCoping with Software Change Using Infor-mation Transparen
yWilliam Griswold, University of California, San DiegoDesigns are frequently unsu

essful in designing for
hangeusing traditional modularity te
hniques. It is diÆ
ult to an-ti
ipate exa
tly how te
hnology will advan
e, standards willarise, and features from
ompetitor's produ
ts will in
uen
efuture features. Market pressures di
tate that most time beinvested in timely release of the
urrent produ
t, not in a
-
omodating future
hanges.One way to in
rease the
overage of relevant design de
isionsis to use a design prin
iple
alled information transparen
y :Write
ode su
h that all uses of an exposed design de
isionare easily visible to a programmer using available tools. The
oding
onventions in
lude te
hniques like variable naming
onventions,
ode formatting, and en
oding software ar
hi-te
ture into the program sour
e. As a
onsequen
e of usingsu
h te
hniques, a programmer
an use a sear
hing tool likegrep to view all the related obje
ts together,
reating lo
alityout of similarity.Flow-Insensitive Pointer AnalysisSusan Horwitz, University of Wis
onsin, MadisonMost stati
 analysis rely on knowing what obje
ts are usedand de�ned at ea
h point in the program. In a languagewith pointers, determining this information
an be non-trivial. Lars Andersen de�ned a
ow-insensitive algorithmfor
omputing points-to information that is O(n3) in theworst
ase. More re
ently, Bjarne Steensgard gave another
ow-insensitive algorithm that is faster (essentially O(n)),but less pre
ise (
omputes larger points-to sets than Ander-sen's algorithm).In the talk, we �rst de�ne a new points-to analysis algorithmthat
an be \tuned" to provide resolutions that fall all alongthe spe
trum from Steensgard to Andersen (both in termsof runtime and pre
ision). We then present the results ofexperiments that measure how the algorithms perform inpra
ti
e, measuring both the \dire
t" results (sizes of points-to sets) as well as \transitive" results (the size of the sets
omputed by GMOD), live, and truly-live data
ow analysis,1

using the results of the di�erent pointer analyses. We �ndthat (as expe
ted) better points-to analysis leads to betterdata
ow analysis results, also (surprisingly) that, at leastfor the harder data
ow problems, the extra time requiredfor the better points-to analysis is not then made up for bya de
rease in the time required for the subsequent data
owanalysis.Class Hierar
hy Spe
ialization1Frank Tip, IBM. T.J. Watson Resear
h Center2Class libraries are typi
ally designed with an emphasis ongenerality and extensibility. An appli
ation that uses a li-brary typi
ally exer
ises only part of the libraries fun
tion-ality. As a result, obje
ts
reated by the appli
ation may
ontain unused (user-de�ned or
ompiler-generated) mem-bers. We present an algorithm for spe
ializing a
lass hier-ar
hy with respe
t to its usage in a program P . That is, thealgorithm analyzes the member a

ess patterns for P 's vari-ables, and
reates distin
t
lasses for variables that a

essdi�erent members. The algorithm addresses the inheritan
eme
hanisms of C++ in their full generality, in
luding multi-ple inheritan
e and virtual (shared) inheritan
e. Class hier-ar
hy spe
ialization redu
es obje
t size, and may be viewedas a spa
e optimization. However, exe
ution time may alsobe redu
ed through redu
ed obje
t
reation and destru
tiontime, and
a
hing and paging e�e
ts. Class hierar
hy spe
ial-ization may also
reate new opportunities for existing opti-mizations. In addition, we believe that spe
ialization may beuseful in tools for software maintenan
e and understanding.Reengineering Class Hierar
hies Using Con-
ept AnalysisGregor Snelting, Te
hnis
he Universit�at Brauns
hweig3Class hierar
hies in lega
y
ode may be imperfe
t. For exam-ple, a member may be lo
ated in a
lass that does not needit, indi
ating that it may be eliminated or moved to a di�er-ent
lass, or di�erent instan
es of a given
lass C may a

essdi�erent subsets of C's members, an indi
ation that it mightbe appropriate to split C into di�erent
lasses. We presentan approa
h for dete
ting su
h design problems based on
lass hierar
hy spe
ialization and
on
ept analysis. Exam-ples demonstrate that our te
hnique
an provide remarkableinsight into member a

ess patterns of old C++ programs.1Paper appeared in the pro
eedings of OOPSLA'972Joint work with Peter Sweeney3Joint work with Frank Tip

Program Analysis via Graph Rea
habilityThomas Reps, University of Wis
onsin, Madison4This talk des
ribes how a number of program analysis prob-lems are all examples|when viewed in the right way|ofa
ertain kind of generalized graph-rea
hability problem:
ontext-free language rea
hability (CFL-rea
hability). In aCFL-rea
hability problem, we are given (i) a graph in whi
hthe edges are labeled with letters from some alphabet and(ii) a
ontext-free language L (given, say, via a grammar). Apath p from node s to node t only
ounts as a valid
onne
tionfrom s to t when the word formed by
on
atenating (in order)the letters among the edges of p is a word in L. This gener-alizes ordinary graph rea
hability in the sense that L servesto �lter out
ertain paths in a graph. A CFL-rea
habilityproblem
an be solved in time O(n3), where n is the numberof nodes in the graph.In the talk, I des
ribe how problems su
h as interpro
eduralsli
ing, interpro
edural data
ow analysis, and shape analy-sis (for a language without destru
tive update)
an all be
onverted into CFL-rea
hability problems. I also dis
uss therelationship between CFL-rea
hability and a
ertain
lass ofset-
onstraint problems.Sli
ing Methods for Large Programs5Tibor Gyimothy, Joszef Attila University of Szeged6A method is presented for the
omputation of the summaryedges representing the interpro
edural dependen
es at
allsites. The advantage of this method is that the memory re-quirement
an be redu
ed for large programs. The reasonfor it is that the algorithm
omputes summary informationfor ea
h strongly
onne
ted
omponent of program one at atime. Hen
e only dependen
e information for one strongly
onne
ted
omponent is stored instead of for the whole pro-gram. Moreover, the method redu
es the number of nodesof the dependen
e graphs.VALSOFT { Validation of Measurement Sys-tem Software: an Appli
ation of Sli
ing andConstraint SolvingJens Krinke, Te
hnis
he Universit�at Brauns
hweig7We show how to
ombine program sli
ing and
onstraint solv-ing in order to obtain better sli
e a

ura
y. The method isused in the VALSOFT sli
ing system. One parti
ular ap-pli
ation is the validation of
omputer-
ontrolled measure-ment systems. VALSOFT will be used by the Physikalis
h-4This represents joint work with Susan Horwitz, Mooly Sagiv,Genevieve Rosay, and David Melski.5Paper appeared in the pro
eedings of SEKE'976Joint work with Istvan Forga
s7Joint work with Gregor Snelting

Te
hnis
he Bundesanstalt for veri�
ation of legally required
alibration standards. We des
ribe the VALSOFT sli
ing sys-tem, its ar
hite
ture and its appli
ation. In parti
ular, wedes
ribe our �ne-grained version of the underlying systemdependen
e graph. We also des
ribe how to generate andto simplify path
onditions based on program sli
es. Thete
hnique
an indeed in
rease sli
e pre
ision and reveal ma-nipulations of the so-
alled
alibration path.Towards Data
ow Minimal Sli
ingMark Harman, Goldsmiths College, University of London8Consider this programwhile i < 3 dobeginif
 = 2 thenbegin x := 17,
 := 25 end;i := i+1endwhat primitive statements and predi
ates a�e
t the �nalvalue of x ? (that is, what is the end sli
e on fxg?) Most sli
-ing algorithms (all?) will leave in the assignment to
. Thisis not a spe
ial
ase; it applies to all data
ow equivalentprograms. So its true of the program s
hemawhile {i} dobeginif {
} thenbegin x := {} ;
 := {}end;i := {i}endwhere the sets denote the variables upon whi
h an expres-sion depends. The question we ask is \at this data
owlevel of abstra
tion is minimal sli
ing
omputable?" Weiserasked this question in his PhD thesis, having observedthat his algorithm was not minimal in this sense. Webelieve the answer is \yes". We have an algorithm(http://www.unl.a
.uk/�11dani
i
s/) and are workingon a proof. The algorithm uses an un
onventional approa
hto data and
ontrol
ow analysis based upon repeated (but�nite) instan
es of predi
ate nodes together with their \de-penden
e history".Experien
e Building an Industrial-StrenghtProgram Understanding ToolJohn Field, IBM Resear
h9In early 1996, G. Ramalingam and I be
ame involved withdesigning and implementing a program understanding tool8Joint work with Sebastian Dani
i
9Joint work with G. Ramalingam

for use in IBM's Cobol tool suite. The fun
tional require-ments for the tool were modest (
entered around
ontrol-
ow rationalization and a restri
ted form of sli
ing), andour original intent was to use well-understood algorithms inits design. However, we soon dis
overed that despite thelimited goals, Cobol posed te
hni
al
hallenges that to ourknowledge have not been previously addressed. In additionto a large number of endearing, but te
hni
ally in
onsequen-tial design quirks, Cobol possesses several distin
tly pe
u-liar
ontrol-
ow and data manipulation
onstru
ts. Typi
alCobol programs also use
ertain otherwise unremarked
on-stru
ts in atypi
al ways; For example, programs tend to
on-tain vast quantities of global data and frequent use of non-disjoint unions. In this talk, I dis
uss the original designgoals for the tool and des
ribe
ertain te
hni
al
hallengesposed by Cobol and our approa
h to solving them. In parti
-ular, I des
ribe an eÆ
ient algorithm to transform instan
esCobol's PERFORM
onstru
t to semanti
ally equivalent pro-
edural representations used for program sli
ing. Further,I des
ribe spe
ial te
hniques for
omputing interpro
eduralrea
hing de�nitions and
onstru
ting pseudo-parameters forthe pro
edural representations
omputed during PERFORManalysis; these te
hniques are ne
essitated by the unusualproperties of Cobol data manipulations.A Model of Change PropagationVa
lav Rajli
h, Wayne State UniversityChange in programs starts with programmer a spe
i�

om-ponent. After the
hange, the
omponent may no longer�t with the next, be
ause it may no longer provide what theother
omponents require, or it may now require di�erent ser-vi
es from the
omponents it depends on. The dependen
iesthat no longer satisfy the require{provide relationships are
alled in
onsistent dependen
ies, and they may arise when-ever a
hange is made in software. When these in
onsisten-
ies are �xed, they may introdu
e additional in
onsisten
ies,et
. The paper des
ribes a formal model of
hange propaga-tion, and two spe
i�
 examples of it:
hange-and-�x s
enario,and top-down s
enario.Software MigrationHausi M�uller, University of Vi
toriaSoftware migration is a subset of software reengineering andinvolves moving existing system to a new platform. Impor-tant problems are migrating to obje
t te
hnology from an im-perative language, to GUI te
hnology from a text-based userinterfa
e; to a network-
entri
 environment from a stand-alone appli
ation, to Year 2000
ompliant software. Automa-tion is a key requirement for these pro
esses and wrappingseems to be a promising te
hnology.CESR is a Canadian Centre for Ex
ellen
e for Software

Engineering Resear
h. The IBM CSER proje
t whi
h in-volves John Mylopoulos, University of Toronto, Ri
 Holtand Kostas Kontogiannis, University of Waterloo and myresear
h group,
urrently investigates how PL/I programs
an be automati
ally and in
rementally migrated to C++.The target appli
ation is about 300 klo
 written in a PL/Iderivative. As a pilot proje
t we
onverted a subsystem of3000 lines to C++. The resulting subsystem was integratedinto the existing PL/I appli
ation. Early performan
e testsrevealed that the new subsystem was 50% slower. SimpleC++ optimizations were performed resulting in signi�
antspeedup and a subsystem that is 5-20% faster than the orig-inal
ode. Using Re�ne from Reasoning Systems we thenbuilt an automated solution to
onvert the entire system im-plementing the optimizations.Task-aware Program Understanding Te
h-niquesGail C. Murphy, University of British Columbia10Many software engineering tools attempt to fully automatetasks that software engineers must perform on software sys-tems. Even more tools exist to analyze
ode without anynotion of how the analyzed information will be used. In thistalk, I argue that there is a useful set of tools and approa
hesthat fall in the middle of this spe
trum. These tools aretask-aware. Task-aware tools may be more amenable to ex-ploiting partial and approximate information about sour
e.This type of information
an help engineers more e�e
tivelyperform software engineering tasks on large systems withinthe time
onstraints pla
ed on the task.I des
ribe two task-aware te
hniques we have developed toinvestigate if an approa
h of overlaying logi
al stru
ture onexisting sour
e
an aid a software engineer in qui
kly andeasily assessing appropriate sour
e information for a taskat hand. The software re
exion model te
hnique helps anengineer gain an overall 'gestalt' of the sour
e by using ahigh-level stru
tural model as a lens through whi
h to sum-marize the
ode for a system. This te
hnique has been usedto drive an experimental reengineering of the million lines-of-
ode Mi
rosoft Ex
el spreadsheet produ
t. The
on
eptualmodule te
hnique provides dire
t support for performing areengineering task by enabling sour
e-level queries about adesired, rather than the existing, sour
e stru
ture. This te
h-nique has been used to help reengineer an over �fty thousandlines-of-
ode binary de
ision diagram pa
kage prior to thesour
e being parallelized.
10The re
exion model work is joint with David Notkin(U.Washington) and Kevin Sullivan (U.Virginia). Con
eptualmodules are joint with Elisa Baniassad (U. of British Colombia)

The AST Toolkit and ASTLOGRoger F. Crew, Mi
rosoft Resear
hThe AST Toolkit provides the developer/tester with a C++appli
ation programmer interfa
e to data stru
tures usedby the front end of Mi
rosoft's C/C++ produ
t
ompiler,spe
i�
ally the abstra
t syntax trees (ASTs), symbols (in-
luding symbol tables and s
opes), and the type des
rip-tions. Given the variations in possible AST stru
tures and
ompiler idiosyn
ra
ies that produ
t groups often take ad-vantage of, it is often important that one have a

ess to thea
tual stru
tures of the
ompiler one is using. The toolkit hasalready been used to solve a variety of elementary program-
omprehension, problems and meta-programming (e.g., au-tomati
 generation of stub fun
tion and thunks) tasks.In addition to providing a dire
t C++ API, the toolkit alsoprovides a

ess via a query language, ASTLOG. ASTLOG wasinspired by grep/awk-style tools that allow the programmerto lo
ate program artifa
ts without in
urring the overheadof writing an entire C++ appli
ation. In
ontrast with priorsu
h tools, our goal is to provide a pattern language withsuÆ
iently general abstra
tion/
omposition fa
ilities so thatprogrammers
an write queries/abstra
tions tailored to spe-
i�

ode bases and re-use them for later works. The lan-guage itself is a Prolog variant for whi
h we have written asmall, fast interpreter. The exe
ution model, in whi
h termsare treated as patterns to be mat
hed against an impli
it
urrent obje
t rather than as simple predi
ates leads to a"reverse fun
tional" programming style distin
t from boththe usual relational Prolog style and the usual "forward"style found in Algol-Family languages, one that is well-suitedto the parti
ular appli
ation of querying ASTs and relatedstru
tures.GUPRO - Generi
 Unit for Program Under-standingAndreas Winter, University of KoblenzThe aim behind GUPRO is to develop an adaptable toolto support program understanding even in a multiple lan-guage environment. This adaptability is based on an user-de�ned
on
eptual model whi
h de�nes the internal data-stru
ture of the tool (whi
h
ould be viewed as an instan
eof a MetaCARE-tool) and the parsing pro
ess into the repos-itory stru
ture. Analysis is done by a sour
e
ode indepen-dent Query-me
hanism.The formal foundation of GUPRO is given by theEER/GRAL-approa
h on graph based,
on
eptual modeling.A presentation of GUPRO in
luding queries to a
oarse-grained multi-language
on
eptual model, a �ne grained C-model and the a

ording meta model was given after thetalk.

A Range Equivalen
e Algorithm and its Ap-pli
ation to Type Inferen
eG. Ramalingam, IBM T.J.Watson Resear
h Center11A
ommon program maintenan
e a
tivity is that of
hang-ing the representation/implementation of an abstra
t type.A well-known example is that of making programs "year 2000
ompliant", whi
h requires ensuring that the implementationof the abstra
t type "YEAR"
an adequately distinguish be-tween years belonging to di�erent
enturies.Ideally, appropriate use of "abstra
t data types" would makesu
h
hanges easy, requiring appropriate modi�
ations onlyto the (single) implementation of the abstra
t daty type. Inpra
ti
e, su
h
hanges turn out to be very expensive andtime-
onsuming be
ause of inadequate use of abstra
tions.In fa
t, mu
h of the existing lega
y
ode is written in lan-guages su
h as Cobol that do not provide adequate abstra
-tion fa
ilities.Consequently, a programmer fa
ing the problem of makingsu
h a
hange needs to �nd all variables in a program thatbelong to some abstra
t type. This talk des
ribes a type in-feren
e algorithm that partitions the variables in a programinto equivalen
e
lasses, where all variables in an equiva-len
e
lass are likely to have the same abstra
t type. Ouralgorithm is parti
ularly suited for languages su
h as Coboland PL/I. The primary te
hni
al problem that our algorithmsolves is that in a Cobol or PL/I program the set of all "log-i
al" variables in a program may not be apparent from thede
larative se
tion of the program. For example, what wasde
lared to be a single (unstru
tured s
alar) variable may infa
t be a re
ord
onsisting of a sequen
e of �elds, ea
h withits own abstra
t type. . . and this fa
t has to be inferred fromhow the variable is used in the program.Our algorithm is based on an extension of the well-knownUNION-FIND data-stru
ture/algorithm that enables us to ef-�
iently
reate equivalen
es between "sub-ranges" and map-valued variables.Software Reengineering: Finding Leveragefor Existing Te
hnologiesDennis Smith, Carnegie Mellon University, Software Engi-neering InstituteBased on experien
es with the analysis and reengineering oflarge system, we have been fo
using on large grain issuesof strategy reuse. One parti
ular fo
us has been the use oflega
y system as
ore assets for the development of produ
tlines, or families of systems. Although signi�
ant te
hni
alproblems exist in this type of migration, a number of su
-
essful examples exist, in
luding su
h
ompanies as CelsinaTe
h, HP and Motorola. The reengineering issues of mostrelevan
e for produ
t line te
hnologies in
lude:11Joint work with J. Field and F. Tip

1. Identi�
ation of the enterprise wide issues of relevan
e,su
h as the organizational goals, proje
t, lega
y and tar-get systems, te
hnology and SW engineering.2. System understanding, in
luding program understand-ing and ar
hite
tural extra
tion.3. Distributed obje
t te
hnology and wrapping approa
hes4. Net
entri
 approa
hes and levereraging of web te
h-nologies.Our work is reengineering that addresses these issues wasdes
ribed.Evaluating Software Maintenan
e Tools fortheir Support of Program ComprehensionAnneliese von Mayrhauser, Colorado State UniversityThe talk presented deliberations, possibilities and limitationsof various approa
hes to evaluate tool te
hnologies with re-spe
t to their support for software understanding. It usedtwo types of maintenan
e tasks as examples, debugging andenhan
ement. We
ompared two stati
 analysis environ-ments and showed that an environment that in
ludes evenlimited data
ow analysis and sli
ing
apabilities has thepotential of de
reasing ne
essary
omprehension a
tivitiesby between 19-50% depending on the type of maintenan
etasks. Related publi
ation
an be found in Pro
eedings ofIEEE Aerospa
e Conferen
e, Mar
h 21-28, 1998, Snowmass,CO.Approa
hes to dete
t abstra
t data types andabstra
t state en
apsulationsRainer Kos
hke, University of StuttgartOne of the �rst a
tivities in software ar
hite
ture re
overy isto dete
t atomi

omponents in the sour
e
ode. Examplesof these are abstra
t data types and abstra
t state en
apsu-lations (global state variable or obje
ts). They are atomi
 inthe sense that they
onsist of routines, variables, and typesrespe
tively. They do not have any further sub
omponentsother than these programming entities. These atomi

om-ponents are building blo
ks for larger
omponents and somust be understood �rst. They are
andidates for re-useand in the
ase of a migration to an obje
t-oriented systemthey have to be dete
ted before one
an take
are of theinheritan
e relationship. Older programming languages donot let the programmer spe
ify them. So, in order to dete
tthem in lega
y
ode
ertain other relationships have to be
onsidered. Several heuristi
s were proposed in the litera-ture to dete
t them. We implemented six of them, namelySame Module (Kos
hke, Girard 1997), Part Type (Ogando,Yan, Wilde 1994), Internal A

ess (Yan, Harris, Reuben-stein 1994), Delta IC (Canfora, Cimible, Munro, 1993), and

Similarity Clustering (Girard, Kos
hke, S
hied 1997; our en-han
ement of S
hwanke's approa
h to dete
t subsystems). Inorder to
ompare them quantitatively we asked �ve softwareengineers to
ompile a list of atomi

omponents manuallyfrom three C systems (altogether 100,000 LOC). These ref-eren
es were
ompared with the
andidate
omponents bya metri
 for the dete
tion quality. The results show thatPart Type and Similarity Clustering re
over most ADT's andSame Module and Similarity Clustering most abstra
t stateen
apsulations. However, the overall result is that none ofthe heuristi
s is suÆ
ient. To improve the results the te
h-niques should be
ombined, in a post analysis many falsepositives
an be removed, and also data
ow information
anbe taken into a

ount.Program Tu
kingArun Lakhotia, Univ. of Southwestern Louisiana12To tu
k a set of program statements is to "gather and fold"these statements into a fun
tion without
hanging the ex-ternal behavior of the system. We present a transformationto tu
k non-
ontiguous program fragments. Tu
k has threesteps: wedge, split and fold. One �rst drives a wedge in the
ode, then splits the wedged
ode, and then folds the split
ode. Folding repla
es the split
ode, a single-entry single-exit subgraph with
ertain
onstraints, into a fun
tion. Thattu
k does not alter the behavior of the original fun
tion fol-lows from the semanti
s preserving property of the othertransformations.The tu
k transformation was developed to aid in programrestru
turing. The �rst prototype developed used the trans-formation to split non-
ohesive fun
tions into
ohesive fun
-tions. We are now developing an intera
tive environmentthat provides this transformation as a primitive a

essible toa programmer through mouse
li
ks.Finding Obje
ts in COBOL CodePeter Rei
helt, GMD (German National Resear
h Center forComputer S
ien
e)We often �nd a split of paradigms in
ompanies: Here are theCOBOL guys, there are the OO-guys programming in C++or Smalltalk et
. Our aim is to bring together these twoworlds. The new COBOL standard in
luding OO stu� willhelp. In the proje
t ROCOCO (Reengineering for Obje
t-Orientation and Reuse for COBOL Code) (
arried out withpartners IBM and CAI, funded by BMBF) we develop a toolto �nd obje
ts in COBOL Code. The existing
ode
an beobje
ti�ed, but our main goal is to just extra
t the found ob-je
ts, and store the resulting
lasses in a
lass library. Ourhope is that we
an do some work of generalization and stan-dardization on these
lasses, so that they
an be o�ered for12Joint work with Jean-Christophe Deprez

reuse in the
ompany. To support that reuse we do not onlystore the COBOL
lass, but also data about the stru
ture ofthe
lass, so we
all it a repository. Our tool is highly user-oriented. The user
an do all the needed transformations by
li
king around with the mouse in the program text. Butthe user will want to use our proposal generator whi
h will
reate proposals for what part of the program the user maywant to sele
t.Analysis of Software VariantsChristian Lindig, TU Brauns
hweigSoftware
omes in variants be
ause
omputer platforms areso diverse. When this diversity
an not be en
apsulated intomodules it gets into the a
tual sour
e �les. Sour
e �le pre-pro
essing then
reates a variant for ea
h platform. Undersome simplifying assumptions over the C prepro
essor (CPP)all variants that
an be generated from a spe
i�
 sour
e �leusing the CPP
an be eÆ
iently
omputed. The te
hniquefor this is formal
on
ept analysis. Formal
on
ept analysisis an algebrai
 theory for binary relations. Its main theo-rem states that there exists a latti
e of so-
alled
on
epts forevery binary relation. The idea to use it for the analysis isto re
ord the dependen
ies of sour
e
ode segments on CPPexpressions in a binary relation. Then
on
ept analysis
anbe used to analyze this relation. Ea
h
on
ept of the result-ing
on
ept latti
e des
ribes a variant and thus this latti
e is
alled the variant latti
e of the original sour
e. Besides thata
on
ept des
ribes a
anoni
al way how to generate the a
-tual variant from the a
tual sour
e. The original expressionsthat des
ribe all variants may
ontain redundan
ies. Theseredundan
ies also show up in the
on
ept latti
e. After theyare dete
ted there they
an re removed from the originalsour
e. It is guaranteed that this will not lead to a loss ofvariants.Rewriting \poor" (design) patterns by\good" (design) patternsA. Z�undorf, U. Paderborn13Gamma and his \Gang of 4" proposed a number of \good"solutions to frequently re
urring problems. Along with the\good" solutions they des
ribe \poor", i.e. naive solutionsto these problems and why these are faulty. Our goal is toemploy program analysis te
hniques for dete
ting poor so-lutions of a problem and rewriting them to good solutions.We
onsider this as an intera
tion engineering task and pro-pose to support this with an 'CARE' environment, driven bya high level (reengineering) pro
ess des
ription, i.e. Generi
Fuzzy Reasoning, Nets + Petri Nets + Programmed CrashRewriting Rules.13Joint work with J. Jahnke and W. S
h�afer

Classi�
ation and Retrieval of Software Com-ponents using Semanti
 NetsHans-J�urgen Ste�ens, FH Kaiserslautern - StandortZweibr�u
kenThe possibilities of a semanti
 net for
lassifying SM entitiesin a repository are dis
ussed. In
omparison to the
ompleteKL-ONE language only a small number of features are usedto
onstru
t the net: starting with a �xed set of unde�ned
on
epts and a �xed set of binary relations new
on
eptsare de�ned re
ursively by mapping a given
on
ept C andrelation n to a new intermediate
on
ept op(r; C). Thusstarting with two
on
epts C1 and C2 a new
on
ept \C1 andop(r; C2)" �nally is de�ned whi
h is a sub
on
ept of C1 anda \side
on
ept" of C2. Thus we have introdu
ed an expli
itISA-link between \(C1 and op(r; C2))" and "C1". During
onstru
tion of the net impli
it ISA-links emerge in additionand should be dete
ted by a "
lassi�er". When we restri
tto the above rules the
lassi�er is
omputable but may benp-hard, when we
hoose op =
some instead of op = all.Using
some we have more expressive power, but our spe
ialappli
ation may justify using "all", thus having a
lassi�erof lower
omplexity.Analysis and Conversion Tools for Appli
a-tion Software Reengineering to EMURainer Gimni
h, IBM S
ienti�
 Center, Heidelberg and IBMEMU Transition Servi
es, StuttgartThe European E
onomi
 and Monetary Union (EMU) willbe e�e
tive from 1st January 1999 and probably in
lude 11member states at the beginning. Over a transition periodof 3 years both Euro and ea
h national
urren
y (NC) maybe used and need to be dealt with, also by business partnersoutside Europe. Probably on January 1st 2002, the Eurobills and
oins will be introdu
ed to repla
e the NC moneyphysi
ally. This time table, along with stri
t EU regulationsto guide the transition, lead to wide-ranging and te
hni
ally
hallenging software reengineering tasks whi
h are
ompara-ble to the year 2000 (Y2K) transition. Though EMU entailsonly �nan
ial pro
essing and data, the analysis and
onver-sion tasks are harder to solve than in Y2K proje
ts.We approa
h the EMU problem area by a dedi
ated method-ology
alled IBM EuroPath, whi
h is supported in IBM'sproje
t management tool world-wide. EuroPath a

ounts forboth the business aspe
ts and the IT aspe
ts of the transi-tion. From this methodology, we derive the tool requirementsfor ea
h phase and
onsider existing reengineering te
hnolo-gies to meet these requirements for instan
e a "memory-level" data
ow analyzer for COBOL and PL/I, with built-inheuristi
s of amount �eld propagation, will be used duringdetailed analysis. The EMU tools portfolio
urrently
onsistsof some 25 tools, subset of these are
hosen to best meet in-dividual proje
t needs.

The Use of Program Pro�ling for SoftwareMaintenan
e with Appli
ations to the Year2000 ProblemThomas Reps, University of Wis
onsin14A path pro�le is a �nite, easily obtainable
hara
terizationof a program's exe
ution on a dataset, and provides a be-havior signature|a kind of spe
trum|for a run of the pro-gram. When di�erent runs of a program produ
e di�erentpath spe
tra, the spe
tral di�eren
es
an be used to identifypaths in the program along whi
h
ontrol diverges in the dif-ferent runs. By
hoosing input datasets to hold all fa
tors
onstant ex
ept one, any su
h divergen
e
an be attributedto this fa
tor. The point of divergen
e itself may not bethe
ause of the underlying problem, but provides a start-ing pla
e for a programmer to begin his exploration. In thetalk, I des
ribe how this idea
an be applied to the Year 2000problem: In this
ase, the input datasets should be
hosen tokeep all fa
tors
onstant ex
ept the (ranges of) dates that ap-pear. Appli
ations to other software-maintenan
e problemsare also des
ribed.
DemosDemos supporting talks were presented by R. Crew,J. Krinke, P. Rei
helt, A. Winter / J. Ebert, A. Z�undorf/ W. S
h�afer.In addition, the following independent demos were given:Demonstration of a Prototype Commer
ialSli
ing ToolTim Teitelbaum, GrammaTe
h, In
. (and Cornell Univer-sity)GrammaTe
h is
ommer
ializing the University of Wis
onsinpre
ise interpro
edural sli
ing te
hnology developed over thepast de
ade by Reps and Horwitz. It will o�er this te
hnol-ogy in two forms: an end-user understanding tool, and a
ol-le
tion of
omponents to be integrated into the tools of oth-ers. The prototype end-user tool provides forward and ba
k-ward sli
ing,
hopping, and immediate prede
essor/su

essorinformation by suitable highlighting on program text andvarious summary information thereof.14Joint work with Manuvir Das, Tom Ball and Jim Larus

Demonstration of Serving ASTs with the Syn-thesizer GenerationTim Teitelbaum, Cornell University and GammaTe
h, In
.Ea
h edition/interfa
e generated by the Synthesizer Genera-tor (SG) represents edit bu�ers as pretty printed attributedabstra
t syntax trees (ASTs). These ASTs are available toend users in S
heme, the SG's s
ripting language. Constru
-tions and destru
tions on these terms are dynami
ally type
he
ked, and attributes on these terms are updated in
re-mentally upon mutations (unless disabled). End users ofgenerated tools, e.g., Ada-ASSURED, use
omputations onASTs in lieu of the text-oriented manipulations of languagessu
h as PERC.IBM Visual Age for Cobol Professional Rede-veloper (I)Menagerie: A Prototype sli
ing, symboli
analysis, and debugging tool (II)John Field, IBM Resear
h15In (I), I demonstrate IBM's Cobol program understandingtool. The tool provides eÆ
ient data dependen
e sli
ing, a
ode browser with various navigation fa
ilities, and a graph-i
al view of rationalized
ontrol
ow.In (II), I demonstrate the fa
ilities of a prototype tool devel-oped at IBM's Watson Resear
h Center. The tool operates bytranslating the program sour
e (written in a subset of the Clanguage) to an intermediate representation
alled PIM. PIMhas an a

ompanying equational logi
, a subset of whi
h pro-vides an operational semanti
s. By normalizing PIM graphsusing term graph rewriting, the graph may be simpli�ed toa
anoni
al form. Using a te
hnique
alled dynami
 depen-den
e tra
king, a sli
e
an be
omputed by traversing the
anoni
al form graph, whi
h has been annotated with ori-gin information during rewriting. The normalized graph
analso be displayed in a form that simpli�es the semanti
s ofthe original sour
e to aid program understanding.Open ProblemsAn evening session was devoted to open problems. The par-ti
ipants
olle
ted the following list of open problems, whi
hwas edited by John Field:Con
eptual� How to push the world to use languages for whi
h it iseasy to obtain useful analysis? (J. Krinke)15Joint work with F.Tip and G.Ramalingam

� How
an we pa
kage analysis tools so as to be usefulto non-experts (queries and results must be intuitive)?(J. Krinke)� What is the role of domain-spe
i�
 type information inre-engineering? (A. Goldberg)� Infrastru
ture/pa
kaging issue: - ex
hange formats(both textual and in-
ore) - s
ripting/query languagesfor
omputing on intermediate program representations(H. Mueller)� Repla
ement of #ifdefs for version
ontrol in the Clanguage (S. Horwitz)� Design a "sane", analyzable prepro
essor for the C lan-guage (M. Ernst)� Can design information or user assertions be used to feedinto and improve program analysis (E. Ploedereder)� De�ne a taxonomy or vision of tasks, s
enarios and
or-responding information-gathering needs (D. Notkin)� Can dynami
ally-gathered pro�le information be usedfor program understanding (C. Lindig)Experimental� Do we re
oup
osts of early analysis phases (e.g., pointeranalysis) when analysis phases are solved in a demand-driven fashion (T. Reps)� Why are sli
es large? Is it pointers, array usage, infea-sible paths? (A. Goldberg)� How useful are data-dependen
e sli
es? (J. Field)� How useful are non-
onservative analyses? (G. Rama-lingam)� To what extent does stati
 analysis really re
e
t whatgoes on at run-time? (T. Reps/J. Krinke)� Can we �nd better experimental ben
hmarks or test-beds for programming tools (e.g., Nets
ape, Ema
s)(H. Mueller)Algorithms� Can we have an algorithm/framework for programanalysis that exploits adaptive granularity (e.g., thatmat
hes "e�ort" to program region (a�la multi-grid�nite-element analysis) (G. Murphy/T. Reps)?� Exploit synergisti
 integration of analysis results (fromdi�erent analyses) (G. Snelting)� Cheap ways of obtaining analysis results when the pro-gram artifa
t
hanges, e.g., eagerly/lazily (E. Ploed-ereder)

� How
an "anti
ipatory" or "spe
ulative" analyses beused in programming tools? (F. Tip)� How
an probabilisti
 algorithms be used in program-ming tools? (T. Reps)� How
an heuristi
 algorithms be used in programmingtools? (M. Harman)� Are there useful algorithms for re
overing design infor-mation from lega
y
ode? (J. Ebert)� Distilling sli
es by re
ognizing
li
hes or design patternswithin them (E. Ploedereder)� Can CFL-rea
hability be solved in less than
ubi
 time?If so, by a pra
ti
al algorithm? (T. Reps)� Can pra
ti
al demand-driven pointer analysis algo-rithms be developed? (S. Horwitz)� Can
ow-sensitive analysis be engineered to apply togreater than 1M line programs? (J. Field)� How
an we do whole-program analysis on programswhen the information does not �t in
ore? (F. Tip)� What analysis te
hniques are useful in supporting pro-gram design (e.g.,
an
on
ept analysis be used forobje
t-oriented design)? (T. Teitelbaum/ D. Notkin)
CALL FOR PROBLEMS: nPPPA { n Pathologi
alProblems in Program Analysis16Jens Krinke, University of Brauns
hweigDuring the \Open Problems" session of the workshop theneed for ben
hmarks or testbeds for Program analysis toolsbe
ame obvious. On the other side, some interesting ex-amples were presented during the workshop whi
h repre-sents unsolved or hard-to-solve problems. There are manymore of those problems|both users and developers of pro-gram analysis tools dis
over 'interesting' examples fromtime to time. These examples often get lost again, asnobody
olle
ts them. Therefore we
all the developersand users of program analysis to submit their problems tokrinke�ips.
s.tu-bs.de.Requests for the a
tual list of problems may use the sameaddress.

16At this time, n � 5

Taxonomy of parti
ipants and theirinterestsThe following
on
ept latti
e was generated from a booleantable whi
h en
oded the interests of the parti
ipants. Thelatti
e reveals a hierar
hi
al stru
ture of both parti
ipantsand interests. A person x is interested in topi
 y, i� x appearsbelow y in the latti
e. Suprema fa
tor out
ommon interests,in�ma display multi-interested parti
ipants.

W. Griswold V. Rajlich

T. Teitelbaum T. RepsR. Gimnich

G. Snelting

F. Tip
J. Field

G. Ramalingam

Y2000

D. Smith

Process

D. Notkin

E. Ploedereder
G. Murphy
R. Koschke

Concept

Analysis

A. Zündorf
 W. Schäfer

Design

A. Winter
H. Steffens
J. Ebert

Queries

R. Crew

Empirical

Studies

A. Lakhotia

S. Horwitz

H. Müller
P. Reichelt

Program

Transformation

GrouperSlicer

A. Goldberg
J. Krinke
M. Harman
T. Gyimothy

C. Lindig A. Mayrhauser

