Style
A Practical Type Checker for Scheme

Christian Lindig

Informatik-Bericht Nr. 93-10
Oktober 1993

(© Arbeitsgruppe Softwaretechnologie
Technische Universitat Braunschweig
Gaufstrafle 17
D-38092 Braunschweig

Germany

STYLE —A Practical Type Checker for Scheme

Christian Lindig
Arbeitsgruppe Softwaretechnologie
Technische Universitat Braunschweig

Gaufstrafle 17, D-38106 Braunschweig
Abstract

This paper describes an new tool for finding errors in R* RS-compliant Scheme programs.
A polymorphic type system in the style of Damas & Milner (1982) with an additional maxi-
mum type is used to type Scheme code. Although Scheme is dynamically typed, most parts
of programs are statically typeable; type inconsistencies are regarded as hints to possible
programming errors. The paper first introduces a type system which is a careful balance
between rigorous type safety and pragmatic type softness. An efficient and portable imple-
mentation based on order sorted unification in Scheme is then described. We obtained very
satisfactory results on realistic programs, including the programs in Abelson, Sussman &

Sussman (1985).

1 Introduction

Finding errors in Scheme programs is painful. One major reason is that Scheme is a
dynamically typed language: all names in Scheme programs can hold objects of arbitrary,
undeclared type which may change during runtime. Unlike most modern languages like
Haskell (Hudak, Jones & Wadler 1992) or Standard ML (Harper, Milner & Tofte 1989) all
necessary type checks are performed at runtime. This leads to the great expressiveness of
Scheme but also makes programs hard to debug.

Dynamically typed programming languages are more expressive than statically typed
languages (Fagan 1992) and therefore cannot be typed statically at compile-time in general.
But because only small parts of typical Scheme programs rely on dynamic typing, actually
most program parts are statically typable. Untypable parts may be either caused by code
relying on dynamic typing or by programming errors, thus type checking may indicate
errors. We present a new tool STYLE! that performs static typing for Scheme programs
using a polymorphic type system in the style of Damas & Milner (1982). STYLE reports
type inconsistencies to the programmer and thus helps to find even subtle errors otherwise
only found at runtime. Because Scheme was not defined with a type system and compile-
time type checks in mind, the design of a type system is a difficult task: a too restrictive
type system will produce too many irrelevant warnings; if the type system is too soft it will
not be able to detect serious bugs.

STYLE’s type system is intended to be practical and hence is a careful compromise
between ”too strong” and "too soft” type systems. There are other, more expressive type
systems for Scheme (Wright 1992) which are used for code optimization. The inferred types
are more complicated - perhaps too complicated to be of practical value for the programmer.

'Scheme Type Leakage Explorer

2 Typing Scheme

There are basically two approaches for typing a language like Scheme: data-flow analysis
and static typing with a maximum type. Data-flow analysis is an appropriate technique for
optimized compilation of dynamically typed languages (Ma & Kessler 1990, Shivers 1991).
However, classical data-flow analysis works top-down and intra-procedural and therefore
cannot handle higher order functions properly.

Static typing as described by Damas & Milner (1982) assigns one, possibly polymorphic,
most general type to each object of a program. Dynamic typing is therefore reflected by
polymorphic types. Because dynamically typed languages cannot be typed statically in
general, a maximum type is assigned, when no other type will do (Henglein 1992, Gomard
1990). STYLE also implements this approach, because it is well understood and efficient in
practice (Kanellakis, Mairson & Mitchel 1991).

2.1 Types for Scheme

STYLE distinguishes the following types for objects in Scheme. It employs a fully parenthe-
sized prefix notation for types like Scheme does for expressions.

num All numerical objects are of type num. Type checking cannot further distinguish
between integers, rationals, reals and complex because these type depend on the actual
values and the operations performed on them.

bool Boolean values as returned by predicates have type bool. Scheme regards everything
true different from Symbol #f.

char Type of a single character.
string Type of a string of characters.

symbol Quoted symbols evaluate to literal symbols, typed symbol. Scheme lacks syntacti-
cal constructs for declaring data structures explicitly. Therefore many informations,
like enumerational types, are represented by symbols. However, STYLE does not
distinguish different symbols and therefore cannot infer much about complex data
structures where symbols are used for tagging.

port Type of a port—ports are used for describing files and other input/output-devices in
Scheme.

votd The value of some procedures or syntactical constructs are unspecified according to
the Scheme report (Clinger & Rees 1992). Objects of such value will be of type void.

bottom Whenever STYLE cannot infer one type for an object it assigns bottom to that
object. This may be caused either by relying on dynamic typing or by a programming
error. So bottom is the maximum type in the sense above although its name suggests
the opposite. When bottom is used inside types of standard procedures it allows to
bypass type checking, because bottom always is sufficient. This is sometimes necessary,
because STYLE cannot provide adequate types for some more elaborated standard
procedures like call/cc.

(= (seq ty---t,_1) t,) Function type, describing a procedure taking n — 1 parameters of
type t; to t,_; and returning a value of type t,. Some standard procedures take
a variable number of arguments; to reflect this, the last input type, i.e. t,,_; may
be marked, if it is one of the types above: for example num* denotes ”"any number
of arguments of type num”, port+ denotes “optional argument of type port”. The
standard procedure 4 for example, which takes one or more numerical arguments has
type (— (seq num num*) num.

(promase t) In Scheme which generally evaluates expression call by value the evaluation of
an expression may be delayed. The value returned by delay is called a promise which
can be evaluated by the standard procedure force. The type (promise t) describes
such a promise, holding a value of type t.

(pair ¢, t) Pairs of values are of type pair. Lists, which may be of inhomogeneous type
in Scheme are also treated as pairs.

(vector t; --- t,) Type of a vector of size n.

7° Type-variable of sort s. STYLE implements type inference via order sorted unification
so all types carry sorts. This is discussed in detail below.

vrit, -+, 72t Type-scheme with bounded type variables 7, to 7, of sorts s; to s,. Type
instantiation and type abstraction is sort preserving.

Types inferred by STYLE are not allowed to be recursive. So the expressiveness of types
is somewhat limited, in particular because there is no type like (list 7) denoting a list of
elements of type 7. We thought quite a while of allowing recursive types and performed
several experiments. Finally, we decided that although recursive types are more expressive
and more precise, they are often hard to understand (see section 5.4). As a consequence, it
was not possible to implement list types through (list 7) = nil | (pair 7 (list 7)).

Lists are allowed to have members of different type in Scheme, unlike lists in ML or
Haskell. Because of this STYLE regards lists as pair—the way they are implemented—and
there is no special type for lists. Instead the last element of a list, the empty list, is handled
specially: STYLE assigns an unused type variable to empty lists. This ensures that the
types of two lists are still unifyable, when one list is a prefix of the other. Thus STYLE only
infers the types from the head of each list, approximating the rest with a type variable.
This is surely not very exact, but suflicient for detecting most errors.

2.2 Types carry Sorts

STYLE uses order sorted types to put some constraints on types which otherwise cannot
be expressed. A sort hierarchie is a partial ordered set of sorts (.9, <) forming a meet-
semilattice (figure 1). Thus for each two sorts s;, s, there exists exactly one sort s; A s,
(”s; meets s3”) which is the greatest lower bound of s; and ss.

In contrast to sort-free terms and variables, order-sorted variables and terms always have
a sort. For all non-variable terms the outermost constructor denotes their sort implicitly: a
pair is of sort pair, a type num is of sort num and so forth. These sorts are located below
the dashed line in figure 1. Type variables and bounded type variables of type schemes

top

possibly-void

non-void

Sorts of variable types

symbol port num bool char string -> pair promise seq vector void

Sorts of basic types

bottom

Figure 1: Sort hierarchy of STYLE types

carry sorts from above that line. As a consequence there is more than one kind of type
variable in STYLE: 7¢°P!*® and 7°%*¢ denote both variables, but of different kind, thus sort.

Unlike sort-free variables sorted variables do not represent an arbitrary type: a sorted
variable 7° represents only types t of sort s; where s; < s holds. That is, a sorted variable
can only hold terms which sort is localized "below” the sort of that variable: A variable of
sort non-void cannot hold type void, a variable of sort complex can hold a type pair, but
cannot hold type bool. A variable of sort top can hold any other type and thus is equivalent
to a sort-free type variable. Unification of sorted terms must take variable sorts into account
(Walther 1985, Meseguer & Goguen 1990). Order-sorted unification has succesfully been
used in other type systems (Snelting 1991, Nipkow & Snelting 1991); its main advantage is
that many context conditions can be expressed as sortal constraints.

2.3 A Type System for Scheme

The type system gives one rule for each syntactical construct determining its type, while
types of standard procedures are part of the initial type assumption I'y (figure 2). As an
example of the latter, consider the rule for reverse: since lists may be heterogenuous, we
can only enforce that reverse works on pairs whose elements must have a non-void type;
there are no constraints on the type of the pair components itself .

abs : (— (seq num) num)
display : Vrren=veid (o (seq 77"~V port4) void)
not : yrron—veid (5 (seq 77" ool)

reverse lenon—vozdvTznon—vozd7Tgon—vozd77_gon—vozd‘(_> (8€q (pair Tlnon—'vozd Tznon—'vozd))
(pair Tgon—vozd Tgon—vozd))

fOTC@ . anon—void‘(_> (8€q (pramise Tnon—void)) Tnon—void)

Figure 2: Types for standard procedures

¢ is a number
CoNsT-NUM —————
I'Fec:num

c=0

ConsT-NULL

z:7el,r < 7
VAR =
I'kFa:7
AND ke :im,---,.TFe, 7,

I'F(ande; -+ €,): 7,
I'ke:r

D
PEAY T (delay ¢) : (promise)

¢ is a symbol

QUOTE-SYM I' F (quote ¢) : symbol

c=0
I' F (quote ¢) : g
I'kFe:ir,---, T'ke,: 7

QUuoTE-NULL

B
PGIN I'F (begine; -+ €,):7,
I'ktey:ir,--- . T'ke,:7T
O ? ? n
N I'F(ore, -+ ey):T
I'kFwvar:7,'Fe:T
SET

I' F (set! var €) : void

I'key:img,---, T'ke, i, Theim,---.T'ke, 7,
I'F(eg -+ €n): 7, I't(elsee; -+ €,): T,
I'keirmy--- . The, 7
I'F(cond¢; -+ ¢,):T
I'kFey:m,I'Fepim, ke T'lheg:im, ke 7
I'F(ifeg e es):7 I'F(ifege):r
F'udzycm,- - 2, it b E (body) : 7
T (ambda (1 -+ a,)(body)): (& (seq 71 - 7) 7)
=0T =T U{aio s ta(risg, Tisa)),
I'ibe i, Iabe, i, Iy F(body) : 7

CoND-CLAUSE

ConND ¢; typed using CoOND-CLAUSE

LAMBDA

LET*
o T F (let* (21 €1) - (20 €n)) (body)) : 7
I"=Tu{ay:m, e, Vbke i, TV ke, i 7y,
LETREC ru{z : ta(m, 1), -+, 2, : ta(r,, ')} - (body) : 7
I' F (letrec ((z, €1)---(z, €,)) (body)) : 7
AppL I'Fey:(— (seqmy - 1) 7m0),Fe im,---, Tke,:m,

I'F(eper ~--€,):1

QuoTE-PAlR = (e1 . e3),I' (quote e;) : 7y, I' F (quote e3) : 75

I' F (quote ¢) : (pair 7 72)
'ke:r,I"=TU{z:ta(r,I')}
I' F (define = €) : void

DEF-SIMPLE

Figure 3: Rules from the type system for Scheme

A Milner-style type system assigns to each object one, possibly polymorphic type. This
does not reflect dynamic typing exactly and therefore STYLE’s type system only approxi-
mates the real behavior of Scheme. We present now a selection from the typing rules for
Scheme as implemented in STYLE (figure 3).

Type instantiation is denoted by 7 < 7/: 7’ is an instance of the type scheme 7. Type
abstraction, which is defined relative to the type assumption I is denoted by ta(7, "), where
FV(z) denotes the set of free type variables of x:

ta(t,I') =Vu,...,vpm.7 v € FV(7)\ FV(I)

Both type instantiation and abstraction are sort preserving. This permits to detect
the application of undefined values (of type void) to standard procedures: bounded type
variables inside types of standard procedures usually have sort non-void (figure 2). These
variables can not hold type woid and thus STYLE detects every application of undefined
values to the corresponding parameters for example in (define x (set! y 10)).

While some rules are fairly obvious (ConsT-NuM, APPL, QUOTE-SYM, DELAY, LAMB-
DA) others need some explanation. For example an and-expression returns the value of its
last argument or #f. Contrary to statically typed languages Scheme regards and- and or-
expressions as conditionals. The type system reflects this, by typing the whole expression
after the type of the last argument to and. An or-expression on the other hand returns #f
or the value of one of its arguments. So STYLE enforces all arguments of or to be of the
same type. Enforcing all arguments to and and or to be of type bool would have been closer
to ML-like languages but would cause irrelevant warnings.

Whenever Scheme checks an expression for a boolean value it regards everything true
different from #f. So the type system does not expect a type of such an expression to be
bool but puts no constraint on that type (CoND-CrLAUSE, IF). Typical Scheme programs
rely on that feature very often and therefore enforcing that expression to be of type bool
would not model the real behavior of Scheme.

Expressions returning different values depending on some conditions are forced to return
always objects of the same type (IF, CoND, CasE) and the expression itself is assigned
that type, too. Expressions returning values of different types depending on some condition
are not uncommon in Scheme. However, we believe that each expression should have one
type, reflecting an abstraction of its value. We regard inconsistent if- or cond-expression as
one major hint to possible errors.

The rules for let and let* look very complicated, but they are not, indeed: let* enlarges
the scope successively by each defined name and therefore the description of I' has to
reflect this. A letrec-expression in Scheme allows multiple names to be defined recursively.
The defined names are allowed to be polymorphic inside the body of letrec, but not inside
the definitions of the names. STYLE treats definitions by define, let, let* and letrec as
polymorphic.

Because Scheme supports top-level and local definitions a program is not just one big
expression but consists of multiple, independent expressions. Therefore STYLE assigns type
void to definitions (SIMPLE-DEFINE), and enters the defined name to the type assumption
I, resulting in I'Y. The enlarged type assumption IV now must be used, to type all expression,
which rely on the defined name.

The rules CoNsT-NULL and QUOTE-NULL show that empty lists are treated specially
in STYLE: empty lists are treated as variables of sort nil. That is, they can hold objects of
sort nil or pair (and bottom of course). Hence lists can only be enlarged by pairs, rather
than by objects of arbitrary type.

3 Implementation

STYLE is intended as a practical tool and therefore some effort went into its portable and
efficient implementation. This section gives a brief overview how STYLE is implemented.
First of all STYLE is implemented in Scheme to ensure portability. Furthermore the imple-
mentation requires only a Scheme implementation conforming to Clinger & Rees (1992).
It is based on SCM (Jaffer 1993b) and uses few procedures from the Scheme library SLib
(Jaffer 1993a) for pretty printing. The current implementation supports the checking of
nearly all R4RS-compliant Scheme code except macros.

3.1 Syntax Check

Before Scheme code can be type checked its syntax must be checked for correctness. Because
some Scheme implementations perform only a weak syntax check (Jaffer 19935, Carrette
1992) this step helps to find a lot of errors in practice. The implemented parser utilizes the
standard procedure read for reading in Scheme source code. Unfortunately this is insuf-
ficient to parse ill-parenthesed code; alternatively a hand written scanner as implemented
by Sclint (Kelloméki 1992) could have been used.

The syntax checks in STYLE detects unbound or multiple defined names and makes
all bindings visible to the programmer by renaming identifiers to be unique. Because
quasiquote-expressions have a complicated structure they are rewritten to semantically
equivalent expressions which are easier to type check later on. This technique is also used
by Tammet (1993) and Wright (1993).

3.2 Dependency Analysis

A Scheme program is not just one big expressions but consists of many independent defi-
nitions, so type checking is not purely syntax directed. Typing a Scheme program requires
to sort independent definitions (local or top-level) and order them accordingly to their de-
pendencies (Diller 1988). Figure 4 shows a simple example illustrating this together with
the corresponding dependency graph.

(define (even? m) ®<— \
(if (ftro? m) . / l N
(odd? (subl m)))) GO~ o) oepenency waon
5 .
(define (odd? n) @> oot oo
(if (zero? n) .M>

#f
(even? (subl n)))) @

10
(define (subl z) @
)

Figure 4: Dependency graph for top-level definitions

Strongly connected components are merged and the resulting graph is topologically
sorted. The order of the nodes determines the order in which the definitions are typed. Each
typed definition enlarges the type assumption for subsequent typings. Mutual recursive
definitions are handled the same way as the defining expressions inside a let-expression.

3.3 Unification

Typing Scheme in STYLE bases on the algorithm presented by Damas & Milner (1982) and
hence on unification and generic instantiation. Unification must take the sort carried by
each type into account and thus is order sorted. We do not want to present a complete
algorithm for order sorted unification (Meseguer & Goguen 1990), but give a sketch of the
main idea:

e Two types of sorts s; and s, are unifyable if s; A s5 # bottom holds and both types
are syntactically unifyable.

e Two variables 77, 7% unify: 77,74 — 5.

In addition, unification in STYLE implements another rule: whenever one of the two
unificands already is bottom, unification will succeed resulting in an empty substitution.
This ensures that type bottom will not propagate during typing, but stays local to the
corresponding term which caused it. For efficiency STYLE does not implement the classical
algorithm of Robinson (1965) but an order sorted variant of the algorithm presented by
Corbin & Bidoit (1983).

3.4 Efficient Type abstraction

Naive type abstraction (denoted by ta(7,I') in section 2.3) is not efficient: determining the
variables occurring free in 7 but not free in I' requires to search through a possibly large
type assumption I'. An efficient algorithm for type abstraction which is also implemented in
STYLE can be found in Rémy (1992): each type variable is assigned a depth which denotes
the static depth where it was created. Unification of two variables results in a new variable
carrying the minimum depth of the two given variables. The typing algorithm also uses a
counter which denotes the actual static depth. Comparing the depth of a variable with the
actual depth tells in constant time whether a variable can be made generic.

4 Practical Results

Currently there exist two variants of STYLE: a batch version to be run in an Unix environ-
ment and an interactive version, which is simply a large file of Scheme code to be loaded
into a Scheme interpreter. Figure 5 shows the output of the latter while checking a file of
Scheme code. Generic type variables are denoted by uppercase letters; the attached _nv
denotes the sort non-void.

To investigate the practical relevance of STYLE we applied it to the programs in Struc-
ture and Interpretation of Computer Programs by (Abelson et al. 1985). The code from each
chapter was checked as one program. The results are shown in table 1. Both the number of
warnings and the number of types including bottom sub-types are moderate in relation to
the number of defined objects. Even in chapter three, which contains the functions hardest

> (check-file "demos/example.scm')
Log file demos/example.scm.delta opened
demos/example.scm loaded
-- writing source ... --
-- finished --
Syntax of demos/example.scm successfully checked
fak_2: (num => num)
my-member?_3: (A_nv (B_nv . C_nv) => bool)
warning all clauses of cond should have equal type in
(cond ((symbol? x_8) "it’s a symbol")

((number? x_8) "it’s a number")

(else #£))

type-of_4: (A_nv => bottom)

type error 3 not a function in

(3

There are no undefined symbols

type of demos/example.scm: num

A1l output written to demos/example.scm.delta
Logfile demos/example.scm.delta closed

;Evaluation took 483 mSec (150 in gc) 34193 cons work
#<unspecified>

>

Figure 5: STYLE checking a program

to type-check, 78% of all defined objects obtained usable types. Objects which have bottom
types are usually the consequence of conditionals where the branches have different types
(typically there are some "ordinary” branches and one ”exception” branch) - that is, bottom
types are indeed the result of dynamic typing.

As a second example, we checked solutions to exercises of a first year Scheme course held
at our university. The solutions consist of six files with together about 1600 lines of code.
Although the checked files were programmed by an experienced Scheme programmer, STYLE
revealed 12 warnings. Most of the warnings were caused by syntactical incorrectness and
only a minor number by violating typing rules. Hand inspection of these warnings revealed
that some of them were due to use of dynamic typing, but that - contrary to the programs
in (Abelson et al. 1985) - usually a type error is indeed a hint to a programming error.
Hence STYLE types are sufficiently precise to locate errors, but still understandable by the
programmer.

Checking the six files gives an idea of the speed of STYLE (Table 2). For comparison
the same code was checked by Sclint (Kelloméki 1992), a tool for checking Scheme code
discussed below. Both ran on a SPARCstation ELC using the Scheme interpreter SCM
(Jaffer 1993b).

The times from the table show that using STYLE is indeed practicable because its
analysis only take a moderate amount of time.

Sections! Mult. Syntax Types incl.

9 .
Chapter (Files) Defs. Defs.3 Errors? bottom® Warnings
1 14 101 12 0 0 0% 1
2 16 187 24 1 7T 104 % 17
3 13 197 27 0 43 218 % 36
4 18 163 6 9 12 74 % 10
5 16 115 5 5 100 87% 35

'The code from each section was put together into one file. 2 Global and local
definitions. STYLE determined one type for each definition. * Some objects are
multiple defined for teaching purposes. * Errors with respect to the syntax accepted
by STYLE. ° Each type of a definition which containing at least one sub-type bottom
counts as one.

Table 1: Results from Checking Structure and Interpretation of Computer Programs

Exercise Lines STYLE Sclint ‘ Exercise Lines STYLE Sclint

1 109 1.5s 10.7s 4 215 4.7s 13.1s
2 211 53s 153s 5 470 1828 33.0s
3 352 8.5s 178s 6 231 56s 1325

Table 2: Some Execution Times (in seconds) of STYLE and Sclint

5 Related Work

5.1 Sclint

Sclint by Kellomaki (1992) is an acronym for Scheme Lint and reminds of the well known
C program verifier Lint. It aims mainly at the same targets as STYLE although is does no
type checking. Sclint checks the syntax of most syntactical constructs, but unlike STYLE
not the more complicated ones like do and quasiquote. Furthermore it checks the number of
applied arguments to procedures and takes care of a correct indentation. Like STYLE it is
implemented in Scheme but uses a manually implemented scanner for reading source code.
This permits even ill-parenthesized to be checked but slows down checking noticeably, even
without type checking. Because Sclint does no type checking it cannot detect a lot of errors
in principle.

5.2 Semantic Prototyping System—SPS

The Semantic Prototyping System by Wand (1989) is not intended as a tool for finding
errors, but does type checking for a dialect of Scheme. SPS supports rapid prototyping of
programming languages and lets the denotational semantic of a prototype be defined using
a dialect of Scheme. This subset is intended to be referential transparent and thus does
not rely on dynamic typing. SPS type checks using a a polymorphic type system (without
a maximum type) and gives detailed error messages. However, SPS cannot deduce which
type variables from a type are generic—the user has to declare them explicitly. So SPS
addresses only a subset of Scheme which requires additional type declarations.

10

5.3 Dynamic Typing

The approach of Dynamic Typing (Henglein 1992) uses in principal the same techniques as
STYLE, but does not aim at a general tool for finding errors: Instead, inferred types are
used to optimize the compilation of Scheme code. Wherever the type of an object is known,
run time type checks can be omitted. Henglein (1992) uses a polymorphic type system with
a maximum type dynamic to type Scheme code. His paper mainly shows the principles
of this approach by typing a dynamically typed lambda-calculus with boolean values; the
relation to "real” Scheme is not always clear. Wright (1992) investigated a prototype of
Dynamic Typing by running it on its own code and reports that about 50% of all globally
defined names had type dynamic or dynamic — dynamic. Compared to STYLE, this is
obviously not very informative.

5.4 Soft Types for Scheme

The approach of Soft Types for Scheme by Wright (1992) is the most sophisticated approach
for typing Scheme known to us. Types are both used for finding errors and for optimized
compiling of Scheme code. Wherever necessary, explicit type tagging code is added to the
original source and thus run time type checking can be omitted. Soft Typing for Scheme
distinguishes code which needs run time type checking (and thus may be correct) and code
which is definitely ill-typed (and thus wrong). It uses a Milner-style polymorphic type
system with recursive and union types based on the work of Fagan (1992). Whenever an
object is used with two disjoint types it will be assigned the union of these types. This
leads to a very expressive type system which produces very exact but complicated types
which are hard to understand by the programmer.

In figure 6 union types are denoted by (+ t; t5...), recursive types by (MU :z 1)
with :2 appearing inside {. The figure shows a type inferred by Soft Typing for Scheme
for a procedure which evaluates simple boolean expressions; it is from the third exercise
mentioned above. For comparison the much simpler type inferred by STYLE is also shown;
327 nv denotes a type variable of sort non-void.

Soft-Typing for Scheme: (eval-bool:
(let ([:1
(MU :1 (+ false true sym
(MU :2 (cons
(+ false true sym :2) :1))))1)

(:1—> 1))
STYLE: eval-bool: (327nv => symbol)

Figure 6: Types inferred by Soft-Typing for Scheme and STYLE

The implementation of Soft Types for Scheme is efficient and uses structure sharing and
the efficient type abstraction algorithm by Rémy (1992) like STYLE, too. This approach
was developed independent of STYLE and goes beyond its aims. We nevertheless believe
that the inferred types are too complicated to be useful for detecting errors.

11

5.5 Conclusion

STYLE is a practical tool for finding errors in Scheme programs based on a polymorphic type
system. The type system is a compromise between a soft and a strong type check to detect
serious bugs on one hand but not do produce too much irrelevant warnings on the other.
Although dynamically typed languages cannot be typed statically in general the chosen
approach is practical—violations of typing rules are regarded as hints to possible errors.
The implementation of the type system is based on order sorted unification. This makes it
possible to detect the application of undefined values to polymorphic procedures and gives
type variables a finer semantic. The implementation of STYLE in Scheme is portable and
efficient—checks performed by Sclint (Kellomaki 1992), a tool for syntax checking without
type checking take noticeably longer. Tests have shown the practical relevance of the chosen
approach.

STYLE is available by anonymous ftp through [final version will include ftp address].

Acknowledgements. Gregor Snelting originally proposed the development of STYLE
as a support tool for teaching and provided helpful comments on an earlier version of this

paper.

References

Abelson, H., Sussman, G. & Sussman, J. (1985), Structure and Interpretation of Computer
Programs, 13th edition, The MIT Press, Cambridge, Massachusetts, USA.

Carrette, G. (1992): SIOD—Scheme In One Defun, Version 2.8, Paradigm Associates In-
corporated, Cambridge, Massachusetts, USA.

Clinger, W. & Rees, J. (1992): Revised* Report on the Algorithmic Language Scheme,
LISP Pointers IV(3), 1-55.

Corbin, J. & Bidoit, M. (1983): A Rehabilitation of Robinson’s Unification Algorithm, in
R. E. A. Mason, ed., Information Processing 83, Elsevier Science Publishers (North-
Holland), pp. 909-914.

Damas, L. & Milner, R. (1982): Principal type schemes for functional programs, in Proc.
of the 9th POPL, pp. 207-212.

Diller, A. (1988): Compiling Functional Languages, John Wiley & Sons Ltd, Chichester,
New York Brisbane, Toronto, Singapore, Dependency Analysis, pp. 157-161.

Fagan, M. (1992): Soft Typing: An Approach to Type Checking for Dynamically Types
Languages, PhD thesis, Rice University, Houston, Texas, USA.

Gomard, C. K. (1990): Partial Type Inference for Untyped Functional Programs, in Proc.
of the 1990 LFP, ACM, pp. 282-287.

Harper, R., Milner, R. & Tofte, M. (1989): The Definition of Standard ML, Version 3,
Technical Report ECS-LFCS-89-81, Dept. of Computer Science, Univ. of Edinburgh,
Edinburgh EH9 3J7Z Scotland.

Henglein, F. (1992): Dynamic Typing, in B. Krieg-Briickner, ed., ESOP ’92—4th European
Symposium on Programming, Springer-Verlag, pp. 233-253.

12

Hudak, P., Jones, S. P. & Wadler, P. (1992): Report on the Programming Language Haskell,
Report, University of Glasgow, Dep. of Computing Science, University of Glasgow.

Jaffer, A. (1993a), Scheme Library Slib, 84 Pleasant Street, Wakefield MA 01880, USA.
Jaffer, A. (1993b), Scheme Release SCM, 84 Pleasant Street, Wakefield MA 01880, USA.

Kanellakis, P. C., Mairson, H. G. & Mitchel, J. C. (1991): Unification and ML-Type
Reconstruction, in J.-L. Lassez & G. Plotkin, eds, Computational Logic, MIT-Press,
Cambridge, Massachusetts, pp. 444-478.

Kellomaki, P. (1992): Sclint—a Lint-like Program for Scheme, Technical report, Software
Systems Lab, Tampere University, Finland.

Lindig, C. (1993): Style - ein Typ-Checker fiir Scheme, Master’s thesis, Technische Uni-
versitit Braunschweig, Institut fiir Programmiersprachen und Informationssysteme,
Arbeitsgruppe Softwaretechnologie. (in German).

Ma, K. & Kessler, R. R. (1990): TICL—A Type Inference System for Common Lisp,
Software— Practice and Experience 20(6), 593-623.

Meseguer, J. & Goguen, J. A. (1990): Order-Sorted Unification, in C. Kirchner, ed., Unifi-
cation, Academic Press, London, pp. 457-487.

Nipkow, T. & Snelting, G. (1991): Type Classes and Overloading Resoloutin via Order-
Sorted Unification, in Proc. of the 5th ACM Conference of Functional Programming
Languages and Computer Architecture, Springer Verlag, pp. 1-14.

Rémy, D. (1992): Extension of ML Type System with a Sorted Equational Theory on
Types, Rapports de recherche, INRIA.

Robinson, J. A. (1965): A machine-oriented logic based on the resolution principle, Journal

of the ACM 12(1), 23-41.

Shivers, O. (1991): Data-Flow Analysis and Type Recovery in Scheme, in P. Lee, ed.,
Topics in Advanced Language Implementation, MIT Press, Cambridge, Massachusetts,
pp. 47-88.

Snelting, G. (1991): The calculus of context relations, Acta Informatica 28, 411-445.

Tammet, T. (1993): Hobbit, Version 2, Dep. of Computer Science, Chalmers University of
Technology, University of Goteborg, S-41296 Gdéteborg, Sweden.

Walther, C. (1985): Unification in many-sorted theories, in Proceedings of the 6th ECAI,
pp- H93-602.

Wand, M. (1989): Semantic Prototyping System (SPS) Reference Manual, Version 1.4 (Chez
Scheme), Northeastern University, USA.

Wright, A. K. (1992): Practical Soft Typing: Types for Scheme, Thesis Proposal; Dep. of
Computer Science, Rice University, Houston, Texas, USA.

Wright, A. K. (1993): Practical Soft Typing: Types for Scheme, Personal communications.

13

