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Contents

Abstract
Theorem provers allow mechanic verification of formal proofs of mathematical theorems.
An important feature for formalizing recursive structures such as programming language
semantics are inductively defined predicates. The currently existing provers allow induc-
tive specification of predicates with a fixed set of introduction rules. This thesis explores
the idea of open inductive predicates which allow addition of introduction rules after
definition and proofs for theorems on a per-introduction-rule basis. It also presents an
implementation of the concept for the Isabelle theorem prover.
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1 Introduction

Computer Languages are becoming increasingly complex. It thus becomes more and
more important to verify that their definitions have the desired properties. Given their
complexity this is impossible to do convincingly by reading their definition and thinking
hard. The alternative is to model their semantics formally and prove mathematically that
they have the claimed properties. Since these proofs include many tedious steps, instead
of doing them manually, proof assistants like Isabelle are used to partially automate this
task.
As an example consider the very simple language of integer arithmetic expressions

consisting only of constants and additions. It can be modeled in the proof assistant
Isabelle as an inductively defined datatype and an inductively defined predicate on this
type that captures the evaluation semantics:

datatype expr =
Const int

| Add expr expr

inductive eval::"expr ⇒ int ⇒ bool" where
const: "eval (Const n) n"

| add: "eval a ra =⇒ eval b rb =⇒ ra + rb = n =⇒ eval (Add a b) n"

Using this predicate, facts about the evaluation of these expressions can be shown.
For example, the value of an expression can be doubled by doubling every constant that
occurs within. To double constants, we first define an auxiliary function that operates
on expressions:

fun cdouble where
"cdouble (Const n) = Const (2 ∗ n)"

| "cdouble (Add a b) = Add (cdouble a) (cdouble b)"

Then the doubling theorem can be formulated. The proof is by induction, using
the induction theorem that is defined for the eval predicate. This yields one case for
constants and one for additions, both of which are easy to show1:

theorem double: "eval e n =⇒ eval (cdouble e) (2 ∗ n)"
proof (induction rule: eval.induct)
fix n
have "cdouble (Const n) = Const (2 ∗ n)" by (rule cdouble.simps(1))
with eval.const show "eval (cdouble (Const n)) (2 ∗ n)" by simp

1In fact, the whole proof can also be found by auto, but the Isar version has the advantage of showing
the structure of the proof. And of course, more complex proofs aren’t always found by auto in general.
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next
fix a ra b rb n
assume a: "eval (cdouble a) (2 ∗ ra)"
and b: "eval (cdouble b) (2 ∗ rb)"
and ab: "ra + rb = n"

have "cdouble (Add a b) = Add (cdouble a) (cdouble b)" by (rule cdouble.simps(2))
with eval.add a b ab show "eval (cdouble (Add a b)) (2 ∗ n)" by simp

qed

Another theorem one might want to show is the fact that such expressions are com-
mutative, i.e. invariant under swapping of arguments. To show this, one again needs an
auxiliary function that performs the argument swapping on expressions:

fun swap where
"swap (Const n) = Const n"

| "swap (Add a b) = Add (swap b) (swap a)"

Then again the theorem can be formulated and shown by induction using the induction
theorem of the eval predicate:

theorem commutes: "eval e n =⇒ eval (swap e) n"
proof (induction rule: eval.induct)
fix n
have "swap (Const n) = Const n" by (rule swap.simps(1))
with eval.const show "eval (swap (Const n)) n" by simp

next
fix a ra b rb n
assume a: "eval (swap a) ra"
and b: "eval (swap b) rb"
and ab: "ra + rb = n"

have "swap (Add a b) = Add (swap b) (swap a)" by (rule swap.simps(2))
with eval.add a b ab show "eval (swap (Add a b)) n" by simp

qed

1.1 Language Extension
If the language is to be extended to also allow subtractions, a new datatype and predicate
can be defined:

datatype expr’ =
Const int

| Add expr’ expr’
| Sub expr’ expr’

inductive eval’::"expr’ ⇒ int ⇒ bool" where
const: "eval’ (Const n) n"

8
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| add: "eval’ a ra =⇒ eval’ b rb =⇒ ra + rb = n =⇒ eval’ (Add a b) n"
| sub: "eval’ a ra =⇒ eval’ b rb =⇒ ra − rb = n =⇒ eval’ (Sub a b) n"

The constant and addition parts are identical to the previous definition, the subtrac-
tion rule is of course new.
Like for the previous definition of arithmetic expressions, the doubling theorem is

also true for evaluation of this kind of expressions. It can be formulated and proved as
follows:

fun cdouble’ where
"cdouble’ (Const n) = Const (2 ∗ n)"

| "cdouble’ (Add a b) = Add (cdouble’ a) (cdouble’ b)"
| "cdouble’ (Sub a b) = Sub (cdouble’ a) (cdouble’ b)"

theorem double’: "eval’ e n =⇒ eval’ (cdouble’ e) (2 ∗ n)"
proof (induction rule: eval’.induct)
fix n
have "cdouble’ (Const n) = Const (2 ∗ n)" by (rule cdouble’.simps(1))
with eval’.const show "eval’ (cdouble’ (Const n)) (2 ∗ n)" by simp

next
fix a ra b rb n
assume a: "eval’ (cdouble’ a) (2 ∗ ra)"
and b: "eval’ (cdouble’ b) (2 ∗ rb)"
and ab: "ra + rb = n"

have "cdouble’ (Add a b) = Add (cdouble’ a) (cdouble’ b)" by (rule cdouble’.simps(2))
with eval’.add a b ab show "eval’ (cdouble’ (Add a b)) (2 ∗ n)" by simp

next
fix a ra b rb n
assume a: "eval’ (cdouble’ a) (2 ∗ ra)"
and b: "eval’ (cdouble’ b) (2 ∗ rb)"
and ab: "ra − rb = n"

have "cdouble’ (Sub a b) = Sub (cdouble’ a) (cdouble’ b)" by (rule cdouble’.simps(3))
with eval’.sub a b ab show "eval’ (cdouble’ (Sub a b)) (2 ∗ n)" by simp

qed

Note that the proofs for the constant and addition cases remain unchanged. Formu-
lating these proofs is thus very repetitive, and Copy-and-Pasting the previous proof is
very tempting.
Surely there must be a better solution? Of course, one might simply extend the

original eval predicate. This saves the copying and repetition, but comes with a different
downside: The commutes theorem can no longer be shown! It is not true for the new
language with subtractions, and there is no simple way to show it just for constants and
additions, since the predicate with just these rules is no longer present.
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1.2 Using Open Inductive

To alleviate this problem, a new package for Isabelle called Open Inductive was de-
veloped. It allows defining sets of introduction rules for inductive predicates in an
independent fashion, using the commands open_inductive and add_intro:

open_inductive eval::"expr ⇒ int ⇒ bool"
add_intro eval const: "eval (Const n) n"
add_intro eval add: "eval a ra =⇒ eval b rb =⇒ ra + rb = n =⇒ eval (Add a b) n"
add_intro eval sub: "eval a ra =⇒ eval b rb =⇒ ra − rb = n =⇒ eval (Sub a b) n"

Inductive proofs can then be carried out separately per introduction rule. This is the
doubling theorem with inductive proof for constants, additions and subtractions using
the commands open_theorem and show_open:

open_theorem double shows "eval e n =⇒ eval (cdouble e) (2 ∗ n)"

show_open double for const
proof−
fix n
have "cdouble (Const n) = Const (2 ∗ n)" by (rule cdouble.simps(1))
with eval.const show "eval (cdouble (Const n)) (2 ∗ n)" by simp

qed

show_open double for add
proof−
fix a ra b rb n
assume a: "eval (cdouble a) (2 ∗ ra)"
and b: "eval (cdouble b) (2 ∗ rb)"
and ab: "ra + rb = n"

have "cdouble (Add a b) = Add (cdouble a) (cdouble b)" by (rule cdouble.simps(2))
with eval.add a b ab show "eval (cdouble (Add a b)) (2 ∗ n)" by simp

qed

show_open double for sub
proof−
fix a ra b rb n
assume a: "eval (cdouble a) (2 ∗ ra)"
and b: "eval (cdouble b) (2 ∗ rb)"
and ab: "ra − rb = n"

have "cdouble (Sub a b) = Sub (cdouble a) (cdouble b)" by (rule cdouble.simps(3))
with eval.sub a b ab show "eval (cdouble (Sub a b)) (2 ∗ n)" by simp

qed

In Chapter 3 we explain under what circumstances such sharing of sub-proofs is pos-
sible in general.
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The commutation theorem can be written analogously, but obviously proofs can only
be given for constants and additions:

open_theorem commutes shows "eval e n =⇒ eval (swap e) n"

show_open commutes for const
proof−
fix n
have "swap (Const n) = Const n" by (rule swap.simps(1))
with eval.const show "eval (swap (Const n)) n" by simp

qed

show_open commutes for add
proof−
fix a ra b rb n
assume a: "eval (swap a) ra"
and b: "eval (swap b) rb"
and ab: "ra + rb = n"

have "swap (Add a b) = Add (swap b) (swap a)" by (rule swap.simps(2))
with eval.add a b ab show "eval (swap (Add a b)) n" by simp

qed

To create the two versions of the predicate named eval and eval’, once without and
once with the rule for subtraction, it suffices to use the new command close_inductive:

close_inductive eval assumes const and add for eval
close_inductive eval assumes const add and sub for eval’

These calls automatically yield a version of the doubling theorem for each definition
of eval as well as the commutation theorem for eval without subtraction. In Chapter 4
the full effects of this (and the other commands mentioned in this section) are explained
in detail.
Open Inductive thus allows to keep theorems that are only valid for restricted versions

of the language. At the same time it eliminates the need to copy proofs for extended
variants since identical sub-proofs are shared automatically.
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2 Background

This chapter provides the reader with background knowledge that helps understand
where the motivation for open inductive predicates lies.
The first section explains what theorem provers are and lists some well-known im-

plementations to show their different points of focus. Both traditional theorem provers
such as Coq and Isabelle as well as provers integrated into programming languages are
discussed.
Section 2.2 reviews what is understood as the expression problem in programming

language design. The typical drawbacks of object-oriented as well as functional pro-
gramming languages are highlighted.
The next section explains what inductively defined predicates are in a logical mathe-

matical sense. It also shows how they can be formulated in the theorem prover Isabelle
and what some common usage patterns are.
Section 2.4 discusses some work that is related to open inductive predicates and their

implementation in theorem provers.

2.1 Theorem Provers
Interactive theorem provers allow the user to formulate definitions, propositions and
proofs. A theorem prover implements a logic calculus and uses it to determine whether
a given proof is valid. If this is the case, the prover yields a theorem, which can then be
used in proofs of subsequent propositions.
Most theorem provers also have features like (semi-)automatic proof search, support

for multiple logics, code generation and others.

2.1.1 Coq
Developed in France mainly by INRIA since 1984, the interactive theorem prover Coq is
the most established software in the field. It has been used in the proof of the four color
theorem [9] and to construct an optimizing compiler for (a subset of) the C programming
language [1].
Coq is based on the higher-order type theory called “Calculus of Constructions” (CoC)

[3], a higher-order typed lambda calculus. This has later been extended to the “Calculus
of Inductive Constructions” [8] and “Calculus of Coinductive Constructions” [7] adding
inductive types and coinduction, respectively.
The user of Coq is presented with a dependently typed functional programming lan-

guage that uses this calculus as its type system. Proofs in Coq are written as series of
tactics that transform the proposition into a true statement step-by-step.
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Coq is implemented in OCaml (also a development of INRIA) [23], a language in the
ML family.

2.1.2 Agda, Idris and ATS
Agda, Idris and ATS are experimental, dependently typed programming languages. In
such languages, certain aspects of program behavior (such as lengths of arrays) can be
captured statically in the type system without run-time-checks (and without the infor-
mation being available at run-time). Since it cannot be in general inferred automatically
at compile time if such a property holds, these languages include a proof-sublanguage
used to write out proofs of program properties to aid the type checker in verifying pro-
gram correctness.

Agda is being developed since 1999, first at Chalmers University of Technology. It was
later rewritten, the first release of the new version was in 2007 [18]. It is a dependently
typed functional programming language with a Haskell-like syntax. Agda does allow
dependently typed pattern matching to make writing recursive functions (and alongside
them, inductive proofs) more natural. It also features metavariables as a means of
incremental program refinement. On the other hand, it does not allow writing proof
scripts using tactics like Coq. Agda is implemented in Haskell.

Idris is an even younger dependently typed programming language developed at the
University of St Andrews, first released in 2008 [2]. It allows both sophisticated incre-
mental program/proof construction like Agda and traditional proofs through application
of tactics. The syntax of Idris is also heavily influenced by Haskell. Like Agda, Idris is
implemented in Haskell.

ATS – short for “Applied Type System” – is a descendant of the Dependent ML pro-
gramming language, developed at Boston University [4]. It is a lower-level language
than Agda and Idris, allowing tight integration with C, manual memory management
and control over memory layout. ATS allows both functional and imperative program-
ming, its syntax is a hybrid of C and ML. The ATS compiler is itself implemented in
ATS but can be bootstrapped from C.

In all these languages, proof integrity is captured in their type system, which naturally
is a part of them. The correctness of proofs thus relies on a correct implementation of
the type system in the language compiler or interpreter.

2.1.3 Isabelle
The theorem prover Isabelle is a development of the University of Cambridge and the
Technical University of Munich [20]. Unlike Coq it only implements a small meta-
logic and allows multiple client logics. The most commonly used client logic is the
“Higher Order Logic” (HOL) [10], a descendant of the “Logic for Computable Functions”

14
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(LCF) [16]. HOL allows programming in a typed lambda calculus with user-defined data
constructors (datatypes), but (unlike CoC/Coq) does not have dependent types.
In addition to the classical proof scripts that consist of a list of tactics to be applied

sequentially, Isabelle features a more high-level proof language called Isar, which is meant
to make proofs look more natural, as they would when written on paper [30]. The goal
is to show to the human reader why the proof is correct, instead of just showing (to the
logic kernel) how the theorem can be proved.
Isabelle is implemented in Standard ML. The implementation uses different types for

terms (the components used to formulate propositions) and theorems. Since the type
system of ML has been shown to be sound [15], instances of the theorem type can only
be obtained through valid proofs.

2.2 The Expression Problem

The expression problem is essentially answering the question “How to extend a datatype
and its associated operations in a type-safe manner?”:

The Expression Problem is a new name for an old problem. The goal is
to define a datatype by cases, where one can add new cases to the datatype
and new functions over the datatype, without recompiling existing code, and
while retaining static type safety (e.g., no casts).

Philip Wadler, 1998 [26]

Philip Wadler observed that in 1998, it was still not possible to extend both a datatype
and its associated operations in a clean way neither in main-stream object-oriented nor
in functional programming languages.
As an example, he considers a simple language of arithmetic expressions consisting

of integer constants “Num” and addition “Add”. The only supported operation is to
evaluate an expression using “eval”.
This language is then to be extended with a new kind of data, multiplication “Mul”

and a new operation “show” which prints an expression in human-readable form. It
turns out that for both functional and object-oriented languages at least one of those
extensions is problematic.

2.2.1 Object-oriented Languages

The initial language can be implemented in Java as an interface “lang” with two classes
“Num” and “Add” both implementing the interface.

package lang;

public interface T { public int eval(); };

15



2 Background

public class Num implements T {
protected static int val;

public Num(int val) { this.val = val; }

public int eval() { return this.val; }
}

public class Add implements T {
protected static T lhs;
protected static T rhs;

public Add(T lhs, T rhs) {
this.lhs = lhs;
this.rhs = rhs;

}

public int eval() { return lhs.eval() + rhs.eval(); }
}

Extending the language with a multiplication operation is possible without touching
the existing code: One simply writes a new class “Mul” which implements the same
interface.
Adding pretty-printing however is impossible without changing the existing interface

and all existing classes to add the “show” method. If the existing code is to remain un-
touched, adding “show” entails writing a new interface “lang2” (which can conveniently
inherit “eval” from “lang”) and new implementations of “Num” and “Add”.

package lang2;

public interface T extends lang.T { public String show(); }

public class Num extends lang.Num implements T {

public Num(int val) { super(val); }

public String show() { return Integer.toString(val); }
}

public class Add extends lang.Add implements T {
protected static T lhs;
protected static T rhs;

public Add(T lhs, T rhs) {
super(lhs, rhs);

16
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this.lhs = lhs;
this.rhs = rhs;

}

public String show() { return lhs.show() + "␣+␣" + rhs.show(); }
}

public class Mul implements T {
protected static T lhs;
protected static T rhs;

public Mul(T lhs, T rhs) {
this.lhs = lhs;
this.rhs = rhs;

}

public int eval() { return lhs.eval() ∗ rhs.eval(); }

public String show() { return lhs.show() + "␣∗␣" + rhs.show(); }
}

Thanks to inheritance, re-implementation of “eval” is not necessary for the existing
classes. The constructors need to be adapted to the new types however, as can be seen
in the “Add” class.
Note carefully that both the call to “super()” as well as the manual initialization of

“lhs” and “rhs” are necessary in the constructor of “Add”. Leaving out the call to the par-
ent constructor results in a compile-time error, while not re-initializing the variables lead
to the beloved “NullPointerException” when calling “show()” on the lang.T-initialized
variables.

2.2.2 Functional Languages

In Standard ML, the initial language can be implemented using an inductive datatype
with a “Num” and an “Add” constructor and a free function “eval”:

signature LANG =
sig
type t

val Num: int → t
val Add: {rhs: t, lhs: t} → t

val eval: t → int
end

17
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structure Lang :> LANG =
struct
datatype t =
Num of int

| Add of {rhs: t, lhs: t}

fun eval (Num i) = i
| eval (Add {lhs, rhs}) = (eval lhs) + (eval rhs)

end

When extending this language, it is possible to add the pretty-printing by simply
adding a “show” function without changing any existing code1:
Adding multiplication however would entail changing the “lang” datatype and the

existing “eval” function, so to cleanly add it, a new structure becomes necessary:

signature LANG2 =
sig
include LANG

val Mul: {rhs: t, lhs: t} → t

val show: t → string
end

structure Lang2 :> LANG2 =
struct
datatype t =
Num of int

| Add of {rhs: t, lhs: t}
| Mul of {rhs: t, lhs: t}

fun eval (Num v) = Lang.eval (Lang.Num v)
| eval (Add {lhs, rhs}) = Lang.eval (Lang.Add

{lhs = Lang.Num (eval lhs),
rhs = Lang.Num (eval rhs)})

| eval (Mul {lhs, rhs}) = (eval lhs) ∗ (eval rhs)

fun show (Num i) = Int.toString i
| show (Add {lhs, rhs}) = (show lhs) ^ "␣+␣" ^ (show rhs)
| show (Mul {lhs, rhs}) = (show lhs) ^ "␣∗␣" ^ (show rhs)

end
1It is necessary to add “show” to the signature and the structure, but in the Java case, the package
signature would also change. The point is that the datatype definition of “t” and the “eval” function
need not be touched.
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The signature can again be extended from the first “LANG”. The datatype and its
constructor need to be implemented again, though. To reuse the function “Lang.eval” in
the implementation of “Lang2.eval” some ugly wrapping is necessary. The inheritance
in Java makes this wrapping look a lot cleaner—on the other hand there is no way to
accidentally produce the “NullPointerException” in Standard ML.

2.2.3 Summary

As demonstrated, object-oriented and functional programming languages traditionally
solve different aspects of the expression problem. They do a good job solving one part
of the problem and make the other awkward to implement.
In an object-oriented language like Java, it is easy to add new types (just add new

classes), but hard to add operations (break an existing interface?). In a functional
language like Standard ML, it is easy to add new operations (just add new functions),
but hard to add types (break an existing datatype?).
Neither discipline solves both aspects in a clean way. It needs to be noted however, that

both Java and Standard ML are rather old languages (by computer science standards
anyway) and modern “hybrid” languages like Scala [25] or Rust [24] have better answers
to the expression problem.

2.3 Inductively Defined Predicates
Predicates are functions with a boolean result, so a predicate evaluates its arguments and
returns true or false [22]. For some predicates it is convenient to define them inductively,
i.e. so that they refer to themselves in their definition.

2.3.1 In Higher-Order Logic

An example of an inductively defined predicate is the “eval” function from the previous
section written as a predicate.
We first define the datatype of an arithmetic expression that consists of a constant

(Const) or an addition (Add) inductively:
expr = Const int ∨ Add expr expr

Here “int” refers to an integer. Assuming we have also defined + as an integer operation,
the eval function can then be defined as an inductive predicate that satisfies the following
two “introduction rules”:

• ∀n. eval (Const n) n

• ∀a ra b rb r. eval a ra ∧ eval b rb ∧ ra + rb = r → eval (Add a b) r

That is, any constant evaluates to itself, and an addition evaluates to the result of
evaluating its left and right argument and adding them. The induction theorem for this
predicate is:
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∀P.
∀n. P (Const n) n ∀a ra b rb n. P a ra ∧ P b rb ∧ ra + rb = n→ P (Add a b) n

∀e n. eval e n→ P e n

To put it differently, we want eval to be the smallest predicate that fulfills its intro-
duction rules, so they are the only facts that we can assume for the induction theorem.
This rule is also called the axiom of induction. The reason for calling it an axiom is
that it cannot be proved in some logics, notably first-order-logic where it is illegal to
quantify over P . When induction is necessary in such logics, the induction rules need to
be defined as axioms.
Of course, eval could just as well be written as a function, using lambda terms. It is

used here as an example since it is easy to understand and to highlight the parallels with
programming languages reviewed in the previous section. In general not all predicates
can be written as functions. A more complex example would distract more attention
from the question how predicates can be defined inductively.

2.3.2 In Isabelle/HOL
In the Isabelle theorem prover, inductive predicates can be defined on any built-in or
user-defined datatype as both predicates or sets. The syntax is very close to the logic
notation shown above.
To define the inductive datatype of arithmetic expressions in Isabelle/HOL we write:

datatype expr =
Const int

| Add expr expr
The predicate eval is then defined inductively by specifying its introduction rules:
inductive eval::"expr ⇒ int ⇒ bool" where
const: "eval (Const n) n"

| add: "eval a ra =⇒ eval b rb =⇒ ra + rb = n =⇒ eval (Add a b) n"
Compared to our logical definition earlier, all the universal quantifications have disap-
peared. This is because in Isabelle, every free variable is implicitly universally quantified.
Using this input, the Inductive package produces a definition that guarantees the prop-
erties we expect:

eval ≡ lfp (λP x1 x2.(∃n. x1 = Const n ∧ x2 = n)∨
(∃a ra b rb n. x1 = Add a b ∧ x2 = n ∧ P a ra ∧ P b rb ∧ ra + rb = n))

While this definition is a bit complex, it is possible to see where the introduction rules are
integrated. All of this is a λ-function wrapped in “lfp”. lfp stands for least fixed point,
which ensures that we really get the smallest predicate that fulfills the introduction
rules. The definition of lfp in Isabelle simply uses the set-theoretic infimum:

lfp f = Inf{u. f u ≤ u}
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Isabelle automatically proves rules about this new predicate. The most obvious one
is the induction theorem, which, with HOL being a higher order logic, can actually be
proved from the definition above:

eval x1 x2 =⇒
(
∧
n. P (Const n) n) =⇒

(
∧
a ra b rb n.

eval a ra =⇒ P a ra =⇒
eval b rb =⇒ P b rb =⇒
ra + rb = n =⇒ P (Add a b) n) =⇒

P x1 x2

Here, the logic operators like “∧” have been replaced by meta-logic connectors that make
the rule more convenient to use in proofs. In Isabelle, the “

∧
”-symbol is the meta-logic

universal quantification (∀), and the “ =⇒ ”-symbol is the meta-logic implication (→).
The call to inductive also shows the cases rule:
eval x1 x2 =⇒

(
∧
n. x1 = Const n =⇒ x2 = n =⇒ P ) =⇒

(
∧
a ra b rb n.
x1 = Add a n =⇒ x2 = n =⇒
eval a ra =⇒ eval b rb =⇒ ra + rb = n =⇒ P ) =⇒

P

This is used for case analysis where no induction is necessary, therefore P is not recursive
in this rule. Since this is the opposite of using the introduction rules, this strategy is
also called rule inversion [17, p. 130].
Finally, it proves the introduction rules, which are used to show which terms fulfill

the predicate:

• eval (Const n) n

• eval a ra =⇒ eval b rb =⇒ ra + rb = n =⇒ eval (Add a b) n

These are identical to the definition, which is no surprise since the predicate is defined
in terms of its introduction rules.

What Isabelle/HOL provides is thus a convenient way to formulate inductive predi-
cates by giving their introduction rules, and a set of automatic transformations to prove
a number of useful and often-needed rules to work with them.

2.4 Related Work
This section provides an overview of how inductive predicates and datatypes can be
implemented in a formal manner, to be used in a theorem prover.
Just like in the case of object-oriented and functional programming, one can ask the

question, how such an inductive predicate and its datatype can be extended. The second
part of this section addresses this question.

21



2 Background

2.4.1 Implementations of Inductive Definitions

There are several publications on how to implement inductive predicates in theorem
provers.

Isabelle. The approach used in Isabelle is described in “A fixedpoint approach to im-
plementing (co)inductive definitions” by Paulson [19]. This describes the process of
modeling the inductive predicate from its introduction rules, which was mentioned in
the previous section. It also explains the origin of the least-fixed-point operator “lfp”
mentioned earlier, and the type of functions on which it can be used.

Coq. Another mechanism for implementing inductive predicates is the Calculus of Co-
Inductive Constructions, an extension of the Calculus of Constructions by Giménez [8].
This is, as the name implies, the variant implemented in Coq.

HOL. A third mechanism by Melham is based on the natural numbers [14]. In this
approach, lists are defined as functions over the natural numbers and trees are defined
using Gödel numbering. In essence, the idea is to have one inductive data structure, the
natural numbers, and use it to construct others as necessary. This strategy is used in
the HOL theorem prover.

Others. Other, earlier theorem provers have no mechanism to handle inductive defini-
tions without introducing new axioms. This approach is of course fragile, since it does
bear the risk of introducing unsoundness.
Paulson writes in [19] that to introduce inductive definitions in a definitional fashion,

either higher-order logic or Zermelo-Fraenkel set theory is necessary. For this, early
theorem provers like LCF, which is a first-order logic, were simply not powerful enough,
so other ways had to be found.

2.4.2 Extensions of Inductive Definitions

Inductive predicates are often used in the context of modeling operational semantics
of programming languages. In this context, it is often helpful to first define a small
version of a language and then extend it later. Thus, inductive predicates are informally
extended in many papers on programming language semantics. For example, in his paper
“Natural Semantics for Lazy Evaluation” Launchbury first defines a minimal functional
language and then extends it with data constructors [13]. He does not re-prove the
theorems about the minimal language again for the extended version—and in the context
of the paper such a proof would certainly be out of place.
It does however beg the question, under which circumstances proofs remain correct

for such an extension.
In “Production Lines of Theorems” Delaware et al. [5] model the operational seman-

tics of Featherweight Java in Coq and show how to extend it with casts and generics.
Their approach requires a fair amount of manual wrapping of predicates and proofs,
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similar to the wrapping of the eval function in Section 2.2.2. Compared to the Open
Inductive approach presented here, this requires more manual work. Conversely, by re-
lying on wrapping by the user it is of course more flexible than the automated solution
implemented in Open Inductive.
A different approach by Jaskelioff et al. is to replace inductive definitions by free

monads [11]. Several such definitions can then be combined using monadic coproducts.
The authors use Haskell to implement their semantics framework. Being implemented
in Haskell the focus of the authors lies on implementing interpreters that adhere to these
semantics. There is no way to formally prove properties about the defined languages in
this approach.
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Inductively defined predicates with a fixed set of introduction rules are useful and suffi-
cient for well-understood concepts that are unlikely to change. They are also useful in
formalizing the evaluation semantics of formal languages. In this case, it is often useful
to have several closely related variants of a language. This yields multiple inductive
definitions with overlapping sets of introduction rules and multiple induction theorems.
Maintaining proofs for each variant separately is cumbersome and error-prone. This

chapter explores the idea of modularizing such definitions and proofs in a way that allows
their reuse.

3.1 Motivation
As a motivating example consider the evaluation of arithmetic expressions. With a
datatype for expressions and the eval predicate from Section 2.3.1 and its induction
theorem

Definition 1. Induction theorem for eval:

∀P.
∀n. P (Const n) n ∀a ra b rb n. P a ra ∧ P b rb ∧ ra + rb = n→ P (Add a b) n

∀e n. eval e n→ P e n

it is possible to prove theorems about eval by induction. To deconstruct the inductive
cases, we need the introduction rules for constants and additions:

Definition 2. Constant introduction for eval:

∀n.
eval (Const n) n

Definition 3. Addition introduction for eval:

∀a ra b rb n.
eval a ra eval b rb ra + rb = n

eval (Add a b) n

For example, the value of an expression can be doubled by doubling all constants. To
show this, we first define an auxiliary function that performs the doubling of constants:

Definition 4. Constant doubling:

cdbl e ≡
{

Const (2 ∗ n) if e = Const n
Add (cdbl a) (cdbl b) if e = Add a b
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Theorem 1. The value of an expression can be doubled by doubling every constant:

eval e n→ eval (cdbl e) (2 ∗ n)

Proof. The proof is again by induction on e. Applying the induction theorem from
Definition 1 yields two cases that need to be proved:

Constant case:
∀n. eval (cdbl (Const n)) (2 ∗ n)

Addition case:

∀a ra b rb n. eval (cdbl a) (2 ∗ ra) ∧ eval (cdbl b) (2 ∗ rb) ∧ ra + rb = n

→ eval (cdbl (Add a b)) (2 ∗ n)

Constant case. We first show the case for constants. The application of cdbl can be
simplified using Definition 4, yielding:

∀n. eval (Const (2 ∗ n)) (2 ∗ n)

This matches Definition 2, the introduction rule for constants, completing the proof
for the constant case.

Addition case. To show the case for addition we simplify again with the definition of
cdbl. This changes the right-hand-side of the implication:

∀a ra b rb n. eval (cdbl a) (2 ∗ ra) ∧ eval (cdbl b) (2 ∗ rb) ∧ ra + rb = n

→ eval (Add (cdbl a) (cdbl b)) (2 ∗ n)

This form now matches Definition 3, the introduction rule for addition.

To extend the eval predicate with a new introduction rule for subtraction, the defini-
tions need to be adapted. A new introduction rule is necessary for subtractions:

Definition 5. Subtraction introduction for eval’:

∀a b n ra rb.
eval′ a ra eval′ b rb ra − rb = n

eval′ (Sub a b) n

The introduction rules for constants and additions can remain as before, only eval
needs to be replaced with eval’. The induction theorem now has three premises instead
of two:

Definition 6. Induction theorem for eval’:

∀P.

∀n. P (Const n) n ∀a ra b rb n. P a ra ∧ P b rb ∧ ra + rb = n→ P (Add a b) n
∀a ra b rb n. P a ra ∧ P b rb ∧ ra − rb = n→ P (Sub a b) n

∀e n. eval′ e n→ P e n
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To show the doubling theorem for eval’ a new proof must be given. To formulate the
proposition, the doubling function needs to be adapted first:
Definition 7. Constant doubling for eval’:

cdbl′ e ≡


Const (2 ∗ n) if e = Const n
Add (cdbl′ a) (cdbl′ b) if e = Add a b
Sub (cdbl′ a) (cdbl′ b) if e = Sub a b

Then the equivalent of Theorem 1 can be shown for eval’:
Theorem 2. The value of an expression can be doubled by doubling every constant:

eval′ e n→ eval′ (cdbl′ e) (2 ∗ n)

Proof. The proof is, as before, by induction on e. Applying the induction theorem now
yields three cases:
Constant case:

∀n. eval′ (cdbl′ (Const n)) (2 ∗ n)

Addition case:

∀a ra b rb n. eval′ (cdbl′ a) (2 ∗ ra) ∧ eval′ (cdbl′ b) (2 ∗ rb) ∧ ra + rb = n

→ eval′ (cdbl′ (Add a b)) (2 ∗ n)

Subtraction case:

∀a ra b rb n. eval′ (cdbl′ a) (2 ∗ ra) ∧ eval′ (cdbl′ b) (2 ∗ rb) ∧ ra − rb = n

→ eval′ (cdbl′ (Sub a b)) (2 ∗ n)

Constant and Addition cases. The proofs for constants and additions are analogous
to the proof of Theorem 1.

Subtraction case. The proof for subtraction first requires simplifying the occurrence
of the constant doubling function:

∀a ra b rb n. eval′ (cdbl′ a) (2 ∗ ra) ∧ eval′ (cdbl′ b) (2 ∗ rb) ∧ ra − rb = n

→ eval′ (Sub (cdbl′ a) (cdbl′ b)) (2 ∗ n)

The introduction rule for subtraction given in Definition 7 matches this form, concluding
the proof.

Since the premises for constants and addition in the induction theorem of eval are
unchanged in the induction theorem of eval’ with subtraction, the same sequence of rule
applications can be used to prove these cases. The result is two very similar proofs –
after the application of the induction theorem the two cases for constants and additions
can be shown analogously.
The remainder of this chapter discusses the question when such sharing of subproofs

is correct.
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3.2 Inductive Predicate Definitions

Let I be an index set and R a set of formulas of the form

Ri ≡ ∀x. Fi[P, ~gi, x]→ P (fi x) for i ∈ I

where P is a predicate symbol of one variable, each Fi is a formula monotonous in P
and a variable x. The fi and ~gi are functions used for transforming the variable before
passing it to P .
This set R then describes the introduction rules for a predicate P with the induction

theorem:

∀Q.
∀x. Fi[P,Q · ~gi, x]→ Q (fi x) for i ∈ I

P x→ Q x

here the fi and ~gi are again functions that are applied to the argument before passing it
to the predicate P . Q is any formula, it stands for the proposition that is to be shown
with the induction theorem. The notation Q · ~gi means that both the transformations
of Q as well as ~gi need to be applied to the arguments of P in the inductive case.
How to generate the actual definition that can be used to prove these rules is described

by Paulson in [19].
In the example above, P is eval, the f and ~g are used to make the constructor calls to

Const and Add. For the constant introduction rule, F is empty, for the others it contains
the inductive calls to eval and the side-conditions like ra + rb = n. In Theorem 1 the Q
makes the call do cdbl and produces the 2 ∗ n from n.

3.3 Modularizing Proofs

A proof that uses the induction theorem of P as first rule then has one case for each of
the introduction rules in R:

case for Ri for i ∈ I

A subset J ⊆ I can now be used to select a subset of the introduction rules R, using
the substitution R[P/P ′] for a predicate P ′. The induction theorem of this predicate P ′

is then of the form:

∀Q.
∀x. Fj [P ′, Q · ~gj , x]→ Q (fj x) for j ∈ J ⊆ I

P ′ x→ Q x
(3.1)

A proof for a theorem on P ′ that uses induction as its primary proof method then has
cases of the form:

case for Rj for j ∈ J ⊆ I
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Provided the proof for each introduction rule is independent of the others, the proof
for the theorem can reuse the exact same proofs as with the introduction theorem of the
larger predicate.
In terms of the example, if you have a proof for Theorem 1 for a predicate that

includes evaluation of constants, addition and subtraction, you can use the subproofs
for the constant and addition cases to show the same theorem for a predicate that just
allows evaluation of these two constructs, Theorem 2 above, after substituting eval with
eval’.

3.4 Incremental Development

This only explains how the proof of a theorem for the largest desired predicate can
be split apart to find proofs for smaller ones with subsets of the induction rules. In
development, the largest predicate is usually an extension that is developed after proofs
for simpler versions have already been found.
Instead of assuming a large induction theorem with cases for many different introduc-

tion rules, it is simpler to actually assume the smallest possible induction theorem for
each introduction rule.
Often, each subproof can be written using a simpler induction theorem of the form:

∀P Q.
∀x. Fi[P,Q · ~gi, x]→ Q (fi x)

P x→ Q x
with i ∈ I (3.2)

Note that here P is universally quantified. That means the definition of no specific
P can be used in the proof. A proof found after application of Equation 3.2 instead of
Equation 3.1 is thus general for all P that have an induction theorem that produces this
specific case, i.e. predicates with the introduction rule Ri.
This approach works for the proof of doubling by constant doubling (Theorems 1 and 2

above) since the proofs for the cases are self-sufficient and can be instantiated for eval
and eval’.

3.5 Additional Dependencies

Since the definition of no specific predicate P is usable in the proof, this method does not
allow the proof of cases that rely on using other facts about the predicate in question.
Simply making the definition available is not a solution, since the proof is then not
generally instantiatable for different P .
Instead the idea is to make specific aspects of P available during the proof, namely

introduction rules. If all subproofs in I need access to a selection of introduction rules
Rk with k ∈ K ⊆ I, proof of each rule can be given by:

Rk for k ∈ K;Ri ` case for Ri for i ∈ I
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Here, the rules to the left of the turnstile (`) symbol refer to rules present in the context
of the proof to the right. In every context where these rules hold, the proof to the right
holds true as well.
The context needed here includes the introduction rules selected by K. Additionally,

the introduction rule Ri for the case at hand needs to be made available, too. This latter
addition is not a real restriction though, because it will always be present in the context
where the proof for Ri is needed. The case for Ri on the right-hand-side is again meant
to be generated by the generalized induction theorem (Equation 3.2).
Proofs of this form can be then used to assemble valid proofs for any predicate P with

induction theorems of the form:

∀Q.
∀x. Fj [P0, Q · ~gj , x]→ Q (fj x) for j ∈ K ⊆ J ⊆ I

P0 x→ Q x
(3.3)

This is again a regular induction theorem for a defined predicate P0, not the version
universally quantified for P . The predicate P0 here needs to include at least the first
introduction rules in K, since they are dependencies in proofs of the others. To use the
proofs for the cases that were produced using Equation 3.1, the general P now needs to
be instantiated for the special P0 that is now defined. Then the proof for each case can
be applied. The context for these is as required, since the definition of P0 allows proof
of the introduction rules for K.

3.6 Non-inductive Proofs
Until this point, we have discussed proofs where the primary proof method is induction,
i.e. the first rule application to the proposition is the induction theorem.
This is not a necessary requirement: The principle of generalizing for all P can be

applied for non-inductive proofs as well. To show a proposition Q for a generalized
predicate, it suffices to find a set of necessary introduction rules (again indexed by K),
make them available in the context and generalize all occurrences for P :

Rk for k ∈ K ⊆ I ` proof for ∀P. Q

This time the proof is direct and not per-introduction rule, so using it as proof for a
defined predicate P0 with at least the introduction rules specified by K is even simpler:
Just instantiate P with P0.

3.7 Limitations
The method described in this chapter has some limitations that make it applicable only
to certain kinds of proofs. Since the inductive predicate is not defined in the proof
context, only facts about it that are made available explicitly can be used. In this
chapter we have shown how it is possible to make selected introduction rules available
in the proof context.
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Another often-needed rule in proofs is the rule for case analysis1. While in principle
this rule could also be made available in the context, this would severely restrict the
generality of the proof: The proposition of the cases rule is that only certain cases of
syntactic forms are part of the predicate. By making a cases rule with a set R of cases
available in a per-introduction-rule proof, this precludes closing the predicate later for
any real superset R′ ⊃ R since the new cases are not accounted for in the cases theorem.
When closing the predicate later, it must only contain a subset of the rules specified by
the case analysis, i.e. R̃ ⊆ R.
This example shows that care needs to be taken when choosing which rules to make

available during the general proof, since it is easy to accidentally over-specify the pred-
icate and lose genericity.

1For example in proofs for determinism
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4 User Interface
This chapter describes the user interface of the Open Inductive package that was imple-
mented for Isabelle. It is compatible with the Isabelle 2014 stable release as well as the
repository versions up to and including changeset c85e018be3a3. The package depends
on theory Main of Isabelle/HOL. To use it, it needs to be imported at the top of the
theory.
The first part of this chapter describes the commands that the package defines. The

second part shows them in action: They are used to define and prove the evaluation of
arithmetic expressions and some theorems about them that were discussed previously.

4.1 Registering Predicates
Defining an inductive predicate is a two-step process. First, the name of the predicate
needs to be registered. Then one or more defining introduction rules can be associated
with it.

Predicate Registration. The command to register a new inductive predicate in the
current theory is open_inductive. Its syntax is:

Command 1. open_inductive pred-name[::type]

Here, pred-name can be any valid identifier. The type annotation is optional. Suc-
cessfully registering a predicate will result in a diagnostic message:

Message 1. Two variants of this message exist, depending on whether a type annotation
was given:

• Registered open inductive predicate name without type.

• Registered open inductive predicate name with type type.

It is legal to register the same predicate multiple times. This can be used when a
predicate has some introduction rules defined in one file and is to be extended in another
to remind the reader of its presence. If a type was specified, it cannot be changed later
however. This leads to an error with the message:

Error 1. Can’t re-type predicate, was old-type would become new-type.

Also, if a type was specified the predicate cannot be registered later without a type.
This leads to an error with the message:

Error 2. Can’t delete type from predicate, was type.

33



4 User Interface

Introduction Rules. The command to associate an introduction rule with an open
predicate is add_intro, its syntax is:

Command 2. add_intro pred-name intro-name: term

Here, pred-name refers to a previously registered predicate, intro-name is a new name
for the introduction rule and term is an inner syntax expression containing the intro-
duction rule.
Successful registration of an introduction rules results in a diagnostic message:

Message 2. Registered introduction rule rule-name: term for pred-name

The predicate that add_intro refers to as pred-name needs to be registered before-
hand using Command 1. Using add_intro with an unregistered predicate results in an
error with the message:

Error 3. No such open inductive predicate: pred-name

The defining term is checked for syntax and internal consistency by the parser. The
occurrences of the predicate in the rule are also checked to match the type of the predicate
at the point of registration (if specified). Additionally they are checked structurally by
add_intro, so it is impossible to add a rule that cannot be used as introduction rule
(i.e. when the conclusion does not contain the predicate).

4.2 Registering Theorems

Using an open inductive predicate, theorems can be proved by induction with a separate
proof for each introduction rule. Like predicates, theorems need to be registered as open
theorems first. This is accomplished by the command open_theorem, its syntax is:

Command 3. open_theorem theorem-name shows term

Here, theorem-name is the name with which the theorem is later installed in the theory,
term is the proposition written in as an inner syntax term.
There is no need to explicitly specify which open inductive predicates occur in the

theorem. The package parses the term, finds them and reports them back to the user.
The message after successful registration is:

Message 3. Declared open theorem theorem-name as term on predicate-name(s).

Here, predicate-name(s) is the list of open inductive predicates that are found in
the theorem. Again, all occurring predicates are checked to be compatible with their
annotated type (if specified).
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4.3 Proving Theorems
A registered open theorem can now be proved by induction. The case for each introduc-
tion rule is a separate proof. The command to begin a proof is show_open, its syntax
is:

Command 4. show_open theorem-name for intro-name [assumes intro-name(s)
. . . ]

Here, theorem-name refers to the theorem that is to be proved and intro-name refers
to the name of the introduction rule for which the inductive case is to be instantiated.
The optional list of intro-name(s) are names of additional introduction rules that shall
be added to the proof context as assumptions. At this point, the type of the predicate
is matched with its inferred type in the introduction rule. If this fails a type unification
error is printed.
The theorem needs to be registered first with Command 3. Referring to an unregistered

theorem leads to an error with the message:

Error 4. No such theorem: theorem-name

Likewise, the introduction rule needs to be added to the predicate occurring in the
proposition using Command 2. Referring to an unregistered theorem leads to an error
with the message:

Error 5. No introduction rule named intro-name in pred-name(s)

If no error occurs, Isabelle switches to proof mode and the theorem can now be proved
for the selected introduction rule. The proof context is enriched with the selected in-
troduction rule(s), they are named pred-name.intro-name, just as they would be when
produced by the Inductive package.
Following a successful proof no theorem is installed in the current theory. The package

saves the proof internally and only exports the complete theorems, not the case for each
introduction rule.

Non-inductive proofs. It also possible to prove theorems that do not require induction.
In this case the invocation is:

Command 5. show_open theorem-name [assumes intro-name(s) . . . ]

No induction theorem is applied to the proposition. As with inductive proofs, the
proof context is enriched with the selected introduction rules, registered with their usual
names.

4.4 Closing Predicates
To get theory-level definitions of the predicates and theorems with proofs assembled
from the cases, the close_inductive command is used. Its syntax is:
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Command 6. close_inductive pred-name assumes intro-name [and intro-name . . . ]
for close-name

The predicate named pred-name will be created with the listed introduction rules with
the theory-level name close-name. Here, close-name can be identical to pred-name.
The predicate referred to by pred-name needs to be registered using Command 1.

Referring to an unregistered predicate leads to an error with the message:

Error 6. Undefined open predicate: pred-name

Likewise, each of the rules listed as intro-name needs to be registered in the correct
predicate using Command 2. Referring to an introduction rule not added to the predicate
leads to an error with the message:

Error 7. No introduction rule name intro-name defined in open predicate pred-name

If no error occurs, a message is printed:

Message 4. Closing inductive predicate pred-name with intro-name(s) as close-name.
Candidates for closing: theorem-name(s)

The candidates for closing are open theorems (registered with Command 3) that con-
tain the specified predicate. If a direct proof given using Command 5 exists for a theorem,
this proof is preferred. If such a proof cannot be used because of introduction rules that
are assumed but not present in the close predicate, a warning is printed:

Message 5. Cannot close open theorem theorem-name, missing introduction rules:
intro-name(s)

If no direct proof exists, the inductive proofs are checked for completeness. If any of
these theorems cannot be closed because of missing proofs (given using Command 4), a
warning is printed:

Message 6. Cannot close open theorem theorem-name, missing proofs for intro-name(s)

If all inductive proofs exist, but contain assumptions that cannot be satisfied, Mes-
sage 5 is printed here, too. Open theorems for which a complete proof can be assembled
are registered in the theory by their names. For successful registration a message is
printed:

Message 7. Installing name: term

Here, term is the (now proved) proposition. The name is of the form theorem-
name_pred-name with theorem-name being the name of the registered open theorem
and close-name the name of the predicate chosen with close_inductive. This is to
avoid name clashes when closing multiple variants of the same predicate that have proofs
for the same theorems.
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4.5 Example: Evaluation of Arithmetic Expressions
This section shows the interaction of these commands and how they can be used to mod-
ularize inductive proofs on our earlier example, the evaluation of arithmetic expressions.

4.5.1 Definitions
The definition of the datatype for an expression is unchanged, using the datatype
command. Here, an expression is defined with all the constructors that will be used
later, even though not all of them will occur in every predicate.

datatype expr =
Const int

| Add expr expr
| Sub expr expr

The definition of the eval predicate is now done with open_inductive, using the
add_intro command to specify three introduction rules corresponding to the datatype
constructors.

open_inductive eval::"expr ⇒ int ⇒ bool"
add_intro eval const: "eval (Const n) n"
add_intro eval add: "eval a ra =⇒ eval b rb =⇒ ra + rb = n =⇒ eval (Add a b) n"
add_intro eval sub: "eval a ra =⇒ eval b rb =⇒ ra − rb = n =⇒ eval (Sub a b) n"

4.5.2 Theorem: Double
One way to double the value of an expression is to add that same expression to itself.

open_theorem double_add shows "eval e n =⇒ eval (Add e e) (2 ∗ n)"

show_open double_add assumes add
proof (rule eval.add, simp_all)
show "n + n = 2 ∗ n" by presburger

qed

Note that this proof is not by induction, so it uses the bare version of show_open.
The proof needs access to the introduction rule for addition.
Another way is to double every constant. For this we define a function cdouble that

accepts an expression and recursively replaces all constants by their doubled equivalents.
This theorem can be shown inductively for all three introduction rules.

fun cdouble where
"cdouble (Const n) = Const (2 ∗ n)"

| "cdouble (Add a b) = Add (cdouble a) (cdouble b)"
| "cdouble (Sub a b) = Sub (cdouble a) (cdouble b)"

open_theorem double shows "eval e n =⇒ eval (cdouble e) (2 ∗ n)"
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show_open double for const
proof−
fix n
have "cdouble (Const n) = Const (2 ∗ n)" by (rule cdouble.simps(1))
with eval.const show "eval (cdouble (Const n)) (2 ∗ n)" by simp

qed

show_open double for add
proof−
fix a ra b rb n
assume a: "eval (cdouble a) (2 ∗ ra)"
and b: "eval (cdouble b) (2 ∗ rb)"
and ab: "ra + rb = n"

have "cdouble (Add a b) = Add (cdouble a) (cdouble b)" by (rule cdouble.simps(2))
with eval.add a b ab show "eval (cdouble (Add a b)) (2 ∗ n)" by simp

qed

show_open double for sub
proof−
fix a ra b rb n
assume a: "eval (cdouble a) (2 ∗ ra)"
and b: "eval (cdouble b) (2 ∗ rb)"
and ab: "ra − rb = n"

have "cdouble (Sub a b) = Sub (cdouble a) (cdouble b)" by (rule cdouble.simps(3))
with eval.sub a b ab show "eval (cdouble (Sub a b)) (2 ∗ n)" by simp

qed

The proofs themselves are simple and analog to the ones given for the equivalent
theorem in the previous chapter. They do not need access to other introduction rules.

4.5.3 Theorem: Commutes

An expression only consisting of constants and additions is commutative, i.e. yields the
same value when swapping all arguments:

fun swap where
"swap (Const n) = Const n"

| "swap (Add a b) = Add (swap b) (swap a)"
| "swap (Sub a b) = Sub (swap b) (swap a)"

open_theorem commutes shows "eval e n =⇒ eval (swap e) n"

show_open commutes for const
proof−
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fix n
have "swap (Const n) = Const n" by (rule swap.simps(1))
with eval.const show "eval (swap (Const n)) n" by simp

qed

show_open commutes for add
proof−
fix a ra b rb n
assume a: "eval (swap a) ra"
and b: "eval (swap b) rb"
and ab: "ra + rb = n"

have "swap (Add a b) = Add (swap b) (swap a)" by (rule swap.simps(2))
with eval.add a b ab show "eval (swap (Add a b)) n" by simp

qed

Naturally, this cannot be shown for the subtraction introduction rule. For constants
and additions the proofs are again very straightforward.

4.5.4 Theorem: No-Add

An example for a theorem where an inductive proof for one introduction rule needs
access to other introduction rules is the following: Every expression that evaluates can
be replaced by an expression containing no additions that evaluates to the same value.
First we implement a function to replace all additions by subtractions and constants

as well as a function to verify that this actually eliminates all additions and show that
it works as intended:

fun andf where
"andf True True = True"

| "andf _ _ = False"

fun no_add where
"no_add (Const _) = True"

| "no_add (Add _ _) = False"
| "no_add (Sub a b) = andf (no_add a) (no_add b)"

fun rem_add where
"rem_add (Const n) = Const n"

| "rem_add (Add a b) = Sub (rem_add a) (Sub (Const 0) (rem_add b))"
| "rem_add (Sub a b) = Sub (rem_add a) (rem_add b)"

lemma rem_add_removes: "no_add (rem_add e)"
by (induction e) auto

Then we show that after application of rem_add the resulting value stays the same:
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open_theorem rem_add_correct shows "eval e n =⇒ eval (rem_add e) n"

show_open rem_add_correct for const
using eval.const by simp

show_open rem_add_correct for add
assumes sub const
apply simp
apply (erule eval.sub)
apply (rule eval.sub)
apply (rule eval.const)
apply simp_all
apply presburger
done

show_open rem_add_correct for sub
using eval.sub by simp

Here the proof for addition needs access to the introduction rules for constants and
subtractions since they are used to show the correctness of the replacement expression.

4.5.5 Closure
Now that we have defined the predicate and used it to show the theorems we’re interested
in, we can close variants of the predicate for different sets of introduction rules. After
specifying the intro rules, the package does the work of assembling the final proofs and
installing the theorems for us:

close_inductive eval assumes const and add for eval
close_inductive eval assumes const add and sub for eval’

The resulting messages show what happens. The message for closing eval is:

Closing inductive predicate eval with const, add as eval.
Candidates for closing: rem_add_correct, commutes, double, double_add

Cannot close open theorem "rem_add_correct", missing introduction rules: sub
Installing double_add_eval: eval ?e ?n =⇒ eval (Add ?e ?e) (2 * ?n)
Installing double_eval: eval ?e ?n =⇒ eval (cdouble ?e) (2 * ?n)
Installing commutes_eval: eval ?e ?n =⇒ eval (swap ?e) ?n

So all open theorems except for rem_add_correct could be closed. This is as expected,
since the proof for addition for rem_add_correct also needs the subtraction introduction
rule which is not included.
The message for closing eval’ is:

Closing inductive predicate eval with const, add, sub as eval’.
Candidates for closing: rem_add_correct, commutes, double, double_add

Cannot close open theorem "commutes", missing proofs for sub
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Installing double_add_eval’: eval’ ?e ?n =⇒ eval’ (Add ?e ?e) (2 * ?n)
Installing double_eval’: eval’ ?e ?n =⇒ eval’ (cdouble ?e) (2 * ?n)
Installing rem_add_correct_eval’: eval’ ?e ?n =⇒ eval’ (rem_add ?e) ?n

Here, commutes could not be closed because of the missing proof for sub. This is
precisely what we want, since there is no proof for the commutativity of subtraction
(which is why we could not give one).
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This chapter describes how the Open Inductive package is implemented in Isabelle. The
implementation is done in Isabelle/ML, a dialect of ML that is developed alongside with
Isabelle. The most significant difference from Standard ML is the presence of so-called
Antiquotations that enable Isabelle syntax to create values within ML [29]. Otherwise,
knowledge of Standard ML [21, 6] is sufficient to understand this implementation.
The first part of this chapter is concerned with the data that the package operates

on. The hope is that this makes the actual operations easier to understand, or as Fred
Brooks put it:

Show me your tables, and I won’t usually need your flowcharts; they’ll be
obvious.

Fred Brooks in [12, p. 102]

Thus, the first section describes the data that is saved internally to model open induc-
tive predicates. Section 5.2 explains what data is saved to model open theorems, that is
their proposition and proofs. The next section gives an overview of the implementation
strategy. It is not meant as a complete walk-through.
Section 5.4 describes the ML signature of the package to show how it can be used

from other ML packages.
Finally, in Section 5.5 some peculiarities of the implementation are noted, that are

not obvious from the overview.

5.1 Predicate Data
To store the data that represents an open inductive predicate, a record type named
open_predicate is used. It’s definition is:

type thm_handle = string
type intro = string ∗ string

type open_predicate =
{typ: string option,
thms: thm_handle list,
intros: intro list}

val empty_open_pred =
{typ = NONE,
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thms = [],
intros = []}

The typ field is used to save the optional type when declaring a predicate using
open_inductive. If open_inductive is used without type annotation, the empty_open_pred
record is used for initialization. The thms list holds a list of handles to theorems that
use this predicate, it is updated when the predicate is found in a definition given by
open_theorem. The intros list associates an introduction rule name to the actual rule
in string form. This list is extended each time a new introduction rule is defined using
add_intro.

5.2 Theorem Data
To store the data that represents an open theorem, a record type named open_thm is
used. It’s definition is:

type open_proof = string list ∗ Proof.context ∗ thm
type intro_proof = string ∗ (string ∗ open_proof) list

type open_thm =
{prop: string,
preds: string list,
proofs: intro_proof list,
direct_proof: open_proof option}

val empty_thm =
{prop = "",
preds = [],
proofs = [],
direct_proof = NONE}

The prop field stores the actual proposition in string form. The preds field stores
handles to all open inductive predicates that occur in the proposition. These two fields
are initialized when an open theorem is defined using open_theorem.
The other two fields are used to store proofs. For inductive proofs, proofs stores a two-

level association list of predicates to introduction rule names to proofs. This is extended
when giving per-introduction rule proofs using show_open . . . for intro-name.
The direct_proof field stores a direct proof for the whole proposition given using

show_open. If a direct proof is present, the per-introduction-rule proofs can still be
given but will be ignored by close_inductive.

5.3 Overview
The commands open_inductive, add_intro and open_theorem simply store their argu-
ments in the records described above. Isabelle allows storing generic data of any type in
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theory contexts. This package stores two symbol tables, an open_predicate Symtab.table
of open predicates and an open_thm Symtab.table of open theorems, both indexed by
their respective names.
The per-introduction-rule proofs have a theorem and an introduction rule argument.

They present the user with a version of the theorem rewritten for the case of the selected
introduction rule. This is achieved by generating a temporary predicate with just that
one introduction rule using the Inductive package included in the Isabelle distribution.
The induction theorem of this predicate is then applied to the theorem and the resulting
proposition is given to the user to prove in a context where the temporary predicate
definition does not exist. The context with the temporary definition is discarded.
For direct proofs, the predicate is simply fixed as a constant with the correct arity

and type but no further information is exported in the proof context.
For closing an inductive predicate with a set of introduction rules using close_inductive,

the predicate with these introduction rules is generated using the Inductive package.
Then, all open theorems containing the predicate are looked up and considered for ex-
port.
If a direct proof is present, it can simply be exported, after the predicate constant is

generalized and instantiated with the definition of the predicate that is now defined.
For inductive proofs, if proofs for all introduction rules are present, the induction

theorem of the full predicate is applied to the proposition. This yields a number of
cases, each of which can be closed using the previously stored general theorem for the
respective introduction rule after instantiating it with the definition of the full predicate.

5.4 Isabelle/ML Interface

The ML interface of the Open Inductive package consists of two parts. The high-level
interface just provides ML access to the functions implementing the Isar commands
described in the previous chapter. It is not discussed here.
The low-level interface accepts symbol tables for storing predicates and theorems as

arguments and returns updated versions as results.

open inductive. This function is used for registering new open predicates.

val open_inductive: Proof.context → string → string option →
open_predicate Symtab.table → open_predicate Symtab.table

The string argument is the name of the predicate to be registered. The string option
can be used to pass a type annotation. The Proof.context is used to parse the type
annotation. The new open_predicate is then added to the symbol table and the updated
symbol table is returned.

add intro. This function is used to add an introduction rule to a previously registered
open predicate.
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val add_intro: Proof.context → string → string → string →
open_predicate Symtab.table → open_predicate Symtab.table

The three string arguments are, in this order, the name of the predicate where the rule
is to be added, the name of the rule and the term defining the rule. The Proof.context is
used to parse the term. The new introduction rule is added to the respective predicate
in the symbol table and the updated table is returned as result.

open theorem. This function is used to register a new open theorem.

val open_theorem: Proof.context → string → string →
open_predicate Symtab.table → open_thm Symtab.table →
open_predicate Symtab.table ∗ open_thm Symtab.table

The first string argument is the name for the theorem, the second its proposition. The
Proof.context is used to parse the proposition, looking for open predicates used. The
open theorem is registered in the open_thm symbol table and marked as used by the
occurring predicates in the open_predicate symbol table. The pair of updated symbol
tables is returned as result.

show intro. This function is used to prove an open theorem for a specific introduction
rule.

val show_intro: Proof.context →
(open_thm Symtab.table → Proof.context → Proof.context) →
string → string → string list → open_predicate Symtab.table →
open_thm Symtab.table → Proof.state

The string arguments are the name of the open theorem and the introduction rule. The
string list may contain the name of additional introduction rules that shall be made
available in the proof state as named assumptions. After the proof is finished in the
returned proof state, the updated symbol table is passed as argument to the continuation
“after_qed” function (the second argument).

show open. This function is used to prove an open theorem non-inductively.

val show_open: Proof.context →
(open_thm Symtab.table → Proof.context → Proof.context) →
string → string list → open_predicate Symtab.table →
open_thm Symtab.table → Proof.state

The parameters are the same as in the previous function, except the name of the intro-
duction rule which is not needed.

close inductive. This function is used to close an inductive predicate with a set of
introduction rules and prove the final theorems.
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val close_inductive: Proof.context → string → string list → string →
open_predicate Symtab.table → open_thm Symtab.table →
Proof.context ∗ (string ∗ thm) list

The first string argument is the name of the open predicate that is to be closed, the
string list contains the names of the introduction rules that shall be used. The next
string parameter is the name that shall be used for the definition of the final predicate,
it can be the same as before. The function returns a Proof.context where the final
predicate is defined, as well as an association list of theorem-name to theorem.

5.4.1 Helper functions

The types open_predicate and open_thm are opaque, since their values should only be
modified using the public interface. When combining open predicates or theorems from
different sources it is sometimes necessary to merge introduction rules or proofs. For
this reason the interface exports two helper functions:

val pred_merge: open_predicate ∗ open_predicate → open_predicate
val thm_merge: open_thm ∗ open_thm → open_thm

These take a pair of predicate/theorem data as arguments and perform a merge. They
can be used as arguments to Symtab.join to merge symbol tables returned by the other
commands. The package uses them internally when merging data from different theory
files.

5.5 Additional Notes
Following are some further notes regarding the implementation that do not fit in with
the high-level overview in Section 5.3. They are meant to be helpful for somebody
who attempts to read (and possibly improve or extend) the source code. There is some
emphasis on what can be improved in the current implementation or what might be
done differently in a rewrite.

The Good. Since the author has never written an ML package for Isabelle before, it
probably does not contain much technical sophistication. Care was taken to stick to the
general naming conventions, coding style and format of Isabelle source code [29].
Since the importance of this was mentioned on the Isabelle mailing list not to long

ago [27], care was taken to have both an Isabelle/Isar as well as an ML interface to the
package.
To avoid user confusion and namespace clutter, this package introduces no custom

keywords at the Isar level.

The Bad. It is quite probable that the handling of contexts is rather unclean and
sub-par in this package. This should be attributed to the author’s rather shallow un-
derstanding of what they are and are not meant to be used for.
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When assembling inductive proofs, the induction rule is just used by rule combination.
Isabelle also contains a proper induction method [28], but the author could not make it
work from ML.
The package contains some undocumented error messages of things that really should

be impossible. In these cases it was unfortunately not possible to statically convince the
compiler that this is the case.

The Ugly. The ML interface accepts strings in many places where at first glance terms
would be more appropriate. The problem is that terms need to be parsed in a context
where the right constants, e.g. for open predicates are present. Instead of forcing the user
to set up this context himself, the functions accept a context and a string as parameters.
The context is first adapted with the appropriate constant fixes and then used to parse
the string to yield the right form of terms. This solution does seem ugly, but was deemed
the most user-friendly option. It is also the way other packages, for example Inductive,
handle this situation.
The show_intro function is very close to the Isar-level command and its implementing

show_intro_cmd function. It does not accept a tactic to finish the proof but instead
returns a Proof.state which must then be used to finish the proof. The main reason for
having it this way is that it allowed more code reuse, probably at a convenience cost for
the user of the ML interface.
All commands defined in Open Inductive print colorful output in Isabelle/Jedit (the

“PIDE”). Since there is no general syntax coloring mechanism in the editor interface,
existing syntax classes are reused to produce these colors. When a more general interface
is implemented, this can be done in a cleaner way.
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This chapter evaluates the usefulness of the Open Inductive package that was imple-
mented for Isabelle. It discusses advantages and shortcomings of both the general con-
cept as well as the current implementation.
In Section 6.4 some areas that allow for beneficial future work are highlighted.
Finally, Section 6.5 revisits the expression problem in the context of theorem proving.

We discuss what role open inductive predicates play and how they change the situation.

6.1 Comparison to Direct Use of the Inductive Package
The overall goal of the Open Inductive package is to allow modular development of
inductively defined predicates and theorems about them. When using the Inductive
package in Isabelle, to expand an inductive predicate that is defined in an existing
theory along with some theorems, the user has two options:

• Extend the predicate in that theory and adapt all proofs for the extended version.
The obvious drawback is that all previous proofs are lost, and theorems that cannot
be proved for the extended version no longer have a place.

• Copy-and-Paste the old definitions and theorems to a new theory, extend the pred-
icate there. Then, adapt all proofs that can be adapted and discard the rest.

The key benefit of using Open Inductive is to avoid Copy-and-Paste without losing
any of the old definitions or theorems.
For such a feature, it is of course hard to quantify the convenience gain for the user

in the general case. Instead we discuss the savings in effort at our running example, the
evaluation of arithmetic expressions.
The first version of the predicate, eval, consists of the two introduction rules for

constants and addition. The theory also contains proofs for the two doubling theorems
(double_add and double in Section 4.5.2) and the commutativity theorem (commutes
in Section 4.5.3).
To extend this predicate with the introduction rule for subtraction and prove all

theorems that are still valid for this version, the user needs to

• Copy-and-Paste the old definition of eval

• Add the introduction rule for subtraction

• Copy-and-Paste the theorems double_add and double and their proofs

49



6 Evaluation

• Extend the proof of double with the case for subtraction1

When using the Open Inductive package, the workflow is as follows:

• Add the introduction rule for subtraction to the open predicate eval

• Add the proof case for subtraction to the theorem double

• Issue one close_inductive command to produce eval’

Obviously this process is less tedious and error-prone than the manual one.

Maintenance benefits. The manual process has its weaknesses in maintenance as well.
An error found in the definition of an introduction rule makes a fix necessary in two
places – where it was found, and wherever the erroneous definition was copied.
Then all proofs that rely on this definition or one of its copies need to be fixed. In

essence, the horror that is to be expected of Copy-and-Paste ensues: Maintenance of
multiple nearly identical proof scripts. Identical or modified after copying – this is a
troubling question when maintaing Copy-and-Pasted code. In this example, the proof
for double_add is identical, the proof for double is not.
The benefits will be larger in a real-world setting, when more theorems exist that

use the predicate and the definitions need to be maintained. When an error is found
in a definition that has since been copied to several places, the hunt for all the places
that need the fix begins. If Open Inductive is used, there only exists one erroneous
definition so there is only one place to fix it. Likewise, for each theorem the case for this
introduction rule is only proved once, so again only one fix is needed.

6.2 Benefits of Open Inductive
This section lists the benefits the user can expect from switching to Open Inductive for
the definition of inductive predicates.

Flexible introduction rules. Unlike with all-in-one Inductive definitions, new introduc-
tion rules can be added in any place.

Flexible proofs. Like predicates, inductive proofs are not all-in-one but instead per
introduction rule. Subproofs for new introduction rules can be added in any place.

Checked Closure. When closing a predicate, the package can detect for which open
theorems all necessary subproofs exist and is able to warn about missing subproofs for
specific introduction rules per theorem.

1The proof for double_add is not inductive and only relies on the addition introduction rule, so it
works unchanged.
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Proof assembly. In addition to detection of theorems that can be theoretically proved
by assembling subproofs, the package will actually automatically assemble these and
produce the finished theorems for the user.

Inter-dependent proofs. Using the definitions other introduction rules in the inductive
proof for the case of a specific introduction rule is supported. The names of these
additionally needed rules can be passed as parameters to assumes.

Inter-theorem merging. It is possible to define an open predicate and open theorem
in one theory, then extend it with two different introduction rules and proofs for the
respective rule in independent child theories. In a grandchild-theory that imports both
of these children, the stored data is merged and both introduction rules and proofs are
present.

6.3 Missing Features
This section lists some features that a user of the Inductive package might expect but
that are not provided by Open Inductive at this point.

Inter-dependent theorems. It is not possible to use a previously proved open theorem
in the proof of a later one. Like dependencies among introduction rules, this is mostly
a question of handling assumptions correctly between differing proof contexts.

Automatic extension. When new open theorems and/or proofs are added after a call
to close_inductive, the theorems are not closed for the existing predicate even if they
could be.
This can be implemented as an automatic check after each call to show_open at the

cost of a small amount of additional bookkeeping.

Arbitrary variables. The induction proof method in Isar accepts several arguments.
An often indispensable one is arbitrary: The ability to declare which variables may vary
in the inductive cases. Open Inductive as of yet does not support any arguments to
induction, it simply applies the induction theorem as is.
To implement this, knowledge of proof methods and specifically the induction method

is necessary.

Performance. At the moment, the storage of introduction rules in open predicates as
well as the storage of sub-proofs for theorems is in association lists. For large inputs
(e.g. machine-generated inductive predicates with thousands of introduction rules) this
will be a performance bottleneck.
These performance issues are easily fixed by using more efficient data structures when

the need arises.
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6.4 Future Work
This section discusses some features that need more work, both conceptually and imple-
mentation-wise, before they can be added to Open Inductive.

Multiple Open Predicates. While the package allows the declaration and use of multi-
ple open predicates, they can only be used independent of each other. Proofs that depend
on more than one open predicate cannot be closed using the current close_inductive
command.
More thought on the possible interactions between predicates and their introduction

rules is necessary before such a feature can be attempted.

Mutually Recursive Predicates. The current implementation does not allow the defi-
nition of mutually recursive predicates, like even and odd defined in terms of each other.

Open Datatypes. A bigger project for the future are open datatypes: much like induc-
tive predicates are defined by introduction rules, datatypes are defined by constructors.
It is possible to imagine variants of the same datatype with different sets of constructors
to be defined in a fashion similar to open predicates. This could work with commands like
open_datatype, add_constructor and close_datatype. Clearly, open datatypes
would synergize with open predicates extremely well, since they would remove the need
for unused kinds of data in the smaller predicates.
To stick with our example: when closing the eval predicate for constants and addition

there is really no reason to even have the “Sub” constructor be part of the expr type.

6.5 The Expression Problem Revisited
In the first chapter, the expression problem in the context of programming languages
was discussed. A very similar expression problem exists for theorem proving: How to
extend predicates and datatypes in with new constructors and introduction rules without
breaking previous proofs?
The implementation of open inductive predicates solves one part of the question by

allowing predicates to be extended with new introduction rules while preserving inductive
proofs. It also makes reuse of existing proofs possible for the extended predicates.
To tackle the other half of the problem, an implementation of open datatypes as dis-

cussed in the previous section is necessary. This would then allow to add constructors in
a modular way alongside with introduction rules. It is also necessary to implement mod-
ular proofs where the induction theorem of the datatype, not the predicate is necessary.
An example is totality, e.g. for the running example:

∀e. ∃n. eval e n

To prove this, all possible cases of e need to be considered, so it needs induction on
the expression datatype. To show that the respective results exists, the introduction
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rules of the eval predicate are needed, too, but the point is that the induction theorem
of eval does not suffice here.
With having open datatypes a new way to define the helper functions that operate

on these types, like swap and cdouble becomes necessary. This brings the expression
problem back to the world of programming, which means solutions that have been found
there can possibly be adapted for use in theorem proving as well.
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