
StyleA Practical Type Checker for SchemeChristian Lindig
@Informatik-Bericht Nr. 93-10Oktober 1993c
 Arbeitsgruppe SoftwaretechnologieTechnische Universit�at BraunschweigGau�stra�e 17D-38092 BraunschweigGermany

Style|A Practical Type Checker for SchemeChristian LindigArbeitsgruppe SoftwaretechnologieTechnische Universit�at BraunschweigGau�stra�e 17, D-38106 BraunschweigAbstractThis paper describes an new tool for �nding errors in R4RS-compliant Scheme programs.A polymorphic type system in the style of Damas & Milner (1982) with an additional maxi-mum type is used to type Scheme code. Although Scheme is dynamically typed, most partsof programs are statically typeable; type inconsistencies are regarded as hints to possibleprogramming errors. The paper �rst introduces a type system which is a careful balancebetween rigorous type safety and pragmatic type softness. An e�cient and portable imple-mentation based on order sorted uni�cation in Scheme is then described. We obtained verysatisfactory results on realistic programs, including the programs in Abelson, Sussman &Sussman (1985).1 IntroductionFinding errors in Scheme programs is painful. One major reason is that Scheme is adynamically typed language: all names in Scheme programs can hold objects of arbitrary,undeclared type which may change during runtime. Unlike most modern languages likeHaskell (Hudak, Jones & Wadler 1992) or Standard ML (Harper, Milner & Tofte 1989) allnecessary type checks are performed at runtime. This leads to the great expressiveness ofScheme but also makes programs hard to debug.Dynamically typed programming languages are more expressive than statically typedlanguages (Fagan 1992) and therefore cannot be typed statically at compile-time in general.But because only small parts of typical Scheme programs rely on dynamic typing, actuallymost program parts are statically typable. Untypable parts may be either caused by coderelying on dynamic typing or by programming errors, thus type checking may indicateerrors. We present a new tool Style1 that performs static typing for Scheme programsusing a polymorphic type system in the style of Damas & Milner (1982). Style reportstype inconsistencies to the programmer and thus helps to �nd even subtle errors otherwiseonly found at runtime. Because Scheme was not de�ned with a type system and compile-time type checks in mind, the design of a type system is a di�cult task: a too restrictivetype system will produce too many irrelevant warnings; if the type system is too soft it willnot be able to detect serious bugs.Style's type system is intended to be practical and hence is a careful compromisebetween "too strong" and "too soft" type systems. There are other, more expressive typesystems for Scheme (Wright 1992) which are used for code optimization. The inferred typesare more complicated - perhaps too complicated to be of practical value for the programmer.1Scheme Type Leakage Explorer 1

2 Typing SchemeThere are basically two approaches for typing a language like Scheme: data-
ow analysisand static typing with a maximum type. Data-
ow analysis is an appropriate technique foroptimized compilation of dynamically typed languages (Ma & Kessler 1990, Shivers 1991).However, classical data-
ow analysis works top-down and intra-procedural and thereforecannot handle higher order functions properly.Static typing as described by Damas & Milner (1982) assigns one, possibly polymorphic,most general type to each object of a program. Dynamic typing is therefore re
ected bypolymorphic types. Because dynamically typed languages cannot be typed statically ingeneral, a maximum type is assigned, when no other type will do (Henglein 1992, Gomard1990). Style also implements this approach, because it is well understood and e�cient inpractice (Kanellakis, Mairson & Mitchel 1991).2.1 Types for SchemeStyle distinguishes the following types for objects in Scheme. It employs a fully parenthe-sized pre�x notation for types like Scheme does for expressions.num All numerical objects are of type num . Type checking cannot further distinguishbetween integers, rationals, reals and complex because these type depend on the actualvalues and the operations performed on them.bool Boolean values as returned by predicates have type bool . Scheme regards everythingtrue di�erent from Symbol #f.char Type of a single character.string Type of a string of characters.symbol Quoted symbols evaluate to literal symbols, typed symbol . Scheme lacks syntacti-cal constructs for declaring data structures explicitly. Therefore many informations,like enumerational types, are represented by symbols. However, Style does notdistinguish di�erent symbols and therefore cannot infer much about complex datastructures where symbols are used for tagging.port Type of a port|ports are used for describing �les and other input/output-devices inScheme.void The value of some procedures or syntactical constructs are unspeci�ed according tothe Scheme report (Clinger & Rees 1992). Objects of such value will be of type void .bottom Whenever Style cannot infer one type for an object it assigns bottom to thatobject. This may be caused either by relying on dynamic typing or by a programmingerror. So bottom is the maximum type in the sense above although its name suggeststhe opposite. When bottom is used inside types of standard procedures it allows tobypass type checking, because bottom always is su�cient. This is sometimes necessary,because Style cannot provide adequate types for some more elaborated standardprocedures like call/cc. 2

(! (seq t1 � � � tn�1) tn) Function type, describing a procedure taking n� 1 parameters oftype t1 to tn�1 and returning a value of type tn. Some standard procedures takea variable number of arguments; to re
ect this, the last input type, i.e. tn�1 maybe marked, if it is one of the types above: for example num* denotes "any numberof arguments of type num", port+ denotes "optional argument of type port". Thestandard procedure + for example, which takes one or more numerical arguments hastype (! (seq num num*) num.(promise t) In Scheme which generally evaluates expression call by value the evaluation ofan expression may be delayed. The value returned by delay is called a promise whichcan be evaluated by the standard procedure force. The type (promise t) describessuch a promise, holding a value of type t.(pair t1 t2) Pairs of values are of type pair . Lists, which may be of inhomogeneous typein Scheme are also treated as pairs.(vector t1 � � � tn) Type of a vector of size n.� s Type-variable of sort s. Style implements type inference via order sorted uni�cationso all types carry sorts. This is discussed in detail below.8� s11 ; � � � ; � snn :t Type-scheme with bounded type variables �1 to �n of sorts s1 to sn. Typeinstantiation and type abstraction is sort preserving.Types inferred by Style are not allowed to be recursive. So the expressiveness of typesis somewhat limited, in particular because there is no type like (list �) denoting a list ofelements of type � . We thought quite a while of allowing recursive types and performedseveral experiments. Finally, we decided that although recursive types are more expressiveand more precise, they are often hard to understand (see section 5.4). As a consequence, itwas not possible to implement list types through (list �) = nil j (pair � (list �)).Lists are allowed to have members of di�erent type in Scheme, unlike lists in ML orHaskell. Because of this Style regards lists as pair|the way they are implemented|andthere is no special type for lists. Instead the last element of a list, the empty list, is handledspecially: Style assigns an unused type variable to empty lists. This ensures that thetypes of two lists are still unifyable, when one list is a pre�x of the other. Thus Style onlyinfers the types from the head of each list, approximating the rest with a type variable.This is surely not very exact, but su�cient for detecting most errors.2.2 Types carry SortsStyle uses order sorted types to put some constraints on types which otherwise cannotbe expressed. A sort hierarchie is a partial ordered set of sorts (S;�) forming a meet-semilattice (�gure 1). Thus for each two sorts s1, s2 there exists exactly one sort s1 ^ s2("s1 meets s2") which is the greatest lower bound of s1 and s2.In contrast to sort-free terms and variables, order-sorted variables and terms always havea sort. For all non-variable terms the outermost constructor denotes their sort implicitly: apair is of sort pair , a type num is of sort num and so forth. These sorts are located belowthe dashed line in �gure 1. Type variables and bounded type variables of type schemes3

top

non−void

possibly−void

base complex special

−> pair promise seq vector void

bottom

num bool char stringportsymbol

fn nil

Sorts of basic types

Sorts of variable types

Figure 1: Sort hierarchy of Style typescarry sorts from above that line. As a consequence there is more than one kind of typevariable in Style: � complex and � base denote both variables, but of di�erent kind, thus sort.Unlike sort-free variables sorted variables do not represent an arbitrary type: a sortedvariable � s represents only types t of sort st where st � s holds. That is, a sorted variablecan only hold terms which sort is localized "below" the sort of that variable: A variable ofsort non-void cannot hold type void , a variable of sort complex can hold a type pair , butcannot hold type bool . A variable of sort top can hold any other type and thus is equivalentto a sort-free type variable. Uni�cation of sorted terms must take variable sorts into account(Walther 1985, Meseguer & Goguen 1990). Order-sorted uni�cation has succesfully beenused in other type systems (Snelting 1991, Nipkow & Snelting 1991); its main advantage isthat many context conditions can be expressed as sortal constraints.2.3 A Type System for SchemeThe type system gives one rule for each syntactical construct determining its type, whiletypes of standard procedures are part of the initial type assumption �0 (�gure 2). As anexample of the latter, consider the rule for reverse: since lists may be heterogenuous, wecan only enforce that reverse works on pairs whose elements must have a non-void type;there are no constraints on the type of the pair components itself .abs : (! (seq num) num)display : 8�non�void:(! (seq �non�void port+) void)not : 8�non�void:(! (seq �non�void) bool)reverse : 8�non�void1 ; �non�void2 ; �non�void3 ; �non�void4 :(! (seq (pair �non�void1 �non�void2))(pair �non�void3 �non�void4))force : 8�non�void:(! (seq (promise �non�void)) �non�void)Figure 2: Types for standard procedures4

Const-Num c is a number� ` c : num Quote-Sym c is a symbol� ` (quote c) : symbolConst-Null c = ()� ` c : � nil Quote-Null c = ()� ` (quote c) : � nilVar x : � 2 �; � � � 0� ` x : � 0 Begin � ` e1 : �; � � � ;� ` en : �� ` (begin e1 � � � en) : �nAnd � ` e1 : �1; � � � ;� ` en : �n� ` (and e1 � � � en) : �n Or � ` e1 : �; � � � ;� ` en : �� ` (or e1 � � � en) : �Delay � ` c : �� ` (delay c) : (promise �) Set � ` var : �;� ` e : �� ` (set! var e) : voidCond-Clause � ` e0 : �0; � � � ;� ` en : �n� ` (e0 � � � en) : �n � ` e1 : �1; � � � ;� ` en : �n� ` (else e1 � � � en) : �nCond � ` c1 : �; � � � ;� ` cn : �� ` (cond c1 � � � cn) : � ci typed using Cond-ClauseIf � ` e0 : �0;� ` e1 : �;� ` e2 : �� ` (if e0 e1 e2) : � � ` e0 : �0;� ` e1 : �� ` (if e0 e1) : �Lambda � [fx1 : �1; � � � ; xn : �ng ` hbodyi : �� ` (lambda (x1 � � � xn)hbodyi) : (! (seq �1 � � � �n) �)Let* �1 = �;�i = �i�1 [fxi�1 : ta(�i�1;�i�1)g;�1 ` e1 : �1; � � � ;�n ` en : �n;�n+1 ` hbodyi : �� ` (let* ((x1 e1) � � �(xn en)) hbodyi) : �Letrec �0 = � [fx1 : �1; � � � ; xn : �ng;�0 ` e1 : �1; � � � ;�0 ` en : �n;� [fx1 : ta(�1;�); � � � ; xn : ta(�n;�)g ` hbodyi : �� ` (letrec ((x1 e1) � � �(xn en)) hbodyi) : �Appl � ` e0 : (! (seq �1 � � � �n) �0);� ` e1 : �1; � � � ;� ` en : �n� ` (e0 e1 � � � en) : �0Quote-Pair c = (e1 : e2);� ` (quote e1) : �1;� ` (quote e2) : �2� ` (quote c) : (pair �1 �2)Def-Simple � ` e : �;�0 = � [fx : ta(�;�)g� ` (de�ne x e) : voidFigure 3: Rules from the type system for SchemeA Milner-style type system assigns to each object one, possibly polymorphic type. Thisdoes not re
ect dynamic typing exactly and therefore Style's type system only approxi-mates the real behavior of Scheme. We present now a selection from the typing rules forScheme as implemented in Style (�gure 3).5

Type instantiation is denoted by � � � 0: � 0 is an instance of the type scheme � . Typeabstraction, which is de�ned relative to the type assumption � is denoted by ta(�;�), whereFV (x) denotes the set of free type variables of x:ta(�;�) = 8�1; : : : ; �m:� �i 2 FV (�) n FV (�)Both type instantiation and abstraction are sort preserving. This permits to detectthe application of unde�ned values (of type void) to standard procedures: bounded typevariables inside types of standard procedures usually have sort non-void (�gure 2). Thesevariables can not hold type void and thus Style detects every application of unde�nedvalues to the corresponding parameters for example in (define x (set! y 10)).While some rules are fairly obvious (Const-Num, Appl, Quote-Sym, Delay, Lamb-da) others need some explanation. For example an and-expression returns the value of itslast argument or #f. Contrary to statically typed languages Scheme regards and- and or-expressions as conditionals. The type system re
ects this, by typing the whole expressionafter the type of the last argument to and. An or-expression on the other hand returns #for the value of one of its arguments. So Style enforces all arguments of or to be of thesame type. Enforcing all arguments to and and or to be of type bool would have been closerto ML-like languages but would cause irrelevant warnings.Whenever Scheme checks an expression for a boolean value it regards everything truedi�erent from #f. So the type system does not expect a type of such an expression to bebool but puts no constraint on that type (Cond-Clause, If). Typical Scheme programsrely on that feature very often and therefore enforcing that expression to be of type boolwould not model the real behavior of Scheme.Expressions returning di�erent values depending on some conditions are forced to returnalways objects of the same type (If, Cond, Case) and the expression itself is assignedthat type, too. Expressions returning values of di�erent types depending on some conditionare not uncommon in Scheme. However, we believe that each expression should have onetype, re
ecting an abstraction of its value. We regard inconsistent if- or cond-expression asone major hint to possible errors.The rules for let and let* look very complicated, but they are not, indeed: let* enlargesthe scope successively by each de�ned name and therefore the description of � has tore
ect this. A letrec-expression in Scheme allows multiple names to be de�ned recursively.The de�ned names are allowed to be polymorphic inside the body of letrec, but not insidethe de�nitions of the names. Style treats de�nitions by de�ne, let, let* and letrec aspolymorphic.Because Scheme supports top-level and local de�nitions a program is not just one bigexpression but consists of multiple, independent expressions. Therefore Style assigns typevoid to de�nitions (Simple-Define), and enters the de�ned name to the type assumption�, resulting in �0. The enlarged type assumption �0 now must be used, to type all expression,which rely on the de�ned name.The rules Const-Null and Quote-Null show that empty lists are treated speciallyin Style: empty lists are treated as variables of sort nil . That is, they can hold objects ofsort nil or pair (and bottom of course). Hence lists can only be enlarged by pairs, ratherthan by objects of arbitrary type. 6

3 ImplementationStyle is intended as a practical tool and therefore some e�ort went into its portable ande�cient implementation. This section gives a brief overview how Style is implemented.First of all Style is implemented in Scheme to ensure portability. Furthermore the imple-mentation requires only a Scheme implementation conforming to Clinger & Rees (1992).It is based on SCM (Ja�er 1993b) and uses few procedures from the Scheme library SLib(Ja�er 1993a) for pretty printing. The current implementation supports the checking ofnearly all R4RS-compliant Scheme code except macros.3.1 Syntax CheckBefore Scheme code can be type checked its syntax must be checked for correctness. Becausesome Scheme implementations perform only a weak syntax check (Ja�er 1993b, Carrette1992) this step helps to �nd a lot of errors in practice. The implemented parser utilizes thestandard procedure read for reading in Scheme source code. Unfortunately this is insuf-�cient to parse ill-parenthesed code; alternatively a hand written scanner as implementedby Sclint (Kellom�aki 1992) could have been used.The syntax checks in Style detects unbound or multiple de�ned names and makesall bindings visible to the programmer by renaming identi�ers to be unique. Becausequasiquote-expressions have a complicated structure they are rewritten to semanticallyequivalent expressions which are easier to type check later on. This technique is also usedby Tammet (1993) and Wright (1993).3.2 Dependency AnalysisA Scheme program is not just one big expressions but consists of many independent de�-nitions, so type checking is not purely syntax directed. Typing a Scheme program requiresto sort independent de�nitions (local or top-level) and order them accordingly to their de-pendencies (Diller 1988). Figure 4 shows a simple example illustrating this together withthe corresponding dependency graph.(de�ne (even? m)(if (zero? m)#t(odd? (sub1 m)))) 5(de�ne (odd? n)(if (zero? n)#f(even? (sub1 n)))) 10(de�ne (sub1 x)(� x 1))
m even?

odd?n

sub1 x

even?/odd?

m

n

x

sub1

Dependency graph

Topologically sorted
dependency graphFigure 4: Dependency graph for top-level de�nitions7

Strongly connected components are merged and the resulting graph is topologicallysorted. The order of the nodes determines the order in which the de�nitions are typed. Eachtyped de�nition enlarges the type assumption for subsequent typings. Mutual recursivede�nitions are handled the same way as the de�ning expressions inside a let-expression.3.3 Uni�cationTyping Scheme in Style bases on the algorithm presented by Damas & Milner (1982) andhence on uni�cation and generic instantiation. Uni�cation must take the sort carried byeach type into account and thus is order sorted. We do not want to present a completealgorithm for order sorted uni�cation (Meseguer & Goguen 1990), but give a sketch of themain idea:� Two types of sorts s1 and s2 are unifyable if s1 ^ s2 6= bottom holds and both typesare syntactically unifyable.� Two variables �x1 , �y2 unify: �x1 ; �y2 7! �x^y3 .In addition, uni�cation in Style implements another rule: whenever one of the twouni�cands already is bottom , uni�cation will succeed resulting in an empty substitution.This ensures that type bottom will not propagate during typing, but stays local to thecorresponding term which caused it. For e�ciency Style does not implement the classicalalgorithm of Robinson (1965) but an order sorted variant of the algorithm presented byCorbin & Bidoit (1983).3.4 E�cient Type abstractionNaive type abstraction (denoted by ta(�;�) in section 2.3) is not e�cient: determining thevariables occurring free in � but not free in � requires to search through a possibly largetype assumption �. An e�cient algorithm for type abstraction which is also implemented inStyle can be found in R�emy (1992): each type variable is assigned a depth which denotesthe static depth where it was created. Uni�cation of two variables results in a new variablecarrying the minimum depth of the two given variables. The typing algorithm also uses acounter which denotes the actual static depth. Comparing the depth of a variable with theactual depth tells in constant time whether a variable can be made generic.4 Practical ResultsCurrently there exist two variants of Style: a batch version to be run in an Unix environ-ment and an interactive version, which is simply a large �le of Scheme code to be loadedinto a Scheme interpreter. Figure 5 shows the output of the latter while checking a �le ofScheme code. Generic type variables are denoted by uppercase letters; the attached _nvdenotes the sort non-void .To investigate the practical relevance of Style we applied it to the programs in Struc-ture and Interpretation of Computer Programs by (Abelson et al. 1985). The code from eachchapter was checked as one program. The results are shown in table 1. Both the number ofwarnings and the number of types including bottom sub-types are moderate in relation tothe number of de�ned objects. Even in chapter three, which contains the functions hardest8

> (check-file "demos/example.scm")Log file demos/example.scm.delta openeddemos/example.scm loaded-- writing source ... ---- finished --Syntax of demos/example.scm successfully checkedfak_2: (num => num)my-member?_3: (A_nv (B_nv . C_nv) => bool)warning all clauses of cond should have equal type in(cond ((symbol? x_8) "it's a symbol")((number? x_8) "it's a number")(else #f))type-of_4: (A_nv => bottom)type error 3 not a function in(3)There are no undefined symbolstype of demos/example.scm: numAll output written to demos/example.scm.deltaLogfile demos/example.scm.delta closed;Evaluation took 483 mSec (150 in gc) 34193 cons work#<unspecified>> Figure 5: Style checking a programto type-check, 78% of all de�ned objects obtained usable types. Objects which have bottomtypes are usually the consequence of conditionals where the branches have di�erent types(typically there are some "ordinary" branches and one "exception" branch) - that is, bottomtypes are indeed the result of dynamic typing.As a second example, we checked solutions to exercises of a �rst year Scheme course heldat our university. The solutions consist of six �les with together about 1600 lines of code.Although the checked �les were programmed by an experienced Scheme programmer, Stylerevealed 12 warnings. Most of the warnings were caused by syntactical incorrectness andonly a minor number by violating typing rules. Hand inspection of these warnings revealedthat some of them were due to use of dynamic typing, but that - contrary to the programsin (Abelson et al. 1985) - usually a type error is indeed a hint to a programming error.Hence Style types are su�ciently precise to locate errors, but still understandable by theprogrammer.Checking the six �les gives an idea of the speed of Style (Table 2). For comparisonthe same code was checked by Sclint (Kellom�aki 1992), a tool for checking Scheme codediscussed below. Both ran on a SPARCstation ELC using the Scheme interpreter SCM(Ja�er 1993b).The times from the table show that using Style is indeed practicable because itsanalysis only take a moderate amount of time.9

Sections1 Mult. Syntax Types incl.Chapter (Files) Defs.2 Defs.3 Errors4 bottom5 Warnings1 14 101 12 0 0 0 % 12 16 187 24 1 7 10.4 % 173 13 197 27 0 43 21.8 % 364 18 163 6 9 12 7.4 % 105 16 115 5 5 10 8.7 % 351The code from each section was put together into one �le. 2 Global and localde�nitions. Style determined one type for each de�nition. 3 Some objects aremultiple de�ned for teaching purposes. 4 Errors with respect to the syntax acceptedby Style. 5 Each type of a de�nition which containing at least one sub-type bottomcounts as one.Table 1: Results from Checking Structure and Interpretation of Computer ProgramsExercise Lines Style Sclint Exercise Lines Style Sclint1 109 1.5 s 10.7 s 4 215 4.7 s 13.1 s2 211 5.3 s 15.3 s 5 470 18.2 s 33.0 s3 352 8.5 s 17.8 s 6 231 5.6 s 13.2 sTable 2: Some Execution Times (in seconds) of Style and Sclint5 Related Work5.1 SclintSclint by Kellom�aki (1992) is an acronym for Scheme Lint and reminds of the well knownC program veri�er Lint . It aims mainly at the same targets as Style although is does notype checking. Sclint checks the syntax of most syntactical constructs, but unlike Stylenot the more complicated ones like do and quasiquote. Furthermore it checks the number ofapplied arguments to procedures and takes care of a correct indentation. Like Style it isimplemented in Scheme but uses a manually implemented scanner for reading source code.This permits even ill-parenthesized to be checked but slows down checking noticeably, evenwithout type checking. Because Sclint does no type checking it cannot detect a lot of errorsin principle.5.2 Semantic Prototyping System|SPSThe Semantic Prototyping System by Wand (1989) is not intended as a tool for �ndingerrors, but does type checking for a dialect of Scheme. SPS supports rapid prototyping ofprogramming languages and lets the denotational semantic of a prototype be de�ned usinga dialect of Scheme. This subset is intended to be referential transparent and thus doesnot rely on dynamic typing. SPS type checks using a a polymorphic type system (withouta maximum type) and gives detailed error messages. However, SPS cannot deduce whichtype variables from a type are generic|the user has to declare them explicitly. So SPSaddresses only a subset of Scheme which requires additional type declarations.10

5.3 Dynamic TypingThe approach of Dynamic Typing (Henglein 1992) uses in principal the same techniques asStyle, but does not aim at a general tool for �nding errors: Instead, inferred types areused to optimize the compilation of Scheme code. Wherever the type of an object is known,run time type checks can be omitted. Henglein (1992) uses a polymorphic type system witha maximum type dynamic to type Scheme code. His paper mainly shows the principlesof this approach by typing a dynamically typed lambda-calculus with boolean values; therelation to "real" Scheme is not always clear. Wright (1992) investigated a prototype ofDynamic Typing by running it on its own code and reports that about 50% of all globallyde�ned names had type dynamic or dynamic ! dynamic. Compared to Style, this isobviously not very informative.5.4 Soft Types for SchemeThe approach of Soft Types for Scheme by Wright (1992) is the most sophisticated approachfor typing Scheme known to us. Types are both used for �nding errors and for optimizedcompiling of Scheme code. Wherever necessary, explicit type tagging code is added to theoriginal source and thus run time type checking can be omitted. Soft Typing for Schemedistinguishes code which needs run time type checking (and thus may be correct) and codewhich is de�nitely ill-typed (and thus wrong). It uses a Milner-style polymorphic typesystem with recursive and union types based on the work of Fagan (1992). Whenever anobject is used with two disjoint types it will be assigned the union of these types. Thisleads to a very expressive type system which produces very exact but complicated typeswhich are hard to understand by the programmer.In �gure 6 union types are denoted by (+ t1 t2 : : :), recursive types by (MU :x t)with :x appearing inside t. The �gure shows a type inferred by Soft Typing for Schemefor a procedure which evaluates simple boolean expressions; it is from the third exercisementioned above. For comparison the much simpler type inferred by Style is also shown;327 nv denotes a type variable of sort non-void .Soft-Typing for Scheme: (eval-bool:(let ([:1(MU :1 (+ false true sym(MU :2 (cons(+ false true sym :2) :1))))])(:1 -> :1)))Style: eval-bool: (327 nv => symbol)Figure 6: Types inferred by Soft-Typing for Scheme and StyleThe implementation of Soft Types for Scheme is e�cient and uses structure sharing andthe e�cient type abstraction algorithm by R�emy (1992) like Style, too. This approachwas developed independent of Style and goes beyond its aims. We nevertheless believethat the inferred types are too complicated to be useful for detecting errors.11

5.5 ConclusionStyle is a practical tool for �nding errors in Scheme programs based on a polymorphic typesystem. The type system is a compromise between a soft and a strong type check to detectserious bugs on one hand but not do produce too much irrelevant warnings on the other.Although dynamically typed languages cannot be typed statically in general the chosenapproach is practical|violations of typing rules are regarded as hints to possible errors.The implementation of the type system is based on order sorted uni�cation. This makes itpossible to detect the application of unde�ned values to polymorphic procedures and givestype variables a �ner semantic. The implementation of Style in Scheme is portable ande�cient|checks performed by Sclint (Kellom�aki 1992), a tool for syntax checking withouttype checking take noticeably longer. Tests have shown the practical relevance of the chosenapproach.Style is available by anonymous ftp through [�nal version will include ftp address].Acknowledgements. Gregor Snelting originally proposed the development of Styleas a support tool for teaching and provided helpful comments on an earlier version of thispaper.ReferencesAbelson, H., Sussman, G. & Sussman, J. (1985), Structure and Interpretation of ComputerPrograms, 13th edition, The MIT Press, Cambridge, Massachusetts, USA.Carrette, G. (1992): SIOD|Scheme In One Defun, Version 2.8, Paradigm Associates In-corporated, Cambridge, Massachusetts, USA.Clinger, W. & Rees, J. (1992): Revised4 Report on the Algorithmic Language Scheme,LISP Pointers IV(3), 1{55.Corbin, J. & Bidoit, M. (1983): A Rehabilitation of Robinson's Uni�cation Algorithm, inR. E. A. Mason, ed., Information Processing 83, Elsevier Science Publishers (North-Holland), pp. 909{914.Damas, L. & Milner, R. (1982): Principal type schemes for functional programs, in Proc.of the 9th POPL, pp. 207{212.Diller, A. (1988): Compiling Functional Languages, John Wiley & Sons Ltd, Chichester,New York Brisbane, Toronto, Singapore, Dependency Analysis, pp. 157{161.Fagan, M. (1992): Soft Typing: An Approach to Type Checking for Dynamically TypesLanguages, PhD thesis, Rice University, Houston, Texas, USA.Gomard, C. K. (1990): Partial Type Inference for Untyped Functional Programs, in Proc.of the 1990 LFP, ACM, pp. 282{287.Harper, R., Milner, R. & Tofte, M. (1989): The De�nition of Standard ML, Version 3,Technical Report ECS-LFCS-89-81, Dept. of Computer Science, Univ. of Edinburgh,Edinburgh EH9 3JZ Scotland.Henglein, F. (1992): Dynamic Typing, in B. Krieg-Br�uckner, ed., ESOP '92|4th EuropeanSymposium on Programming, Springer-Verlag, pp. 233{253.12

Hudak, P., Jones, S. P. &Wadler, P. (1992): Report on the Programming Language Haskell,Report, University of Glasgow, Dep. of Computing Science, University of Glasgow.Ja�er, A. (1993a), Scheme Library Slib, 84 Pleasant Street, Wake�eld MA 01880, USA.Ja�er, A. (1993b), Scheme Release SCM, 84 Pleasant Street, Wake�eld MA 01880, USA.Kanellakis, P. C., Mairson, H. G. & Mitchel, J. C. (1991): Uni�cation and ML-TypeReconstruction, in J.-L. Lassez & G. Plotkin, eds, Computational Logic, MIT-Press,Cambridge, Massachusetts, pp. 444{478.Kellom�aki, P. (1992): Sclint|a Lint-like Program for Scheme, Technical report, SoftwareSystems Lab, Tampere University, Finland.Lindig, C. (1993): Style - ein Typ-Checker f�ur Scheme, Master's thesis, Technische Uni-versit�at Braunschweig, Institut f�ur Programmiersprachen und Informationssysteme,Arbeitsgruppe Softwaretechnologie. (in German).Ma, K. & Kessler, R. R. (1990): TICL|A Type Inference System for Common Lisp,Software|Practice and Experience 20(6), 593{623.Meseguer, J. & Goguen, J. A. (1990): Order-Sorted Uni�cation, in C. Kirchner, ed., Uni�-cation, Academic Press, London, pp. 457{487.Nipkow, T. & Snelting, G. (1991): Type Classes and Overloading Resoloutin via Order-Sorted Uni�cation, in Proc. of the 5th ACM Conference of Functional ProgrammingLanguages and Computer Architecture, Springer Verlag, pp. 1{14.R�emy, D. (1992): Extension of ML Type System with a Sorted Equational Theory onTypes, Rapports de recherche, INRIA.Robinson, J. A. (1965): A machine-oriented logic based on the resolution principle, Journalof the ACM 12(1), 23{41.Shivers, O. (1991): Data-Flow Analysis and Type Recovery in Scheme, in P. Lee, ed.,Topics in Advanced Language Implementation, MIT Press, Cambridge, Massachusetts,pp. 47{88.Snelting, G. (1991): The calculus of context relations, Acta Informatica 28, 411{445.Tammet, T. (1993): Hobbit, Version 2, Dep. of Computer Science, Chalmers University ofTechnology, University of G�oteborg, S-41296 G�oteborg, Sweden.Walther, C. (1985): Uni�cation in many-sorted theories, in Proceedings of the 6th ECAI,pp. 593{602.Wand, M. (1989): Semantic Prototyping System (SPS) Reference Manual, Version 1.4 (ChezScheme), Northeastern University, USA.Wright, A. K. (1992): Practical Soft Typing: Types for Scheme, Thesis Proposal; Dep. ofComputer Science, Rice University, Houston, Texas, USA.Wright, A. K. (1993): Practical Soft Typing: Types for Scheme, Personal communications.13

