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ABSTRACT

We present a new approach to protect Java EE web applications
against injection attacks, which can handle large commercial sys-
tems. We first describe a novel approach to taint analysis for Java
EE, which can be characterized by “strings only”, “taint ranges”,
and “no bytecode instrumentation”. We then explain how to com-
bine this method with static analysis, based on the JOANA IFC
framework. The resulting hybrid analysis will boost scalability and
precision, while guaranteeing protection against XSS. The approach
has been implemented in the Juturna tool; application examples
and measurements are discussed.
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1 INTRODUCTION

Injection vulnerabilities in software are widespread. Injection at-
tacks are ranked first place in the OWASP Ten Most Critical Web
Security Risks list; while cross-site scripting attacks (XSS - a par-
ticular species of injection attacks) are ranked seventh [25]. Taint
tracking has been proven effective to detect a wide range of in-
jection attacks [13, 15, 21]. But in particular for Java and Java EE
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applications, taint tracking has severe downsides — there is a mas-
sive run time overhead, and/or rather destructive modifications of
the JVM are necessary.

In this contribution we present a new, hybrid approach to taint
tracking for Java (EE). In particular, we combine new, light-weight
dynamic taint tracking techniques with highly precise, static infor-
mation flow control analysis. We first describe a novel approach to
taint analysis for Java EE, which can be characterized by “strings
only”, “taint ranges”, and “no bytecode instrumentation”. We then
explain how to combine this method with static analysis, based
on the JOANA IFC framework. This results in reduced run-time
overhead and also provides a light-weight integration into the Java
VM. The approach was implemented in form of the Juturna tool.
Juturna needs only minimal modifications to an application’s byte-
code and injects a modified standard library into the runtime but
requires no JVM modifications. It provides scalability and preci-
sion for commercial applications, setting it apart from other ap-
proaches. Measurements based on the Stanford SecuriBench Micro
benchmark suite demonstrate improved scalability for the Juturna
approach.

1.1 Scenario and Attacker Model

Juturna was designed to mitigate injection attacks in Java in gen-
eral, but for now implementation puts special emphasis on XSS
vulnerabilities contained in Java EE servlets running in a produc-
tion (commercial) setting. With such often only bytecode is avail-
able, but no source code, and performance might be more mission
critical than a very high recall. Juturna provides support for servlet
containers such as Apache Tomcat that implement the Java EE Web
profile.

In a nutshell, the idea behind a reflected/non-persistent XSS at-
tack is to make a server respond to malicious content which is pro-
vided in the request itself that then gets interpreted/executed in
the security context of the browser. An attack vector could be, for
example, links distributed via phishing mails containing the mali-
cious payload as content of query parameters. A vulnerable Java
Servlet, as shown in Figure 1, might now embed the content of such
parameters into the page returned. With reflected XSS the browser
sending the HTTP request is always the target of the attack, in case
of stored/persistent XSS attacks the malicious payload usually gets
included into several responses answering clean requests from sev-
eral browsers.

Therefore HTTP requests can be considered the primary entry
point for most injection attacks trying to exploit vulnerabilities in
server-side applications like Java Servlets. In the terminology of
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GET /?param=<script>alert(“Reflected XSS”)</script>

String paran =
request.getParameter ("paran");

PrintWriter out = response.getWriter();
out.println("<html>" + param + "</html>");

e\l

<html>
script
alert("Reflected XSS")

script
</html>

N\

GET /?param=<script>alert(“Reflected XSS”)</script>

Figure 1: A simple reflected XSS attack. Top: schematic se-
quence of events. Bottom: exploiting this vulnerability in
Mozilla Firefox.

taint analysis these entry points are called sources. Which parts of
an application need to be considered sinks depends on the type of
injection attack: with reflected XSS sending a response is a sink,
with SQL injections it would be the respective database driver.

In the context of reflected XSS attacks we assume that all com-
munication is already secured against any modification by TLS in
order to actually require the server to embed the malicious payload
into the response. But the attacker is capable of offering a starting
point to potential victims, e.g., a link in a phishing email. Thus, we
assume that the attacker is able to control every part of a HTTP
request as specified in [8].

1.2 Taint Analysis vs. Information Flow
Control

Taint analysis is a standard device against injection attacks and
XSS. Taint analysis is a purely dynamic analysis: It tags data ob-
jects from attacker-controlled input sources as tainted, and dynam-
ically checks whether (parts of) tainted data can reach sensitive
sinks, e.g., entry points of SQL or JavaScript interpreters. When
data originating from a taint source reaching a sink this is called a
taint flow or a taint leak. Taint analysis usually requires either sup-
port from the runtime!, instrumentation of bytecode or, as used in
Juturna, modification of the standard library. It will then discover
any explicit program leak - that is, any flow from tainted artifacts
to critical execution points — without requiring a developer to have
taint tracking in mind when designing an application [1, 13, 15, 21].
Taint analysis however is restricted to one specific execution path

IFor example, basic taint tracking functionality is embedded into the official inter-
preters of Ruby and Perl
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and can thus neither provide guarantees about a program in gen-
eral; nor will it discover so-called implicit leaks (where not data
but control flow is corrupted by an attacker). This is a disadvantage
compared with static analysis mechanisms. But on the other hand,
some taint trackers (such as Juturna) can handle language meta-
programming concepts like Java Reflection, dynamic class loading
and similar features — which are difficult to handle for any static
analysis.

Information flow control (IFC [18, 27]) guarantees to find all ex-
plicit and implicit leaks in a program, typically by performing a
static analysis.? IFC will discover both violations of confidential-
ity (i.e. private information flows to public ports) and integrity
(i.e. tainted input can influence critical computations). Technically,
IFC checks a so-called noninterference property. Various nonin-
terference criteria and analysis algorithms have been developed,
which vary greatly with respect to technology (type systems vs.
formal verification vs. program analysis), supported language (toy
language vs. full Java or C), soundness (i.e. all leaks are guaranteed
to be found), precision (i.e. low number of false alarms), scalability
(i.e. big programs) and practicability (annotation overhead and tool
support). IFC is more powerful than taint analysis because it guar-
antees to discover all potential leaks, not just explicit leaks. But
the price to pay is not only a limited scalability - today, analysing
5MLoc is still out of the question — but also a sometimes high num-
ber of false alarms. IFC research tries to minimize false alarms,
while maintaining soundness and improving scalability — due to
decidability problems® one has to sacrifice soundness for precision,
and vice-versa. Today, the theory of IFC is widely developed, but
only very few available IFC tools (such as Andromeda [29] and
JOANA [17]) can handle full Java.

Previous authors have used taint tracking to improve IFC anal-
ysis, but our approach is just the opposite: We will improve taint
tracking by integrating IFC techniques.

2 THE JUTURNA APPROACH TO TAINT
ANALYSIS

Juturna uses several techniques to improve precision and scalabil-
ity of taint analysis. In fact, these techniques alone — even without
the IFC integration — make Juturna more precise and scalable than
other taint analysis solutions for Java EE. In the following, the most
important techniques are sketched, while their implementation is
described in section 4.

2.1 Strings Only

One fundamental design decision for Juturna was to taint-track
only strings resp. characters inside strings. Previous taint trackers
for Java, such as the Phosphor system [1, 2], have tracked all data
types by augmenting all bytecode instructions and/or massively
modifying the JVM. Thus, high overheads resulted (about 50% for
Phosphor, orders of magnitude for some other tools).

In contrast, Juturna assumes that it is enough to taint-track for
characters being part of strings (i.e. instances of type java.lang.St

2For multi-threaded programs, modern IFC tools will also discover probabilistic leaks,
which result from subtle influences of tainted values to interleaving and scheduling.
In this paper we do not explore probabilistic leaks, but the Juturna approach can easily
be expanded to cover multi-threaded programs.

3See the famous Rice Theorem



ring, java.lang.StringBuilder, java.lang.StringBuffer). Restric-
tion to strings and ignoring plain char primitives, of course, de-
stroys soundness as illegal flows might propagate through integers
etc. But in practice string-based taints are the most relevant attacks.
Restriction to strings has the huge advantage of boosting scala-
bility — allowing to handle commercial software in performance
critical environments, i.e. in productive use in data centers etc. —
while still catching most injection attacks. Thus, the “strings only”
approach is “sound enough” in our attacker scenario (injection at-
tacks via HTTP) and seems to be a reasonable tradeoff.

Note that it is essential for precision to track individual char-
acters in strings independently from each other — otherwise many
false alarms will result. For efficient tracking of characters in strings,
Juturna uses taint ranges.

2.2 Taint Propagation and Taint Ranges

Taint Propagation. To illustrate the subtleties of taint propaga-
tion, let us consider a few examples. Conceptually, every string
object includes a tainted|[] array, which for every character in the
string stores its taint status. Thus, a call like ¢ = append(a,b);
must recompute the taint status as follows:

i < a.length() (1)
i < b.length()(2)

c.taint|i]

c.taint[i + a.length())

a.taint[i],
b.taint][i]

= 1<
1<
and similar for other string methods. These computations are easy
enough,* and part of the modified java.lang.String methods (see
below). We will not describe them in detail here; see [22] for details.

But there are other, more conceptional issues about taint propa-
gation. For example, equality tests do not (and must not) consider
the taint array. This leads to problems with the concept of Java’s
string pool as it will provide just one internal copy for internal-
ized strings (literals and strings on which String#intern has been
called) with the same characters, completely ignoring possibly dif-
ferent taint arrays. Likewise, serialization ignores taint informa-
tion. All these — and similar - issues can negatively affect precision
and/or soundness. However it would be very costly to resolve all
these issues.

For Juturna we thus decided to accept these imperfections for
the following reason: Juturna is a compromise between precision,
soundness, and scalability; optimized for commercial Java EE ap-
plications. In commercial settings, it is much more important to
find the most common security leaks fast, with no false alarms. If
soundness (i.e. a guarantee that all leaks are found) is required, one
must resort to full IFC anyway. In practice, we recommend a two-
stage approach: use Juturna on all executions and additionally use
JOANA for the full analysis of selected, critical modules.

Taint Ranges. To optimize scalability and enable the differenti-
ation between different sources of taint information and different
levels as mentioned above, Juturna does not actually use a sim-
ple tainted[] array. Instead, it uses a novel approach named taint
ranges.> A single taint range stores information on the taint state

4There are some subtleties with Unicode, e.g., toUpperCase() applied to “B” trans-
forms a 1-char string into a 2-char string (“SS”). This, when not being handled, would
cause a misalignment between characters and taint information in a string. Juturna
is able to handle such cases correctly.

STaint ranges were developed by the second author while at SAP, and improved upon
in Juturna

1
2
3
4
5
6
7
8
9

10
11
12

3

[ T T S

21
22
23

25
26

S
N

28
29

1718

public class Aliasingb {
private static final String FIELD NAME = “name”;
protected void doGet(HttpServletRequest req,
HttpServletResponse resp)
throws IOException {
StringBuffer buf = new StringBuffer(”abc”);
foo(buf, buf, resp, req);

i

void foo(StringBuffer buf, StringBuffer buf2,
ServletResponse resp, ServletRequest req)
throws IOException {
String name = req . getParameter (FIELD_NAME) ;
buf.append (name) ;
PrintWriter writer = resp.getWriter();
writer.println(buf2.toString()); /* BAD */
}
}

public class Inter10 {
private static final String FIELD NAME = “name”;
protected void doGet(HttpServletRequest req,
HttpServletResponse resp)
throws IOException {
String sl = req.getParameter (FIELD NAME) ;

String s2 = foo(sl);
String s3 = foo(”abc”);

PrintWriter writer = resp.getWriter() ;
/* BAD */
/*OK*/

writer. println(s2);
writer. println(s3);
}
private String foo(String s1) {
return sl.toLowerCase() .substring(0, s1.length()-1);

}

”additionalClasspaths”: [
Plib/*”
1

"taintSourceCategories”: [

{
"name”: "URL PARAMETER’ ,
"severity”: "ACTUAL SOURCE’
}
1,
"sources”: [
{
"fqn”: ”1:javax.servlet.ServietRequest.

Cosuooooooo o getParameter (java. lang. String) 7,
”taintSource”: 'URL PARAMEIER’
}
1,
7sinks”: [
”fgn”: “org.apache.catalina.connector.
Covcncn o CoyoteWriter. print (java. lang. String) 7,

”parameters”: |

0,

“forbiddenSources”: [
e

1

“mitigation”:

"paramIndex” :

oG
Y

Figure 2: Top: Two small examples taken from the Se-
curiBench Micro testsuite. Bottom: Example source/sink
specification for Juturna given as JSON.

of a range of characters in a string. If a string has several, dis-
connected tainted parts — possibly originating from different taint
sources — multiple taint ranges are needed. Taint ranges are, con-
sidering realistic use cases, much more efficient than taint arrays,
in particular for long strings where taint originates from just one
source.

A taint range consists of the following information: start and
end as absolute indices, represented by two 4-byte integer values.



1

2 Taint incident occurred at:

3 org.apache.catalina.connector.CoyoteWriter.

4 print (CoyoteWriter. java)

5 [...]

6

7 Further information:

8 Actual sources: URL PARAMEIFR

Forbidden sources: *

Mitigation strategy: LOG

Tainted value (up to first 300 characters; not all
of these characters are necessarily tainted): hoar

TaintInformation object: TaintInformation(
TaintRange(start=0, end=4, source=TaintSource(name=
URL_PARAVETER' , id=-32765, level=ACTUAL SOURCE)))

1 =
2 Taint incident occurred at:
3 org.apache.catalina.connector.CoyoteWriter.
4 print (CoyoteWriter. java)
5 [...]
6
7 Further information:
8 Actual sources: URL PARAMVEIER
Forbidden sources: *
Mitigation strategy: LOG
Tainted value (up to first 300 characters; not all
of these characters are necessarily tainted): abcHoare

TaintInformation obj : TaintInformation(

TaintRange(start=3, end=8, source=TaintSource(name=

URL_PARAMETER' , id=-32765, level=ACTUAL SOURCE)) )

Figure 3: The Juturna prototype reports on discovered leaks
for examples in figure 2. Sink and source are given for a taint
incident; the prototype also displays taint ranges involved.

Additionally, a 1-byte id refers to the taint source type that has
been assigned to a taint source in the configuration. A taint source
type itself is, as shown in line 8 in figure 2 (bottom), assigned to
one of a list of predefined severity levels with different semantics.
Distinguishing between different kinds of taint and enabling dif-
ferent behavior based on the taint source would not be possible at
all with the naive, array-based approach.

The main motivation for taint ranges is the fact that taint in-
formation is usually homogeneous: a whole substring of tainted
characters (or even the whole tainted string) will come from the
same source. Thus, a long tainted string (of say length 220) result-
ing from the same source does not need a taint array of the same
size, but just the additional 9 bytes. Several taint ranges can be
attached to one string. As a character can, by definition, only orig-
inate from a single taint source, taint ranges can only override each
other but cannot overlap - the implementation needs to check and
enforce this, making taint propagation more difficult. For exam-
ple, insertion of a character sequence into a string might result in
a new range and possibly also in splitting up an existing one. Ju-
turna uses a sorted list of taint ranges, and puts serious effort into
a fast implementation. E.g., using absolute start and end indices al-
lows to apply binary search for all lookup operations. More details
are explained in section 4.

2.3 Specification of sources and sinks

Specific methods are declared as sources or sinks of, potentially
tainted, objects. In figure 1, getParameter is a source returning
tainted values and println a sink not allow to receive tainted val-
ues as one of its parameters. Figure 2 (top) shows an example from
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the SecuriBench Micro testsuite. Both code snippets can be abused
in order to perform a reflected XSS attack because they return con-
tent potentially controlled by the attacker as part of the response.
Aliasing5 uses an alias (buf2) to refer to a string becoming tainted
by appending name in line 14. On a syntactical level this relation-
ship is hard to spot, on the lower, runtime level Juturna is working
onitis trivial. Inter10 calls foo twice - once receiving a clean string
and once a tainted one. Both end up in the same sink but only for
one an alarm should be yielded. This is again an easy catch for
taint tracking systems, although some string operations actually
creating new string instances are performed.

Juturna offers a configuration language based on the JSON frame-
work, which is used to specify sources and sinks as well as addi-
tional information such as taint source categories. Figure 2 (bot-
tom) provides the specification for Figure 2 (top): After declaring
the taint source categories, just URL_ PARAMETER in this case,
sources and sinks get declared. A single taint source is configured,
the getParameter method declared in the ServletRequest inter-
face. As this example configuration was written with the Apache
Tomcat servlet container in mind, the specific implementation (Coy-
oteWriter) of the otherwise too generic and broadly used Print-
Writer interface used within Tomcat gets declared as sink. Due to
this Juturna will add bytecode to check the taint state of the first
parameter (index 0) at runtime.The examples contain leaks which
are reported by Juturna - as shown in figure 3.° More details on
source/sink specification and instrumentation will be presented in
section 4. This configuration has to be provided by a security engi-
neer analysing and assessing an application.

2.4 API Extensions and Bytecode
Augmentation

Juturna does not need a modified JVM, but employs just two ba-
sic mechanisms: a) bytecode augmentation, and b) modification of
standard API classes. As for the latter, the source for java.lang.string
etc. has been manually modified and augmented with additional
methods. In addition, standard classes such as java.lang.regexp
had to be modified as well. The resulting augmented standard li-
braries are incorporated into the standard JVM via the command
line parameter -Xbootclasspath.”

In addition, bytecode has to be augmented to enable taint sources
to initialize the taint information in string objects and taint sinks
to check for such information. For string operations, the modified
class libraries will propagate taint information during execution.
As a consequence, all bytecode outside source/sink methods re-
mains unchanged — which is a huge advantage compared to byte-
code instrumentation approaches, which explicitly propagate taint
information by adding additional instructions. Juturna also pro-
vides a helper library that can be used to taint strings program-
matically at runtime - in such a case taint propagation happens
without any modifications to the bytecode.

OFuture versions of Juturna will use a more graphical presentation of leaks in the
source code.

7-Xbootclasspath works with the Oracle, IBM, and OpenJDK JVMs. For a commer-
cial version, an “official” integration of the augmented libraries should be used.



These bytecode instrumentations used in Juturna are applied by
exploiting another command line parameter: -javaagent, which al-
lows to register so-called bytecode transformers (i.e. implementa-
tions of ClassFileTransformer). Transformers are able to inspect
and modify the bytecode of class files loaded after the JVM has fin-
ished its bootstrapping.® The approach works also for encrypted
class files, or with network class loaders (e.g., java.net. URLClas
sLoader). Thus, Juturna performs all necessary bytecode augmen-
tations at load time, not at compile time or as a preprocessing step
which avoids adding complexity to build pipelines.

Some string methods are implicitly defined as sources, e.g., Abst
ractStringBuilder#setChar At might introduce a tainted charac-
ter into a string. In addition, sanitization functions can be explicitly
named (as they “untaint” incoming objects). But Juturna will never
automatically delete taint information after sanitization (as other
systems do, sometimes based on questionable heuristics, e.g., [13]).
Instead, Juturna provides specific taint levels. Possible taint levels
are SOURCE (indicating a tainted value from a specified source
method) and SANITIZED (indicating a tainted object which was
fed through a sanitization method). This allows a more detailed
analysis and mitigation control. For example, strategies such as
“positive tainting” [15] can easily be implemented in Juturna.

3 HYBRID IFC: JUTURNA + JOANA

3.1 JOANA

JOANA is a framework for static IFC analysis developed at KIT
over the last 10 years.” JOANA can handle full Java with arbitrary
threads, scales to ca. 250 kKLOC, and guarantees to discover all ex-
plicit, implicit and probabilistic leaks [17, 28]. JOANA is based on a
stack of sophisticated program analysis, such as points-to analysis,
program dependence graphs, program slicing, race analysis and ex-
ception analysis [17]. JOANA minimizes false alarms through flow-
sensitive, context-sensitive, and object-sensitive analysis techniques
[9, 16]. JOANA requires only minimal program annotations and
guarantees probabilistic noninterference [3, 5]. JOANA guarantees
soundness; the soundness proof for sequential noninterference was
machine-checked in Isabelle [31]. JOANA was used in realistic case
studies such as e-voting software [11, 19, 23], practical application
is described in [12]. JOANA also provides a programming interface
for integration with other tools such as verification systems [20].

Juturna does not use all JOANA features. In fact, it only uses its
integrated program dependence graph (PDG) and program slicing
possibilities. [17] describes details on dependence graphs and slic-
ing in JOANA. Full use of JOANA - in particular the sophisticated
RLSOD check for probabilistic leaks — is only necessary if a secu-
rity guarantee is needed — but is of course much more expensive,
and possible only for selected modules up to ca. 250 kLoc.

3.2 The Hybrid Approach

Program Slicing is a fundamental program analysis technique which
was explored in a major international effort since the '90s, and is
also an important part of JOANA. Slicing was originally invented

8Transformers are thus similar to “aspects” in aspect-oriented programming. We omit
technical details of the -javaagent mechanism, see the Java literature.
“http://joana.ipd.kit.edu provides download, webstart application, and further
information.
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1 linewidthclass PasswordFile {

2 private String[] names;

3 /*P: confidential*/
4 private String[] passwords;

5 /*P: secret*/

6 // Pre:all strings are interned
7
8

public boolean check(String user,

9 String password /*P: confidential*/) {
10 boolean match = false;

11 try {

12 for (int i=0; i<names.length; i++) {
13 if (names[iJ==user

14 && passwords| ij==password) {

15

16 match = true;

17 break;

15 I35

19 catch (NullPointerException e) {}

20 catch (IndexOutOfBoundsException e) {};
21

22 return match; /*R: public*/

23 ¥

24}

Figure 4: A simple password checker and its dependence
graph (from [17]). Dashed arcs are data dependencies, solid
arcs are control dependencies. Obviously there is a path
from password pw to the public return value.

Incoming HTTP-Request

String response = "<html><t
request.getHeader("user-agent")

String logTime = new Date().toGMTString();

/

logTime = logTime.substring(5);

This call to StringBuilder/
StringBuf fer#append ()
needs to be taint-aware!

This call to String#substring()
does not need to be taint-aware!

Replace with call to
String#__substring()

Outgoing HTTP-Response

Figure 5: Example of selective taint tracking. On the left, a
string not tainted and not flowing into a sink makes taint
tracking superfluous. On the right, a tainted string returned
from a source (...#getHeader()) gets concatenated with a lit-
eral; the code uses a StringBuilder for concatenation. As the
result ends up in a sink, StringBuilder#append() must be
taint aware.

to support debugging: for a given program point, it will determine
all statements or expressions which may influence the values com-
puted at that point. This set of statements is called backward slice



and should, for precision, be as small as possible — but never too
small. Precise slicing for full languages is absolutely nontrivial. Sev-
eral hundred research papers have — over more than twenty years
- eventually led to slicing algorithms for full Java, which are prov-
ably sound (i.e. all possible flow is represented in the slice, guar-
anteed) and very precise (i.e. slices are as small as possible) due to
the following techniques (see [16, 17] and the slicing papers cited
therein):

e Slicing is flow-sensitive, thus respects statement order. This
massively improves precision and reduces false alarms, in
particular for large programs.

Slicing is context-sensitive, therefore it distinguishes sev-
eral calls to the same method. Context-sensitivity is even
more effectful than flow-sensitivity.

Slicing is object-sensitive, that is, it distinguishes a field in
different objects of the same class.

For multi-threaded programs, slicing is thread-sensitive and
will determine which statements can potentially be executed
in parallel.

Slicing uses sophisticated points-to analysis, exception anal-
ysis, and other program analysis techniques.

Slices include explicit, implicit, and probabilistic flow of in-
formation.

Slices are computed using PDGs. To give the reader an idea of slic-
ing figure 4 presents a Java method for password checking and its
(intra-procedural) PDG. The backward slice from the return state-
ment is obtained by following all edges from the return node back-
wards and includes the secret password. It thus demonstrates that
information can flow from the secret password (a source) to the
public result (a sink).1

The slicing machinery, which is part of JOANA, can contribute
important information which will speed up Juturna considerably:
As said, slicing can determine for any two program points whether
any information can flow from the first to the second. More gen-
eral, for a given sink, it can determine all program points which
can influence the sink (backward slicing), and for a given source it
can determine all program points which can be influenced by the
source (forward slicing). For a program point p, we write fsl(p) and
bsl(p) for forward and backward slices.

Forward slices can be exploited by Juturna as follows: Taint
propagation needs to happen only along execution paths from sour-
ces to sinks. If there is no sink in the forward slice of a tainted ob-
ject from some source, taint propagation is not needed for this in-
stance. Likewise, if no source is in the backward slice of a sink, taint
propagation to the sink is not needed, and the corresponding taint
ranges can be deleted. Obviously, the intersections of forward and
backward slices — known as chops — are the only program regions
where taint propagation and taint ranges are necessary. As slices
and chops are computed statically by an analysis of the bytecode,
the runtime overhead for taint analysis will be reduced consider-
ably because not the whole application needs to track taint infor-
mation any longer, only the parts contained in the chop need to do
so. This approach is called “hybrid taint tracking” or “selective taint

OTndeed, every password checker reveals a small amount of secret information,
namely whether the password was correct or not. The engineer must decide whether
the discovered flow is relevant.
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tracking”. In fact, for all possible pairs of sources s and sinks ¢ in
program P JOANA will compute the chop ch(s, t) = fsl(s) N bsi(t).
The chops thus determined are the program regions where taint
propatation must actually take place, and are given by!!

unsafe(P) f5i(s) N bsl(t) .

source S, sink £ EPDG(P)

An example of selective taint tracking is shown in Figure 5: on
the left, taint tracking is superfluous as the string cannot flow to a
sink; while on the right, taint ranges and taint propagation must
be applied as the HTTP request is a taint source, and the HTTP re-
sponse is a security sensitive sink. In practice, the size of unsafe(P)
is usually small compared to total program size.

4 IMPLEMENTATION

Taint Ranges. Besides the taint ranges itself (9 bytes per range
as described above), a container class provides methods for sorted
lists of taint ranges, as well as fast insertion, lookup, appending
etc. Use of binary search provides O(log, n) lookup and insertion
times; this works only because taint ranges have absolute indices.
One might think of using balanced trees of taint ranges, or other
implementation improvements, but we consider this future work
— the current implementation already scales well (see section 5).

Library Augmentations. Next, several augmentations have been
implemented for the library classes String, AbstractStringBuilder
resp. its two implementations StringBuilder and String- Buffer,
regex.Matcher. Some augmentations have been described above,
so let us just mention the modifications to regular expression match-
ing. Functions for regular expression matching uses low-level string
methods like char At (), which just returns a primitive char to which
no taint information can be attached (as we only provide this for
characters being part of a string type), to construct a potential
match. To still keep track of the taint information the sourround-
ing code had to be adjusted.

Bytecode augmentation. As mentioned before, the -javaagent
mechanism is used to augment bytecode for methods declared to
be source or sinks. Figure 6 top shows the actual implementation of
class Sourcelnstrumenter, which modifies the bytecode for every
source. Figure 6 bottom shows the declaration of a sink and a taint
source category in JSON. Such specifications must be provided by
the engineer. Juturna then adds extra bytecode to the beginning of
the declared methods that will then, at runtime, check whether the
actual parameter value (i.e. at least one character contained in it) is
originating from a source that is contained in the list of forbidden
sources/source classes.

For sinks, several checking options may be specified. The method
parameter which actually corresponds to the sink must be speci-
fied (parameter 2 in line 5 of Figure 6 bottom), and illegal sources
and taint classes in case a tainted object reaches the sink may
be specified. In the example, the tainted string reaching the sink
method must not originate from any source (“*”) except for a source
named “ASOURCE_THAT _IS_OK”; and the latter is allowed only
if the taint category of the tainted object is “SANITIZATION_FU

Note that fsl(s) N bsl(t) is a correct, but unprecise chop. JOANA uses the much
more precise context-sensitive chops from Reps et al. [26].
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class Sourcelnstrumenter(sources: List<SourceTuple>) : CtClassTransformer() {

VY

private fun transformation(method: CtMethod, sourceTuple: SourceTuple):
Boolean {
if (method.returnType.subtypeOf(TANLT AWARE CTOASS) .not()) {
throw Throwable(””””${method.longName}” 's,_return, type. ("${method.
returnType.name}”)
Locoooou eoooodoes  not, implement, the, TaintAware jinterface! /Therefore it cannot

be_marked_as_source!”””)
}
val stringPoolingProtection = if (method.returnType.name = "java.lang.
String”) {

Locsoooooooooo SRETURN. VALUE. REFFRENCE = new_java.lang. String(
$RETURN_VAILUE REFFRENCE) ;

Loeioooo ooooos/ /SRETURN.VAIUE REFFRENCE, Jis a_placeholder for, $ .

Lociooo oo/ /Needed_because_a literal $ cannot_be_used_in_multi-line_,
strings.

Er
L

} else {
»//_just.needed, for instances of, type String”

i

method. insert After (77

Looooo L f GRETURN VAIUE. REFFRENCE == null), {

Loooooouooooooooreturng null g

EETTTRITEIEN

Loceooo ooo$stringPoolingProtection

LosLooou oo com. sap . juturna. taint Helper . THelper. get (RETURN_VAIUE REFFRENCE) .
addRange (0, SRETURN VALUE REFERENCE. length () ,

LCbooou L0000 com. sap . juturna. taintStorage . TaintSource. getOrCreatelnstance (7 ${
sourceTuple.taintSource}”));

Leooooooooooreturn SRETURN. VALUE. REFERENCE;

non
Loooonn™)

return true

}
/* %/
}
{
"sinks”: [{
"fqn”: “java.lang.String.replaceAll(java.lang.String, java.lang.String)”,
»parameters”: [{
"paramindex”: 1,
”forbiddenSources”: |
7E 7 IASOURCE THAT B OK?
B
"mitigation”: "OUSTOM:com.example.MyCustomTaintCheck”
}H
H,
"taintSourceCategories”: [{
"name”: "A SOURCE THAT B OK’,
"severity”: "SANITIZATION FUNCTION”
3
}

Figure 6: Top: Implementation of bytecode augmentation
for methods marked as sources; Bottom: JSON specification
for a sink method.

NCTION”. The possible action after discovering an illegal, tainted
object may also be specified; possible actions are just log the inci-
dent, throw an exception, ignore the incident, or execute specific
handler code provided by the engineer.

For sources, Juturna adds bytecode to all possible return paths
of the stated methods that attaches the taint information to the
returned values at runtime. This code calls THelper in line 25 to
initialize the taint range for the string object which is created/re-
turned by the source method. Lines 11-17 prevent to taint strings
which are actually pooled (in the constant pool): The string object
(but not its char[] array!) is copied and a new TaintInformation
instance (the container class for taint ranges) initialized. This trick
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String b = "Dijkstra ";
taint(a); String ¢ = “A. Turing";
b.trim(); c.substring(3);
someSink(b); someSink(c);

roneme, \ .

]
public String __ trim() {

String a = "
a.trim();
someSink(a);

Knuth";

Appl. code

1

)
+ . -
public String trin() { 1| (System) library
1| code
1
1
1

this.substring(x, y); this.___substring(x, y);

— v v

public String substring(int start) { public String __ substring(int start) {
2
} }

Reinserted, adjusted butunaugmented methods

= Initial call targets = =+ Call targets after processing

Figure 7: Replacement of augmented string functions by
unaugmented ones, due to selective tainting,.

prevents that taint information propagates irregularly through the
constant pool in case the value returned from a method has been
interned, i.e. put into the constant pool.

This process relies on the Javassist tool for bytecode manipula-
tion. Let us finally mention that in some cases, method implemen-
tations of CharSequence, such as setChar() and replace(), must
be augmented to initialize taint ranges (similar to explicit sources);
we omit details due to lack of space.

JOANA interface. The JOANA adapter receives a class file con-
taining the entry point (main()) of the software to be analysed,
and determines the sinks which are in the forward slice of tainted
sources (according to the taint specification, see above). This list
of safe sinks is exported in JSON format to the Juturna configura-
tor. The configurator will not augment the code of sinks if these
are outside the slice, thus benign. This implies that for all String
etc methods, the original code must be available as well as the
augmented code. Hence all the String etc methods are duplicated,
and unique method names provided (e.g.,  prefixes). The slice-
based choice between augmented and non-augmented method im-
plementations must of course be recursively applied to all auxil-
iary methods called. Technically, the choice from augmented back
to unaugmented calls is implemented by cloning the call target
object with an object from the unaugmented class. It is impor-
tant that the transitive process of replacing augmented methods
by unaugmented ones, and cloning call target objects accordingly,
is done in a consistent manner, and respects library interfaces. Fig-
ure 7 shows an example of some strings which are operated on
with string methods, and how these methods are replaced by their
unaugmented versions, because JOANA determined that the call
parameters cannot be tainted.

JOANA is run in a specific Juturna configuration. Implicit flows
are disabled, as well as the check for probabilistic noninterferences.
Such configurations may be selected using JOANA options or com-
mand line parameters (cmp. [12]).2 JOANA also offers a program-
ming interface where starting points for slices resp. chops can be
selected, and the actual slices or chops be computed and later ex-
amined. Figure 8 shows the use of this interface by Juturna; due to
lack of space we omit details. We would like to add that Juturna

2Note that in JOANA “standalone” or “IFC” mode, implicit and/or probabilistic leaks
are enabled; thus soundness is guaranteed (no missed leaks), but precision and scala-
bility decrease (more false alarms, higher analysis time).
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fun analyze(sdg: SDG, sourceFQNs: List<String>, sinkFQNs: List<String>): List<
SDGNode> {
// "data class” is shorthand in Kotlin for declaring a record-like structure
data class CallNodelnfo(val callNode: SDGNode, val thisParameter: SDGNode
val thisParameterM
emberNodes: LinkedHashSet<SDGNode>)

val entryNodes: List<SDGNode> = getEntryNodes(sdg)

val sourceEntryNodes: List<SDGNodg> = filterByName(entryNodes, sourceFQNs)
val sinkEntryNodes: List<SDGNode> = filterByName (entryNodes, sinkFQNs)

val sourceNodes: List<SDGNode> = getAffiliated ExitNodes(sourceEntryNodes)
val sinkNodes: List<SDGNode> = getAffiliatedFormallnNodes (sinkEntryNodes)
val rawCallNodes: List<SDGNode> = get AllCallNodes (sdg)

val processedCallNodes: List<CallNodeInfg> = processCallNodes(rawCallNodes)
val slicer = SummarySlicerForward (sdg)

var changed = false
changed = false
val nodesInForwardSlice: Collection<SDGNodg> = slicer.slice (sourceNodes)

for (item in processedCallNodes) {
if (item.thisParameter in nodesInForwardSlice) {
continue

i

if (isAny_thisParameterMemberNode containedInSlice(item,
nodesInForwardSlice)) {
sourceNodes.add(item. thisParameter)
changed = true

}
} while (changed)

val chopper = NonSameLevelChopper(sdg)
val nodesInChop = chopper.chop(sourceNodes, sinkNodes)
val benignCallNodes = ArrayList<SDGNode>()

for (item in processedCallNodes) {
if (item.thisParam !in nodesInChop) {
benignCallNodes . add (getNodeOf TargetOfCall(sdg, item.callNode))
}
}

return benignCallNodes

Figure 8: Code selecting benign sinks by calling JOANA in-
terface methods for an SDG. Sources and sinks are given as
unique function identifier lists to the analyse() method.

can always be used without JOANA, but of course will then not
profit from selective tainting.

5 MEASUREMENTS

In this section we present results of a performance evaluation for
Juturna. Note that these are preliminary measurements; a system-
atic evaluation of soundness, precision, scalability, and comparison
with competing tools has just begun. Still, the preliminary perfor-
mance data confirm our design decisions for Juturna.

The performance evaluation is based on the Stanford Securibench
Micro benchmark; which provides a set of ca. 100 (basic to com-
plex) Java EE example servlets, many of them with XSS vulnera-
bilities. Apache Tomcat has been used as the underlying Java EE
implementation. All measurements used Oracle JRE 1.8.0_111, run-
ning on a MacBook Pro with 2.2.GHz, under the Java Microbench-
marking Harness tool.

Effect of taint ranges. Figure 9 shows memory requirements for
naive tainted|] arrays vs. taint ranges. It also shows the mem-
ory consumption of the corresponding original string objects. The
naive approach always generates memory consumption which is
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Approx. memory consumption (byte)

Q | | |
0
n=5; k=1 n=5; k=3 n=20; k=1 n=20; k=3

Nr_naive 5 5 20 20

r_tr 9 27 9 27
r_string! 10 10 40 40
_ 45000
2
z 40000

35000 = =

30000 = =

25000 = =
> 20000 S N .
g \ N\
£ 15000 \ . \ .
£ \
< 10000 \ ] \ .
2
8 5000 \ e \ .
o
< 0

n=1000; k=1 n=1000; k=100 n=2E4; k=1 n=2£4; k=100

N'r_naive 1000 1000 20000 20000

r_tr 9 900 9 900

r_string 2000 2000 40000 40000

Figure 9: Memory requirements of naive taint[| array vs.
taint ranges. Shaded: unchanged API (no taint info). Grey:
taint ranges. Dark: naive tainted[] array.

proportional to the memory consumption of the original strings.
The figure shows that the proportion factor is ca. 50% (shaded and
dark columns; n is the string length). For taint ranges (grey columns),
the memory consumption depends strongly on the number k of
taint ranges and on the string length. The figure shows that for
short strings (n < 20) taint ranges are not really better than the
naive approach (for k = 1) or even worse (for k = 3). For long
strings (n = 103 to 10%) however the memory savings by taint
ranges is huge (even for k = 100). This behaviour comes from
the fact that taint ranges come with an initial overhead (11 byte
per taint range), which however amortizes quickly as n is growing.
Note that in today’s commercial systems, k tends to be very small
(near 1), while n tends to be large.

Next, the Juturna tainting overhead is determined. Various bench-
marks of string functions were used, and the throughput (aver-
age number of string operations per second) was determined. Fig-
ures 10 and 11 present two typical measurement results, where
the benchmark for Figure 11 contains more string operations. The
first bar displays throughput for the standard JVM+APL The other
5 bars display throughput of the standard JVM plus augmented
string API, for string length n = 250 (left) as well as n = 10%
(right); where the number of taint ranges varies between k = 0
and k = 100. First note that for k = 0 (i.e. no tainting) Juturna has
no overhead! For n = 250 throughput is however ca. 50% fork = 1,
and will degrade to ca. 30% for k = 10. For n = 10%, throughput is
generally much smaller (as strings are much longer), but does not
degrade as much for higher k. In figure 11, throughput degration
for higher k is worse than in figure 10, but the general behaviour
is similar.
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Figure 10: Throughput of string operations for standard
string API vs. the augmented Juturna string API; benchmark
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Figure 11: Throughput of string operations for standard
string API vs. the augmented Juturna string API; benchmark
“Task b”.

x 10000

Avg. computation time (ms)

a:w/o Juturna b: w/ Juturna

3

c: w/ Juturna (selective)

Figure 12: Effect of selective tainting: a) standard JVM/API
without taint analysis, b) Juturna, c) Juturna + JOANA.

These results imply that Juturna has — in contrast to taint track-
ers based on bytecode instrumentation — almost no overhead for
untainted or mildly tainted programs. This desirable feature is a
result of the “strings only” approach, which allows to get rid of
instrumented bytecode, and replace them by source/sink/API aug-
mentation.

Effect of JOANA.. Let us now measure the effect of selective
tainting. Figure 12 shows the average computation time for a small
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Java SE application. In this example, Juturna taint analysis is about
4 times as slow as the standard JVM/API (due to a specific n/k ra-
tio). Adding JOANA and using selective tainting, this overhead di-
appears completely! The example clearly indicates that hybrid taint
analysis is worth the effort: the static JOANA analysis (which must
be done once for a system resp. its critical components) is amor-
tized by a massive reduction of runtime overhead for taint analysis.
Earlier, more comprehensive evaluations of JOANA have already
demonstrated that source/sink chops are usually much smaller than
the full code size [10, 16]; hence the example can be considered typ-
ical. More measurements of selective tainting can be found in [22].

6 FUTURE WORK

An obvious issue in the near future is a more systematic evaluation
of precision and scalability, in particular for selective tainting. We
plan a large-scale evaluation based on the OWASP WebGoat.

As taint ranges may cause a substantial overhead for some n/k
ratios, one might think of better implementations for taint ranges.
One might try tree-like structures instead of sorted lists of taint
ranges (but this will again increase the overhead). One more promis-
ing approach is lazy evaluation of taint ranges. That is, taint oper-
ations as specified in equation 1 will not be executed immediately,
but are delayed, and performed only when sinks are reached. This
concept of lazy evaluation is well-known in functional program-
ming, but has also successfully been used in program analysis (e.g.,
as done with Andromeda [29]).

One serious issue is the use of reflection and dynamic class load-
ing. This is popular in Java EE applications (e.g., “hot swaps”), but
is very difficult to handle for any static analysis (including JOANA).
Heuristics for handling reflection and dynamic class loading have
been published (e.g., [4]). But in general, selective tainting can-
not be used as soon as classes are loaded dynamically, and are on
source/sink paths — a serious loss of soundness would otherwise
result. Still, we expect most code parts susceptible to selective taint-
ing to be static, hence the overhead reduction via JOANA should
still be substantial.

7 RELATED WORK AND CONCLUSION

Many systems for Java taint analysis have been proposed, among
them [1, 7, 13, 14, 21]. In particular, “strings only” was already pro-
posed e.g. in [6]. Compared to these earlier approaches, Juturna is
unique in its combination of a) “strings only”, b) taint ranges, c)
code augmentation only for sources and sinks, d) load-time, not
link-time augmentation. This combination explains Juturna’s bet-
ter precision (reduced false alarms), scalability (commercial pro-
grams), and practicability (all bytecode remains unchanged until
loading).

There are also static taint analysers which can handle full Java:
TAJ [30] is based on thin slicing, while the successor Andromeda
[29] uses demand-driven “lazy” analysis instead of PDG construc-
tion. Compared to full IFC resp. JOANA, TAJ and Andromeda omit
implicit and probabilistic leaks, which considerably improves scal-
ability, but loses soundness in the strong IFC (noninterference)
sense. Of course, any full IFC tool such as JOANA can be used to
perform (or improve) taint analysis; this idea is not new (see e.g.,
[24, 32]).



But Juturna is the first taint analysis which can handle com-

mercial Java EE software, does not need a special JVM, and inte-
grates IFC technology. By design, Juturna is a careful compromise
between precision and soundness, optimized for commercial Java
EE applications. Juturna may additionally exploit the sophisticated
static IFC analysis provided by JOANA, which boosts runtime per-
formance. Juturna thus demonstrates that careful engineering of
static and dynamic program analysis can reconcile the conflict be-
tween soundness, precision and scalability in software security anal-

ysis.
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