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Zusammenfassung

Das Schleifenausrollen ist der Prozess, bei dem der Körper einer Schleife mehrfach
dupliziert wird, um die Anzahl der bedingten Sprünge zu reduzieren. Während Schlei-
fen mit konstanten Grenzen leicht ausrollbar sind, erweist sich das Ausrollen von
Schleifen mit nicht konstanten Grenzen als eine Herausforderung.

In diesem Fall ist es möglich, spekulativ eine Schleife um einen bestimmten
Faktor auszurollen, sofern sichergestellt wird, dass die ausgerollte Schleife so oft
wie möglich, aber nicht öfter als die ursprüngliche Schleife ausgeführt wird. Um
die daraus resultierende Diskrepanz auszugleichen, wird sogenannter Fixup Code
erstellt, der für die Ausführung der restlichen Iterationen verantwortlich ist. Um den
oben genannten Fixup Code zu erstellen, werden zwei Ansätze verfolgt: Zum einen
kann die Originalschleife dupliziert werden und zum anderen, eine generalisierte
Form von Duff’s Device verwendet werden.

Bei der experimentellen Bewertung des Ansatzes können wir keine Beschleu-
nigung außerhalb des Messfehlers feststellen, obwohl die Anzahl der ausrollbaren
Schleifen verdoppelt wurde (auf 10% aller Schleifen). Die Ergebnisse deuten darauf
hin, dass das Schleifenausrollen, ohne weitere Optimierung, keinen (signifikanten)
Nutzen zu haben scheint.

Abstract

Loop unrolling is the process of duplicating a loop’s body multiple times to reduce
the number of conditional jumps. While we can easily unroll loops with constant
bounds, unrolling loops with non-constant bounds proves to be a different challenge.

In this case, we can speculatively unroll a loop by a given factor, while making
sure that the unrolled loop runs as often as possible, but less than or equal times to
the original loop. To compensate for the discrepancy, we create so-called fixup code,
which is responsible for running the remaining iterations. We employ two different
strategies for creating the aforementioned fixup code: One where we duplicate the
original loop and another where we utilize a generalized form of Duff’s device.

When experimentally evaluating the approach, even though we double the
amount of unrollable loops to now unroll more than 10% of all loops, we cannot
note any speed-up outside of the margin of error. The results indicate that loop
unrolling does not seem to have a (significant) benefit without further optimization.
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1 Introduction
When developers craft code, there is a need to convert it from a human-readable

high-level language into a machine-understandable language, called assembly. In
order to do this programmers run a compiler that checks the code for multiple
sources of errors, and, if the code is correct, converts it into an executable file.
While converting the program into machine code the compiler optimizes the code.
This is only beneficial to the developer, as it ensures that his/her application, in
the end, runs faster and/or requires fewer system resources. A simple example
of an optimization is constant folding [1], where the compiler analyzes code and
precalculates all constant values, instead of letting the operations on them waste
valuable runtime to calculate each time the application runs. An example can be
seen below: Humans immediately see that in Figure 1.1a b is always equal to 9 and
using constant folding the compiler will be able to also perform this precomputation.
The result of this can be seen in Figure 1.1b. Therefore, the optimization reduces
the runtime of the (admittedly small) program, by virtue of there being one less
calculation required. Simplifying just one expression seems (and for a matter of fact
is) quite useless, but in real-world code, an optimization like this can be applied on
numerous similar expressions and hence noticeably improve the final product.

a← 7
b← a + 2

(a) Sample code snippet for constant folding

a← 7
b← 9

(b) Code with constants folded

Figure 1.1: Example of constant folding optimization

Of course there is a plethora of possibilities to optimize code. Considering that
loops make up approximately 10% of code of many real-world applications1, they
are a natural point to focus optimization efforts upon. Loops can be unrolled fairly
straightforward, if you know how often they are iterated, as is discussed in Chapter 2.

For example, Figure 1.2a can be easily converted to Figure 1.2b, while keeping
all semantics intact. In Figure 1.3 things get trickier, since the (exact) value of N is
unknown, simply unrolling a loop by copying its body a fixed number of times does
not preserve the original semantics.

In Chapter 2 fundamentals for working with these loops are discussed, which
are enhanced, juxtaposed and integrated in Chapter 3. Finally, in Chapter 4 we
evaluate the approach experimentally to see whether it yields a tangible benefit.

1Measured using gcc (spec2006): 8.6% of FIRM nodes are in loops
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i← 0
while i < 5 do

Print(i)
i← i + 1

end while
(a) Loop with constant bounds

Print(0)
Print(1)
Print(2)
Print(3)
Print(4)

(b) Loop with constant bounds unrolled

Figure 1.2: Unrolling a loop with constant bounds

i← 0
N ← FairDiceRoll() ▷ Random number in [1, 6]
while i < N do

Print(i)
i← i + 1

end while

Figure 1.3: Loop without constant bound
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2 Basics and related work

2.1 Compiler

The primary function of a compiler is to automatically convert high-level code
created by a developer into (optimized) machine code. As a compiler is an inherently
large software project, an architecture needs to be chosen that allows for extensions
and modifications. Modern compilers mostly follow a layered architecture style:
They are each comprised of a front-, middle-, and back-end. In this architecture, the
front-end converts the high-level code into an abstract intermediary representation,
which is then used by the middle-end for optimizations and transformations. Lastly,
the back-end is responsible for converting the optimized intermediary code into
instructions for the target system architecture (e.g., RISC-V, x86, ARM, or similar).

2.2 Basic blocks and control-flow

To better handle code and give it a logical structure, most compilers divide
code up into so-called basic blocks. (Basic) blocks are sets of consecutive operations
that do not contain jumps or targets thereof, but rather only jumps connecting them.
Therefore, a basic block is either executed entirely or not executed at all.

A usual way to represent this in a human-readable form is to output it as a
control-flow-graph (CFG). CFGs depict basic blocks as nodes and jumps between
basic blocks as edges. Furthermore, it is a convention in these graphs to have
precisely one start-node and one end-node.

We note that CFGs, in general, are cyclical graphs. They are non-cyclical
graphs if the original code does not contain any jumps going backward in the control-
flow.

Another important concept of CFGs is dominance. To explain this concept, we
define a starting block S, and assume there are two (not necessarily different) blocks,
present in the CFG, N1, and N2. With this information, we define dominance as
follows:

N1 dominates N2 ⇐⇒ ∀p ∈ Paths(S, N2) : N1 ∈ p

In lucid terms, this means N1 dominates N2, iff to get to N2 from S you have to
visit N1 on the way. It is important to note that a block always dominates itself.
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2.3. LOOPS

2.3 Loops
We define a loop to be a set of blocks that are all in a cyclical control-flow

structure. Formally this can be expressed as:

L is a loop⇐⇒ L ̸= ∅ ∧ ∀n1, n2 ∈ L : ∃Path(n1, n2) ⊆ L

Henceforth let L be a loop.
If a loop is completely contained inside another loop, it is said to be nested.

L′ is nested in L⇐⇒ L′ ⊊ L ∧ L′ is a loop

If a loop has no nested loops inside of it, we call it an innermost loop.

L is innermost loop⇐⇒ ∄L′ : L′ is a nested loop in L

Loops can furthermore have a header, which is the sole entry point into a
loop [2] and defined as follows:

H is header of L⇐⇒ H ∈ L ∧ ∀n ∈ L : H dominates n

N.B.: Not all loops have to have a header.
If a loop has a header, its body is the set containing all blocks in the loop,

except for the header.

B is body of L⇐⇒ B = L\{H}, H is header of L

2.4 Single-Static-Assignment (SSA)
The single-static-assignment (SSA) form is a property of intermediary represen-

tations, that requires each value to only be assigned exactly once. Moreover, every
value has to be assigned before it is being used [3]. This property mainly implies
that the block, which declares a given value v, has to dominate all blocks that use
v. This declaration point will be unambiguous across all possible usages.

The SSA form is used to simplify optimizations in the regard that one can be
sure that a set point in the code currently defines a given value in use.

Figure 2.1 shows an example program in SSA form. While in the base code x
is assigned twice, in the code transformed into SSA form, simply a new value was
defined to make sure that each variable is only defined once.

In a loop or a conditional statement, a scenario might arise where a given value
could be assigned at multiple locations. In cases like these we can use a Φ-function.
A Φ-function is a theoretical construct that returns the correct value depending on
the control-flow predecessor.

Figure 2.2 shows an example of the use of a Φ-function, where depending on
the control-flow, either m1 or m2 are selected.
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2.5. LOOP-CLOSED-SINGLE-STATIC-ASSIGNMENT (LCSSA)

x← 1
Print(x)
x← 7
Print(x)

(a) An example piece of code not in SSA form

x1 ← 1
Print(x1)
x2 ← 7
Print(x2)

(b) Thre same code in SSA form

Figure 2.1: An example program in SSA form

function max(a : N, b : N)
m : N
if a > b then

m← a
else

m← b
end if
return m

end function
(a) Non-SSA Code for a function that returns the

maximum of its parameters

function max(a : N, b : N)
m : N
if a > b then

m1 ← a
else

m2 ← b
end if
m← Φ(m1, m2)
return m

end function
(b) Same Function converted into SSA

Figure 2.2: An example program transformed into SSA form

2.5 Loop-Closed-Single-Static-Assignment (LCSSA)
An extension to the aforementioned SSA form is the loop-closed-single-static-

assignment (LCSSA) form. A CFG in LCSSA form has all properties that a CFG
in SSA form has, and additionally the property that each value assigned in a given
loop and used outside of this loop has to be used by a Φ-node in the first block after
the loop. This form is used to reduce special casing when transforming loops [2] and
is therefore utilized through all of Chapter 3.

To visualize this property, Figure 2.3 depicts its effect.

2.6 libFirm
libFirm is a compiler middle- and back-end that takes a graph-based inter-

mediate representation in SSA form, optimizes it, and produces assembly code [5].
Since 1996, Karlsruhe Institute of Technology (KIT) actively develops libFirm.

A graph in libFirm contains information about basics blocks, the control-flow,
and memory and data dependencies. Basics blocks in libFirm contain further nodes
that are responsible for the control-flow of the program. These are pointed to by
(other) basic blocks that are the target of these control-flow operations. The resulting
control-flow edges are represented by red edges in visualizations of libFirm graphs.
Any node operating on memory also connects to the previous node operating on
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2.7. LOOP UNROLLING

function Foo
x, y : N
repeat

if Condition then
x1 ← 5

else
x2 ← 8

end if
x← Φ(x1, x2)

until OtherCondition
y ← x + 3

end function
(a) Sample loop in SSA form

function Foo
x, y : N
repeat

if Condition then
x1 ← 5

else
x2 ← 8

end if
x3 ← Φ(x1, x2)

until OtherCondition
x← Φ(x3)
y ← x + 3

end function
(b) Same sample loop in LCSSA form

Figure 2.3: An example program transformed into LCSSA Form (adapted from [4])

memory, so that the node uses the prior state of memory and then provides a new
state with its changes. Memory is, like control flow, connected by edges, which
are colored blue in graphical representations. Lastly, libFirm has data dependency
edges between nodes, which represent dependencies needed for calculations.

Figure 2.4 portrays an example libFirm graph of the program initially shown
in Figure 2.2. It is especially to be noted that the graph has both memory, data
and control-flow edges, and is in SSA form, since it contains a Φ-node.

Another set of functionality that libFirm provides is loop information. libFirm
will not only (if applicable) be able to map blocks to their respective loops and vice-
versa, but also has information on loop nesting structure. Thus, one can quickly
determine, whether a loop is an innermost loop [5]. Further, libFirm also allows
for finding the header of a loop, given that it has a header [2]. Since loop unrolling
involves node duplication in the implementation that we will use [2], it is worth
mentioning, that upon a node will has a field called link that will be set to reference
the copied node and vice-versa. This allows for easy access of the duplicated and
original nodes in later algorithms.

2.7 Loop unrolling
Loop unrolling is a compiler optimization that attempts to duplicate the loop

body and to reduce the controlling instructions, such as the loop condition or repet-
itive arithmetic [6].

Figure 2.5 shows a pseudo-code example of unrolling a simple loop with a factor
(the number of times the body is copied) of four. It is to be noted that the loop
condition has to be checked less often, on account of each loop iteration being four
times as long as in the original program.
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2.7. LOOP UNROLLING

max

Start Block 56

Block 93

End Block 54

End 55

Return 96

Phi Is 95

Proj M M 62

Proj X false 68 Proj X true 67

Cond 66

Cmp b less 128

Proj Is Arg 1 64 Proj Is Arg 0 63

Proj T T_args 61

Start 59

0

0 1

1 0

01

0

0 0

0

0 1

0 0

0

0

0 1

Figure 2.4: A libFirm graph of a function that returns the larger argument
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2.8. DUFF’S DEVICE

function Foo
i← 0
while i < 16 do

Print(i)
i← i + 1

end while
end function

(a) A function with a simple loop inside of it

function FooUnrolled
i← 0
while i < 16 do

Print(i)
Print(i + 1)
Print(i + 2)
Print(i + 3)
i← i + 4

end while
end function

(b) A function with the same loop unrolled

Figure 2.5: A simple loop with constant bound unrolled

Furthermore, it could also be used to vectorize the code, eliminate repeating
conditions, and for many other following optimizations [7]. A negative side effect of
loop unrolling is that the binary size increases and that there could be more pressure
on the code cache and registers, causing more spilled values [8].

libFirm supports a restricted form of loop unrolling for loops that have static
bounds and increments [9]. This optimization was recently improved but now re-
quires the intermediary representation to be in LCSSA form, which means libFirm’s
intermediary representation has to be converted into LCSSA form prior to the op-
timization running [2]. Though this optimization had no preconditions and merely
duplicated the loop in the hope a later optimization would remove the duplicated
headers, so that it resembles an unrolled loop of our definition, in which only the
body (and not the header) is duplicated. In this form the amount of conditional
jumps does not decrease in most cases, since the later optimization removing headers
would not trigger. Hence, the application of this method showed no improvements,
which caused preconditions for the later removal of excess headers to be added [10].
libFirm now only unrolls loops, similar to the loop in Figure 2.5, with static bounds
and for which a constant bit analysis can remove excess headers. The benefits of
the now changed optimization were also very slim, likely since the requirements for
a loop to now be unrollable are very strict. With these restrictions in place, only
approximately 5% of the innermost loops can be unrolled1.

2.8 Duff’s device
A common problem with the loop unrolling shown in Figure 2.5 is that it

requires the number of iterations to be constant and divisible by the unroll-factor. A
way to tackle this issue is to use a construct known as Duff’s device: It preemptively
unrolls a loop with a given factor and uses fixup code to ensure that the remaining

1Measured in spec2006
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2.8. DUFF’S DEVICE

function Foo(N : N)
i← 0
while i < N do

Print(i)
i← i + 1

end while
end function

(a) An example function with a loop

function FooDuffed(N : N)
i← 0
switch N mod 4 do

case 3
Print(i)
i← i + 1 ▷ Fall-through

case 2
Print(i)
i← i + 1 ▷ Fall-through

case 1
Print(i)
i← i + 1

while i < N do
Print(i)
Print(i + 1)
Print(i + 2)
Print(i + 3)
i← i + 4

end while
end function

(b) A function with the loop unrolled using Duff’s
device

Figure 2.6: A simple loop unrolled using Duff’s device

iterations are completed [11]. Mathematically this means the construct executes the
loop body

⌊
M
f

⌋
· f + M mod F = M times, where M is the number of total times

the loop body would be executed without the transformation and where f is the
unroll-factor. This is due to the fact that mod is defined as:

x mod y = x−
⌊

x

y

⌋
· y

If we substitute M for x and f for y and rearrange for M , we get said form.
Figure 2.6 shows an example of unrolling a loop with a non-divisible bound

using a factor of eight2. Duff’s device copies the loop body eight times and to
ensure that the number of executions is correct, the first time around the code
jumps to the corresponding instruction, depending on the need for fixup code.

Many compilers, such as GCC [12], use Duff’s device for unrolling loops and
improving performance while keeping code size relatively small. Further libFirm
previously utilized Duff’s device for unrolling loops with static bounds, but for which
no unroll-factor could be determined [9].

2The original Duff’s device used special C syntax to entangle the switch statement and loop [11]
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2.9. OVERFLOW DETECTION

2.9 Overflow detection
When subtracting (or adding) two numbers that are integer-like the operation

might cause an over- or underflow, because the integer is of a fixed bit two’s com-
plement representation. Due to the therefore inherent limitation to the range of
possible values, this problem is unavoidable, yet detectable.

In the following, we will take tmin and tmax to be the lower and upper bound
of an integer representation. Algorithm 2.1 [13] shows a way to detect whether an
overflow or underflow occurs for an operation x − a, where x, a ∈ Z ∩ [tmin, tmax],
by checking whether the result increased or decreased relative to the bounds and
comparing it to the expectation.

Algorithm 2.1 Algorithm that detects whether the operation x− a will go out of
the integer boundaries

function SubtractionWillLeaveBounds(x, a : Z ∩ [tmin, tmax])
overflow ←HightestBitSet(x)∧(a > tmax + x)
underflow ← (x > 0) ∧ (a < tmin + x)
return overflow ∨ underflow

end function
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3 Design and implementation
In order to unroll a loop with non-static bounds, this thesis follows a specific

approach: First, we check whether we are able to unroll the loop. Section 3.1
describes the conditions necessary and how we check them. If we determine a loop
to be unrollable, we will unroll it with the unrolling process covered in Section 3.2.
Once this process is complete, the loop condition of the unrolled loop will be adapted
to make sure it runs less than or equal times compared to the original loop. This is
described in Section 3.3.1. After that, we will create the fixup code1 , as described
in Section 3.3.

It is to be noted that in terms of actually implementing this procedure, we
will create the fixup code before unrolling the loop. While this order seems counter-
intuitive, we chose it in order to simplify the implementation of loop duplication, as
described in Section 3.3.3.

Henceforth, we assume loops to be in the form of the loop shown in Figure 3.1.
In the reference loop cmp refers to a comparison that can be one of the following:
<, >,≤,≥. Further, I ∈ Z refers to the starting value, N ∈ Z to the bound, and
c ∈ Z\{0} to the increment2 of such a loop. We select this form in view of the
fact that most loops follow the form of using a counter or iterating over a given
container, which condenses down to this form. Furthermore, this form allows for
many arithmetic properties to be used, as seen in Section 3.3.

function Foo(I ∈ Z, N ∈ Z, c ∈ Z\{0}, cmp ∈ {<, >,≤,≥})
i← I
while i ‘cmp‘ N do

DoSomething
i← i + c

end while
end function

Figure 3.1: A general form of loop starting at I and counting in increments of c
up to N

1The term fixup code describes that code that has to be added to account for cases where the
number of times the loop is executed modulo the unrolling factor is not equal to zero.

2N.B.: c may be negative and could hence also be a decrement
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3.1. DETERMINING UNROLLABILITY

3.1 Determining unrollability
Given that the primary goal of any optimization is to conserve semantics, most

optimizations are based upon assumptions. These assumptions will be assured, by
checking corresponding preconditions before the optimization is applied, so that its
transformed product will be semantically equivalent.

In the case of loop unrolling, we laid out the structure of the targeted loops
in Figure 3.1. This section formalizes the resluting requirements and extends them,
such that the further unrolling process conserves semantics.

Firstly, in view of the fact that we use the existing loop unrolling functionality
as a sub-step (see Section 3.2), it needs to be ensured that the respective libFirm-
graph is in LCSSA form. We accomplish this by using the existing mechanics [2].
While it is a preliminary step, assuring LCSSA form can never be a hindrance to
unrolling, since it is possible to convert any given libFirm graph into LCSSA form.
Due to the restrictions of the existing loop unrolling mechanism, a loop must also be
the innermost loop, meaning it does not have any nested loops inside of it. Nested
loops inherently cause larger code sizes and hardly saves jumps, since most jumps
will occur in the inner loops. Therefore, the restriction will in practice most likely not
harm performance. Given these conditions are met, we use the mechanics, described
in Section 3.4, for determining if and how a given loop should be unrolled based on
size.

Moreover, in order for loops to be in the form described in Figure 3.1, loops
have to have a header, which itself controls the control flow by comparing a counter
to a bound, using any of the four allowed comparison types. The header is the only
point in the loop from which the loop can exit; meaning there are no conditionals
in the body that allow the control flow to leave the loop. This primarily requires
there not to be any break-like structures.

Seeing that there is an explicit entry point for the loop, the header, there are no
preconditions for I, since it is therefore only evaluated once in a block dominating the
header, but inherently not determining of the control flow after the initial evaluation.
On the contrary, N , the bound, has to be loop-invariant, which means that it may
not change through the entire evaluation of the loop, because it is checked against
i in every iteration. As an example, consider a loop, such as the one in Figure 3.1,
replacing DoSomething with N = randomNumber. If we now execute the body
f > 1 times consecutively, we will effectively lose f−1 checks. Assume that initially
I = 0, c = 1, f = 2, N = 2, and assume in the first execution in the loop body N
is set to 0 by chance, whereas in the second iteration it is set to 7. Now given that
when unrolling the condition is removed for the entering the second body, the loop
body would at least four times, which does not conserve semantics, as it should only
be executed once. Concluding, only if N is loop-invariant, the bound checks can be
performed less often, while keeping the original semantics intact.

If N is constant it is obviously loop-invariant, but what if it is the result of
a function call or of a load from memory? For the case that N is function call,
the called function must be pure (i.e., not have any side-effects), and only have

18



3.2. UNROLLING

loop-invariant arguments, seeing that the call is then by definition loop-invariant
itself.

In case that N is being loaded from memory, stricter conditions have to be
met. All stores within the loop must be sure not to alias the memory location of N .
Further, any calls must either invoke functions known at compile time and none of
these may contain aliasing stores or have aliasing parameters. Otherwise, the loop
cannot be unrolled with a loaded bound, due to these called functions potentially
modifying N .

Lastly, the unroll-factor – meaning how often the loop body is copied inside the
unrolled loop – f is selected (see Section 3.4) and hence known at compile time. We
can therefore further restrict the increment c, such that tmin ≤ c · f ≤ tmax, where
tmin is the minimum value of the integer type of c and tmax the respective maximum.
Hence, we prevent c · f from overflowing, which will turn out to be important in
Sections 3.3.1 and 3.3.2, and further discussed there. In order to assure this property,
we have to force c to be a compile-time constant (which inherently is loop invariant).
Even though the restrictions on c seem comparatively tight, in real-world code (gcc,
spec2006) only approximately 1.2% of loops that meet the previous conditions are
not unrollable because of the restriction that tmin ≤ c · f ≤ tmax.

It is worth mentioning that the unrollability with the method above is only
checked if the current loop unrolling mechanism [2] determines that the current
unrolling process cannot be applied. We chose this design, for the reason that
statically unrolling without any further fixup code inherently simplifies the control
flow and hence should yield better, or (at least) equal, performance.

3.2 Unrolling
To get started with unrolling loops that have unknown bounds, we unroll them

by a given factor without considering whether the transformation is semantically
invariant. Semantic equivalence, which is broken due to the failure to consider how
the factor relates to the original amount of iterations, will be restored in Section 3.3.

libFirm already provides an unrolling mechanism for unrolling a loop with a
given factor f [2].3 To avoid code duplication, we will use be utilizing this solution.

Further, figures 3.2 and 3.3 show a libFirm graph of a loop that is to be
unrolled or is unrolled using a factor of two, respectively. Especially to be noted
is that in Figure 3.3 we duplicate the loop header, and that hence the number of
conditional jumps did not decrease through the loop unroll. With the previous
usage, this was not an issue, because libFirm would automatically remove these
excess headers using its constant bit analysis. Unfortunately though in the use
cases of an unknown bound, the constant bit analysis does not suffice. This is due
to the fact that the additional semantics, meaning that we are sure not to have
to exit the unrolled loop from its body at any time, that are implicitly affixed to

3N.B.: All following operations preserve the LCSSA property of the code.
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the transformed loop, cannot be recognized by libFirm. Therefore, the need to
manually prune the graph to remove the excess headers arises. We accomplish this
by using Algorithm 3.1. First, we rewire all Φ-nodes in the excess header, such that
all in-loop nodes depending on any given Φ-node each get the in-loop predecessors
of the Φ-node as predecessors themselves, while the Φ-node falls into desuetude and
will therefore be automatically removed by a later optimization. We apply the same
transformations to the descendants of the block itself.

Algorithm 3.1 Pruning excess headers after unrolling
function PruneExcessHeader(copiedHeader : Block)

for all phi ∈ copiedHeader do
PrunePhi(phi, copiedHeader)

end for
for all post ∈ copiedHeader.descendants do

post.predecessors← (post.predecessors\{copiedHeader}) ∪
{b|b ∈ copiedHeader.predecessors, b.loop = copiedHeader.loop}

end for
end function

function PrunePhi(phi : Φ-node, copiedHeader : Block)
for all out ∈ phi.descendants do

▷ out is ensured to be Φ-node by the LCSSA construction algorithm [2]
if out.block ̸= copiedHeader then

out.predecessors← (out.predecessors\{phi}) ∪
{n|n ∈ phi.predecessors, n.loop = out.loop}

end if
end for

end function

Algorithm 3.2 Pseudo-code for the existing unrolling mechanism [2]
function UnrollExisting(factor : N>1, loop : Loop)

AssureLCSSA(loop)
for all block ∈ loop do

for i ∈ {1..(factor − 1)} do
DuplicateBlock(block)

end for
end for
RewireDuplicatedBlocks ▷ Attach blocks to form unrolled structure

▷ loop is still in LCSSA form after unrolling
end function
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3.3 Fixup strategies
In Section 3.2 we discussed the unrolling process. There, we did not consider

the fixup code needed, but instead plainly focused on unrolling the loop. Firstly,
we will now focus on making the loop run less than or equal times compared to
the original loop in section Section 3.3.1. Less-than or equal is not good enough
though, we want our transformed loop to run exactly as often as the original loop.
Therefore, we will create fixup code, as discussed in this section and its subsections.
Section 3.3.2 uses a generalized version of Duff’s device to create the required fixup
code, whereas in Section 3.3.3 a copy of the original loop will be used. After that,
in Section 4.2, we evaluate which approach yields faster binary run-times.

To see the reason why we need fixup code and to understand what is re-
quired of it, we formally lay out conditions that need to be met in Equations (3.1)
through (3.7).

Let M ∈ N0 be the number of times a loop runs before the transformation;
Mloop ∈ N0, Mfixup ∈ N0 the number of times the unrolled body will run in the
unrolled loop, or the fixup code respectively, after the transformation. Further, the
unroll-factor will be again denoted by f ∈ N, f > 1. Henceforth, we will assume all
arithmetic operations to be integer operations for integers in the interval [tmin, tmax].
Please note that unmarked integer division will be assumed to round towards zero:
For example 5

3
integer division= 1. Another convention we will introduce is that any

interval will be integral, meaning it will only contain integers. Additionally x∓ y is

henceforth defined as

x + y , x < 0
x− y , x > 0

We will now lay out properties that form the basis of further arithmetic con-
siderations. The primary identity that is to be conserved, to retain the original
semantics, is shown below in Equation (3.1). Since we know our original loop ran
M times, we know that our transformed loop and the fixup code must in total also
run M times.

M = Mloop + Mfixup (3.1)

In order to use Duff’s device, we need to restrict the amount of times the fixup
code needs to run. With the requirements to preserve the semantics in mind, we
will maximize Mloop and minimize Mfixup.

Mloop
integer division= M

f
· f

integer division
∈ ]M − f, M ]

(3.2)

By construction of the unrolled loop, Equation (3.2) is always true, as the unrolled
loop tries to run as often as possible, while running less than or equal times compared
to the original loop.
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Proof. To prove the conjecture of Equation (3.2), assume for contradiction

Mloop = M − f − b, b ∈ [0, f [

and hence
Mloop ≤M − f ⇒Mloop /∈ ]M − f, f ],

then by rerunning the unrolled again the body would be executed f times causing
Mloop = M − b ∈ ]M − f, f ], which would be a contradiction of the assumption. We
then induct this pattern for Mloop = M − nf − b, n ∈ N+, b ∈ [0, f [. In these cases,
the loop must merely be iterated multiple times. ■

As the loop runs as often as possible, the fixup code will always run less than
f times.

Mfixup ∈ [0, f [ (3.3)

Proof. Conjecture: Mfixup ∈ [0, f [.

Assume for contradiction Mfixup = f ′ > (f − 1)

Mloop + Mfixup
3.2
≥ M − (f − 1) + f ′

> M − (f − 1) + (f − 1)

= M
3.1
E

■

For the following mathematical considerations, we need to round away from
zero in integer division. Lemma 1 describes how this can be accomplished.

Lemma 1. Given Y ̸= 0 :
⌈

X
Y

⌉
= X+(Y ∓1)

Y

Proof. To prove Lemma 1, we consider the cases X mod Y = 0 and X mod Y ̸= 0.
Further, we assume Y > 0, since the proof for Y < 0 can be performed analogously.
Consider the case that X mod Y = 0. In this case ∃n ∈ N : n · Y = X and⌈

X
Y

⌉
= X

Y
= n (⋆).

⇒ X + (Y − 1)
Y

= n · Y + (Y − 1)
Y

= (n + 1) · Y − 1
Y︸ ︷︷ ︸

<
(n+1)·Y

Y

integer division= n · Y
Y

= n

⋆=
⌈

X

Y

⌉
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Now consider X mod Y ̸= 0. In this case ∃n ∈ N : n · Y < X < (n + 1) · Y and⌈
X
Y

⌉ integer division= n + 1.

⇒ n · Y + (Y − 1) < X + (Y − 1) < (n + 1) · Y + (Y − 1)
⇒ (n + 1) · Y − 1 < X + (Y − 1) < (n + 2) · Y − 1
integers⇒ (n + 1) · Y ≤ X + (Y − 1) < (n + 2) · Y

Y >0⇒ (n + 1) · Y
Y

≤ X + (Y − 1)
Y

<
(n + 2) · Y

Y

⇒ X + (Y − 1)
Y

integer division= n + 1

=
⌈

X

Y

⌉

■

Using Lemma 1, we use the loop parameters I, N and c to calculate the total
number of loop iterations.

M =
⌈

N − I

c

⌉
integer division= N − I + (c∓ 1)

c

(3.4)

With this result, we can then calculate M accurately from the structure of the
loop, since M is not directly known. As I is not the initial value for the fixup’s
counter, we will need to calculate the initial value based on known parameters.

ipost loop = c ·Mloop + I (3.5)

We can then use the last two equations to calculate Mfixup based on only quan-
tities that are known at either compile-time or at run-time.

Mfixup
3.1= M −Mloop

3.4= N − I + (c∓ 1)
c

−Mloop

3.5= N − I + (c∓ 1)
c

− ipost loop + I

c

= N − I + I − ipost loop + (c∓ 1)
c

= N − ipost loop + (c∓ 1)
c

(3.6)

As the above equation has a costly division operation in it, we will rearrange
it, such that it never needs to be computed at runtime.
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(3.6) integer division⇐⇒ Mfixup · c = N − ipost loop + (c∓ 1)
3.3
∈

[0, c · f [ , c > 0
]c · f, 0] , c < 0

(3.7)

Equation (3.7) is especially significant in the construction of the generalization
of Duff’s device, as seen in Section 3.3.2.

3.3.1 Updating the loop condition
In the following Sections 3.3.2, and 3.3.3 we will use that Mloop = M

f
·f . Though,

when unrolling (as described in Section 3.2), the original bound (N) is kept. Unfor-
tunately, this does not guarantee Mloop to be correct, as made clear by an example
where a loop with I = 0, N = 3, c = 1, f = 2, cmp =< is unrolled. In this example,
this would yield the following: Mloop = 4 > M = 3E, due to the fact that after
the first iteration of the unrolled loop i = 2 < 3 = N . To combat this, we set the
bound of the unrolled loop to N̂ = N − c · (f − 1). Now we will prove the conjecture
that using the bound N̂ , the unrolled loop runs Mloop times, given the operation to
calculate N̂ will not over- or underflow.

Proof. Let M ′
loop be the number of times then unrolled loop with bound N̂ runs.

The proof is complete, iff M ′
loop = Mloop. Note that c · f cannot overflow, as per

preconditions (⋆).

M ′
loop

loop construction=
⌈

N̂ − I

c · f

⌉
· f

integer division= N̂ − I + (c · f ∓ 1)
c · f

· f

= N − c · (f − 1)− I + (c · f ∓ 1)
c · f

· f

= N − c · f + c− I + c · f ∓ 1
c · f

· f

= N − I + c∓ 1
c · f

· f

⋆=
N−I+c∓1

c

f
· f

integer division=

⌈
N−I

c

⌉
f

· f

3.4= M

f
· f

3.2= Mloop

■
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Therefore we change the header condition of the unrolled loop to i ‘cmp‘ N̂ .
Note that even though, we are calculating the rounding to a multiple of f without
the need for a slow division operation.

Figure 3.4 shows the comparison of the original condition to the changed header
condition, for the loop shown in Figure 3.5. It is to be noted that the graph with
bound N̂ can be constant folded to the same size, as the original header.

Cmp b less_equal 223

Const 0x1C Is 222Phi Is 219

Const 0x0 Is 215

0 1

01

0

(a) The original condition with bound N

Cmp b less_equal 223

Phi Is 219

Const 0x0 Is 215

Sub Is 538

Const 0x1C Is 222 Mul Is 537

Const 0x3 Is 533 Sub Is 536

Const 0x4 Is 534 Const 0x1 Is 535

01

0 10 1

0 1

0 1

00

(b) The changed condition with bound N̂

Figure 3.4: The change of header condition for Figure 3.5. Please note that
through an implicit optimization by libFirm, the comparison has been
changed to ≤ and hence N to 28.

i← 0
while i < 29 do

Print(HelloWorld)
i← i + 3

end while

Figure 3.5: An example loop, for which the unrolling process will be explained

We know that c · f cannot over- or underflow, as per the preconditions laid out
in Section 3.1. Since f > 0, c · (f − 1) will therefore also not overflow. Though,
N − c · (f − 1) can still over- or underflow, due to the subtraction of c · (f − 1) from
N , and hence there is nevertheless a possibility to construct an example where this
change does not conserve semantics.

Suppose the datatype of a loop with parameters N = 2, I = 0, c = 1, cmp =<
is a 32-bit unsigned integer, and we unroll this loop by a factor of four. In this case
N̂ = 2−1 · (4−1) = −1 unsigned integer= tmax. Thus, the loop would run tmax > 2 times.

To circumvent this problem, we use Algorithm 2.1 from Section 2.9 as a check
for over- or underflows of the operation. We implement this check by placing a
block between the header and its predecessors. If an under- or overflow is detected,
the control flow will jump directly the fixup code. Otherwise, it will route the
control flow to the header and let the loop progress as normal, given that N̂ now
restores semantics in the header. Algorithm 3.3 shows the creation of this structure
in libFirm.
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Algorithm 3.3 Algorithm that creates the check to ensure N̂ does not over- or
underflow

function CreatePreHeader(firstF ixupBlock : Block, loop : Loop)
header ← loop.header
pre← NewEmptyBlock
pre.predecessors← {node|node ∈ header.predecessors, node /∈ loop}
for all phi ∈ header.phis do

phi′ ← NewPhiInBlock(pre)
phi′.predecessors← {node|node ∈ phi.predecessors, node.block /∈ loop}
phi.predecessors← {phi′} ∪ {node|node ∈ phi.predecessors, node.block ∈

loop}
for all succ ∈ phi.successors do

if succ.block dominated by firstF ixupBlock then
succ.predecessors.prepend(pre)

end if
end for

end for
(trueExit, falseExit)←CreateOverflowCondition ▷ See Section 2.9
firstF ixupBlock.predecessors.prepend(falseExit)
header.predecessors ← {trueExit} ∪ {node|node ∈ header.predecessors ∩

loop}
end function
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3.3.2 Generalized Duff’s device
Section 2.8 describes the original version of Duff’s device. The problem with

this initial approach is that it assumes c = 1, even though c is defined as any non-zero
integer in the considered loops. Therefore, a need for generalization arises.

Using equations 3.1 through 3.7 and the general idea of Duff’s device (see
Section 2.8), we will create fixup code in form of a generalized Duff’s device. The
structure of this fixup code can be seen in Figure 3.6, which we then practically
implement, using Equation (3.7), as shown in Figure 3.7.

switch Mfixup do
case f − 1

Body ▷ Fall-through
case f − 2

Body ▷ Fall-through
. . .
case 1

Body

Figure 3.6: Generalized Duff’s device fixup code based on Mfixup

switch N − ipost loop + (c∓ 1) do
case [c · (f − 1), c · f [ ▷ flip bounds for c < 0

Body
case [c · (f − 2), c · (f − 1)[ ▷ flip bounds for c < 0

Body
. . .
case [c · 1, c · 2[ ▷ flip bounds for c < 0

Body

Figure 3.7: Generalized Duff’s device fixup code based on variables present

For the fixup code to work correctly, it is to be ensured that c · f does not over-

flow, as otherwise, the interval we switch over, i.e.,

[0, c · f [ , c > 0
]c · f, 0] , c < 0

, could poten-

tially be invalid, iff an integer over- or underflow occurs, meaning

c · f < 0 , c > 0
c · f > 0 , c < 0

.

To avoid these problems altogether, we restricted c to being a compile-time con-
stant, such that for integers defined from tmin to tmax, c ∈ [ tmin

f
, tmax

f
]. Using this

restriction, it can be asserted that c · f ∈ [tmin, tmax] and therefore does not over-
flow. Algorithm 3.4 details how the mechanics described above are translated into
libFirm. At first, we duplicate the loop body f − 1 times and add keepalive edges
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to all duplicated nodes, to make sure they do not disappear through implicit prema-
ture optimizations. Then we will create the fixup header, meaning a block, with the
calculation of n := N− i+(c∓1). f−1 newly created condition blocks will then use
the calculated value by the header. In the ith (counting starts at 0) condition block,
it will be checked whether n is in the interval spanned by c ·(f−1−i) and c ·(f−i).4
After this, we will wire all duplicated blocks such that they are reachable by the
conditions. Further, upon false evaluation of a condition, the following condition is
evaluated, except if it is the last condition, in which case the false target is the post
loop block. Additionally, except in the case of the first duplicated header, they are
attached to the previous blocks as fallthrough. Lastly, the last block of the fixup
code now precedes the post loop block, and the false exit fo the last condition. An
example of the result for creating fixup code for a loop and for f = 2, as seen in
Figure 3.5, can be seen in Figure 3.10. Further, Figure 3.9 shows the completed
unroll process with the added generalized Duff’s device, given f = 2. Figure 3.8
shows the resulting general structure in pseudo-code.

function Foo(I ∈ Z, N ∈ Z, c ∈ Z\{0}, cmp ∈ {<, >,≤,≥})
i← I
if ¬SubtractionWillLeaveBounds(N − c · (f − 1)) then

while i ‘cmp‘ (N − c · (f − 1)) do
DoSomething ▷ f times
i← i + c ▷ f times

end while
end if
switch N − i + (c∓ 1) do

case [c · (f − 1), c · f [ ▷ flip bounds for c < 0
DoSomething
i← i + c ▷ Fall-through

case [c · (f − 2), c · (f − 1)[ ▷ flip bounds for c < 0
DoSomething
i← i + c ▷ Fall-through

. . .
case [c · 1, c · 2[ ▷ flip bounds for c < 0

DoSomething
i← i + c

end function

Figure 3.8: The general form of a loop starting at I counting in increments of c
up to N transformed by loop unrolling with generalized Duff’s device
fixup

4N.B.: c being positive or not determines, which limit is the upper and which is the lower bound.
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Algorithm 3.4 Algorithm to build generalized Duff’s device fixup for a given loop
in libFirm

function CreateFixupSwitch(loop : Loop, factor : N>1)
for i ∈ {0, .., (factor − 1)} do

DuplicateBody(loop)
end for
for all node ∈ allCopiedNodes do

if ¬HasKeepalive(node.link) then
AddKeepAlive(node) ▷ Prevent premature disappearance

end if
end for
relation← header.cmp.relation
inverseRelation← GetInverseRelation(relation)
duffHeader ← NewEmptyBlock
duffHeader.predecessors← {loop.header}

val ← duffHeader.addNode(N − i + (c
{
−, c > 0
+, c < 0

}
1))

i← 0
prevLast : Block
prevCond : Block
for all body ∈ duplicatedLoopBodies do

firstBlock ← GetFirstBlockInBody(body)
condBlock ← NewEmptyBlock
cond← val ‘relation‘ (factor− i) ∧ val ‘inverseRelation‘ (factor− 1− i)
condBlock.addNode(cond)

condBlock.predecessors←

{duffHeader} , i = 0
{prevCond.falseExit, prevLast} , i ̸= 0

firstBlock.predecessors← cond.trueExit
prevLast← GetLastBlockInBody(body)
prevCond← cond
for all phi ∈ body.phis do

phi.predecessors←

{phi.link.predecessors} , i = 0
{phi.link.predecessors, prevLast.exitFor(phi)} , i ̸= 0

end for
i← i + 1

end for
for all node ∈ allCopiedNodes do

if ¬HasKeepalive(node.link) then
RemoveKeepAlive(node)

end if
end for
postLoopBlock.predecessors← {prevCond.falseExit, prevLast}
RewirePhis ▷ Wire just like for duplicated loop body phi’s

end function
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i← 0
if ¬SubtractionWillLeaveBounds(29− 6) then

while i < 23 do
Print(HelloWorld)
i← i + 3
Print(HelloWorld)
i← i + 3

end while
end if
switch 31 - i do

case [3, 6[
Print(HelloWorld)
i← i + 3

Figure 3.9: An example loop, as seen in Figure 3.5, unrolled by a factor of two,
and with generalized Duff’s device fixup

3.3.3 Loop duplication
Another, perhaps simpler, way of creating fixup code is to duplicate the original

loop, such that it will run Mloop times after the unrolled loop. Just like when using
the generalized form of Duff’s device, we unroll the loop using the existing mechanics
by a factor of f . Therefore, Equations 3.1 through 3.5 still hold true.

The approach now taken is to copy the original loop, change its initial value to
ipost loop and use it as fixup code, as seen in Figure 3.11.

i← ipost loop
while i ‘cmp‘ N do

Body
i← i + c

end while

Figure 3.11: The loop to run the body the remaining Mfixup times

Proof. To prove that this fixup code preserves semantics, first note that Mloop
3.2
≤ M .

Then consider two cases:

1. Mloop = M

2. Mloop < M

In the first case, ipost loop ‘cmp‘ N must be false, as otherwise the unrolled loop
would have broken semantics, and hence the new loop is never run. Therefore:
Mfixup = 0⇒Mloop + Mfixup = M
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In the second case, the new loop runs until the condition is met. As the unrolled
loop kept the increment semantics intact, the result is hence Mfixup = M −Mloop,
which conserves the semantics, as per Equation (3.1). ■

Algorithm 3.5 shows how we create this structure in libFirm. Firstly, we copy
the loop, after which we rewire it, such that the fixup loop points to it, and its
old successors point to the fixup loop. Once this is completed, we can unroll the
original loop. Figure 3.13 shows the resulting structure of the entire process in
pseudo-code. Note that, as mentioned in Chapter 3, this process occurs before we
unroll the original loop. Figure 3.12 shows the result for unrolling the loop from
Figure 3.5 using loop duplication fixup code and a factor of two.

i← 0
if ¬SubtractionWillLeaveBounds(29− 6) then

while i < 23 do
Print(HelloWorld)
i← i + 3
Print(HelloWorld)
i← i + 3

end while
end if
while i < 29 do

Print(HelloWorld)
i← i + 3

end while

Figure 3.12: An example loop, as seen in Figure 3.5, unrolled by a factor of two,
and with loop duplication fixup

function Foo(I ∈ Z, N ∈ Z, c ∈ Z\{0}, cmp ∈ {<, >,≤,≥})
i← I
if ¬SubtractionWillLeaveBounds(N − c · (f − 1)) then

while i ‘cmp‘ (N − c · (f − 1)) do
DoSomething ▷ f times
i← i + c ▷ f times

end while
end if
while i ‘cmp‘ N do

DoSomething
i← i + c

end while
end function

Figure 3.13: The general form of a loop starting at I and counting in increments of
c up to N transformed by the created loop unrolling with loop fixup
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Algorithm 3.5 The algorithm to create a fixup loop in libFirm
function CreateFixupLoop(loop : Loop)

loop′ ← ExactCopy(loop) ▷ loop is not unrolled yet
header ← loop.header
header′ ← loop′.header
for all succ ∈ header.successors do

if succ.loop /∈ loop then
succ.predecessors← succ.predecessors\{header} ∪ {header′}

end if
end for
for all node ∈ header do

for all succ ∈ header.successors do
if succ.loop /∈ loop then

succ.predecessors← succ.predecessors\{node} ∪ {node.link}
end if

end for
end for
for all phi ∈ header.phis do

for all pred ∈ phi.predecessors do
if pred /∈ loop then

phi.link.predecessors← phi.link.predecessors\{pred} ∪ {phi}
end if

end for
end for
header′.predecessors← {header.falseExit}

end function
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3.4 Selecting an unroll-factor
Previously the unroll-factor f seemed like it was chosen somewhat arbitrar-

ily. Further, Section 2.7 describes that there are multiple factors influencing the
performance of unrolled loops. Therefore, we devise a selection process.

As a convention, we will henceforth let size be the number of libFirm-nodes in
a given loop. The – admittedly straightforward – algorithm tries to find an unroll-
factor f = 2n, n ∈ N>0, that minimizes the absolute difference between the unrolled
size (= f · original size), and a pre-determined maximum size. Algorithm 3.6 shows
the procedure used to find these values. It is to be noted that the algorithm can
also return 0 and 1, which does not fit the definition of the f described. In the case
that the algorithm returns one of these two values, we will interpret it as “do not
unroll”.

Algorithm 3.6 Algorithm to determine the optimal unroll-factor
function CalculateFactor(loop : Loop, maxSize : N>0)

loopSize← CountNodes(loop)
factorP lain← maxSize÷ loopSize
factorh ← RoundToNextHigherPowerOfTwo(factorP lain)
factorl ← factorh ÷ 2
sizeh,l ← loopSize · factorh,l

if ∥sizeh −maxsize∥ < ∥sizel −maxsize∥ then
return factorh

else
return factorl

end if
end function
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Pre loop block

Loop body

Loop header

Post loop block

#LOOP-8

Phi[loop] 218

Proj X false 229 Proj X true 228

Cond 227

Cmp b less 226

Phi Is 219

Const 0x0 Is 215

Proj Is 0 225

Proj T T_result 224

Call 222

Address &_n P 220 Const 0x1D Is 221

Proj M M 238

Call 237

Address &_printf P 232 Address &str.0 P 236Phi 406

Jmp 243

Add Is 242

Const 0x3 Is 241Phi Is 405

Jmp 216
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Figure 3.2: libFirm graph of a loop with an unknown bound
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Pre loop block

Duplicated body

Loop header

Loop body
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Post loop block
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Figure 3.3: libFirm graph of the loop shown in Figure 3.2 unrolled with a factor
of two
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3.4. SELECTING AN UNROLL-FACTOR
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Figure 3.10: Fixup code for the loop from Figure 3.5, given f = 2 in libFirm
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4 Evaluation

4.1 Unrollability
One of the primary goals of this thesis was to increase the number of loops

that are unrollable with libFirm. To evaluate to what extent this goal was achieved,
we ran the benchmark suite spec2006, and logged how many loops we encountered,
how many of them were innermost loops, how many could be unrolled using the old
method, and how many that were previously not unrollable can now be unrolled1.
Considering it is expected for many loops to have non-constant bounds, such as the
length of a container data-structure (e.g., a list or an unbounded array), we predict
the new optimization to cause a significant increase in unrollable loops. Figure 4.1
shows a table with the results. We can see, as mentioned in Section 2.7, that prior
to the new optimization, 5.87% of the innermost loops could be unrolled. Now we
can unroll an additional 7.37% of loops. Contrasted to the baseline of the constant
bound unrolled loops this is a 125.65% increase. This means we more than doubled
the number of unrollable loops using our approach. Furthermore, we note that more
than 70% of loops are innermost loops. Thus, even if unrolling nested loops were
advantageous – which is highly doubted – we would not miss out on many loops.

Type Total
count

Relative to
loops

Relative to
innermost

Relative to
constant bound

unrollable

Loops 23948 100% — —
Innermost 17014 71.05% 100% —
Constant
bound unrollable [2] 998 4.17% 5.87% 100%

Non-constant
bound unrollable 1254 5.24% 7.37% 125.65%

Figure 4.1: Comparing total loops, innermost loops and the old unrolling process
to the newly implemented proceess in terms of loops unrolled. The con-
sidered loops were all the ones present within the spec2006 benchmark
suite.

1N.B.: The test was conducted with a max loop size of ∞
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4.2. PERFORMANCE

4.2 Performance
Even though a high unrollability is a noble goal, most compiler optimizations

aim to improve the runtime of the binaries they produce. In order to evaluate the
optimization in this regard, spec2006 is used as a benchmark suite and run on a
machine with an Intel Core i7 6700 clocked at 3.4GHz. We run the tests on the
Ubuntu 16.04 operating system, with cparser [14] as the frontend for libFirm, and
the native x86 backend of libFirm in use. We use the same setup as used in the
referenced work [2], such that we can get as comparable results as possible.

To evaluate the performance gain, we run the new optimization in conjunction
with the old unrolling (see Section 3.1), given that it is intended as an extension. As
a result of there being two approaches for the fixup, as seen in Section 3.3, we will try
both of these, to see if one or the other yields better binary runtimes. Furthermore,
as described in Section 3.4, the maximum unrolled size determines the scope of the
optimization. Therefore, all sizes l ∈ {2n, n ∈ [5, 10]} are each tried for both the
fixup code strategies. The reason that we chose 32 as a lower bound, is that very
small loops are already more than eight nodes in size and hence wouldn’t be unrolled
with a maximum size that is a smaller power of two. In order to compensate for
measurement uncertainties, all benchmarks run ten times, and the average (µ), as
well as the standard deviation (σ), will be recorded and discussed. We will compare
all results to the reference benchmark run, which itself is a run of spec2006 without
any loop unrolling turned on. These reference results can be seen in Figure 4.3.

In order to evaluate our findings in terms of performance, we should compare
them to unrollability broken down by benchmark. Figure 4.2 shows the number of
unrollable loops2 compared to the total number of loops. Like in Figure 4.1, we
assume a maximum size of infinity to collect this data. Seeing this data, we would
suspect bzip2, mcf and to a lesser extent (even though it has the most unrollable
loops in absolute terms) h264ref to have the most considerable speedup.

Benchmark Loops Unrollable loops Compared to total loops

perlbench 3201 104 3.25%
bzip2 347 231 66.58%
gcc 10207 495 4.85%
mcf 74 42 56.76%
gobmk 3966 387 9.76%
hmmer 1412 239 16.93%
sjeng 410 43 10.49%
libquantum 213 27 12.68%
h264ref 2459 684 27.82%

Figure 4.2: The unrollability broken down by spec2006’s benchmarks
2Both constant and non-constant bound unrollable loops are considered together

38



4.2. PERFORMANCE

Benchmark µ σ

perlbench 245.18s 0.62s
bzip2 342.68s 0.49s
gcc 181.74s 0.45s
mcf 129.16s 0.18s
gobmk 356.15s 0.29s
hmmer 603.86s 0.07s
sjeng 393.72s 0.40s
libquantum 297.28s 0.47s
h264ref 405.12s 0.27s

Figure 4.3: Results of spec2006 after running it using libfirm without any unrolling

4.2.1 Duff’s device fixup
Figures 4.4 through 4.9 show the results we obtained. While for most bench-

marks the results hover around the 100% mark, with no significant benefit or draw-
back, h264ref seems to profit from unrolling with maximum sizes 32 and 64, by
being close to 4.5% faster. Though on account of the ratios of all the other bench-
marks only diverting by three percent or less from the reference runtimes, unrolling
does not seem to have a significant effect on performance.

The standard deviations are less than 1% across all tests, due to the highly
controlled test environment. Though they do not entirely account for the percentage
deltas, which are small, yet measurable. Further, we can expect a small percentage
of systemic errors in our measurements due to system process scheduling and similar
factors. Runtimes are, independent of the maximum loop size, within [99%, 101%],
so we can still consider them to be within the margin of error.

4.2.2 Loop fixup
Figures 4.10 through 4.15 show the results obtained for the unrolling run with

the loop fixup code. As was the case in Section 4.2.1, there does not seem to be any
noticeable performance gain or loss in any benchmark, except for h264ref, which
again sped up through unrolling by up to 5%. The other benchmarks were, compared
to the reference, within the interval [99%, 103%]. It further becomes evident that
there is no correlation between unrollability and performance gain, since, while
h264ref has one of the highest unrollabilities and gains performance, bzip2 and
mcf have higher unrollabilities, yet see no improvement.
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Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 245.60s 0.15s 245.18s 0.62s 100.17%
bzip2 349.34s 0.50s 342.68s 0.49s 101.94%
gcc 180.70s 0.31s 181.74s 0.45s 99.43%
mcf 129.34s 0.40s 129.16s 0.18s 100.14%
gobmk 354.00s 0.42s 356.15s 0.29s 99.40%
hmmer 603.70s 0.15s 603.86s 0.07s 99.97%
sjeng 390.68s 0.23s 393.72s 0.40s 99.23%
libquantum 297.33s 0.61s 297.28s 0.47s 100.02%
h264ref 383.62s 0.73s 405.12s 0.27s 94.69%

Average 99.44%

Figure 4.4: Results of spec2006 after unrolling with maximum size 32 using the
generalized Duff’s device fixup strategy

Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 243.65s 0.55s 245.18s 0.62s 99.37%
bzip2 349.74s 1.07s 342.68s 0.49s 102.06%
gcc 181.47s 0.30s 181.74s 0.45s 99.86%
mcf 129.68s 0.60s 129.16s 0.18s 100.40%
gobmk 354.12s 0.22s 356.15s 0.29s 99.43%
hmmer 603.80s 0.19s 603.86s 0.07s 99.99%
sjeng 390.77s 0.43s 393.72s 0.40s 99.25%
libquantum 297.82s 2.06s 297.28s 0.47s 100.18%
h264ref 383.16s 0.49s 405.12s 0.27s 94.58%

Average 99.46%

Figure 4.5: Results of spec2006 after unrolling with maximum size 64 using the
generalized Duff’s device fixup strategy
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Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 246.36s 0.26s 245.18s 0.62s 100.48%
bzip2 342.24s 0.32s 342.68s 0.49s 99.87%
gcc 181.36s 0.16s 181.74s 0.45s 99.79%
mcf 129.57s 0.47s 129.16s 0.18s 100.32%
gobmk 356.85s 0.31s 356.15s 0.29s 100.19%
hmmer 603.68s 0.22s 603.86s 0.07s 99.97%
sjeng 394.15s 0.12s 393.72s 0.40s 100.11%
libquantum 297.32s 0.40s 297.28s 0.47s 100.01%
h264ref 401.97s 0.33s 405.12s 0.27s 99.22%

Average 100.00%

Figure 4.6: Results of spec2006 after unrolling with maximum size 128 using the
generalized Duff’s device fixup strategy

Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 248.95s 0.69s 245.18s 0.62s 101.54%
bzip2 348.61s 0.48s 342.68s 0.49s 101.73%
gcc 181.01s 0.22s 181.74s 0.45s 99.60%
mcf 129.62s 0.43s 129.16s 0.18s 100.36%
gobmk 355.51s 0.22s 356.15s 0.29s 99.82%
hmmer 603.34s 0.17s 603.86s 0.07s 99.91%
sjeng 396.56s 0.37s 393.72s 0.40s 100.72%
libquantum 297.14s 0.34s 297.28s 0.47s 99.95%
h264ref 402.13s 0.47s 405.12s 0.27s 99.26%

Average 100.32%

Figure 4.7: Results of spec2006 after unrolling with maximum size 256 using the
generalized Duff’s device fixup strategy
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Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 252.26s 0.29s 245.18s 0.62s 102.89%
bzip2 349.73s 0.34s 342.68s 0.49s 102.06%
gcc 180.59s 0.30s 181.74s 0.45s 99.37%
mcf 129.43s 0.45s 129.16s 0.18s 100.21%
gobmk 353.90s 0.25s 356.15s 0.29s 99.37%
hmmer 603.68s 0.19s 603.86s 0.07s 99.97%
sjeng 390.69s 0.22s 393.72s 0.40s 99.23%
libquantum 297.20s 0.47s 297.28s 0.47s 99.97%
h264ref 392.48s 0.71s 405.12s 0.27s 96.88%

Average 99.99%

Figure 4.8: Results of spec2006 after unrolling with maximum size 512 using the
generalized Duff’s device fixup strategy

Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 252.07s 0.23s 245.18s 0.62s 102.81%
bzip2 349.04s 0.46s 342.68s 0.49s 101.86%
gcc 181.40s 0.45s 181.74s 0.45s 99.82%
mcf 129.58s 0.49s 129.16s 0.18s 100.33%
gobmk 356.92s 0.23s 356.15s 0.29s 100.22%
hmmer 603.31s 0.14s 603.86s 0.07s 99.91%
sjeng 390.46s 0.29s 393.72s 0.40s 99.17%
libquantum 297.96s 2.23s 297.28s 0.47s 100.23%
h264ref 396.44s 0.26s 405.12s 0.27s 97.86%

Average 100.24%

Figure 4.9: Results of spec2006 after unrolling with maximum size 1024 using the
generalized Duff’s device fixup strategy

42



4.2. PERFORMANCE

Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 243.77s 0.62s 245.04s 0.31s 99.48%
bzip2 339.12s 0.54s 342.69s 0.38s 98.96%
gcc 181.65s 0.18s 181.86s 0.26s 99.88%
mcf 128.88s 0.38s 129.60s 0.49s 99.44%
gobmk 357.52s 0.47s 355.54s 0.09s 100.56%
hmmer 603.34s 0.09s 603.98s 0.13s 99.89%
sjeng 393.71s 0.31s 393.89s 0.32s 99.95%
libquantum 297.27s 0.47s 297.30s 0.56s 99.99%
h264ref 402.55s 0.54s 402.67s 0.44s 99.97%

Average 99.79%

Figure 4.10: Results of spec2006 after unrolling with maximum size 32 using the
loop fixup strategy

Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 252.32s 0.63s 245.04s 0.31s 102.97%
bzip2 349.91s 1.04s 342.69s 0.38s 102.11%
gcc 180.74s 0.32s 181.86s 0.26s 99.38%
mcf 129.65s 0.62s 129.60s 0.49s 100.04%
gobmk 353.93s 0.16s 355.54s 0.09s 99.55%
hmmer 603.71s 0.24s 603.98s 0.13s 99.96%
sjeng 390.49s 0.28s 393.89s 0.32s 99.14%
libquantum 298.51s 2.76s 297.30s 0.56s 100.41%
h264ref 392.60s 0.29s 402.67s 0.44s 97.50%

Average 100.12%

Figure 4.11: Results of spec2006 after unrolling with maximum size 64 using the
loop fixup strategy
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Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 251.88s 0.21s 245.04s 0.31s 102.79%
bzip2 349.04s 0.45s 342.69s 0.38s 101.85%
gcc 181.25s 0.22s 181.86s 0.26s 99.67%
mcf 129.86s 0.52s 129.60s 0.49s 100.20%
gobmk 356.96s 0.06s 355.54s 0.09s 100.40%
hmmer 603.31s 0.14s 603.98s 0.13s 99.89%
sjeng 390.44s 0.21s 393.89s 0.32s 99.12%
libquantum 297.42s 0.41s 297.30s 0.56s 100.04%
h264ref 396.57s 0.30s 402.67s 0.44s 98.49%

Average 100.27%

Figure 4.12: Results of spec2006 after unrolling with maximum size 128 using the
loop fixup strategy

Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 246.02s 0.70s 245.04s 0.31s 100.40%
bzip2 349.61s 0.38s 342.69s 0.38s 102.02%
gcc 180.83s 0.25s 181.86s 0.26s 99.43%
mcf 129.77s 0.30s 129.60s 0.49s 100.13%
gobmk 353.86s 0.22s 355.54s 0.09s 99.53%
hmmer 603.65s 0.16s 603.98s 0.13s 99.95%
sjeng 390.45s 0.32s 393.89s 0.32s 99.13%
libquantum 297.06s 0.25s 297.30s 0.56s 99.92%
h264ref 383.45s 0.18s 402.67s 0.44s 95.23%

Average 99.53%

Figure 4.13: Results of spec2006 after unrolling with maximum size 256 using the
loop fixup strategy
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Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 243.47s 0.36s 245.04s 0.31s 99.36%
bzip2 349.52s 0.59s 342.69s 0.38s 101.99%
gcc 181.78s 0.53s 181.86s 0.26s 99.96%
mcf 129.75s 0.46s 129.60s 0.49s 100.11%
gobmk 354.08s 0.29s 355.54s 0.09s 99.59%
hmmer 603.63s 0.06s 603.98s 0.13s 99.94%
sjeng 390.44s 0.25s 393.89s 0.32s 99.12%
libquantum 297.29s 0.36s 297.30s 0.56s 100.00%
h264ref 383.05s 0.20s 402.67s 0.44s 95.13%

Average 99.47%

Figure 4.14: Results of spec2006 after unrolling with maximum size 512 using the
loop fixup strategy

Result Reference
Benchmark µ σ µ σ Ratio to reference

perlbench 248.73s 0.53s 245.04s 0.31s 101.51%
bzip2 348.71s 0.46s 342.69s 0.38s 101.76%
gcc 181.01s 0.27s 181.86s 0.26s 99.53%
mcf 129.49s 0.51s 129.60s 0.49s 99.92%
gobmk 355.54s 0.13s 355.54s 0.09s 100.00%
hmmer 603.39s 0.13s 603.98s 0.13s 99.90%
sjeng 396.64s 0.32s 393.89s 0.32s 100.70%
libquantum 297.20s 0.36s 297.30s 0.56s 99.97%
h264ref 402.27s 0.58s 402.67s 0.44s 99.90%

Average 100.35%

Figure 4.15: Results of spec2006 after unrolling with maximum size 1024 using
the loop fixup strategy
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5 Conclusion
The results, discussed in Section 4.2, fall in line with the results from the

ones for static bound unrolling [2]. They, therefore, suggest that there is now em-
pirical evidence that independent of the unrolling method, and the factor chosen,
loop unrolling does not yield a significant performance benefit in the current state
of libFirm. Even though more loops were able to be unrolled through the added
loop optimization, the increase in unrollability only led to about one in ten loops
being unrolled, which certainly is a contributing factor to the underwhelming im-
provements. Probably some restrictions, such as disallowing break-like structures,
are too limited and could be dealt with through further development. Other restric-
tions, such as the conservative alias or call manipulation checks for the bound are
unavoidable if the semantics are to be kept and forthright inherent to the task at
hand. Inconsiderate of these reasons, even the benchmarks with high unrollability
of their loops, did not seem to benefit (with h264ref being an exception). Further,
it can be concluded that the choice of the fixup code strategy seems to have a neg-
ligible impact on performance. Due to the very low standard deviations across all
benchmarks, the results also lead to a firm belief the obtained results are trustable
and hence provide a solid foundation for empirical conclusions.

Thus, the eminent challenge seems to be the lack of performance gain through
unrolling loops. Therefore, it would be a natural starting point to use the unrolled
loops and optimize their bodies further. An optimization could be created that
takes advantage of the implicitly added semantics as for having a specific modulus,
respective to f , for each copied block. Before this potential is used, it likely would
be a more lucrative endeavor, to stick to less fancy optimizations that can take
advantage of the unrolled loop structures, such as automatically parallelizing non-
conflicting operations.

Another factor that might have influenced the results was the method used
to determine the unroll-factor. In the future, it could be evaluated, whether the
performance would improve through a more sophisticated unroll-factor selection,
with a multi-parameter cost function.

Once these changes are in-place, the feasibility of loop unrolling in libFirm
should be reevaluated.

Currently, the efforts of increasing unrollable loops seem to exceed the benefits.
Though, if the desire for more unroallability should pick up again, it would seem
a good point to look at other loop structures, such as loops with breaks, or a non-
counting loop, unlike the ones examined in this thesis.
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