Formalising FinFuns — Generating Code for
Functions as Data from Isabelle/HOL

Andreas Lochbihler

Universitat Karlsruhe (TH), Germany
lochbihl@ipd.info.uni-karlsruhe.de

Abstract. FinFuns are total functions that are constant except for a fi-
nite set of points, i.e. a generalisation of finite maps. We formalise them
in Isabelle/HOL and present how to safely set up Isabelle’s code genera-
tor such that operations like equality testing and quantification on Fin-
Funs become executable. On the code output level, FinFuns are explicitly
represented by constant functions and pointwise updates, similarly to as-
sociative lists. Inside the logic, they behave like ordinary functions with
extensionality. Via the update/constant pattern, a recursion combinator
and an induction rule for FinFuns allow for defining and reasoning about
operators on FinFuns that directly become executable. We apply the ap-
proach to an executable formalisation of sets and use it for the semantics
for a subset of concurrent Java.

1 Introduction

In recent years, executable formalisations, proofs by reflection [8] and automated
generators for counter examples [1,5] have received much interest in the theorem
proving community. All major state-of-the-art theorem provers like Coq, ACL2,
PVS, HOL4 and Isabelle feature some interface to a standard (usually external)
functional programming language to directly extract high-assurance code from
theorems or proofs or both. Isabelle/HOL provides two code generators [3,6],
which support datatypes and recursively defined functions, where Haftmann’s
[6] is supposed to replace Berghofer’s [3]. Berghofer’s, which is used to search
for counter examples by default (quickcheck) [1], can also deal with inductively
defined predicates, but not with type classes. Haftmann’s additionally supports
type classes and output in SML, OCaml and Haskell, but inductively defined
predicates are not yet available and quickcheck is still experimental.

Beyond these areas, code generation is currently rather limited in Is-
abelle/HOL. Consequently, the everyday Isabelle user invokes the gquickcheck
facility on some conjecture and frequently encounters an error message such
as “Unable to generate code for op = (Ax. True)” or “No such mode [1,
2] for ...”. Typically, such a message means that an assumption or conclusion
involves a test on function equality (which underlies both universal and existen-
tial quantifiers) or an inductive predicate no code for which can be produced. In
particular, the following restrictions curb quickcheck’s usefulness:



— Equality on functions is only possible if the domain is finite and enumerable.

— Quantifiers are only executable if they are bounded by a finite set (e.g.
Vx€A. Px).

— (Finite) sets are explicitly represented by lists, but as the set type has been
merged with predicates in version Isabelle 2008, only Berghofer’s code gen-
erator can work with sets properly.

The very same problems reoccur when provably correct code from a formalisation
is to be extracted, although one is willing to commit more effort in adjusting
the formalisation and setting up the code generator for it in that case. To apply
quickcheck to their formalisations, end-users expect to supply little or no effort.

In the area of programming languages, states (like memories, stores, and
thread pools) are usually finite, even though the identifiers (addresses, variable
names, thread IDs, ...) are typically taken from an infinite pool. Such a state is
most easily formalised as a (partial) function from identifiers to values. Hence,
enumerating all threads or comparing two stores is not executable by default.
Yet, a finite set of identifier-value pairs could easily store such state information,
which is normally modified point-wisely. Explicitly using associative lists in one’s
formalisation, however, incurs a lot of work because one state has in general
multiple representations and AC1 unification is not supported.

For such kind of data, we propose to use a new type FinFun of total functions
that are constant except for finitely many points. They generalise maps, which
formally are total functions of type ‘a = ‘b option that map to None (“undefined”)
almost everywhere, in two ways: First, they can replace (total) functions of
arbitrary type ‘a = 'b. Second, their default value is not fixed to a predetermined
value (like None). Our main technical contributions are:!

1. On the code level, every FinFun is represented as explicit data via two
datatype constructors: constant FinFuns and pointwise update (cf. Sec. 2).
quickcheck is set up for FinFuns and working.

2. Inside the logic, FinFuns feel very much like ordinary functions (e.g. exten-
sionality: f = g «+— (Vx. fx = g x)) and are thus easily integrated into
existent formalisations. We demonstrate this in two applications (Sec. 5):
(a) A formalisation of sets as FinFuns allows sets to be represented explicitly

in the generated code.
(b) We report on our experience in using FinFuns to represent state informa-
tion for JinjaThreads [12], a semantics for a subset of concurrent Java.

3. Equality tests on, quantification over and other operators on FinFuns are all
handled by Isabelle’s new code generator (cf. Sec. 3).

4. All equations for code generation have passed through Isabelle’s inference
kernel, i.e., the trusted code base cannot be compromised by ad-hoc transla-
tions where constants in the logic are explicitly substituted by functions of
the target language.

5. A recursion combinator allows to directly define functions that are recursive
in an argument of FinFun type (Sec. 4).

! The FinFun formalisation is available in the Archive of Formal Proofs [13].



FinFuns are a rather restricted class of functions. To represent such functions
as associative lists is common knowledge in computer science, but we focus
on how to practically hide the problems that such representation issues raise
during reasoning without losing the benefits of executability. In Sec. 6, we discuss
which functions FinFuns can replace and which not, and compare the techniques
and ideas we use with other applications. Isabelle-specific notation is defined in
appendix A.

2 Type Definition and Basic Properties

To start with, we construct the new type ‘a=-; 'b for FinFuns. This type contains
all functions from ’‘a to ‘b which map only finitely many points a :: ‘a to some
value other than some constant b :: ‘b, i.e. are constant except for finitely many
points. We show that all elements of this type can be built from two constructors:
The everywhere constant FinFun and pointwise update of a FinFun (Sec. 2.1).
Code generated for operators on FinFuns will be recursive via these two kernel
functions (cf. Sec. 2.2).

In Isabelle/HOL, a new type is declared by specifying a non-empty carrier set
as a subset of an already existent type. The new type for FinFuns is isomorphic
to the set of functions that deviate from a constant at only finitely many points:

typedef (‘a,’d) finfun = {f::'a="b | 3b. finite {a | fa # b}}

Apart from the new type (‘a, ‘'b) finfun (written ‘a =y ’b), this introduces
the set finfun :: (‘a = 'b) set given on the right-hand side and the two bijection
functions Abs-finfun and Rep-finfun between the sets UNIV :: (‘a = 'b) set and
finfun such that Rep-finfun is surjective and they are inverses of each other:

Rep-finfun f € finfun (1)
Abs-finfun (Rep-finfun f) = f (2)
f € finfun — Rep-finfun (Abs-finfun f) = f (3)

For clarity, we decorate all variable identifiers of FinFun type ‘a =; ‘b with
a hat " to distinguish them from those of ordinary function type ‘a = ‘b. Note
that the default value b of the function, to which it does not map only finitely
many points, is not stored in the type elements themselves. In case ‘a is infinite,
any such b is uniquely determined and would therefore be redundant. If not,
{a| fa# b} is finite for all f::’a = b and b::'b, i.e. finfun = UNIV. Moreover, if
that default value was fixed, then equality on ‘a =, ‘b would not be as expected,
cf. (5).

The function finfun-default f returns the default value of f for infinite domains.
For finite domains, we fix it to undefined which is an arbitrary (but fixed) constant
to represent undefinedness in Isabelle:

finfun-default f = if finite UNIV then undefined else vb. finite {a | Rep-finfun f a # b}



2.1 Kernel Functions for FinFuns

Having manually defined the type, we now show that every FinFun can be
generated from two kernel functions similarly to a datatype element from
its constructors: The constant function and pointwise update. For b::’'b, let
Kfb::’a = 'b represent the FinFun that maps everything to b. It is defined
by lifting the constant function Ax::’a. b via Abs-finfun to the FinFun type. Sim-
ilarly, pointwise update finfun-update, written _(_ :=; _), is defined in terms of
pointwise function update on ordinary functions:

K'b = Abs-finfun (Ax. b) and  f(a:=; b) = Abs-finfun ((Rep-finfun f)(a := b))

Note that these two kernel functions replace A-abstraction of ordinary func-
tions. Since the code generator will internally use these two constructors to
represent FinFuns as data objects, proper A-abstraction (via Abs-finfun) is not
executable and is therefore deprecated. Consequently, all executable operators
on FinFuns are to be defined (recursively) in terms of these two kernel func-
tions. On the logic level, Ad-abstraction is of course available via Abs-finfun, but
it will be tedious to reason about such functions: Arbitrary A-abstraction does
not guarantee the finiteness constraint in the type definition for ‘a = ’b, hence
this constraint must always be shown separately.

We can now already define what function application on ‘a =, ‘b will be,
namely Rep-finfun. To facilitate replacing ordinary functions with FinFuns in
existent formalisations, we write function applications as a postfix subscript ;:
f; a = Rep-finfun f a. This directly gives the kernel functions their semantics:

(K'b)fa=b and f(a:=; b); a’ = (ifa=a'thenb else f; a’) (4)

Moreover, we already see that extensionality for HOL functions carries over to
FinFuns, i.e. = on FinFuns does denote what it intuitively ought to:

f=g— (Vx. fyx=8;%) (5)

There are only few characteristic theorems about these two kernel functions.
In particular, they are not free constructors, as e.g. the following equalities hold:

(K'b)(a:=; b) = Kb (6)
f(a:=¢ b)(a:=s b') = f(a:=5 b (7)
a#a — f(a:=; b)(a':=; b') = f(a’:=; D)(a:=; b) (8)

This is natural, because FinFuns are meant to behave like ordinary functions and
these equalities correspond to the standard ones for pointwise update on ordinary
functions. Only K/_ is injective: (K‘b) = (K'b’) «— b = b’. From a logician’s
point of view, non-free constructors are not desirable because recursion and
case analysis becomes much more complicated. However, the savings in proof
automation that extensionality for FinFuns permit are worth the extra effort
when it comes to defining operators on FinFuns.



More importantly, these two kernel functions exhaust the type ‘a = ’b. This
is most easily stated by the following induction rule, which is proven by induction
on the finite set on which Rep-finfun g does not take the default value:

Vb. P (K'b)  Vfab. Pf— Pf(a:=;b)
pPg

(9)

Intuitively, P holds already for all FinFuns g if (i) P (K b) holds for all constant
FinFuns K/b and (ii) whenever P f holds, then P f(a :=; b) holds, too. From
this, a case distinction theorem is easily derived:

(3b. g = (K'b)) v (3fab. g =f(a:=; b)) (10)

Both induction rule and case distinction theorem are weak in the sense that
the f in the case for point-wise update is quantified without further constraints.
Since K’_ and pointwise update are not distinct — cf. (6), proofs that do case
analysis on FinFuns must always handle both cases even for constant FinFuns.
Stronger induction and case analysis theorems could, however, be derived.

2.2 Representing FinFuns in the Code Generator

As mentioned above, the code generator represents FinFuns as a datatype with
constant FinFun and pointwise update as (free) constructors. In Haskell, e.g.,
the following code is generated:

data Finfun a b = Finfun_update_code (Finfun a b) a b
| Finfun_const b;

For efficiency reasons, we do not use finfun-update as a constructor for the Finfun
datatype, as overwritten updates then would not get removed, the function’s rep-
resentation would keep growing. Instead, the HOL constant finfun-update-code,
denoted _(_:=; _), is employed, which is semantically equivalent: f(a :=; b)) =
f(a:=; b). The code for finfun-update, however, is generated from (11) and (12):

(K'b)(a:=; b') = if b = b’ then K'b else (K'b)(a :=; b) (11)
fQa:=; b)(a’ :=; b') = ifa=a then f(a:=; b') else f(a’ :=; b')(a:=; b)) (12)

finfun_update :: forall a b. (Eq a, Eq b) =
Finfun a b -> a -> b -> Finfun a b;
finfun_update (Finfun_update_code f a b) a’ b’ =
(if eqop a a’ then finfun_update f a b’
else Finfun_update_code (finfun_update f a’ b’) a b);
finfun_update (Finfun_const b) a b’ =
(if eqop b b’ then Finfun_const b
else Finfun_update_code (Finfun_const b) a b’);

where eqop is the HOL equality operator given by eqop a = (\ b -> a == b);.

Hence, an update with _(_:=y _) is checked against all other updates, all overwrit-
ten updates are thereby removed, and inserted only if it does not update to the



default value. Using _(- :=; _) in the logic ensures that on the code level, every
FinFun is stored with as few updates as possible given the fixed default value.?

Let, e.g., f = (K70)(1 :=f 5)(2 :=; 6). When f is updated at 1 to 0, f(1 :=; 0)
evaluates on the code level to (K¥0)(2 :=; 6|), where all redundant updates at 1
have been removed. If the explicit code update function had been used instead,
the last update would have been added to the list of updates: £(1 :=; 0)) evaluates
to (K70)(1 :=; 5)(2 := 6)(1 :=¢ 0). Exactly this problem of superfluous updates
would occur if _(_:=¢ _) was directly used as a constructor in the exported code.

In case this optimisation is undesired, one can use finfun-update-code instead
of finfun-update. Redundant updates in the representation on the code level can
subsequently be deleted by invoking the finfun-clearjunk operator: Semantically,
this is the identity function: finfun-clearjunk = id, but it is implemented using
the following to equations that remove all redundant updates:

finfun-clearjunk (K'b) = (K'b) and finfun-clearjunk f(a :=; b)) = f(a :=; b)

Consequently, every function that is defined recursively on FinFuns must pro-
vide two such equations for K/_and _(_:=; _|) for being executable. For function
application, e.g., those from (4) are used with finfun-update being replaced by
finfun-update-code.

For quickcheck, we have installed a sampling function that randomly creates
a FinFun which has been updated at a few random points to random values.
Hence, quickcheck can now both evaluate operators involving FinFuns and sam-
ple random values for the free variables of FinFun type in a conjecture.

3 Operators for FinFuns

In the previous section, we have shown how FinFuns are defined in Isabelle/HOL
and how they are implemented in code. This section introduces more executable
operators on FinFuns moving from basic ones towards executable equality.

3.1 Function Composition

The most important operation on functions and FinFuns alike — apart from
application — is composition. It creates new FinFuns from old ones without
losing executability: Every ordinary function g::’b = ‘c can be composed with a
FinFun f of type ‘a =; b to produce another FinFun g os f of type ‘a =, ‘c.
The operator oy is defined like the kernel functions via Abs-finfun and Rep-finfun:

g oy f = Abs-finfun (g o Rep-finfun f)
To the code generator, two recursive equations are provided:
gos (Kfe)=(K'gc) and gojfla:=;b) = (gos f)(a:=;gb) (1)

2 Minimal is relative to the default value in the representation (which need not coincide
with finfun-default) — i.e. this does not include the case where changing this default
value would require less updates. (K70)(True :=; 1)(False :=; 1) of type bool =
nat, e.g., is stored as (K/0)(False :=; 1))(True := 1)), whereas K¥1 would also do.



oy is more versatile than composition on FinFuns only, because ordinary
functions can be written directly thanks to A\ abstraction. Yet, a FinFun g is
equally easily composed with another FinFun f if we convert the first one back
to ordinary functions: g o f. However, composing a FinFun with an ordinary
function is not as simple. Although the definition is again straightforward:

f jo g = Abs-finfun (Rep-finfun f o g),

reasoning about jo is more difficult: Take, e.g., f = (K'2)(1 :=; 1) and g = (Ax.
x mod 2). Then, f ;o g ought to be the function that maps even numbers to 2
and odd ones to 1, which is not a FinFun any more. Hence, (3) can no longer be
used to reason about f ;o g, so nothing nontrivial can be deduced about f so g.

If g is injective (written inj g), then f ;o g behaves as expected on updates:

f(b:=f ¢) jo g = (if b € range g then (f jo g)(g " b=y ¢) else f jo g), (14)

where range g denotes the range of g and g~! is the inverse of g. Clearly, both

b € range g and g~ b are not executable for arbitrary g, so this conditional
equality is not suited for code generation. If terms involving o are to be executed,
the above equation must be specialised to a specific g to become executable. The
constant case is trivial for all g and need not be specialised: (K’c) jo g = (K’¢).

This composition operator is good for reindexing the domain of a FinFun:
Suppose, e.g., we need hy x = f; (x + a) for some a::int, then h could be defined
as h=f jo g with g = (Ax. x + a). Clearly, inj g, range g = UNIV and g~ = (Ax.
x — a), 5o (14) simplifies to f(b :=; ¢) jo g = (f o g)(b — a:=; ¢). Unfortunately,
the code generator cannot deal with such specialised recursion equations where
the second parameter of _ jo _ is instantiated to g, so a new constant shift f a =
f jo (Ax. x + a) must be introduced for the code generator with the recursion
equations shift (K/b) a = (K’ b) and shift f(a’ :=; b)) a = (shift fa)(a’ — a :=; b).

3.2 FinFuns and Pairs

Apart from composing FinFuns one after another, one often has to “run” FinFuns

in parallel, i.e. evaluate both on the same argument and return both results as

a pair. For two functions f and g, this is done by the term Ax. (f x, g x). For two

FinFuns f and g, A abstraction is not executable, but an appropriate operator

(f, )7 is easily defined as
(f, 8)) = Abs-finfun (\x. (Rep-finfun f x, Rep-finfun g x)).

This operator is most useful when two FinFuns are to be combined pointwise

by some combinator h, which is then o;-composed with this diagonal operator:

Suppose, e.g., that f and g are two integer FinFuns and we need their pointwise

sum, which is (A(x, y). x + y) of (f, &), i.e. h is uncurried addition. The code
equations are straight forward again:

(Kb, KTe) = K (b, ¢) (15)

(Kb, gai=; c))’ = (K'b &)/ (a =/ (b, ) (16)

(E(a:=; b), &) = (£, &) (a:=; (b, &5 ) (17)

(
(



3.3 Executable Quantifiers

Quantifiers in Isabelle/HOL are defined as higher-order functions. The universal
quantifier All is defined by All P = P = (A\x. True) where P is a predicate and the
binder notation Vx. P x is then just syntactic sugar for All (Ax. P x). This also
explains the error message of the code generator from Sec. 1. However, with-
out A-abstraction, there is no such nice notation for FinFuns, but the operator
finfun-All for universal quantification over FinFun predicates is straightforward:
finfun-All P = Vx. Py x.

Clearly, reducing universal quantification over FinFuns to All does not help
with code generation, which was the main point in introducing FinFuns in the
first place. However, we can exploit the explicit representation of P. To that end,
a more general operator fl-All of type ‘a list = 'a = bool = bool is necessary
which ignores all points of P that are listed in the first argument:

fF-All as P = Va. a € set as V Py a

Clearly, finfun-All = f-All [] holds. The extra list as keeps track of which points
have already been updated and can be ignored in recursive calls:

fE-All as (K'b) «— bV set as = UNIV (18)
f-All as P(la :=; b)) «— (a € set as VV b) A fEAIl (a-as) P (19)

In the recursive case, the update a to b must either be overwritten by a previous
update (a € set as) or have b equal to True. Then, for the recursive call, a is
added to the list as of visited points. In the constant case, either the constant is
True itself or all points of the domain ‘a have been updated (set as = UNIV).

Via finfun-All = fF-All [], finfun-All is now executable, provided the test
set as = UNIV can be operationalised. Since as::’a Iist is a (finite) list, set as
is by construction always finite. Thus, for infinite domains ‘a, this test always
fails. Otherwise, if ‘a is finite, such a test can be easily implemented.

Note that this distinction can be directly made on the basis of type informa-
tion. Hence, we shift this subtle distinction into a type class such that the code
automatically picks the right implementation for set as = UNIV based on type
information. Axiomatic type classes [7] allow for HOL constants being safely
overloaded for different types and are correctly handled by Haftmann’s code
generator [6]. If the output language supports type classes like e.g. Haskell does,
this feature is directly employed. Otherwise, functions in generated code are
provided with an additional dictionary parameter that selects the appropriate
implementation for overloaded constants at runtime.

For our purpose, we introduce a new type class card-UNIV with one parameter
card-UNIV and the axiom that card-UNIV :: ‘a itself = nat returns the cardinality
of ‘a’s universe:

card-UNIV x = card UNIV (20)

By default, the cardinality of a type’s universe is just a natural number of type
nat, which itself is not related to ‘a at all. Hence, card-UNIV takes an artificial
parameter of type ‘a itself, where itself represents types at the level of values:
TYPE(a) is the value associated with the type ‘a.



As every HOL type is inhabited, card-UNIV TYPE(’a) can indeed be used to
discriminate between types with finite and infinite universes by testing against 0:

finite (UNIV::'a set) «— 0 < card-UNIV TYPE('a)

Moreover, the test set as = UNIV can now be written as is-list-UNIV as with
is-list-UNIV as =

let ¢ = card-UNIV TYPE('a) in if ¢ = 0 then False else |remdups as| = c

where remdups as removes all duplicates from the list as.

Note that the constraint (20) on the type class parameter card-UNIV, which
is to be overloaded, is purely definitional. Thus, every type could be made mem-
ber of the type class card-UNIV by instantiating card-UNIV to la. card UNIV.
However, for executability, it must be instantiated such that the code generator
can generate code for it. This has been done for the standard HOL types like
unit, bool, char, nat, int, and ’a list, for which it is straightforward if one remem-
bers that card A = 0 for all infinite sets A. For the type bool, e.g., card-UNIV
a = 2 for all a:bool itself. The cardinality of the universe for polymorphic type
constructors like e.g. ‘a x ‘b is computed by recursion on the type parameters:

card-UNIV TYPE('a x 'b) = card-UNIV TYPE('a) - card-UNIV TYPE('b)

We have similarly instantiated card-UNIV for the type constructors ‘a = 'b,
'a option and 'a + 'b.

As we have the universal quantifier finfun-All, the executable existential quan-
tifier is straightforward by duality: finfun-Ex P = — finfun-All (Not oy P). As be-
fore, the pretty-print syntax 3x. P x for Ex (Ax. P x) in HOL cannot be trans-
ferred to FinFuns because A-abstraction is not suited for code generation.

3.4 Executable Equality on FinFuns

Our second main goal with FinFuns, besides executable quantifiers, is executable
equality tests on FinFuns. Extensionality — cf. (5) — reduces function equality to
equality on every argument. However, (5) does not directly yield an implemen-
tation because it uses the universal quantifier All for ordinary HOL predicates,
but some rewriting does the trick:

f =g — finfun-All (\(x, y). x = y) o5 (£, §)7) (21)

By instantiating the HOL type class eq appropriately, the equality operator =
becomes executable and in the generated code, an appropriate equality relation
on the datatype is generated. In Haskell, e.g., the equality operator == on the
type Finfun a b then really denotes equality like on the logic level:
eq_finfun :: forall a b. (FinFun.Card_UNIV a, Eq a, Eq b) =

FinFun.Finfun a b -> FinFun.Finfun a b -> Bool;
eq_finfun f g = FinFun.finfun_All

(FinFun.finfun_comp (\ (a @ (aa, b)) -> aa == b)
(FinFun.finfun_Diag f g));

instance (FinFun.Card_UNIV a, Eq a, Eq b) =

Eq (FinFun.Finfun a b) where { (==) = FinFun.eq_finfun; };



3.5 Complexity

In this section, we briefly discuss the complexity of the above operators. We
assume that equality tests require constant time. For a FinFun £, let #f denote
the number of updates in its code representation. For an ordinary function g, let
#g denote the complexity of evaluating g a for any a.

K’_ has constant complexity as it is a finfun constructor. Since _(_ :=; )
automatically removes redundant updates (11, 12), f(_:=; ) is linear in #f, and
so is application f; _ (4). For g o f, eq. (13) is recursive in f and each recursion
step involves _(_:=; _) and evaluating g, so the complexity is O((#f)? + #f- #g).

For the product (f, §)7, we get: The base case (K'b, g)? (15, 16) is linear in
#g and we have #(K'b, 8)’ = #g. An update in the first parameter (f(a :=; b|),

&)’ (17) executes gr a (O(#g)), the recursive call and the update (O#(F, 8))).
Since there are #f recursive calls and #(f, §)Y < #f + #38, the total complexity
is bound by O(#f - (#f + #8)).

Since finfun-All is directly implemented in terms of f-All, it is sufficient
to analyse the latter’s complexity: The base case (18) essentially executes
is-list-UNIV. If we assume that the cardinality of the type universe is computed in
constant time, is-list-UNIV as is bound by O(]as|?) since remdups as takes O(|as|?)
steps. In case of an update (19), the updated point is checked against the list
as (O(|as])) and the recursive call is executed with the list as being one element
longer, i.e. |as| grows by one for each recursive call. As there are #P many re-
cursive calls, fEAll as P has complexity #P - O(#P + |as|) + O((#P + |as|)?) =
O((#P + |as|)?). Hence, finfun-All P has complexity O((#P)?).

Equality on FinFuns f and g is then straightforward (21): (f, g)¢ is in
O#L- (#f + #8)). Composing this with A(x, y). x = y takes O((#(f, g)7)?)
C O((#f + #8)? ) Finally, executing finfun-All is quadratic in #((A(x, y). x = y)

of (f, 8))) < #(f, ). In total, f = g has complexity O((#f + #8)?).

4 A Recursion Combinator

In the previous section, we have presented several operators on FinFuns that
suffice for most purposes, cf. Sec. 5. However, we had to define function com-
position with FinFuns on either side and operations on products manually by
going back to the type’s carrier set finfun via Rep-finfun and Abs-finfun. This is
not only inconvenient, but also loses the abstraction from the details of the finite
set of updated points that FinFuns provide. In particular, one has to derive extra
recursion equations for the code generator and prove each of them correct.

Yet, the induction rule (9) states that the recursive equations uniquely de-
termine any function that satisfies these. Operations on FinFuns could therefore
be defined by primitive recursion similarly to datatypes (cf. [2]). Alas, the two
FinFun constructors are not free, so not every pair of recursive equations does
indeed define a function. It might also well be the case that the equations are
contradictory: For example, suppose we want to define a function count that
counts the number of updates, i.e. count (K‘c) = 0 and count f(a :=; b)) = count
f + 1. Such a function does not exist for FinFuns in Isabelle, although it could



be defined in Haskell to, e.g., compute extra-logic data such as memory con-
sumption. Take, e.g., f = (K0)(0 :=; 0). Then, count f = count (KY0) + 1 =1,
but f = (K70) by (6) and thus count f = 0 would equally have to hold, because
equality is congruent w.r.t. function application, a contradiction.

4.1 Lifting Recursion from Finite Sets to FinFuns

More abstractly, the right hand side of the recursive equations can be considered
as a function: For the constant case, such a function c::’b = ‘c takes the constant
value of the FinFun and evaluates to the right hand side. In the recursive case,
u::’a='b = 'c = ‘c takes the point of the update, the new value at that point and
the result of the recursive call. In this section, we define a combinator finfun-rec
that takes ¢ and u and defines the corresponding operator on FinFuns, simi-
larly to the primitive recursion combinators that are automatically generated
for datatypes. That is, finfun-rec must satisfy (22) and (23), subject to certain
well-formedness conditions on ¢ and u, which will be examined in Sec. 4.2.

finfun-rec ¢ u (K'b) = ¢ b (22)
finfun-rec ¢ u f(a :=; b) = u a b (finfun-rec ¢ u f) (23)

The standard means in Isabelle for defining recursive functions, namely
recdef and the function package [10], are not suited for this task because both
need a termination proof, i.e. a well-founded relation in which all recursive calls
always decrease. Since KY_ and _(_ :=; _) are not free constructors, there is no
such termination order for (22) and (23). Hence, we define finfun-rec by recursion
on the finite set of updated points using the recursion operator fold for finite sets:
finfun-rec ¢ uf =
let b = finfun-default f;

g = (vg. f = Abs-finfun (map-default b g) A finite (dom g) A b & ran g)

in fold (Aa. w a (map-default b g a)) (¢ b) (dom g)
In the let expression, f is unpacked into its default value b (cf. Sec. 2) and a
partial function g:'a — ‘b such that f = Abs-finfun (map-default b g) and the
finite domain of g contains only points at which f differs from its default value
b, i.e. g stores precisely the updates of f. Then, the update function u is folded
over the finite set of points dom g where f does not take its default value b.

All FinFun operators that we have defined in Sec. 3 via Abs-finfun and
Rep-finfun can also be defined directly via finfun-rec. For example, the functions
for oy directly show up in the recursive equations from (13):

g oy f = finfun-rec (A\b. K'g b) (Aa b f. f(a:=; g b)) f.

4.2 Well-formedness Conditions

Since all functions in HOL are total, finfun-rec c u is defined for every combination
of ¢ and u. Any nontrivial property of finfun-rec is only provable if u is left-
commutative because fold is unspecified for other functions. Thus, the next step
is to establish conditions on the FinFun level that ensure (22) and (23). It turns
out that four are sufficient:



uab(ch)=cbh (24)

uab” (uab’(cb))=uab” (cbh) (25)

a#2a — uab(ua'b’'d =ua'b (uabd) (26)

finite UNIV — fold (Aa. u a b") (¢ b) UNIV = ¢ b’ (27)

Eq. (24), (25), and (26) naturally reflect the equalities between the constructors
from (6), (7), and (8), respectively. It is sufficient to restrict overwriting updates
(25) to constant FinFuns because the general case directly follows from this by
induction and (26). The last equation (27) arises from the identity

finite UNIV — fold (Aa f. f(a:=; b")) (K'b) UNIV = (K'b). (28)

Eq. (24), (25), and (26) are sufficient for proving (23). For a FinFun operator
like oy, these constraints must be shown for specific ¢ and u, which is usually
completely automatic. Even though (27), which is required to deduce (22), must
usually be proven by induction, this normally is also automatic, because for finite
types ‘a, ‘a = 'b and ‘a = ‘b are isomorphic via Abs-finfun and Rep-finfun.

5 Applications

In this section, we present two applications for FinFuns to demonstrate that the
operations from Sec. 3 form a reasonably complete set of abstract operations.

1. They can be used to represent sets as predicates with the standard opera-
tions all being executable: membership and subset test, union, intersection,
complement and bounded quantification.

2. FinFuns have been inspired by the needs of JinjaThreads [12], which is a
formal semantics of multithreaded Java in Isabelle. We show how FinFuns
prove essential on the way to generating an interpreter for concurrent Java.

5.1 Representing Sets with Finfuns

In Isabelle 2008, the proper type ‘a set for sets has been removed in favour of
predicates of type ‘a = bool to eliminate redundancies in the implementation
and in the library. As a consequence, Isabelle’s new code generator is no longer
able to generate code for sets as before: A finite set had been coded as the list
of its elements. Hence, e.g. the complement operator has not been executable
because the complement of a finite set might no longer be a finite set. Neither
are collections of the form {a | P a} suited for code generation.

Since FinFuns are designed for code generation, they can be used for repre-
senting sets in explicit form without explicitly introducing a set type of its own.
FinFun set operations like membership and inclusion test, union, intersection
and even complement are straightforward using oy. As before, these operators
are decorated with f subscripts to distinguish them from their analogues on sets:

f C; g = finfun-All (A\(x, y). x — y) of (f, 8)7 —f=Ob.=b)os f
fusg=xy).xVy)os(f,8) fnpg=0xy).xAy)os(f,8)



Obviously, these equations can be directly translated into executable code.
However, if we were to reason with them directly, most theorems about sets
(as predicates) would have to be replicated for FinFuns. Although this would be
straightforward, loads of redundancy would be reintroduced this way. Instead,
we propose to inject FinFun sets via ; into ordinary sets and use the standard
operations on sets to work with them. The code generator is set up such that
it preprocesses all equations for code generation and automatically replaces set
operations with their FinFun equivalents by unfolding equations such as Ay C By
—— ACyBand Ay U By = (A Uy B)s. This approach works for quickcheck, too.
Besides the above operations, bounded quantification is also straightforward:

finfun-Ball A P = VXEAf. Px and finfun-Bex A P = HXEAf. Px

Clearly, they are not executable right away. Take, e.g., A = (K/True), i.e. the
universal set, then finfun-Ball A P — (¥ x. P x), which is undecidable if x ranges
over an infinite domain. However, if we go for partial correctness, correct code can
be generated: Like for the universal quantifier finfun-All for FinFun predicates
(cf. Sec. 3.3), fEBall is introduced which takes an additional parameter xs to
remember the list of points which have already been checked at previous calls.

f-Ball xs A P = VaGAf. ac€setxsV P a.

This now permits to set up recursive equations for the code generator:

f-Ball xs (K'b) P —— = b V set xs = UNIV V loop (Au. f-Ball xs (K'b) P)
f-Ball xs A(a:=; b)) P — (a € set xs V (b — P a)) A f-Ball (a-xs) A P

In the constant case, if b is false, i.e. the set is empty, fi~Ball holds; similarly, if
all elements of the universe have been checked already, this test is again imple-
mented by the overloaded term is-list-UNIV xs (Sec. 3.3). Otherwise, one would
have to check whether P holds at all points except xs, which is not computable
for arbitrary P and ‘a. Thus, instead of evaluating its argument, the code for
loop never terminates. In Isabelle, however, loop is simply the unit-lifted identity
function: loop f = f (). Of course, an exception could equally be raised in place of
non-termination. The bounded existential quantifier is implemented analogously.

5.2 JinjaThreads

Jinja [9] is an executable formal semantics for a large subset of Java source-
code and bytecode in Isabelle/HOL. JinjaThreads [11] extends Jinja with Java’s
thread features on both levels. It contains a framework semantics which inter-
leaves the individual threads whose small-step semantics is given to it as a pa-
rameter. This framework semantics takes care of all management issues related
to threads: The thread pool itself, the lock state, monitor wait sets, spawning
and joining a thread, etc. Individual threads communicate via the shared mem-
ory with each other and via thread actions like Lock, Unlock, Join, etc. with the
framework semantics. At every step, the thread specifies which locks to acquire
or release how many times, which thread to create or join on. In our previous



work [12], this communication was modelled as a list of such actions, and a lot
of pointless work went into identifying permutations of such lists which are se-
mantically equivalent. Therefore, this has been changed such that every lock of
type ‘I now has its own list. Since only finitely many locks need to be changed
in any single step, these lists are stored in a FinFun such that checking whether
a step’s actions are feasible in a given state is executable.

Moreover, in developing JinjaThreads, we have found that most lemmas
about the framework semantics contain non-executable assumptions about the
thread pool or the lock state, in particular universal quantifiers or predicates de-
fined in terms of them. Therefore, we replaced ordinary functions that model the
lock state (type 'l = 't lock) and the thread pool (type ‘t — (’x, 'I) thread) with
FinFuns. Rewriting the existing proofs took very little effort because mostly,
only fs in subscript or superscript had to be added to the proof texts because
Isabelle’s simplifier and classical reasoner are set up such that FinFuns indeed
behave like ordinary functions.

Not to break the proofs, we did not remove the universal quantifiers in the
definitions of predicates themselves, but provided simple lemmas to the code
generator. For example, locks-ok Is t las checks whether all lock requests las of
thread t can be met in the lock state Is and is defined as locks-ok Is t las = V1.
lock-ok (Isy I) t (lasy 1), whereas the equation for code generation is

locks-ok Is t las = finfun-All ((\(I, la). lock-ok 1t la) oy (Is, las)’).

Unfortunately, JinjaThreads is not yet fully executable because the semantics
of a single thread relies on inductive predicates. Once the code generator will
handle these, we will have a certified Jinja virtual machine with concurrency to
execute multithreaded Jinja programs as has been done for sequential ones [9].

6 Related Work and Conclusion

Related work. To represent (partial) functions explicitly by a list of point-value
pairs is common knowledge in computer science, partial functions ‘a — 'b with
finite domain have even been formalised as associative lists in the Isabelle/HOL
library. However, it is cumbersome to reason with them because one single func-
tion has multiple representations, i.e. associative lists are not extensional. Coq
and HOLA4, e.g., also come with a formalisation of finite maps of their own and
both of them fix their default value to None. Collins and Syme [4] have already
provided a theory of partial functions with finite domain in terms of the ev-
erywhere undefined function and pointwise update. Similar to (4), (7), and (8),
they axiomatize a type (‘a,’b) fmap in terms of abstract operations Empty, Up-
date, Apply :: ('a,’b) fmap = ‘a = 'b, and Domain and present two models: Maps
‘a — 'b with finite domain and associative lists where the order of their elements
is determined with Hilbert’s choice operator, but neither of these supports code
generation. Moreover, equality is not extensional like ours (5), but guarded by
the domains. Since these partial functions have an unspecified default value that
is implicitly fixed by the codomain type and the model, they cannot be used for



almost everywhere constant functions where the default value may differ from
function to function. Consequently, (28) is not expressible in their setting.

Recursion over non-free kernel functions is also a well-known concept: Nipkow
and Paulson [14], e.g., define a fold operator for finite sets which are built from
the empty set and insertion of one element. However, they do not introduce a
new type for finite sets, so all equations are guarded by the predicate finite, i.e.
they cannot be leveraged by the code generator.

Nominal Isabelle [16] is used to facilitate reasoning about a-equivalent terms
with binders, where the binders are non-free term constructors. The HOL type
for terms is obtained by quotienting the datatype with the (free) term construc-
tors w.r.t. a-equivalence classes. Primitive-recursive definitions must then be
shown compatible with a-equivalence using a notion of freshness [17]. It is tempt-
ing to define the FinFun type universe similarly as the quotient of the datatype
with constructors K/_ and _(- :=; _) w.r.t. the identities (6), (7), (8), and (28),
because this would settle exhaustion, induction and recursion almost automati-
cally. However, this construction is not directly possible because (28) cannot be
expressed as an equality of kernel functions. Instead, we have defined the carrier
set finfun directly in terms of the function space and established easy, sufficient
(and almost necessary) conditions for recursive definitions being well-formed.

Conclusion. FinFuns generalise finite maps by continuing them with a default
value in the logic, but for the code generator, they are implemented like associa-
tive lists which suffer from multiple representations for a single function. Thus,
they bridge the gap between easy reasoning and these implementation issues
arising from functions as data: They are as easy to use as ordinary functions.
By not fixing a default value (like None for maps), we have been able to easily
apply them to very diverse settings.

We have decided to restrict the FinFun carrier set finfun to functions that
are constant almost everywhere. Although everything from Sec. 3 would equally
work if that restriction was lifted, the induction rule (9) and recursion operator
(Sec. 4) would then no longer be available, i.e. the datatype generated by the
code generator would not exhaust the type in the logic. Thus, the user could
not be sure that every FinFun from his formalisation can be represented as data
in the generated code. Conversely, not every operator can be lifted to FinFuns:
The image operator _ ¢ _ on sets, e.g., has no analogue on FinFun sets.

Clearly, FinFuns are a very restricted set of functions, but we have demon-
strated that this lightweight formalisation is in fact useful and easy to use. In
Sec. 3, we have outlined the way to executing equality on FinFuns, but we
need not stop there: Other operators like e.g. currying, A-abstraction for Fin-
Funs ‘a =; 'b with ‘a finite, and even the definite description operator tx. Py x
can all be made executable via the code generator. In terms of usability, Fin-
Funs currently provide little support for defining new operators that can not be
expressed by the existing ones: For example, recursive equations for the code
generator must be stated explicitly, even if the definition explicitly uses the re-
cursion combinator. But with some implementation effort, definitions and the
code generator setup could be automated in the future.



For quickcheck, our implementation with at most quadratic complexity is
sufficiently efficient because random FinFuns involve only a few updates. For
larger applications, however, one is interested in more efficient representations. If,
e.g., the domain of a FinFun is totally ordered, binary search trees are a natural
option, but this requires considerable amount of work: (Balanced) binary trees
must be formalised and proven correct, which could be based e.g. on [15], and all
the operators that are recursive on a FinFun must be reimplemented. In practice,
the user should not care about which implementation the code generator chooses,
but such automation must overcome some technical restrictions, such as only one
type variable for type classes or only unconditional rewrite rules for the code
generator, perhaps by recurring on ad-hoc translations.

References

1. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Proc. SEFM’04,
pp. 230-239. IEEE Computer Society (2004)

2. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL — lessons learned in formal-
logic engineering. In: TPHOLs’99. LNCS, vol. 1690, pp. 19-36. Springer (1999)

3. Berghofer, S., Nipkow, T.: Executing higher order logic. In: TYPES’00. LNCS,
vol. 2277, pp. 24-40. Springer (2002)

4. Collins, G., Syme, D.: A theory of finite maps. In: TPHOLs’95. LNCS, vol. 971,
pp. 122-137. Springer (1995)

5. Dybjer, P., Haiyan, Q., Takeyama, M.: Combining testing and proving in depen-
dent type theory. In: TPHOLs’03. LNCS, vol. 2758, pp. 188-203. Springer (2003)

6. Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. Techni-
cal Report 364/07, Dept. of Computer Science, University of Kaiserslautern (2007)

7. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: TYPES’06.
LNCS, vol. 4502. Springer (2007)

8. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique.
Technical Report CRC-053, SRI International Cambridge Computer Science Re-
search Centre (1995)

9. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine and compiler. ACM TOPLAS 28, 619-695 (2006)

10. Krauss, A.: Partial recursive functions in higher-order logic. In: IJCAR’06. LNCS,
vol. 4130, pp. 589-603. Springer (2006)

11. Lochbihler, A.: Jinja with threads. In: The Archive of Formal Proofs. http:
//afp.sf .net/entries/JinjaThreads.shtml (2007) Formal proof development.

12. Lochbihler, A.: Type safe nondeterminism - a formal semantics of Java threads.
In: FOOL’08. (2008)

13. Lochbihler, A.: Code generation for functions as data. In: The Archive of Formal
Proofs. http://afp.sf.net/entries/FinFun.shtml (2009) Formal proof develop-
ment.

14. Nipkow, T., Paulson, L.C.: Proof pearl: Defining functions over finite sets. In:
TPHOLs’05. LNCS, vol. 3603, pp. 385-396. Springer (2005)

15. Nipkow, T., Pusch, C.: AVL trees. In: The Archive of Formal Proofs. http:
//afp.sf .net/entries/AVL-Trees.shtml (2004) Formal proof development.

16. Urban, C.: Nominal techniques in Isabelle/HOL. Journal of Automatic Reasoning
40(4), 327-356 (2008)

17. Urban, C., Berghofer, S.: A recursion combinator for nominal datatypes implemen-
ted in Isabelle/HOL. In: IJCAR’06. LNCS, vol. 4130, pp. 498-512. Springer (2006)


http://afp.sf.net/entries/JinjaThreads.shtml
http://afp.sf.net/entries/JinjaThreads.shtml
http://afp.sf.net/entries/FinFun.shtml
http://afp.sf.net/entries/AVL-Trees.shtml
http://afp.sf.net/entries/AVL-Trees.shtml

A Notation

Isabelle/HOL formulae and propositions are close to standard mathematical
notation. This subsection introduces non-standard notation, a few basic data
types and their primitive operations.

Types is the set of all types which contains, in particular, the type of truth
values bool, natural numbers nat, integers int, and the singleton type unit with its
only element (). The space of total functions is denoted by ‘a = 'b. Type variables
are written ‘a, ‘b, etc. The notation t::7 means that the HOL term t has type .

Pairs come with two projection functions fst and snd. Tuples are identified
with pairs nested to the right: (a, b, c) is identical to (a, (b, ¢)) and ‘a x 'b x ‘c
to ‘a x (‘b x 'c). Dually, the disjoint union of ‘a and 'b is written ‘a + 'b.

Sets are represented as predicates (type ‘a set is shorthand for ‘a = bool), but
follow the usual mathematical conventions. UNIV :: ‘a set is the set of all elements
of type ‘a. The image operator f ¢ A applies the function f to every element of
A,ie. f*A={y|3IxeA y = fx}. The predicate finite on sets characterises all
finite sets. card A denotes the cardinality of the finite set A, or 0 if A is infinite.
fold f z A folds a left-commutative® function f::’a = 'b = ’b over a finite set A ::
‘a set with initial value z::’b.

Lists (type ‘a list) come with the empty list ] and the infix constructor _-_
for consing. Variable names ending in “s” usually stand for lists and |xs| is the
length of xs. The function set converts a list to the set of its elements.

Function update is defined as follows: Let f::’a = ‘b, a::’a and b::’b. Then
f(a:=b) = Ax. if x = a then b else f x.

The option data type ’a option adjoins a new element None to a type ‘a. All
existing elements in type ’a are also in ‘a option, but are prefixed by Some. For
succinctness, we write |a| for Some a. Hence, for example, bool option has the
values None, | True| and |False|.

Partial functions are modelled as functions of type ‘a = ‘b option where None
represents undefined and f x = |y| means x is mapped to y. Instead of ‘a = 'b
option, we write ‘a — ‘b and call such functions maps. f(x — y) is shorthand for
f(x := |y]). The domain of f (written dom f) is the set of points at which f is
defined, ran f denotes the range of f. The function map-default b f takes a partial
function f and continues it at its undefined points with b.

The definite description (x. Q x is known as Russell’s -operator. It denotes
the unique x such that Q x holds, provided exactly one exists.

3 f is left-commutative, if it satisfies fx (fy z) = fy (fx z) for all x, y, and z.



	Formalising FinFuns -- Generating Code for Functions as Data from Isabelle/HOL
	Andreas Lochbihler

