
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Development of a library
for solving and analyzing

PBQP

Bachelorarbeit von

Max Baumstark

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: M.Sc. Sebastian Graf

Abgabedatum: 22. Februar 2019

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

Partitioned Boolean Quadratic Problems (PBQP) are a promising approach for
solving SSA-based register allocation problems. They unite assignment and coalescing
into a single optimization problem, which allows finding a better solution for the
register allocation problem. Despite their advantages PBQP see little use, partially
due to a lack of a standalone library for handling and solving PBQP instances. All
existing PBQP libraries are either tied into larger frame works, incomplete or have
bugs. We create a standalone library to handle, solve and visualize PBQP. We also
implement different solving algorithms and then compare and evaluate these different
PBQP solving algorithms based on their performance and solution quality. As part
of this we introduce quadratic programming as a mean to obtain an optimal solution
for a PBQP instance.

Partitioned Boolean Quadratic Problems (PBQP) sind ein vielversprechender
Ansatz zur Lösung von SSA-basierten Registerzuteilungsproblemen. Sie vereinen den
Zuweisungsschritt und den Verschmelzungsschrits des Registerzuteilungsprozesses
in ein einzelnes Optimierungsproblem, was uns ermöglicht bessere Lösungen für
diesen Registerzuteilungsprozess zu finden. Trotz ihrer Vorteile werden PBQP nicht
weitläufig benutzt, unter anderem, da keine alleinstehende Bibliothek zum Hand-
haben und Lösen von PBQP existiert. Alle existierenden PBQP-Bibliotheken sind
entweder Teil größerer Frameworks, unvollständig oder haben Bugs. Wir entwerfen
und implementieren eine Bibliothek zum Handhaben, Lösen und Visualisieren von
PBQP-Instanzen und implementieren verschiedene PBQP Lösungsalgorithmen. Wir
vergleichen diese verschiedenen Lösungsalgorithmen anhand ihrer Laufzeit und der
Qualität der von ihnen produzierten Lösungen. Hierbei führen wir Quadratische
Optimierung als neuen Ansatz zum Finden von optimalen Lösungen ein.

Contents
1 Introduction 7

2 Basics 9
2.1 Partioned Boolean Quadratic Problem 9

2.1.1 Formal form . 9
2.1.2 Graph form . 9

2.2 Solving PBQP . 10
2.2.1 Optimal reductions . 10
2.2.2 R0 reductions . 11
2.2.3 R1 reductions . 11
2.2.4 R2 reductions . 12
2.2.5 Heuristic reductions . 13
2.2.6 PEO . 13

3 Design and Implementation 17
3.1 Library design . 17

3.1.1 Programming language choice 17
3.1.2 General design . 17

3.2 Solving PBQP with linear/quadratic programming solvers 19
3.2.1 Solving PBQP through quadratic programming 19
3.2.2 Solving PBQP through linear programming 20

3.3 Bruteforcing PBQP . 21
3.3.1 Bruteforcing PBQP in Gray code order 21
3.3.2 Bruteforcing PBQP using Branch and Bound 23

4 Evaluation 25
4.1 Performance of linear/quadratic programming solvers compared to

traditional PBQP solver . 25
4.2 Branch and Bound . 27
4.3 Findings made using debugging tools 27

5 Conclusion 29
5.1 Related work . 29
5.2 Future work . 29
5.3 Sum up . 30

5

1 Introduction

Over the past decades we have seen a constant race towards faster and faster
computation. Great advancements have been made in various computer related
fields with one of them being compiler optimization. Compiler optimization attempts
to optimize runtime performance of applications, thus creating faster applications.
One of the ways to achieve this is by improving the compiled programs register
allocation, the assignment of the many program variables to the limited amount of
CPU registers. Finding an ideal assignment is NP-hard [1], but when compiling an
application we have to find a solution in polynomial time, which makes this a very
interesting research topic with lots of potential.
Part of solving register allocation problems are among others assigning registers

to variables in a step called assignment and reducing the amount of unnecessary
move operations between registers in a step called coalescing. Typically these two
steps are done separately from each other. An initial solution for the assignment is
retrieved through a coloring problem and then improved as part of the coalescing. A
problem here is that the coloring problem used does not take the coalescing aspect
into account at all, so the degree to which the solution can be improved by the
coalescing step is limited. This can be improved by using an optimization problem
which unites coalescing and assignment, the Partitioned Boolean Quadratic Problem
(PBQP). The PBQP is a class of NP-complete optimization problems and allows us
to find better solutions for register allocation problems in similar time[2].

PBQP also find usage in other fields, for example during selection of primitives in
Deep Neural Networks [3], but we will focus on their usage in register allocation. In
particular we will work based on SSA-based register allocation and its implementation
in libFirm, which is a compiler being developed by KIT[4]. Despite their superior
ability to solve register allocation problems PBQP are not used very widely in register
allocation. Aside from a lack of awareness a major reason for this limited use is the
lack of a standalone application or library for creating, handling and solving PBQP
instances.
All existing complete PBQP solvers which we are aware of are part of larger

frameworks, tied into those frameworks and can’t be used on their own. Additionally
there are only very few and very limited analysis or visualization tools for dealing
with PBQP, thus making debugging of programs working with PBQP unnecessarily
hard. In this thesis we present pbqp-papa a standalone C++ library for solving,
analyzing and visualizing PBQP instances. The goal is to provide a configurable
and extensible framework which provides future developers all the tools they need to
work with PBQP.

7

This includes:

• Object oriented graph representation

• C-API for high-performance applications like compilers

• Saving PBQP instances to and loading them from JSON files

• Multiple solver implementations

• Builtin support for infinite entries

• PBQP instance visualization as graph in svg files

No such framework exists yet, because applications opting for usage of PBQP have
no reason to create a standalone library as direct integration into their code base is
usually easier and quicker for them.

Utilizing our framework we also explore different solving approaches and evaluate
their viability based on their performance and the quality of the solutions they create.
Research on these different PBQP solving approaches can be applied to obtain
solutions of higher quality or to obtain solutions of the same quality in less time.
These improvements translate into higher quality solutions in register allocation and
thus directly to less move operations in compiled code and faster execution time for
compiled applications.

Even though PBQP are a much wider class of problems, this thesis focuses around
their application in SSA-based register allocation and its implementation in libFirm.
The use cases the library is tailored around and the motivation for this paper to
begin with are entirely based on libFirm and its usage of PBQP. All PBQP instances
used for performance evaluation were created based on register allocation problems
in libFirm. As a result findings regarding performance of different solvers may
only apply to a limited degree to PBQP in general because all instances examined
are of the specific structure register allocation problems have. PBQP instances
created by other use cases may have wildly different node structure or density, thus
influencing both the performance of different solving algorithms and the quality of
their solutions.

8

2 Basics

2.1 Partioned Boolean Quadratic Problem
2.1.1 Formal form
The Partitioned Boolean Quadratic Problem (PBQP) is a NP-complete[2] optimiza-
tion problem. It is formally defined as [5]:

min
n∑

i=1

n∑
j=1

~xT
i Cij~xj

s.t. ~xT
i 1 = ~1 ∀i = 1...n

~xi ∈ {0, 1}di ∀i = 1...n

~xi are binary vectors in which all entries are 0 except for one entry, which is 1.
Finding a solution for the problem means determining which entry is 1 for each ~xi.
di may vary for different i, but for all i di ≥ 1 is required. Cij are cost matrices of
size di× dj , which define a cost for every combination of selections in ~xi and ~xj . Cost
matrices may contain values of any number type.

The goal is to find a selection which minimizes the total cost over all cost matrices.
Cost matrices may also contain ∞ as a value, which, instead of assigning a cost,

completely forbids a selection. Usage of ∞ may make finding a solution entirely
impossible, for example if all entries in a row or column of a cost matrix are ∞.

2.1.2 Graph form
While functional this formal definition of PBQP is rather complicated. It can not be
visualized easily and would use a lot more space and time than needed if implemented
this way. For example a vector of binary variables ~xi in which one entry is 1 and the
others are 0 represents a selection and we could instead just save the index of the
selection as integer. Additionally there is no need for Cij to exist or be considered
if all of their entries are 0. Removing these unnecessary edges and going from
binary selection arrays to just an integer representing the selection leads us to a
representation as directed graph.
We can transform a PBQP instance from its formal form into a graph form like

this: Each ~xi is turned into a node ~Vi. Every ~Vi has a cost vector ~mi, which is
initialized as ~0 when converting a PBQP instance from its formal form. ~mi are no
longer binary, but may contain any number or ∞.
Each cost matrix Cij is assigned to an edge ~Eij going from ~Vi to ~Vj.

9

2.2. SOLVING PBQP

Finding a solution works the same way in this form, for each node one entry has
to be selected. The difference is that the total cost to minimize does not only include
the cost implicitly selected in the edge cost matrices Cij, but also the cost entry
directly selected in ~mi:

min
n∑

i=1

n∑
j=1

~xT
i Cij~xj +

n∑
i=1

~xT
i ~mi

s.t. ~xT
i 1 = ~1 ∀i = 1...n

~xi ∈ {0, 1}di ∀i = 1...n

This form allows reducing the problem without affecting the quality of the created
solution by removing certain edges. Formally removing an edge Eii means setting all
values of Cij to 0, but in the graph representation and its implementation we can
just remove Eij entirely once its cost is moved into Vi or V j. This makes finding a
minimal solution easier.

An edge Eii is a cycle on the node ~Vi and can be removed by adding the diagonal
of their cost matrix Cii to ~mi. Also given two edges Eij and Eji, Eji can be removed
by adding CT

ji to Cij.
From here on any PBQP instance will always assumed to be in graph form as this

form was used in the implementation of the solver. It is much easier to understand
and visualize.

2.2 Solving PBQP
PBQP instances are solved by reducing the problem until the solution of the remaining
problem is trivial. The following section explaining this process is based on Buchwald
et al.[2]. Reductions remove nodes and edges to simplify the problem until the entire
graph is empty. After that the reduction steps taken are iterated over in reverse order
and for every step the node which was removed is assigned a selection. The selection
assigned usually depends on the selection already assigned to adjacent nodes. All
nodes which existed when the reduction was applied, except for the ones removed
by the reduction, are guaranteed to already have a selection assigned by the time
the removed nodes have to be solved in the back propagation phase. Reductions are
either optimal or heuristic.

2.2.1 Optimal reductions
Optimal reductions remove single nodes and their incident edges. They guarantee
that a minimal solution of the reduced PBQP instance also allows construcing a
minimal solution of the original PBQP instance [2]. If a PBQP instance can be fully
solved using only optimal reductions, the solution created will also be optimal. This
is only the case for sparse graphs though, for example for PBQP instances whose
graph is a tree an optimal solution can be found in linear time using only optimal

10

2.2. SOLVING PBQP

reductions. There are three optimal reductions, which can be applied to nodes of
degree 0, 1 and 2. The direction of the incident edges does not influence when
these reductions can be applied, because the direction of an edge can be inverted by
transposing its cost matrix. CT

ij = Cji

2.2.2 R0 reductions
A node of degree 0 can be removed immediately. Its solution is its smallest entry,
which can be determined directly during back propagation. A simple example can
be seen in Figure 2.1.

1
2
3

∞2

0

a Two nodes of degree zero be-
fore the reduction

1
2
3

∞2

0

b The smallest entry is picked

for each node
c Both nodes are
removed after
solving them

Figure 2.1: Solving two nodes of degree zero using RO

2.2.3 R1 reductions
A node Vi of degree 1 which is incident to the edge Eij and adjacent to the node Vj

can be removed together with its edge by calculating the minimal cost created in Cij

and ~mi for each possible selection in Vj. This cost is added to each Vj and during
backpropagation a solution for Vi is selected based on the solution of Vj.

For all a in [1...|dj|], meaning for every possible selection in Vj , we find the minimal
selection in Vi, the b for which

min ~xT
i Cij~xj + ~xT

i ~ci

~xja = 1
~xib = 1

and add this minimum to ~mja, the a-th entry of ~mj. The b calculated for each a
is saved and used during backpropagation. If ~xja = 1 in the solution, then ~xib = 1.
This means if the a-th entry was selected in Vj, then the b-th entry in Vi has to be
selected.

Figure 2.2 shows an example application of R1 on the node V0. If the first entry
in V1 were to be selected, the total cost would be minimized by selecting the second
entry in V0 for a total cost of 5. We remember to select the second entry in V0 if
the first entry in V1 is selected during back propagation and set m11 to 5. Analogue
we set m12 to 4 and remember the first entry in V0 for it. After reduction only a
modified V1 is left.

11

2.2. SOLVING PBQP

[
2
3

]
[
2 1
1 4

]
[
2
0

]

a A node of degree one and its
adjacent node before the reduc-
tion

[
2
3

]
[
2 1
1 4

]
[
2
0

]

b For each selection in the adja-
cent node we find the selection
which minimizes the total cost

[
3
6

]

c The cost of the cheap-
est selection is added to
each entry of the adja-
cent node and the node
itself is removed

Figure 2.2: Solving a node of degree one using R1

2.2.4 R2 reductions

A node Vi of degree 2 which is incident to edges Cij and Cik and adjacent to the
nodes Vj and Vk can be removed by calculating the minimal cost for each possible
selection combination in Vj and Vk and saving this cost in a newly created edge E∗jk.
We create its cost matrix C∗jk like this:

C∗jkbc = min ~xT
i Cij~xj + ~xT

i Cik~xk + ~xT
i ~ci

~xia = 1
~xjb = 1
~xkc = 1

For all b ∈ [1, [|~xj|], c ∈ [1, [|~xk|] we get a a for which the total cost is minimal.
Analogue to R1 reductions, for every b, c combination the a selected is the selection
to pick for Vi based on the selection in Vj and Vk during back propagation. The
created cost matrix C∗jk contains the entire cost of Vi and its incident edges. Adding
the edge E∗jk allows removing Vi and its edges. If an edge Ejk already exists, E∗jk

can be added to its cost matrix Cjk instead of creating a new edge. If an edge Ekj

already exists, C∗T
jk can be added to Ckj instead. An example application of R2 can

be seen in Figure 2.3

12

2.2. SOLVING PBQP

2.2.5 Heuristic reductions
Heuristic reductions do not guarantee minimal solutions. They can even make
solvable PBQP instances unsolvable. They allow us to find good solutions in linear
time though, even with PBQP being NP-complete. They are applied whenever no
more optimal reductions are possible. The only heuristic reduction used here is
early-decision RN, it is applied to nodes of degree three or higher. Early-decision
RN selects a solution for a node by calculating a local minimum based on adjacent
nodes and incident edges and then removes the node. Ideally the node to which
early-decision RN is applied has a high degree, so more nodes in total are taken into
account and better decisions are made. For a given node Vi with adjacent nodes Vj

... Vk, for which all edges point away from Vi (if necessary edges can be turned by
transposing their cost matrix), RN determines its selection by calculating:

min
k∑
j

mia + mjb + Cijab a ∈ {1, di}, b ∈ {1, dj}

Opposed to early-decision RN, which determines a selection for the node during
reduction, late-decision RN also exists. Late-decision RN just removes the node
during reduction and decides on a selection during backpropagation. The solutions
created by late-decision RN are worse than the ones created by early-decision RN
though[2], so only early-decision RN is used here and any mentions of RN in the
following refer to early-decision RN. An example application of RN can be seen in
Figure 2.3

2.2.6 PEO
PBQP instances created by register allocation problems will often contain many
∞ entries. When given a solvable PBQP instance RN may make decisions which
make finding a solution impossible. To ensure that a solution can always be found
a perfect elimination order (PEO) is used. A PEO defines an order on all nodes
of the graph and guarantees that RN will not make a solvable problem unsolvable
as long as the order in which RN is applied is the order of the PEO. PEOs remain
valid throughout applying optimal reductions. Nodes that were already removed by
optimal reductions can simply be skipped in the PEO.[2]

13

2.2. SOLVING PBQP

[
2
3

]

V2

[
1
3

]

V0

[
2
0

]

V1

[
2 2
1 4

] [
2 1
1 4

]
a A node of degree two and its adjacent nodes before the
reduction

[
2
3

]

V2

[
1
3

]

V0

[
2
0

]

V1

[
2 2
1 4

] [
2 1
1 4

]
b For each selection combination in V1 & V2 we find the

selection in V0 which minimizes the total cost, two ex-
amples for this are shown here

[
2
3

]

V2

[
1
3

]

V0

[
2
0

]

V1

[
2 2
1 4

] [
2 1
1 4

]
c Another selection combination in V1 & V2

[
2
3

]

V2

[
5 4
4 3

]
[
2
0

]

V1

d The cheapest cost created by V0 and its incident edges
for each selection combination in V1 & V2 is put into a
new edge and V0is removed

Figure 2.3: Solving a node of degree two using R2

14

2.2. SOLVING PBQP

[
1
3

]

[
2
1

] [
1
2

]

[
∞
3

] [
4
2

]

V2

V1

V3

V4

V0
[
2 1
1 4

] [
2 3
2 1

]

[
4 5
1 0

] [
1 3
2 3

]

a A node of degree four before the reduction

[
1
3

]

[
2
1

] [
1
2

]

[
∞
3

] [
4
2

]

V2

V1

V3

V4

V0
[
2 1
1 4

] [
2 3
2 1

]

[
4 5
1 0

] [
1 3
2 3

]

b For each selection in V0 we determine the local minimum, resulting in a total cost of
19 for the first selection

[
1
3

]

[
2
1

] [
1
2

]

[
∞
3

] [
4
2

]

V2

V1

V3

V4

V0
[
2 1
1 4

] [
2 3
2 1

]

[
4 5
1 5

] [
1 3
2 3

]

c For each selection in V0 we determine the local minimum, resulting in a total cost of
22 for the second selection

15

2.2. SOLVING PBQP

[
4
2

] [
3
5

]

[
∞
8

] [
5
5

]

V2

V1

V3

V4

d The first entry is selected for V0, V0 is removed and the costs for V0s edges are added
to their incident nodes

Figure 2.3: Solving a node of degree four using early decision RN

16

3 Design and Implementation
We implemented pbqp-papa[6], a library which allows solving PBQP instances
using multiple solvers and different kinds of debugging and visualization for PBQP
instances.

3.1 Library design

3.1.1 Programming language choice
Existing PBQP solvers like the one in libFirm which is called KAPS (Karlsruhe
PBQP Solver) are implemented in C, but we chose C++ as language for this project,
because it offers high level constructs like classes and templates. These constructs
provide us with the means neccessary to create an expandable and more modern
library, while avoiding the code duplication and limitations KAPS suffers from. C++
also has lots of useful data structures and algorithms in its std name space and allows
easily integrating external libraries to automate tests, handle JSON or generate
images. C++ was chosen over other object oriented language, because it lets us
improve performance and memory usage due to its manual memory management
and enables us to easily create an interface which is usable from C code. Both of
these are very important for usage of the created library in compiler environments
like libFirm.

3.1.2 General design
In our implementation PBQP instances are represented in their graph form. A graph
consists of a set of pointers to nodes and a set of pointers to edges. Even though the
graph only holds pointers to these edges and nodes they are still owned by the graph
in the sense that only the graph can create nodes or edges, every node or edge can
only be part of one graph at once and a graph will delete all of its nodes and edges
when it is deleted itself. This behavior prevents graph components from leaking
memory. An edge consists of a pointer to its source node, a pointer to its target node
and a matrix containing the costs associated with the edge. A matrix is simply a
2-dimensional array with arbitrary height and length holding values. A node consists
of a vector holding its cost, an integer index and a list of the edges incident to the
node. Matrices, nodes, edges and graphs are all implemented as templates, where the
template type is the type of value which is being held in the cost matrices/vectors.

17

3.1. LIBRARY DESIGN

This allows users of the library to put any numeric type in its cost matrices as long
as basic operations like addition and comparison are defined for this type.
Graph instances are always guaranteed to be simple, meaning they have neither

multiple edges nor loops. Attempting to create either of those is legal and will be
taken into account for the problem instance, but no new edge will be created. For
loops the diagonal of the cost matrix will be added to the cost vector of the node the
loop is on. For multiple edges we add the cost matrix of the newly created edge to
the cost matrix of the already existing edge. If the new edges direction is opposite
to the existing ones we also transpose the cost matrix of the new edge beforehand.

Single reduction steps always return an instance of a subclass of the DependentSo-
lution interface. DependentSolution requires subclasses to implement a solve() and a
revert() method. The solve() method takes a solution instance as parameter in which
all nodes existing after the reduction are already solved. The method is expected to
add the correct selection for all nodes it reduced to the provided solution, possibly
using the existing selections for other nodes. The revert() method takes a graph
instance as parameter and reverts the reduction applied, it guarantees that if it is
given the graph in its state after the reduction it will modify the graph back to its
original state before the reduction. The combination of these two methods and their
generalization in a superclass allows polymorphic treatment of reduction results. It
makes it so the solving of a PBQP instance in its back tracking phase doesn’t have
to know at all which reductions were actually applied, it simply needs to call the
solve() method for a list of DependentSolutions. Additionally new reductions can be
implemented, integrated and swapped out easily.
Reduction steps never entirely delete nodes, but instead set a ’deleted’ flag on

the node to true. This allows removing nodes from the graph without having to
worry about invalidating other pointers to the same node which may be kept by
other reductions involving the same node or for examples PEOs. These can handle
removed nodes accordingly after a simple check of the nodes ’deleted’ flag.
To support infinite entries the library also offers a template type called ’Infinity-

Wrapper’. Any numeric type that would be accepted as template type for a graph
instance is also accepted as template type for an InfinityWrapper instance. An
InfinityWrapper wraps a value of its template type and implements the standard
arithmetic operations required to use it as data type in a PBQP graph instance.
Every template type also has a special value which is used to represent infinity and the
implemented arithmetic operations properly support this infinite value. For example
5+∞ =∞+5 =∞ and∞ ≥ X is true for allX. Usually the special value used is the
maximum value the number can represent. This choice minimizes the chance of ever
reaching the special value unintentionally. A reduction or any other use case doesn’t
have to differentiate between a Matrix<T> and a Matrix<InfinityWrapper<T>>, it
can just use the C++ built in operators and it’ll work properly either way, because
InfinityWrapper overrides those. InfinityWrapper thus centralizes all handling of
infinity and its edge cases. Reductions can be implemented without any checks for
infinity and if they are instantiated with a normal numerical template type which
can not be infinite, no time is wasted doing any checks for infinite values or modified

18

3.2. SOLVING PBQP WITH LINEAR/QUADRATIC PROGRAMMING
SOLVERS

arithmetic operations. On the other side when using InfinityWrapper as a template
type, checks for infinity and proper arithmetic calculations involving it are used
automatically.

We also added support for exporting PBQP instances to JSON files and importing
PBQP instances from those JSON files. This allows us to easily compare and
benchmark different solving approaches or extract interesting problem instances.
Previously KAPS could only solve problems that were provided to it directly through
ongoing compilation in libFirm, there was no way to solve a specific problem.
Asserts are used widely throughout the library for consistency checks and to

validate parameters. These checks ease debugging and ensure correctness, but can
also be removed at compile time to avoid wasting time on them in production
environments.

3.2 Solving PBQP with linear/quadratic
programming solvers

Instead of solving PBQP instances in their graph form through reductions they can
also be solved by turning them into a quadratic or linear programming problem
and solved by an off-the-shelf solver. This is a promising alternative approach for
retrieving minimal solutions of a PBQP instance. Linear/quadratic programming
solvers will always output the ideal solution, which is very useful to have as compari-
son for evaluating the quality of our heuristic solutions. Additionally commercial
linear/quadratic programming solver are highly optimized and can solve or simplify
the PBQP instance in ways other graph form oriented solvers could not, thus possibly
surpassing existing brute force implementation in speed. We turned PBQP instances
into both linear programming and quadratic programming problems and solved them
using Gurobi.

3.2.1 Solving PBQP through quadratic programming
To solve a PBQP instance with a Graph G and nodes Vn through quadratic program-
ming we have to convert it into a single quadratic expression. Finding a minimal
solution for the created expression is then done by an off-the-shelf solver.

Before we can define the expression to minimize we need to define helper variables.
For every node Vi with a cost vector ~mi, di binary variables xia are created out of
which one is 1 and the others are 0 each:

xia ∈ {0, 1} ∀i ∈ [1, n], a ∈ [1, |di|]
|di|∑
a=1

xia = 1 ∀i ∈ [1, n]

We also need to forbid selections picking infinite costs in either cost vectors or
matrices:

19

3.2. SOLVING PBQP WITH LINEAR/QUADRATIC PROGRAMMING
SOLVERS

xia = 0 if mia =∞
xia ∗ xjb = 0 if Cijab =∞

The expression to minimize is now:

min
n∑

i=1

di∑
a=1

xia ∗mia +
∑

i

∑
j

di∑
a

dj∑
b

xia ∗ Cijab ∗ xjb

Node costs create linear summands, but the edge cost matrices each add a quadratic
summand.

3.2.2 Solving PBQP through linear programming
PBQP can also be expressed fully as a linear problem. Analogue to the definition as
quadratic problem we define variables xia:

xia ∈ {0, 1} ∀i ∈ [1, n], a ∈ [1, |di]
di∑

a=1
xia = 1 ∀i ∈ [1, n]

and we forbid infinite selections in nodes:

xia = 0 if mia =∞

Previously the matrix costs added quadratic summands to the the final expression.
To avoid this we define a binary variable yjkbc for every entry in every edge cost
matrix Cjk of size b x c. For every cost matrix Cjk all the variables yjkbc created are
0, except for one which is 1. The entry selected in the matrix also has to match the
entries selected in its adjacent nodes. This is enforced by ensuring each row sum
equals the binary variable with the same index in the source node of the edge and
each column sum equals the binary variable with the same index in the destination
node of the edge.

yjkbc ∈ {0, 1} ∀Cjk ∈ G, ∀b ∈ [1, |~mj|], ∀c ∈ [1, |~mk|]
dk∑

c=1
yjkbc = xjb ∀Cjk ∈ G, ∀b ∈ [1, |~mj|]

dj∑
b=1

yjkbc = xkc ∀Cjk ∈ G, ∀c ∈ [1, |~mk|]

With the yjkbc we can also use a linear form to disallow infinite entries in cost
matrices:

yjkbc = 0 if Cjkbc =∞

20

3.3. BRUTEFORCING PBQP

Finally we can define the linear function to minimize as a sum of products of
binary variables and cost vectors or matrix values:

min
n∑

i=1

|~mi|∑
a=1

xia ∗mia +
∑

j

∑
k

|~mi|∑
b=1

|~mj |∑
c=1

yjkbc ∗ Cjkbc

3.3 Bruteforcing PBQP
Opposed to applying heuristic reductions once optimal reductions are no longer
possible it is also possible to bruteforce the problem to find an optimal solution. We
implemented two different means of brute forcing and evaluated their performance.
The first one iterates over all possible selections in an order determined by a Gray
code. The second one uses Branch and bound to skip expensive solutions as early as
possible.

3.3.1 Bruteforcing PBQP in Gray code order
A solution for a PBQP with n nodes can be defined as a vector ~S where

|~S| = n

Si ∈ [1, |mi|] i ∈ [1, n]

In this form we can start with ~S = 0 and increment this solution by incrementing
Sn by 1. If Sn = |mn|, then Sn is set to 0 and Sn−1 is incremented. Inductively
applying this allows iterating over all possible solutions, effectively we’re just counting
up a number, but every digit with index i has its own base |mi|.

Naive brute forcing can use this to iterate over all possible selections, recalculate
the cost of the entire PBQP for every selection and eventually find an optimal
solution. This is very inefficient though, because incrementing the solution usually
only changes very few selections. For dj = 2 only one selections changes for half of
the increments, for a quarter of the increments only two selections change etc.. Our
approach can thus be improved by only recalculating the cost of the nodes which
had their selections changed and their incident edges.
We can do better by using a Gray code order to only recalculate one node per

increments. For this we first initialize multiple arrays of helpers variables, each
containg a value for every node:
unsigned int cu r r e n t S e l e c t i o n [l ength] ;
bool trend [l ength] ;
unsigned short l im i t s [l ength] ;
void initGrayCode () {

unsigned int index = 0 ;
for (Node node : graph . getNodes ()) {

21

3.3. BRUTEFORCING PBQP

cu r r e n t S e l e c t i o n [index] = 0 ;
// s t a r t by in c r ea s in g e v e r y t h in g
trend [index] = true ;
l im i t s [index] = node . getVector () . getLength () ;
index++;

}
}

Using this we can then increment the Gray code by calling the following method.
It iterates over all possible solutions, while only changing one selection every time.

unsigned int incrementGrayCode () {
for (unsigned int i = 0 ; i < length ; i++) {

i f (trend [i] {
// inc r ea s in g
i f (c u r r e n t S e l e c t i o n [i] == l im i t s [i]) {

// trend i s sw i t ched and i t e r a t i o n cont inues
trend [i] = fa l se ;

}
else {

// j u s t increment
c u r r e n t S e l e c t i o n [i]++;
return i ;

}
}
else {

// decreas ing
i f (c u r r e n t S e l e c t i o n [i] == 0) {

// trend i s sw i t ched and i t e r a t i o n cont inues
trend [i] = true ;

}
else {

cu r r e n t S e l e c t i o n [i]−−;
return i ;

}
}

}
}

This method allows calculating the total cost of all possible solutions with minimal
effort. It returns the index of the node which was changed, which allows finding the
total cost of the current solution easily, because the previous selection of the node
changed is known and the total cost of the previous solution is known. Subtracting
the cost created by the changed node and its edges with the previous selection and

22

3.3. BRUTEFORCING PBQP

adding the cost created with the new selection to the previous total cost gives the
new total cost. Note that the bigger di is, the smaller becomes the improvement this
approach offers compared to a naive brute forcing one.

A problem of this approach is that it can not handle infinite entries in cost matrices.
This is due to the way the next solution is calculated based on modifying the current
one. If the current solution has an infinite cost, then subtracting the cost added
by a specific node will not return a valid result. Another possible issue is the fact
that this algorithm will always try all solutions. High costs for specific selections
in a node may make these selection obviously non-optimal, but the Gray code will
still try all possible combinations involving them. This problem can be addressed by
using Branch and Bound instead.

3.3.2 Bruteforcing PBQP using Branch and Bound
Using Branch and Bound we want to find an optimal solution, while looking at as
few solutions as possible. To do so we first create a list of all nodes by applying a
BFS algorithm to our PBQP, starting at an arbitrary node. The order in the list is
the order in which the BFS found the nodes.

We then pick the first selection for every node and calculate the total cost for this
solution. This cost is the starting minimum. From here on we apply a standard
Branch and Bound algorithm to traverse our tree and find a smaller solution.

void f indMin imalSo lut ion (Node node , unsigned int
currentKnownMinimum , unsigned int costSoFar , unsigned int
∗ s e l e c t i o n s) {

for (unsigned int i = 0 ; i < node . getVector () . getLength () ;
i++) {

unsigned int updatedCost = calcu lateUpdatedCost (
costSoFar , s e l e c t i o n s , node , i) ;

i f (updatedCost >= currentKnownMinimum) {
// s k i p r i g h t away i f we a l r eady know i t ’ s more

expens i ve
continue ;

}
else {

// i t e r a t e over the c h i l d nodes in the t r e e crea t ed v ia
BFS

s e l e c t i o n s [node . getIndex ()] = i ;
// r e c u r s i v e l y f i nd minimal co s t
Node next = node . getNextInBFSList () ;
f indMin imalSo lut ion (next , currentKnownMinimum ,

updatedCost , s e l e c t i o n s) ;
}

23

3.3. BRUTEFORCING PBQP

}
}

The arguments it starts with are the first node of the BFS order, the minimal cost
created using the first trivial solution, a starting cost of 0 and a selection which is 0
for every node.
Using the list based on the BFS to iterate over all nodes is not necessary for the

algorithm to work, but doing so improves its speed. The order ensures that for almost
all nodes for which a selection is being tried, at least one adjacent node already had
a selection assigned. This applies for all nodes except for the root node. Additionally
the BFS makes all other nodes adjacent to the current one more likely to already be
selected or to be selected shortly after than it would be in a random order. This is
good, because more pairs of adjacent nodes already being selected lets us determine
more edge costs. More determined edge costs mean we get a bigger sum and more of
the entire PBQP is taken into account, thus allowing us to recognize non-optimal
solutions earlier and to skip them earlier.

24

4 Evaluation

4.1 Performance of linear/quadratic programming
solvers compared to traditional PBQP solver

We implemented conversion of PBQP instances into both a linear and quadratic
programming format and solved them using Gurobi. Gurobi is a commercial solver
which is widely used for solving linear programming and quadratic programming
problems. We compared the solutions produced by Gurobi via quadratic program-
ming, by Gurobi via linear programming, by KAPS and by our library. We compared
them under the aspect of solution quality, meaning the total cost across all edges
and nodes in the solution they provided and under the aspect of solving time.
For this purpose we created a sample set of PBQP instances by compiling a

SPEC2000 benchmark using libFirm and dumping all PBQP instances created
during the compilation process to JSON files using our library and its C-Interface.
Out of these dumped PBQP instances we picked multiple sample groups, each
representing a different order of magnitude in terms of the PBQP instances node
count. The groups picked can be seen in Figure 4.1

Node count Sample size Edge count Edges/node
41 13 31 0.75
190 15 443 2.33
761 6 2195 2.88
1792 2 6528 3.64

Figure 4.1: Sample PBQP instance groups used for performance evaluation. Node
and edge counts are averaged across the entire group and rounded to
the nearest integer. Edges/node is rounded to the second decimal

Due to the massive differences in rarity and solving time for problems of bigger
size the size of the sample groups is not identical. All problems used are within a 10
% margin of the average node count of their group though.

We solved each sample group n times, measured the total time taken and divided
this total time by both the amount of problems within the same group and by n to
obtain the average amount of time taken per PBQP instance solving. This benchmark
was done on a machine with a quad-core i5-4670 running Ubuntu 18.04. The results
can be seen in Figure 4.2. The amount of runs n decreases for larger sample groups

25

4.1. PERFORMANCE OF LINEAR/QUADRATIC PROGRAMMING SOLVERS
COMPARED TO TRADITIONAL PBQP SOLVER

due to the massively increased time required to solve them. The two larger sample
groups were not solved using linear programming, due to the approaches exponential
runtime. After over 12 hours the linear programming approach had not completed a
single run for the group of average node size 761.
Our implementation behaves slower than the one provided in KAPS, but this

difference becomes smaller with bigger PBQP instances. We assume that this is the
case due to the increased overhead, which the object oriented implementation in
pbqp-papa has.
The solving time for Gurobi using linear programming is massively increased

compared to the solving time using quadratic programming. We assume that this
is the case due to the increased amount of binary variables used in the linear
programming approach. The quadratic programming approach uses one variable
for each entry in each cost vector while the linear programming approach uses one
variable for each entry in each cost vector and each cost matrix. This means for a
graph with n nodes, vectors of length d and m edges the quadratic programming
approach uses O(n ∗ d) binary variables while the linear programming approach uses
O(n ∗ d + m ∗ d2) binary variables. The problem instances used here all have cost
vectors with a length of 16 and thus 256 entries in every cost matrix. For a mediocre
sized graph with 100 nodes and 200 edges this already results in an increase of factor
33 in binary variables of the linear programming approach compared to the quadratic
one.

We also compared the quality of the solutions obtained from the different solvers
for each sample group. Due to all solvers used being entirely deterministic we only
had to solve every sample group once. For each sample group and each solver
we calculated the sum of the costs of all obtained solutions and divided it by the
amount of PBQP instances within the sample group. This gave us the average cost
determined for each sample group. The results can be seen in Figure 4.3.
The solutions obtained by both approaches using Gurobi are identical, because

they are both optimal. While using Gurobi in production is not feasible, due to its
long run time for larger PBQP instances, it is very useful for evaluating the quality
of our heuristics compared to the optimal solution. We can see that our heuristic
solution becomes increasingly worse compared to the optimal one with bigger PBQP

Node count n KAPS Gurobi Linear Gurobi Quadratic pbqp-papa
41 20 0.689ms 40.5ms 18.38ms 1.420ms
185 20 6.577 334.7s 0.827s 10.631ms
761 5 28.220ms - 128s 40.492ms
1792 2 91.070ms - 8299s 120.825ms

Figure 4.2: Solving time taken for sample PBQP instance groups on average per
PBQP instance. Solving times are rounded to the last decimal shown

26

4.2. BRANCH AND BOUND

instances. For small instances there is no difference at all though.
The solution quality of KAPS and pbqp-papa are identical as well, which makes

sense as they implement the same algorithm.

Node count KAPS Gurobi Linear Gurobi Quadratic pbqp-papa
41 0.692 0.692 0.692 0.692
185 449.6 225.3 225.3 449.6
761 76148 - 69613 76148
1792 272626 - 167315 272626

Figure 4.3: Solution quality across sample problem groups per PBQP instance on
average

4.2 Branch and Bound
We implemented Branch and Bound as described in 3.3.2 and attempted to solve
PBQP instances with it. We were unable to do so though, because smaller PBQP
instances generated based on SSA-based register allocation vary very little in their
cost distribution. Most of the PBQP instances in the sample group with the least
nodes had an optimal cost of 1 and mostly coloring edges. This is very bad for Branch
and Bound, because its effectiveness relies on bad solutions identifying themselves
as such as early as possible. That is not the case here though, so the Branch and
Bound algorithm has to iterate over almost all approximately 16n possible solutions,
assuming n nodes with a vector length of 16 each. For a small PBQP instances with
40 nodes with already ends up being 2160 possible solutions, an amount that can not
be checked within feasible time
Even though larger PBQP instances have more variation in their costs and thus

are more favorable for Branch and Bound structure wise, solving them was still not
possible. With an increasing node count the NP-hard nature of the problem increases
the amount of solutions to look at much faster than finding solutions gets easier due
to more cost variety.

4.3 Findings made using debugging tools
There has been a PBQP instance, which KAPS could not solve. It was unclear
whether this was due to an algorithmic problem or an implementation fault in KAPS.
We implemented a solver dissecting the reduction and solving process step by step
to find possible faults and using it we were able to solve this PBQP instance, thus

27

4.3. FINDINGS MADE USING DEBUGGING TOOLS

determining that the fault lies within KAPS’ implementation. This also reconfirms
the findings of Buchwald et al.[2] regarding the early application of optimal reductions
not influencing the validity of the PEO and thus the ability to find a solution.

28

5 Conclusion

5.1 Related work
Scholz and Eckstein.[7] first introduced the idea to use PBQP for register allocation.
They used a linear heuristic and did not employ SSA form[2].

Hames and Scholz[8] further refined this approach with a new heuristic approach
and a branch-and-bound algorithm for optimal solutions[2].

Buchwald et al.[2] applied PBQP to SSA-based register allocation and implemented
KAPS and libFirms usage of PBQP based on it. They implement and compare
different heuristics and establish early decision RN as the preferred one.

Scholz[9] offers an implementation for solving PBQP using a linear heuristic or a
brute force approach, but the available source code is incomplete.

LLVM[10] has an experimental implementation of a PBQP solver using heuristics
as part of their framework.
Frieler[5] developed a parallelized PBQP solver using X10. They do not support

infinite entries in cost matrices or PEOs and used randomly generated PBQP
instances for benchmarking purposes. Due to this and the lack of a C interface to
connect to a compiler their implementation is not suited for our use case in SSA-based
register allocation.

5.2 Future work
Parallelization in graph based solving algorithms as explored by Frieler[5] is not
taken into account at all here due to time limitations. It could provide significant
improvements to the run time of solvers. Parallelization would be possible both by
separating the graph of a PBQP instance into its connected components and by
simultaneously applying ideal reductions to nodes not sharing any adjacent nodes.

Additionally more diverse testing data would enable us to evaluate the performance
and quality of our solvers in a more general sense towards PBQP. All PBQP instances
used here are register allocation problems in libFirm, which all have similar density
and similar cost structure. The majority of edges are coloring edges which have ∞
on the diagonal and 0 in all other entries. These type of edges only affect solvability,
but not quality of the solution. All edges which are not coloring edges are affinity
edges originating from coalescing properties. The content of these does vary, but
in most cases they are still filled with only a combination of 0 and a single other
integer. More diverse entries in the edges cost matrices would allow for much better
evaluation of solvers solution quality.

29

5.3. SUM UP

A more domain oriented approach for implementing solving algorithms could
be beneficial as well. This thesis uses libFirm mostly as a black box to generate
the PBQP instances used. We make no connection between the instructions being
optimized and the PBQP instance to solve, we only work based on the PBQP instance
generated by KAPS. Making this connection could grant insight into the structure
and generation of generated PBQP instances though and thus improve understanding
of the PBQP instance. This could possibly lead to improved solving algorithms and
maybe even allow reusing good solutions for common patterns reappearing during
compilations.

Finally a direction worth exploring is solving PBQP instances with different PEOs
or without them at all. Both our implementation and KAPS rely entirely on the
existence of a PEO to ensure a solution can be found when infinite entries are present.
They also treat KAPS implementation for generating a PEO, which is only based
on coloring and does not take affinity edges into account at all, as a black box.
Developing an improved PEO algorithm for generating PEOs which also take affinity
edges into account would likely lead to improved solution quality. Additionally it
could be possible to leave PEOs behind entirely and develop solving algorithms not
using an external order for the application of RN. Instead these would have to ensure
on their own that a solution can always be found.

5.3 Sum up
We developed a standalone library for creating, analyzing and solving PBQP instances.
Using this library we evaluated the performance of our library in comparison to KAPS
and showed that albeit slightly slower our implementation can compete in speed
while offering a massively improved and more feature rich API. We used our library
to analyze the performance and solution quality of different solving approaches. As
part of this we introduced solving of PBQP as a quadratic programming problem,
which provides optimal solutions within acceptable time for smaller PBQP instances.
We showed that formulating and solving PBQP instances as a linear programming
problem is not a good choice, because it performs significantly worse than the
quadratic programming approach. Finally we showed that a Branch and Bound
approach is not feasible for retrieving optimal solutions of PBQP instances generated
from SSA-based register allocation.

30

Bibliography
[1] F. Bouchez, A. Darte, C. Guillon, and F. Rastello, “Register allocation: What

does the np-completeness proof of chaitin et al. really prove? or revisiting
register allocation: Why and how,” in Languages and Compilers for Parallel
Computing (G. Almási, C. Caşcaval, and P. Wu, eds.), (Berlin, Heidelberg),
pp. 283–298, Springer Berlin Heidelberg, 2007.

[2] S. Buchwald, A. Zwinkau, and T. Bersch, “Ssa-based register allocation with
pbqp,” in Compiler Construction (J. Knoop, ed.), vol. 6601 of Lecture Notes in
Computer Science, pp. 42–61, Springer Berlin / Heidelberg, 2011. 10.1007/978-
3-642-19861-8_4.

[3] A. Anderson and D. Gregg, “Optimal DNN primitive selection with partitioned
boolean quadratic programming,” CoRR, vol. abs/1710.01079, 2017.

[4] KIT, “libfirm.” https://pp.ipd.kit.edu/firm/index.html, Feb. 2019. [On-
line; accessed 14-February-2019].

[5] C. Frieler, “Entwicklung eines parallelen pbqp-lösers mit x10,” Apr. 2012.

[6] M. Baumstark, “pbqppapa.” https://github.com/maxopoly/pbqp-papa, Feb.
2019. [Online; accessed 22-February-2019].

[7] B. Scholz and E. Eckstein, “Register allocation for irregular architectures,”
SIGPLAN Not., vol. 37, pp. 139–148, June 2002.

[8] L. Hames and B. Scholz, “Nearly optimal register allocation with pbqp,” in
Modular Programming Languages (D. E. Lightfoot and C. Szyperski, eds.),
(Berlin, Heidelberg), pp. 346–361, Springer Berlin Heidelberg, 2006.

[9] B. Scholz, “libfirm.” http://www.complang.tuwien.ac.at/scholz/pbqp.
html, Feb. 2004. [Online; accessed 21-February-2019].

[10] LLVM, “Llvm pbqp implementation.” https://llvm.org/doxygen/
namespacellvm_1_1PBQP.html, Feb. 2019. [Online; accessed 21-February-2019].

31

https://pp.ipd.kit.edu/firm/index.html
https://github.com/maxopoly/pbqp-papa
http://www.complang.tuwien.ac.at/scholz/pbqp.html
http://www.complang.tuwien.ac.at/scholz/pbqp.html
https://llvm.org/doxygen/namespacellvm_1_1PBQP.html
https://llvm.org/doxygen/namespacellvm_1_1PBQP.html

Erklärung

Hiermit erkläre ich, Max Baumstark, dass ich die vorliegende Bachelorarbeit selbst-
ständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis
beachtet habe.

Ort, Datum Unterschrift

33

	Introduction
	Basics
	Partioned Boolean Quadratic Problem
	Formal form
	Graph form

	Solving PBQP
	Optimal reductions
	R0 reductions
	R1 reductions
	R2 reductions
	Heuristic reductions
	PEO

	Design and Implementation
	Library design
	Programming language choice
	General design

	Solving PBQP with linear/quadratic programming solvers
	Solving PBQP through quadratic programming
	Solving PBQP through linear programming

	Bruteforcing PBQP
	Bruteforcing PBQP in Gray code order
	Bruteforcing PBQP using Branch and Bound

	Evaluation
	Performance of linear/quadratic programming solvers compared to traditional PBQP solver
	Branch and Bound
	Findings made using debugging tools

	Conclusion
	Related work
	Future work
	Sum up

