
Verifying a Compiler for Java Threads?

Andreas Lochbihler

Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
andreas.lochbihler@kit.edu

Abstract. A verified compiler is an integral part of every security infra-
structure. Previous work has come up with formal semantics for sequen-
tial and concurrent variants of Java and has proven the correctness of
compilers for the sequential part. This paper presents a rigorous formal-
isation (in the proof assistant Isabelle/HOL) of concurrent Java source
and byte code together with an executable compiler and its correctness
proof. It guarantees that the generated byte code shows exactly the same
observable behaviour as the semantics for the multithreaded source code.

1 Introduction

In a recent “research highlights” article in CACM [14], the CompCert C compiler
[13] by Leroy was praised as follows: “I think we are on the verge of a new
paradigm for safety-critical systems, where we rely upon formal, machine checked
verification, instead of human audits. Leroy’s compiler is an impressive step
toward this goal.” And indeed, Leroy’s work can be seen as a door opener, in
particular because his verification includes various optimisations and generates
assembler code for a real machine. However, concurrent programs call for formal
methods even louder, because many bugs show up only in some interleavings
of the threads’ executions, which makes the bugs nearly impossible to find and
reproduce. But so far, nobody has ever never included the compilation of thread
primitives and multithreaded (imperative) programs.

In this paper, we present a compiler from a substantial subset of multi-
threaded Java source code to byte code and show semantic preservation w.r.t.
interleaving semantics in the proof assistant Isabelle/HOL [23]. To our knowl-
edge, this is the first verified compiler for a realistic concurrent language. The
verification addresses the fundamental challenges of concurrency: nondetermin-
istic interleaving and different granularity of atomic operations between source
and byte code. At present, we ignore the Java Memory Model (JMM) and as-
sume sequential consistency. Like Sun’s javac compiler, ours does not optimise.
Thus, we expect that the verification also works for the full JMM.

We show how to address nondeterminism by applying a bisimulation ap-
proach (Sec. 3) like in [24,27] to a compiler for a realistic concurrent language. We
cope with interleaving by decomposing the correctness proof for the compiler into
a correctness proof for individual threads. To that end, we introduce a generic
? This work is partially supported by DFG grant Sn 11/10-1.

framework semantics which interleaves the individual threads and manages locks
and wait sets. Since the observable behaviour includes all accesses to shared
memory, method calls and synchronisation, we obtain a bisimulation for the
multithreaded semantics from bisimulations for single threads. Bisimulation also
solves the atomicity issue for us: unobservable steps may be decomposed into
arbitrarily many unobservable steps, observable ones into multiple unobservable
ones followed by an observable one.

We have based our work on the Jinja project [11], which contains formal se-
mantics and a verified compiler for sequential Java. Our semantics JinjaThreads
(Sec. 2) adds multithreading and concurrency primitives for arbitrary dynamic
thread creation, synchronisation on monitors, the wait-notify mechanism and
joining of threads. Our compiler (Sec. 4) may seem a straightforward extension
of Jinja’s, but its verification (Sec. 5) posed two fundamental challenges: In strik-
ing contrast to Jinja’s big-step semantics and simulation-only proof, we had to
(i) verify the compiler w.r.t. small-step interleaving semantics and (ii) show both
directions of the bisimulation. Accordingly, our verification comprises 47kL of
Isabelle code, whereas the original Jinja verification needed only 15kL. Finally,
we discuss our design decisions that enabled the verification to succeed (Sec. 6).

Using Isabelle’s code generator, we have mechanically extracted an exe-
cutable implementation of our compiler in standard ML. It compiles source code
programs in abstract syntax to byte code programs in abstract syntax. The full
formalisation of JinjaThreads with all details is available online [19].

2 Jinja with Threads

In this section, we present the features of JinjaThreads that are relevant for our
compiler verification. JinjaThreads is a complex model of Java that supports a
broad spectrum of concepts, all of which must be correctly handled by the com-
piler all the way from source code to byte code: local variables, objects and fields,
inheritance, dynamic dispatch and recursion, arrays and exception handling; for
details see [11,18]. Here, we focus on Java’s concurrency language features as
specified in the Java Language Specification (JLS) [8, Ch. 17]: synchronisation
via locks, the wait-notify mechanism, thread creation and joining. The interrupt
mechanism is not modelled, but could be added at little cost to the formalisa-
tion. Fig. 1 illustrates the life cycle of a Java thread. After a thread has been
spawned by invoking its start method, it keeps running (i) until it is final. If,
however, it invokes the wait method on an object o, it temporarily releases its
locks on o’s monitor and is entered in o’s wait set (ii). If another thread calls
notify on o, a thread t is removed from o’s wait set (iii), but t must reacquire its
locks before it can continue to run.

Java source and byte code have the same thread and concurrency model,
which is captured in our multithreaded semantics (Sec. 2.1). We use it as an
interleaving semantics for all languages in JinjaThreads: source code J, (Sec. 2.3),
byte code JVM (Sec. 2.4), and one intermediate language J1 (Sec. 2.5).

2.1 The Framework Semantics

In this section, we present the multithreaded semantics for all JinjaThreads lan-
guages. To that end, we assume a small-step semantics for single threads, written
〈x, h〉 taB 〈x′, h′〉, which contains all atomic execution steps for the individual
threads. It takes a thread-local state x and the shared heap h: the result are a
new thread-local state x′ and heap h′, and a thread action ta which spawns a
new thread, locks a monitor, joins another thread, etc. For thread joining, we
use the predicate final to identify thread states that have terminated. Then, the
framework semantics redT takes such a semantics as a parameter to form
the set of small-step reductions for the multithreaded case. Here, we only give a
short summary of it, see [18] for full details.

A multithreaded state s consists of four components: (i) The lock state
locks s stores for every monitor how many times it is locked by a thread, if at all.
Locks are mutually exclusive. (ii) The thread state thr s stores for every thread
t in s all information that is specific to it, i.e. the thread-local state x and the
multiset ln of locks on monitors that this thread has temporarily released, e.g.
when it was suspended to a wait set. (iii) The shared memory shr s. (iv) The
wait sets wset s: a thread is in at most one wait set at a time.

A single thread t uses the thread action ta to query and update the state of
the locks, threads and wait sets. Currently, the framework semantics provides the
following basic thread actions: (i) Locking, unlocking, temporarily releasing,
and testing whether it has (not) locked a monitor. (ii) Creating a new thread,
testing whether a thread has been started, and joining a thread. (iii) Suspend-
ing to a wait set, notifying one (all) threads in a wait set. A thread action
(TA) ta consists of multiple basic thread actions, written as a list ([] denotes
the empty list). The whole list is checked and executed atomically. A call to
the wait method, e.g., issues [HasLock l, Release l, Suspend w] to test whether the
thread t has locked the monitor l, to temporarily release all locks on l, and to
suspend itself to the wait set w. By composing TAs that affect multiple aspects
of the multithreaded state from basic thread actions, we were able to keep the
framework semantics flexible and the proofs about it simple.

The framework semantics redT has reductions (written s t .taB s′) of two
kinds. First, a reduction 〈x, h〉 taB 〈x′, h′〉 of the thread t in s that is not in a wait
set and has not temporarily released any locks (state (i) in Fig. 1). In that case,
tests of the TA ta must hold in s. Then, redT atomically executes ta on s and
updates t’s local state to x′ and the shared heap to h′, which yields s′. Second,
redT can choose a thread t in s that is not in a wait set, but has temporarily
released some locks ln – state (iii) in Fig. 1. If t can reacquire all of them, redT

assigns them to t again and resets ln to {} in s′. In that case, everything else
remains unchanged from s to s′. A reduction s t .taB s′ is unobservable (written
is-mτ s (t, ta) s′) iff it results from a τ -move of a thread (cf. Sec. 2.2). Note that
a thread gets from (ii) to (iii) in Fig. 1 only if an other thread notifies it.

We also lift the final predicate to a multithreaded state s: s is final iff for all
threads t in s, say thr s t = b(x, ln)c (b c denotes definedness for a partial function),
t’s local state x is final and t has not temporarily released any locks, i.e. ln = {}.

start

wait

notify

reacquire locks

finali

ii

iii

Fig. 1. Life cycle of a Java
thread

level\language J J1 J′1 JVM

concurrency Jm J
m∼1 Jm1 ∼ J′m1 1

m
≈jvm JVMm

li
ft

x?? x?? x??
single threads Jt J

t∼1 Jt1 J′t1 1
t
≈jvm JVMt

li
ft

x?? x?? x??
expressions Je J

e∼1 Je1 J′e1 1
e
≈jvm JVMe

Fig. 2. Composition of bisimulations for the
correctness proof.

2.2 Concepts for all Languages in JinjaThreads

Each JinjaThreads language has three semantics levels, which Fig. 2 shows to-
gether with the delay bisimulations used in Sec. 5 for the verification. The ex-
pression level semantics, which is marked with e, contains all execution steps
of a single thread except for method calls and returns. The semantics for a
thread (marked t) lifts the expression level semantics to call stacks and adds
method calls and returns. The multithreaded semantics (marked m) models the
full behaviour for multithreaded programs. In all languages, this is the framework
semantics instantiated with the call-stack semantics for single threads.

There are five kinds of values: booleans Bool b, integers Intg i, addresses
Addr a, the null reference Null, and a dummy value Unit. Addresses reference
objects or arrays on the heap, which is a map from addresses to heap objects. To
avoid redundancies with the instruction for object creation in the formalisation,
all system exceptions (like NullPointer and IllegalMonitorState) are preallocated
on the heap. & denotes the address of a preallocated system exception.

In standard Java, only monitors – of which every object and array has ex-
actly one – can be locked. Hence, addresses identify monitors in the framework
instantiations. Since every monitor manages its own wait set, addresses also iden-
tify wait sets. JinjaThreads uses the same heap representation in all languages.
Hence, every instantiation need only to specify the thread-local state.

All JinjaThreads languages use the same format for class and method decla-
rations, only the method definitions depend on the language. Hence, a compiler
Comp need to be specified only for method bodies. The generic function compP

then uniformly applies Comp to all methods of all classes, i.e. the program P

is compiled to compP Comp P. This generic approach ensures that compilation
does not affect the class hierarchy and lookup functions for methods and fields.

JinjaThreads comes with standard well-formedness conditions (e.g. typeabil-
ity, acyclic class hierarchy), see [11] for details. In the following, we will assume
that all programs are well-formed.

JinjaThreads has two kinds of method calls: First, standard calls to methods
that are implemented in the program P. Second, calls to methods that cannot
be implemented in JinjaThreads syntax, e.g. native methods such as wait, notify,
or start on Thread objects. We call them external calls and hardwire them in the
semantics. Such a call executes atomically, written P ` 〈a.M(vs), h〉 taBext 〈va, h′〉

where a is the address of the object, M the method name and vs the list of
parameter values. It returns va, which is either a normal value v or the ad-
dress a of an exception, a thread action ta, and the new heap h′. Currently,
the following native methods are provided: wait, notify and notifyAll imple-
ment the wait set mechanism for all objects and arrays; they simply translate
the call into the TAs [HasLock a, Release a, Suspend a], [HasLock a, Notify a], and
[HasLock a, NotifyAll a], resp., where a is the address of the object or array be-
ing called. For these methods, additional reductions with the TA [HasNoLock a]

raise an IllegalMonitorState exception. The framework semantics selects the right
reduction according to its lock status. Moreover, method start in class Thread

spawns a new thread, or fails with an IllegalThreadState exception if the thread
has already been started before. Finally, join joins the called thread. Via this
mechanism, we could add more native methods and even model I/O easily.

Regarding the observable behaviour, we consider the following operations
as observable moves: calling and returning from a method, locking and unlock-
ing, creating objects and arrays and accessing data on the heap other than type
information.1 Since thread creation, joining and the wait-notify mechanism are
implemented as external calls, all of them are, in particular, observable. Con-
versely, all control flow constructs, including exception throwing and handling,
and local variable manipulation are only relevant to the thread that executes
them, so these generate only τ -moves.

2.3 The Source Code Language J

In the source language J, everything is an expression with a return value: state-
ments are treated as expressions that return Unit. An expression is final if it is
either a value Val v (normal termination) or a thrown exception throw (Addr a),
which we abbreviate as Throw a. For a program P, let P ` 〈e,(h, xs)〉 taBJ 〈e′,(h′,
xs′)〉 denote that the expression e executes in a single step to e′ with TA ta,
thereby changing the heap h to h′ and the store for local variables from xs to
xs′. Je contains 84 reduction rules, but we only show those for synchronisation.
For details on the syntax and the full sequential semantics, see [11,18].

Synchronisation in Java source code is done via the synchronized statement,
which is specified in the JLS [8, Sec. 14.19]. The synchronized modifier for meth-
ods behaves as if its body was statement-synchronized on this, so we only need
to consider synchronized blocks in J. Fig. 3 shows the reduction rules for the
synchronized statement sync: JS1 reduces the monitor subexpression. If it raises
an exception, rule JS2 propagates it.2 If the monitor subexpression evaluates
1 These observable moves strictly include all JMM inter-thread actions except for

thread divergence actions. We omit the latter because the JMM is inconsistent for
infinite executions [3]. Object creation, e.g., must be observable in our approach,
because it changes the heap, but it is no inter-thread action: The JMM assumes
that all objects have been preallocated, which is unrealistic for an actual semantics.

2 This is a typical example of how Je handles exceptions: For every language construct,
rules propagate thrown exceptions (Throw a) from subexpressions until a matching
try-catch block is reached or there are no surrounding expressions any more.

P ` 〈e,s〉 taBJ 〈e′,s′〉
P ` 〈sync(e) e2,s〉 taBJ 〈sync(e′) e2,s

′〉
JS1

P ` 〈sync(Throw a) e,s〉 []BJ 〈Throw a,s〉 JS2

P ` 〈sync(null) e,s〉 []BJ 〈Throw &NullPointer,s〉 JS3

P ` 〈sync(addr a) e,s〉 [Lock a]BJ 〈insync(a) e,s〉 JS4

P ` 〈e,s〉 taBJ 〈e′,s′〉
P ` 〈insync(a) e,s〉 taBJ 〈insync(a) e′,s′〉

JS5

P ` 〈insync(a) Val v,s〉 [Unlock a]BJ 〈Val v,s〉 JS6

P ` 〈insync(a) Throw ad,s〉 [Unlock a]BJ 〈Throw ad,s〉 JS7

Fig. 3. Source code reductions for the synchronized statement.

to the null value, a NullPointer exception is thrown (JS3). If it reduces to some
monitor address a, the thread can only reduce further (JS4) by acquiring a lock
on a. To remember that the lock has been granted, the expression is rewritten
to insync(a) e, a variant of the sync expression that does not occur in programs.
Then, the synchronized block’s body is executed (JS5). If this terminates nor-
mally with a value v or with an exception at address ad, JS6 and JS7 release
the lock on a and propagate the return value or exception.

Je also includes all external calls into Je, but it has no rule for standard
method calls. It uses the predicate is-ext-call to determine, based on type in-
formation, whether the call is external. Standard method calls are left to the
semantics Jt, which lifts Je to call stacks. The lifting is standard: as long as the
frame’s expression at the top of the call stack is not final, it is being reduced ac-
cording to Je. In case of a standard method call, Jt pushes a new call frame with
the called method’s body as expression on top of the stack. If the top frame’s
expression is final, the return value or thrown exception replaces the method
call subexpression in the frame below. A thread in Jt is final iff the call stack
contains only one expression, which is also final.

Originally, the JinjaThreads source code small-step semantics [18] did not
model a call stack and dynamically inlined method calls in the expressions in-
stead. But the compiler verification requires an explicit call stack, so we use this
alternative semantics. We have also shown that they are strongly bisimilar: The
strong bisimulation relates the call stack es to the expression e′ iff folding es with
method inlining equals e′.

2.4 The Byte Code Language JVM

The byte code language and the JinjaThreads virtual machine (VM) model Java
byte code and the Java VM according to the Java Virtual Machine Specification
(JVMS) [16]. A thread-local state (xcp, frs) consists of an exception flag xcp (bac
corresponds to Throw a in J and ⊥ denotes none), and a stack frs of frames.
A frame fr = (stk, loc, C, M, pc) consists of the stack stk, an array loc for the

parameters and local variables, the class C and method name M of the method,
and the program counter pc. A state is JVM-final iff the frame stack is empty.

A method body (msl, mxs, ins, xt) consists of an instruction list ins, an excep-
tion table xt, the maximum stack length msl and the size mxs of the array for
local variables. The exception table is a list of entries (from, to, C, pc, d) where C

is either a class name or the special value Any. The exception handler starting at
index pc in ins expects d elements on the stack and handles exceptions that are
raised by instructions in the interval [from, to). If C is a class name, it handles
only those that are a subclass of C; if C is Any, it handles all.

Regarding the JinjaThreads’ instruction set, Java byte code instructions
which only differ on their operand types (e.g. iload and aload) are combined
in polymorphic ones (e.g. Load), but the instructions have not been simplified
conceptually. Moreover, operations that directly manipulate the stack (e.g. dup)
or the local variables like iinc are not part of the Jinja VM. Since they are all
silent instructions, our silent instructions can easily simulate them.

The semantics of a single instruction is defined by the function exec-instr.
Given the instruction, the heap and the frame stack, it produces a list of successor
states together with the corresponding TAs. Like for J, we only explain method
invocation, synchronisation and exception handling.

Method calls are very similar to J: the Invoke instruction decides via the
predicate is-ext-call whether the call is external. If so, it uses the reductions from
P ` 〈a.M(vs), h〉 taBext 〈va, h′〉 to determine the successor states. Otherwise, it
looks up the method in P and pushes a new call frame on top of the frame stack
with the parameters and local variables correctly initialised.

The instructions MEnter and MExit for entering and exiting a monitor im-
plement synchronisation. Both throw a NullPointer exception if the top stack
element v is null. Otherwise, they increment the program counter and issue a
Lock or Unlock action on the address a in v, resp. Additionally, MExit can also
raise an IllegalMonitorState exception with the TA [HasNoLock a]. The latter pos-
sibility is to allow for unstructured locking, where unlocking may fail.

The function exec P (xcp, h, fr·frs) incorporates exception handling in the
semantics: If no exception is flagged, this just executes the current instruction
via exec-instr. Otherwise (xcp = bac), a is checked against the exception handlers
for the program counter of fr: If one is found, the stack is trimmed to the length
specified in the exception table, a is pushed onto the stack and the program
counter is set to the start of the handler. Otherwise, fr is popped and a is
rethrown at the Invoke statement in the previous call frame.

The VM model exec is aggressive: it assumes that there are always sufficiently
many operands of the right types on the stack. If not, the result is undefined.
JinjaThreads also contains a defensive VM, which performs such checks and
raises a type error in case they fail. The byte code verifier, which is also part of
JinjaThreads, ensures that for verified byte code programs and conform states,
the type checks are always met and no type errors occur, i.e. aggressive and
defensive VM agree. A separate proof shows (using a type compiler) that the byte
code verifier accepts all programs generated by the JinjaThreads compiler [11].

V < |xs1| xs′1 = xs1[V := Addr a]

P ` 〈syncV(addr a) e1, (h, xs1)〉 [Lock a]BJ1 〈insyncV(a) e1, (h, xs′1)〉
J1S4

V < |xs1| xs1[V] = Addr a′

P ` 〈insyncV(a) Throw ad, (h, xs1)〉 [Unlock a
′
]BJ1 〈Throw ad, (h, xs1)〉

J1S7

V < |xs1| xs1[V] = Null

P ` 〈insyncV(a) Val v, (h, xs1)〉 []BJ′1
〈Throw &NullPointer, (h, xs1)〉

J′1S8

V < |xs1| xs1[V] = Addr a′

P ` 〈insyncV (a) Val v, (h, xs1)〉 [HasNoLock a′]BJ′1
〈Throw &IllegalMonitorState, (h, xs1)〉

J′1S9

Fig. 4. Example reduction rules for sync statements in J1 and J′1.

In the compiler verification, we mostly use the defensive VM for the bisimu-
lation proof. As before, we have three levels of semantics: JVMe

d (JVMe
a) contains

all execution steps of the defensive (aggressive) VM that manipulate only the
top frame on the call stack, i.e. all instructions except for Invoke and Return,
including method-local exception handling. The single-threaded VM semantics
JVMt also includes the execution steps that JVMe

d has omitted. Then, the multi-
threaded VM JVMm is again the framework semantics instantiated with JVMt.

2.5 Local Variables in an Array: the Intermediate Language J1

Our compiler operates in two stages: The first stage allocates local variables to
array indices, the second generates the byte code instructions. The intermediate
language J1 stores local variable values in an array (like byte code does), but
the expressions from the source code have not yet been replaced by instructions.
Hence, local variables in J1 are no longer identified by their name, but by an
index in the array. A syncV(e1) e′1 block is now annotated with a variable index
V. Following the JVMS [16, Sec. 7.14], this variable will be used in the byte code
to store the monitor address between the MEnter and MExit instructions that
implement the monitor locking and unlocking. Since J1 behaves like the byte
code w.r.t. local variables, J1 already uses this local variable for sync blocks.

We define a new semantics Je1 for expressions (written P ` 〈e1, (h, xs1)〉 taBJ1

〈e′1, (h′, xs′1)〉) with new rules for the expressions that operate on the variable
array xs1. In Je1, J1S4 and J1S7 (Fig. 4), e.g., replace JS4 and JS7. J1S4 not only
locks the monitor, but also stores its address in the variable array xs1. (The first
premise ensures that the variable index does not exceed the size of the array.)
Accordingly, J1S7 reads the monitor address for unlocking from the array.

Analogously to J, Jt1 lifts Je1 to call stacks, which are again the thread-local
states for the multithreaded semantics Jm1 . Like Jm and JVMm, Jm1 is the frame-
work semantics instantiated with Jt1.

To be in line with the MExit semantics, we introduce a variant J′e1 of the
Je1 semantics. Apart from the reductions from Je1, it also includes in the un-

locking for syncV blocks the cases where the entry V in xs1 (written xs1[V])
is Null or the thread does not hold the lock on the monitor at the address
xs1[V]. In these cases, it raises a NullPointer or IllegalMonitorState exception
resp. J′1S8 and J′1S9 in Fig. 4 show these if the block has terminated nor-
mally with a value v. J′e1 contains analogous reductions for abnormal termination
with an exception Throw a. As above, J′t1 lifts J′e1 to call stacks and J′m1 is the
framework semantics instantiated with J′t1 .

3 Semantic Preservation via Bisimulations

We now introduce the notion of semantic preservation (Sec. 3.1) and the bisimu-
lation infrastructure (Sec. 3.2 and 3.3) for showing preservation for the compiler.

3.1 Semantic Preservation

Semantic preservation aims to show that semantic properties established on the
source code also hold for the target code and vice versa. Such properties or spec-
ifications (e.g. a safety property like no null pointer exceptions) are typically
modelled as predicates on the traces of observable behaviour, i.e. the observable
steps of a program execution, or on the sets of possible traces (for nondetermin-
istic programs). Thus, a correct compiler Comp must ensure that the (sets of)
traces of the source program P and of the compiled program Comp P are equal.

Formally, Comp preserves the semantics of P iff the following holds: Let
s1 and s2 be the initial states for P and Comp P, resp. For every execution of
P that starts in s1 and terminates in s′1, there must be an execution of Comp P

from s2 to s′2 such that both the executions’ traces and the observable data in
s′1 and s′2 (such as the result values or exceptional termination) are the same.
Conversely, every terminating execution of Comp P from s2 must be matched
that way by one of P from s1.

As multithreaded programs are inherently nondeterministic, both directions
are essential. The compiled code must not miss any observable nondeterministic
choice, neither may it introduce additional observable behaviour. Some atomic
high-level statements are translated into a sequence of simple instructions, which
allow more interleavings. A correct compiler must ensure that these new inter-
leavings do not lead to new behaviours. Conversely, some constructs (like ex-
ception handling) are atomic in the compiled code, but require many steps in
the source code semantics. Although the compiled code has less interleavings,
no observable behaviour must be missed.

Regarding schedulers, semantic preservation is possibilistic: The source and
compiled program may have different behaviour under a fixed scheduler whose
strategy depends on unobservable steps. Under a round-robin scheduler, e.g., the
number of unobservable steps between two observable ones influences the inter-
leaving. Since a compiler changes this number, source and byte code may have
different behaviours under this scheduler. In this sense, semantic preservation
means: If there is a scheduler for P such that s1 terminates in s′1 with trace t,
then there is also a scheduler for Comp P such that s2 ends in s′2 with trace t.

s1 s′1

s2 s′2

∼ ∼

τ

τ ∗

s1 s′1

s2 s′2

∼ ∼

τ

τ ∗ ∗

s1 s′1

s2 s′2 s′′2

ta

τ ta

∼ ∼

∗s1 s′1 s′′1

s2 s′2
ta

τ ta

∼ ∼

Fig. 5. Diagrams for delay bisimulation. Solid lines denote assumptions, dashed
lines conclusions.

3.2 Simulation Properties

For semantic preservation, we must show trace equivalence for the source code
and the compiled code. To do this, it is standard to show bisimilarity. The lat-
ter implies trace equivalence and can be shown by inspecting individual steps
of execution instead of whole program executions. For the verification, we have
chosen delay bisimilarity [20,1], as it is easy to obtain a delay bisimulation for
multithreaded states from one for individual thread states (cf. Sec. 2.1). As it is
transitive, we can decompose the compiler into smaller transformations and ver-
ify each on its own. Transitivity ensures that the overall compiler is correct, too.

Abstractly, programs define labelled transition systems whose states are the
program states and whose labels constitute the observable behaviour. We write
s taB s′ for a single transition (move), i.e. execution step in the small-step
semantics, from state s to state s′ with label ta. A predicate is-τ s ta s′ determines
whether the transition s taB s′ is unobservable. Such transitions are called silent
or τ -moves. Since their labels are irrelevant, we don’t keep track of them and
write s τB s′ instead. Moreover, τB∗ denotes the reflexive and transitive
closure of τB . A visible move consists of a finite sequence of τ -moves followed
by an observable transition. In this paper, we will often have states, labels,
reductions, and the like for two or more programs and semantics. We will index
variables and arrows with numbers to assign them to one of the semantics, i.e.
s1, B1, etc. for the first, s2, B2, etc. for the second and so on.

A relation ∼ on states is a (delay) bisimulation [20,1] iff (i) s1 ∼ s2 for
the initial states s1 and s2 and (ii) it satisfies the simulation diagrams in Fig. 5:
Every τ -move is simulated by a finite (possibly empty) sequence of τ -moves, and
observable moves are simulated by visible moves such that the resulting states
are again ∼-related. Two programs (transition systems) are (delay) bisimilar
iff there exists a delay bisimulation for them. A special case of delay bisimulation
is strong bisimulation [21] where every move is simulated by exactly one move.

Note that the relational composition ∼1 ◦ ∼2 of two delay bisimulations ∼1

and ∼2 is again a delay bisimulation [1], where s1 ∼1 ◦ ∼2 s3 ≡ ∃ s2. s1 ∼1 s2 ∧ s2
∼2 s3. Hence, delay bisimilarity is transitive.

A program execution s0
tasB∗ sn is a finite sequence of transitions s0

ta1 B
s1

ta2 B . . . tan B sn where tas is the list of all labels tai of observable steps
si−1

tai B si. To characterise complete executions for semantic preservation, we
assume a predicate final that identifies terminal states. We say that a relation ∼
preserves final states iff final states are ∼-related to final states only. Delay
bisimulations that preserve final states also preserve the semantics:

Lemma 1. Let ∼ be a delay bisimulation that preserves final states and s1 ∼ s2.
If s1

tasB∗1 s′1 such that final1 s′1, then there exists an s′2 such that s2
tasB∗2 s′2,

final2 s′2 and s′1 ∼ s′2. If s2
tasB∗2 s′2 with final2 s′2, then there exists an s′1 such

that s1
tasB∗1 s′1, final1 s′1 and s′1 ∼ s′2.

Proof. This lemma is shown by an easy induction on s1
tasB∗1 s′1 and s2

tasB∗2 s′2,
resp., where the simulation properties from Fig. 5 are used in the inductive step.

3.3 Lifting for Bisimulations

The delay bisimulations for showing semantic preservation always relate multi-
threaded states. As we use our framework semantics at all compilation stages,
we uniformly lift delay bisimulations for single threads to multithreaded states.
Thus, to show delay bisimilarity on the multithreaded level, it suffices to show de-
lay bisimilarity for single threads plus some constraints that the lifting imposes:

First, we lift a relation ∼ on thread-local states and the shared memories for
two instantiating semantics B1 and B2 to multithreaded states s1 and s2,
denoted by s1 ∼m s2: (i) The lock status and wait sets of s1 and s2 must be the
same. (ii) All threads in s1 also exist in s2 and vice versa. (iii) For every thread
t in s1 and s2, say thr s1 t = b(x1, ln1)c and thr s2 t = b(x2, ln2)c, the temporarily
released locks must be the same (ln1 = ln2) and the local states ∼-related: (x1,

shr s1) ∼ (x2, shr s2). ∼m preserves final states iff ∼ does so.
Next, we show that the above definitions are sensible: if ∼ is a delay bisimula-

tion, then so is ∼m. However, this holds only if τ -moves are in fact not observable
by other threads. To that end, we require that they neither execute any TAs, nor
change the shared heap: is-τ (x, h) ta (x′, h′) implies ta = [] and h = h′ for all x,
x′, h, h′, ta. Moreover, we must require that ∼ is preserved by heap changes
by other executing threads: Let y1 and y2 be two thread-local states with (y1,

h1) ∼ (y2, h2), each of which performs a visible move to (y′1, h′1) and (y′2, h′2) resp.
such that (y′1, h′1) ∼ (y′2, h′2), i.e. the visible moves simulate each other. Then,
whenever (x1, h1) ∼ (x2, h2) holds for the old heaps, (x1, h′1) ∼ (x2, h′2) must still
hold for the new heaps.

Theorem 1. Let ∼ be a delay bisimulation that is preserved by heap changes
and preserves final states. Then ∼m is also a delay bisimulation.

Proof. The proof shows that the multithreaded semantics can perform the reduc-
tions of the executing thread from the simulation diagrams in Fig. 5. Preserva-
tion of final states ensures that joining succeeds either in both states or in none.
Preservation under heap changes is required to establish ∼m on the result states.

4 Compilation from Source Code to Byte Code

Jinja [11] already contains a nonoptimising compiler J2JVM from source code
to byte code via the intermediate language J1: compE1 compiles J expressions
to J1 expressions. It allocates array indices to local variables and replaces all

references to local variables in e by their indices. compE2 and compxE2 generate
instruction sequences and exception tables for J1 expressions. All of them are
recursive on the expression structure. compP1 lifts compE1 to programs using
compP, and so does compP2 with compE2 and compxE2. The overall compiler
J2JVM is the composition of compP1 with compP2. For JinjaThreads, we have
extended compE1, compE2 and compxE2 to handle sync expressions, which we
present in this section. For details on the other constructs, see [11].

compE1 assigns indices to variables in the following order: the this pointer,
method parameters, local variables in the order of block nesting level. For sync(e) e′

statements, compE1 shifts local variables declared in e′ by 1 and annotates sync

with the index that it has freed this way.
The translation of a J1 syncV(e1) e′1 expression to byte code must ensure

that the monitor is unlocked even if an unhandled exception occurs in e′1. An
exception handler, which applies to all exceptions, needs to do this. Thus, the
instructions for syncV(e1) e′1 are (where @ concatenates two lists):

compE2 e1 @ [Store V, Load V, MEnter] @ compE2 e′1 @ [Load V, MExit, Goto 4] @

[Load V, MExit, Throw]

First, the monitor expression e1 is evaluated and the result (on the stack) is
stored in V. Load V pushes the monitor address back onto the stack and MEnter

locks the monitor. Then, the block is executed, the monitor address loaded again
and the monitor unlocked. Goto 4 jumps to the instruction after the exception
handler that follows. The handler also loads the monitor address, unlocks the
monitor and rethrows the caught exception whose address is still on top of the
stack. For the exception tables, compxE2 (syncV(e1) e′1) appends to the exception
tables for e1 and e′1 the entry (pc1, pc2, Any, pc2 + 3, d) such that compE2 e′1
occupies the positions [pc1, pc2) in the instruction list and the d bottom values
(of surrounding expressions) remain on the stack. Hence, this handler applies to
any exception unless it is handled inside the body e′1.

For example, consider the following method declaration, whose body is ([f],

sync(Var f) Var this.doIt([])) in abstract syntax:

int foo(Object f) { synchronized(f) { return this.doIt(); } }

This compiles to [Load 1, Store 2, Load 2, MEnter, Load 0, Invoke doIt 0, Load 2,

MExit,Goto 4, Load 2,MExit, Throw, Return] with exception table [(4, 6, Any, 9, 0)].
For realistic examples, see the formalisation online [19].

5 Correctness Proofs

In this section, we present the correctness proof for the compiler: a delay bisimu-
lation between the source program P and the compiled program J2JVM P. Fig. 2
from Sec. 2 shows how we build it from smaller delay bisimulations: Between J

and J1 (Sec. 5.1), and between J′1 and JVM (Sec. 5.2), we present three de-
lay bisimulations, one for each level (expressions, singlethreaded call stacks and
multithreaded). The delay bisimulations for the call stack level lift the ones on

the expression level to single threads and the multithreaded level is always ∼m
from Sec. 3.3 instantiated with the t level. Finally, we show that Jm1 and J′m1 are
equivalent for states of interest (Sec. 5.3). By transitivity, P and J2JVM P are
delay bisimilar, i.e. the compiler is correct (Thm. 2).

The delay bisimulation relations typically consist of two parts: (i) the ac-
tual relation between states of the two semantics and (ii) some well-formedness
constraints on the states of either semantics (e.g. being typeable) required by
the bisimulation proof. The latter restrict the set of “valid” states for which the
bisimulation property holds. To increase proof automation, we have similarly
split the bisimulation proofs: First, we show that simulating reductions exists
under conditions (i) and (ii), and that the resulting states are again related in
(i). Next, we show that the constraints in (ii) are preserved under reductions
and that the initial states satisfy them.

5.1 Strong Bisimulation between J and J1

J and J1 only differ in the treatment of local variables. Hence, the thread features
do not introduce anything essentially new for the verification. Still, transferring
the old correctness proof (which uses the big step semantics) required several
substantial changes: (i) We adapted the small step semantics Je1 such that it is
strongly bisimilar to Je, whereas the old semantics would only allow delay bisim-
ilarity. This way, we need not distinguish observable from silent moves, which
greatly simplifies the inuctive cases in the proofs. (ii) The strong bisimulation
J
e∼1 between Je and Je1 must now relate not only initial and final states, but

also all intermediate states. We require that both expressions are identical in
structure except for variable names, which are resolved according to compE1’s
numbering scheme. In addition to the old well-formedness constraints (e.g. a
definite assignment test), the monitor address in the local variables in Je1 must
agree with the monitor address in the insync subexpression. (iii) We must now
also show that small-step reductions preserve the well-formedness conditions.

Although the simulations are now much finer and must cover both directions,
the old notions for the simulation proof [11] are still sufficient, i.e. the proofs do
not pose any major difficulties. Establishing J

e∼1 for the resulting states in the
case for syncV(e) e′ relies on V, the local monitor variable, not being accessed
explicitly in the e′, which the compiler numbering scheme guarantees.

5.2 Delay Bisimulation between J′
1 and JVM

The translation from J1 to JVM is the most complicated one. It flattens the tree
structure of expressions to a linear list of instructions. Exception handlers are
registered in exception tables. Synchronized blocks are implemented by MEnter

and MExit instructions and an exception handler. Like between J and J1, the
key to correctness is delay bisimilarity on the expression level, on which we focus
in this section. Calling and returning from methods works similarly in J′t1 and
JVMt, the laborious proof simply lifts delay bisimilarity. The multithreaded level
is the framework semantics in both semantics. It is easy to show that the delay

bisimulation for the thread level preserves final states and is preserved by heap
changes. Thus, Thm. 1 from Sec. 3.3 yields delay bisimilarity for J′m1 and JVMm.

For the expression level, we make with a detour via the aggressive VM JVMe
a.

We show that JVMe
a simulates J′e1 , but that J′e1 simulates JVMe

d. Since the byte
code verifier accepts all compiled programs, the defensive VM JVMe

d simulates
the aggressive JVMe

a step by step. This detour saves us from showing type safety
for J′e1 . If we used JVMe

d directly, only full run-time typeability of the J′e1 expres-
sion would ensure that the JVMe

d does not halt because of a type error where J′e1
still continues to execute. Conversely, the aggressive VM performs fewer checks
than J′e1 , so J′e1 might get stuck when JVMe

a continues with undefined behaviour.
Hence, bisimilarity holds only for conformant byte code states.

Note that this detour only affects the semantics, not the delay bisimulation
relation 1

e
≈jvm. P,e,h ` (e1, xs1) 1

e
≈jvm (stk, loc, pc, xcp) relates a Je1 state (e1, xs1)

(expression and local variables) to a JVMe state (stk, loc, pc, xcp) (stack, local
variables, program counter, and exception flag) for a heap h that is the same for
both. P only defines the class hierarchy, whereas the J1 expression e compiles to
the instruction list compE2 e with exception table compxE2 e. The inductive def-
inition for 1

e
≈jvm mirrors the J′e1 reduction rules and relates instruction positions

and the stack in the compiled code to partially evaluated expressions.
Fig. 6 shows some representative rules from the inductive definition. The

single rule B1 for all expressions exploits that the last instruction in a compiled
expression always puts its result value on top of the stack. Unfortunately, this
does not translate to exceptions, because byte code does not propagate excep-
tions from subexpressions, but exception tables are used. Hence, 1

e
≈jvm contains

separate exception propagation rules for all expressions, similar to B2. Still, it
abstracts from computed values and addresses of thrown exceptions and only
requires that they are the same in both Je1 and JVMe. Moreover, rules like B3

for all subexpressions of all expressions embed bisimilar states for the subex-
pression into the context of the larger expression, thereby shifting the stack and
instruction pointer as necessary. Finally, the definition contains a rule for every
byte code instruction and intermediate Je1 state. For example, B4 relates the Je1
state which next acquires a monitor’s lock to the intermediate JVMe state after
executing the Store V instruction that saves the monitor address. Although Je1
and JVMe operate on the local variable array in the same way, they must not
be equated in the bisimulation relation, because they differ in such intermediate
states like in B4, which J1S4 skips.

The simulation proofs heavily rely on this value passing scheme. The next
lemma, which is shown by induction on 1

e
≈jvm, says that for related states, if

one of them denotes a result values or thrown expressions, then the other can
produce the same outcome using only τ -moves.

Lemma 2. Let P,e,h ` (e1, xs1) 1
e
≈jvm (stk, loc, pc, xcp). If e1 = Val v, then (stk,

loc, pc, xcp) can silently execute to ([v], xs1, |compE2 e|, ⊥). If e1 = Throw a, it
can do so to ([Addr a], xs1, pc′, bac) for some pc′. Conversely, if stk = [v] and
pc = |compE2 e|, then (e1, xs1) can silently become (Val v, loc). If xcp = bac, then
(e1, xs1) can silently become (Throw a, loc).

P,e,h ` (Val v, xs) 1
e
≈jvm ([v], xs, |compE2 e|, ⊥) B1

P,e1,h ` (Throw a, xs) 1
e
≈jvm (stk, loc, pc, bac)

P,syncV(e1) e2,h ` (Throw a, xs) 1
e
≈jvm (stk, loc, pc, bac)

B2

P,e2,h ` (e, xs) 1
e
≈jvm (stk, loc, pc, xcp)

P,syncV(e1) e2,h ` (insyncV(a) e, xs) 1
e
≈jvm (stk, loc, 3 + |compE2 e1| + pc, xcp)

B3

P,syncV(e1) e2,h` (syncV(Val v) e2, xs) 1
e
≈jvm ([], xs[V := v], 1 + |compE2 e1|,⊥) B4

Fig. 6. Example introduction rules for the 1
e
≈jvm bisimulation relation

Then, the simulation proofs consist of a huge induction on 1
e
≈jvm and case

analysis of the execution steps. Control constructs like conditionals and loops,
which are compiled to (conditional) jumps, are verified like in sequential settings.

5.3 Correctness of the Compiler

In Sec. 5.1 and 5.2, we have shown delay bisimilarity for the individual compiler
stages, but w.r.t. two different semantics in the intermediate language J1. To
link Jm1 and J′m1 executions, we must show that the additional reductions in J′t1
due to e.g. J′1S8 and J′1S9 are never executed in J′m1 , i.e. that the monitor exit
instructions never raise IllegalMonitorState or NullPointer exceptions.

We prove that Jm1 and J′m1 are the same for a multithreaded state s1, in which
for every monitor a and thread t in s1, the number of insyncV(a) subexpressions
of t equals the number of times t holds a in locks s1 (written ` s1

√
). In such a

state, J′m1 never picks J′1S9 as the TA [HasNoLock a′] never holds. Since all Jm1
reductions preserve ` s1

√
, we add it as an additional well-formedness constraint

to J
m∼1. Similarly, J′1S8 is never possible because J

e∼1 (and thus J
m∼1, too) does

not allow Null being stored in the local variable for the monitor address. Thus,
the augmented relation J

m∼1 is also a delay bisimulation for Jm and J′m1 .
We have shown all delay bisimulations from Fig. 2. By transitivity, Jm and

JVMm are delay bisimilar. In the initial state sJ in J, no monitor is locked, all
wait sets are empty and there is only a single thread t whose expression is the
body of some method M of class C in program P. For JVM , the initial state sjvm

is the same as sJ except that t’s local state is the call frame ([], loc, C, M, 0) and
no exception is flagged. For an mfinal Jm state s, the function mxcp s extracts
the correct exception flag for every thread in s, i.e. ⊥ for normal termination and
bac if the exception at address a caused the abrupt termination. Then, Lem. 1
from Sec. 3.2 gives the following main correctness theorem:

Theorem 2. Let sJ execute to s′J in Jm for P with trace tas such that mfinal s′J .
Then, sjvm executes to mxcp s′J in JVMm for J2JVM P with trace tas. Conversely,
if sjvm executes to s′jvm in JVMm for J2JVM P with trace tas such that mfinal s′jvm,
then s′jvm has the form mxcp s′J and sJ executes to s′J in Jm for P with trace tas.

Proof. The full proof can be found online in the formalisation [19].

6 Discussion

Challenges due to concurrency. Verifying a compiler for a concurrent language
adds three dimensions to compiler verification for sequential programs: (i) non-
deterministic interleaving, (ii) different granularity of atomic operations be-
tween source and byte code, and (iii) memory models for optimisations. In Jin-
jaThreads, we have addressed (i) and (ii).

For nondeterminism, bisimulation replaces the standard simulation approach
for sequential programs, where only the compiled program simulates the source
program. For bisimulation, it does not suffice to just show the other direction,
but some subtleties arise: First, neither the source nor the compiled program may
carry on if the other gets stuck, e.g. due to type errors. Our source code semantics
is a small-step semantics, whereas the VM is an abstract state machine. Both
naturally contain different type checks, only a full type system and type safety
proof at every stage would ensure bisimilarity. By using both the aggressive and
defensive VM in the simulation proofs, we only need a single type safety proof
for byte code which ensures that both VMs are equivalent for verified byte code.

Second, the bisimulation must relate all states that are reachable from either
initial state. Ordinary simulations do not have to relate intermediate states in the
target code, which the source code skips, to any other state. This substantially
increases the size of the bisimulation relation and consequently the number of
cases the simulation proof has to consider. For 1

e
≈jvm, Lem. 2 from Sec. 5.2 solves

this problem for the numerous inductive steps in the simulation proof. For the
base cases, we use similar lemmas for each expression, if necessary.

Our correctness result only mentions terminating executions, but a com-
piler should also preserve nontermination and deadlock. However, the standard
(bi-)simulation approach with τ -moves cannot prove this because infinitely many
consecutive τ -moves might be simulated by no moves at all, which is known as
the infinite stuttering problem. Hence, our correctness result allows the byte code
program to silently diverge even if all executions of the source program terminate,
although this is not the case for our compiler. To prove this, we must strengthen
the definition of delay bisimulation with an explicit notion of divergence like in
[5], but we do not expect fundamental problems to arise from this.

Concerning (ii), several source code statements such as sync generate multi-
ple byte code instructions. A single observable step in the source code program
is decomposed into a number of silent steps and one observable step in between.
Although it does not show up in the generated code, the number of atomic steps
in the different semantics differs considerably. In particular, exceptions slowly
propagate up in J whereas the VM directly jumps to the exception handler. The
framework semantics, which we use at all stages, allows to decompose the multi-
threaded case to single threaded, where shared memory accesses and synchroni-
sation must be observable. Hence, we do not have to worry about interleavings
and atomicity in the main correctness proofs themselves.

Java vs. JinjaThreads. JinjaThreads is a generalised subset of Java and Java
byte code. In terms of concurrency, it models all Java features of the JLS except

for time-dependent operations such as Thread.sleep and thread interruption.
The latter could be easily added to the framework, but we cannot model the for-
mer because we have no notion of time. Other concurrency features like thread
groups and the java.util.concurrent library are Sun’s proprietary extensions,
which we have not modelled. As to the sequential part, JinjaThreads inherits all
features from Jinja: classes and objects, inheritance, dynamic dispatch, fields,
arrays, exceptions, local variables, conditionals and loops, binary operators, etc.
JinjaThreads models neither interfaces nor static fields and methods, but these
are orthogonal to concurrency and could be added if desired. Thus, any Java
program that uses only JinjaThreads features can be directly translated to Jin-
jaThreads abstract syntax. JinjaThreads generalises Java in that it does not
distinguish between statements and expressions to keep the formalisation sim-
ple. Unlike Java, e.g., the condition of a while loop may contain a try catch block.

For byte code, the situation is similar: all byte code instructions for the above
features are modelled. The exception tables are slightly more general because for
exception handling, the stack need only be trimmed to a specified size, but not
completely cleared. For Jinja programs that respect the syntactic constraints of
Java, our compiler only produces byte code that could be directly pretty-printed
to Java byte code.

Although our formalisation completely ignores the memory model issue, it is
still a sound model for real Java. For programs without data races in the sense
of the JMM, the JMM guarantees sequential consistency [3], i.e. our interleaving
semantics can reproduce all allowed executions. Hence, our results also apply to
data race free Java programs. Moreover, our compiler is strictly nonoptimising;
it just follows the recommendations in the JVMS [16, Ch. 7]. In fact, even Sun’s
javac compiler in Java 2 SE optimises only very little, but leaves this to the JIT
compiler in the VM. Ševč́ık and Aspinall [25] showed that the JMM allows all pro-
gram transformations that do not affect the JMM-observable behaviour. Since
our compiler falls into this class, our verification will also work for the JMM.

Size of the formalisation. Currently, JinjaThreads consists of about 47k lines of
Isabelle theories (without the a data flow analysis framework for the byte code
verifer) , but not everything is relevant to the compiler itself. The framework
semantics has approx. 6k lines. About 4.3k lines provide general infrastructure
for JinjaThreads. The semantics for J, J1 and JVM , the byte code verifier and
type safety proofs are 14k lines. 1k lines show that our J semantics is bisimilar to
the original source code semantics which dynamically inlines method calls. The
translation from J to J1 is verified in about 3.4k lines, but the by far largest part
is the bisimilarity proof for J1 and JVM with more than 17k lines. Replaying all
proofs (including type safety and the byte code verifier) in Isabelle2009 takes 52
minutes on an Intel DualCore 2.33GHz processor with 2GB memory.

In comparison, Jinja [11], on which JinjaThreads was based, has only 15k lines
of Isabelle code (excluding the data flow analysis). The compiler verification in
terms of the big-step semantics is much easier: about 3.2k lines. Hence, going
from big-step to small-step and from sequential to multithreaded has blown up
the amount of proofs to be done. In particular, semantic preservation in Jinja

is only unidirectional from source code to byte code. Our proof scripts may be
not optimal yet, and we expect that some improvements can be made, but the
difference in size w.r.t. Jinja will remain immense.

7 Related Work

Formal semantics for Java. There are a lot of formal semantics for different
subsets of sequential Java source code and byte code, e.g. [2,11,22]. As for con-
current Java, AtomicJava [7] by Flanagan et al. models most Java source code
features except inheritance and exception handling. Stärk et al. [26] present a
semantics for multithreaded source code based on abstract state machines, a pen-
and-paper proof for type preservation, and a model of a sequential JVM. Liu
and Moore’s interpreter M5 [17] in ACL2 provides a monolithic multithreaded
semantics for byte code, which also models class loading and initialisation. They
aim at verifying JVM implementations w.r.t. the JVMS. Huisman and Petri’s
[10] detailed model of the JVMS in Coq features all byte code instructions, the
wait/notify mechanism and thread interruption, but they do not report on any
proofs with the semantics.

Like in our approach, Belblidia and Debabbi [4] have a semantics for threads
in isolation and a second layer which manages the threads from which it receives
thread actions, which they call labels. In contrast to ours, their single-thread
semantics already takes care of the locks, which are stored in shared memory.
Nor do they model the wait/notify mechanism or thread interruption. Also, they
only give the byte code semantics, but do not report on any proofs with it.

Formally verified compilers. Compiler verification in general has been an active
research topic for more than 40 years; see [6] for an annotated bibliography. Rittri
[24] and Wand [27] first used bisimulations for compiler verification for a simple,
parallel functional language. They showed that running the compiled code on a
virtual machine is weakly bisimilar to the source code’s denotational semantics.

Most closely related to our compiler is the one by Stärk et al. [26], but
it handles only sequential Java source code. Also, they lack the formal rigour
required for machine-checked proofs, as already pointed out in [11].

As for compiler verification for concurrent Java, Ševč́ık and Aspinall [25]
report on verifying individual compiler optimisations w.r.t. the JMM. They show
that the JMM does not allow as many as intended by its designers for programs
with data races. However, their proofs are only on paper for a toy core language
without almost all sequential Java features.

Leroy’s CompCert project [13,14,15] has been the most remarkable land-
mark in mechanised compiler verification recently. He has verified a complete
compilation tool chain from a subset of C source code to PowerPC assembly
language in Coq. CompCert focuses on low-level details and language features
such as memory layout, register allocation and instruction selection. Leroy also
plans to extend CompCert to concurrency [15, Sec. 17.7]. He wants to show
semantic preservation only for pseudo-sequential executions, where threads are

rescheduled only at lock operations. By contrast, our approach directly covers
all interleavings and all behaviours, since we use bisimulations instead of simu-
lations. Hence, our proof also shows that the different granularity of atomicity
in source code and byte code does not affect the possible behaviour of programs.

As part of the Verisoft project, Leinenbach [12] has verified a nonoptimising
compiler from C0, a subset of C, directly to DLX assembler in Isabelle/HOL.
Like CompCert, he focuses on low-level details and only proves a weak simulation
theorem for sequential executions, but not for the backward direction.

8 Conclusion and Future Work

In the current paper, we presented the first verification of a compiler for multi-
threaded Java to byte code. The proof technique is much more difficult than for
sequential languages: (i) one must switch from big-step to small-step semantics
in the source, target and intermediate languages, and (ii) one must show both
directions of the required bisimulation to be semantics preserving. According
to the more complex proof requirements, the verification required 47k lines of
Isabelle formalisation compared to 15k lines for the sequential predecessor.

Our verified Java compiler is part of a larger project which aims to completely
verify an infrastructure for language-based security [9,28]. Still, much remains
to be done: Without a trusted VM, the guarantee of the verified compiler is
vacuous. We are currently working together with the Isabelle team on mechani-
cally extracting an executable VM from our formalisation. Moreover, our notion
of bisimulation cannot distinguish a deadlocked program from a silently diverg-
ing one. Leroy’s simulation property [15] might be a good starting point for a
stronger notion. As the next step, we plan to add the JMM to our interleaving
semantics. Using the techniques from [25], we expect to transfer our results to
the JMM without meeting fundamental problems. This will further narrow the
formalisation gap between Java and JinjaThreads. Finally, we are going to add
the missing constructs from sequential Java to obtain a verified compiler for full
Java. To automate the conversions, we are also working on a simple parser from
Java source code to abstract syntax and a printer from byte code abstract syntax
back to Java byte code.

Acknowledgements. We would like to thank G. Snelting, D. Wasserrab, D.
Lohner, and C. Hammer for inspiring discussions about the formalisation and
the anonymous reviewers for valuable comments on earlier drafts of this paper.

References

1. L. Aceto, R.J. van Glabbeek, W. Fokkink, and A. Ingólfsdóttir. Axiomatizing pre-
fix iteration with silent steps. Information and Computation, 127(1):26–40, 1996.

2. J. Alves-Foss, editor. Formal Syntax and Semantics of Java, vol. 1523 of LNCS.
Springer, 1999.

3. D. Aspinall and J. Ševč́ık. Formalising Java’s data-race-free guarantee. In
TPHOLs’07, vol. 4732 of LNCS, pp. 22–37. Springer, 2007.

4. N. Belblidia and M. Debbabi. A dynamic operational semantics for JVML. Journal
of Object Technology, 6(3):71–100, 2007.

5. J. A. Bergstra, J. W. Klop, and E. R. Olderog. Failurs without chaos: a new process
semantics for fair abstraction. In IFIP’87, Formal Description of Programming
Concepts III, pp. 77–103. Elsevier Science Publishing, 1987.

6. M. A. Dave. Compiler verification: a bibliography. SIGSOFT Software Engineering
Notes, 28(6):2–2, 2003.

7. C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for atomicity: Static
checking and inference for Java. ACM TOPLAS, 30(4):1–53, 2008.

8. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
Third Edition. Addison-Wesley, 2005.

9. C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International Jour-
nal of Information Security, 8(6):399–422, 2009.

10. M. Huisman and G. Petri. BicolanoMT: a formalization of multi-threaded Java at
bytecode level. In BYTECODE’08, ENTCS, 2008.

11. G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual
machine and compiler. ACM TOPLAS, 28:619–695, 2006.

12. D. Leinenbach. Compiler Verification in the Context of Pervasive System Verifi-
cation. PhD thesis, Saarland University, 2008.

13. X. Leroy. Formal certification of a compiler backend or: Programming a compiler
with a proof assistant. In POPL’06, pp. 42–54. ACM, 2006.

14. X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

15. X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

16. T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Edi-
tion. Addison-Wesley, 1999.

17. H. Liu and J S. Moore. Executable JVM Model for Analytical Reasoning: A Study.
In IVME’03, pp. 15–23, 2003.

18. A. Lochbihler. Type safe nondeterminism - a formal semantics of Java threads. In
FOOL’08, 2008.

19. A. Lochbihler. Jinja with threads. In The Archive of Formal Proofs. http://afp.
sf.net/devel-entries/JinjaThreads.shtml, 2009. Formal proof development.

20. R. Milner. A modal characterisation of observable machine-behaviour. In
CAAP’81, vol. 112 of LNCS, pp. 25–34. Springer, 1981.

21. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
22. T. Nipkow, editor. Special Issue on Java Bytecode Verification, vol. 30(3–4) of

Journal of Automated Reasoning. Springer, 2003.
23. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, vol. 2283 of LNCS. Springer, 2002.
24. M. Rittri. Proving the correctness of a virtual machine by a bisimulation. Licentiate

thesis, Göteborg University, 1988.
25. J. Ševč́ık and D. Aspinall. On validity of program transformations in the Java

memory model. In ECOOP’08, vol. 5142 of LNCS, pp. 27–51. Springer, 2008.
26. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine.

Springer, 2001.
27. M. Wand. Compiler correctness for parallel languages. In FPCA’95, pp. 120–134.

ACM, 1995.
28. D. Wasserrab, D. Lohner, and G. Snelting. On PDG-based noninterference and its

modular proof. In PLAS’09, pp. 31–44. ACM, 2009.

http://afp.sf.net/devel-entries/JinjaThreads.shtml
http://afp.sf.net/devel-entries/JinjaThreads.shtml

	Verifying a Compiler for Java Threads
	Andreas Lochbihler

