
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Protection of
Heap-allocated Memory

using Low Fat Pointers in
libFirm

Bachelorarbeit von

Achim Kriso

an der Fakultät für Informatik

P1

baseP1

sizeP1

Jmp

P2

baseP2

sizeP2

Jmp

Phi

basePhi sizePhi

Jmp

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: M. Sc. Andreas Fried

Abgabedatum: 24. März 2020

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Zusammenfassung

Memory safety during program execution is a notoriously difficult problem. It is
responsible for numerous critical security vulnerabilities in commonly used software.
Heap buffer overflows are a common subset of memory safety errors and are further
explored. We attempt to mitigate this problem by using Low Fat Pointers to detect
pointers leaving their allocation and catch potential errors before they occur. This
thesis implements this technique in libFirm as an optional compiler phase. We were
able to detect known out of bounds pointers in the SPEC2006 benchmark and find
undefined behaviour within in libFirm. The performance and memory usage of our
implementation is comparable with the existing implementation for LLVM.

Es ist bekanntlich ein schwieriges Problem, den Programmspeicher sicher zu
verwenden. Speicherfehler sind die Ursache für viele kritische Sicherheitslücken in
alltäglich verwendeter Software. Überläufe von heap-allokierten Buffern sind eine
häufig auftretende Art an Speicherfehlern und werden in dieser Arbeit behandelt.
Wir versuchen dieses Problem zu minimieren, indem wir Low Fat Pointer verwenden
um Zeiger zu entdecken, die ihre Allokation verlassen haben und somit potentielle
Fehler zu aufzuspüren, bevor sie auftreten. Dafür implementieren wir diese Technik
in libFirm als eine optionale Kompilierphase. Wir waren damit in der Lage, bekannte
Speicherfehler in der SPEC2006 benchmark zu erkennen und haben undefiniertes
Verhalten in libFirm gefunden. Die Performanz und der Speicherverbrauch unsere
implementation ist vergleichbar mit der existierenden Implementation für LLVM.

Contents
1 Introduction 7

1.1 Outline . 7

2 Basics and Related Works 9
2.1 Compiler . 9
2.2 Static Single Assignment Form (SSA) 9
2.3 libFirm . 11

2.3.1 Firm . 11
2.4 Related Works . 13

2.4.1 Shadow Memory . 13
2.4.2 Instrumentation . 14
2.4.3 Custom Memory Allocators 14
2.4.4 Implementations . 14

2.5 Low Fat Pointers . 14
2.5.1 Low Fat Pointer Memory Allocator 15
2.5.2 Reconstructing Metadata . 16
2.5.3 Binary Compatibility . 17
2.5.4 Metadata Propagation . 17
2.5.5 Bounds Checking . 17
2.5.6 Tradeoffs . 18

3 Design and Implementation 19
3.1 Memory Allocator . 19
3.2 Instrumentation . 20

3.2.1 Calling Memory Allocator . 20
3.2.2 Lookup Table . 20
3.2.3 Inserting Bound Checks . 22
3.2.4 Finding Metadata . 22

3.3 Problem . 25

4 Evaluation 27
4.1 Performance . 27
4.2 Memory Usage . 27
4.3 Precision . 29
4.4 Compilation Speed . 30
4.5 Results . 30
4.6 Other . 30

5

Contents

5 Conclusion 31
5.1 Future Work . 31

6

1 Introduction
Memory safety is a very common cause for security vulnerabilities[1]. An important
subset of memory safety are heap buffer overflows, which are the focus of this thesis.
In most commonly used operating systems the memory of a process has both a heap
and a stack. The stack keeps track of local variables and function calls. The heap
serves as memory which can be allocated and freed by the programmer at will and
therefore be used for arbitrary amounts of time. Usage of heap memory carries
its own risk in programming languages like C, which rely on the programmer to
allocate and free from the heap. It is an easy mistake to accidentally read, or write
outside the allocated area. This can either crash the program, if the memory was
not mapped by the operating system, or silently corrupt data which is used by the
program in other places. Errors like this can be exceedingly difficult to find.

To solve this problem we implement an additional compiler phase in the libFirm
compiler framework. This phase inserts checks into the libFirm IR to verify memory
accesses on the heap.

1.1 Outline
We explain the basics required to understand the content of this thesis, by starting
with a summary of a compiler’s architecture and related concepts. We continue with
introducing libFirm and explaining its relevant concepts. From section 2.4 we present
an overview of memory error detection technique, as well as several implementation
of similar existing tools and how they use these techniques. In section 2.5 we describe
the key concepts presented by [2] regarding Low Fat Pointer. Starting from chapter 3
we discuss how we integrated Low Fat Pointers in libFirm to build a working heap
memory error detector. We especially focus on how to manipulate libFirm main
datastructure, the firm graph. In chapter 4 we benchmark our memory error detector
and compare the results against the results of [2]. Finally, in chapter 5 we discuss
the results and possible improvements to our current implementation.

7

2 Basics and Related Works

2.1 Compiler
A compiler’s purpose is to translate programs written in a higher level language into a
lower level language, usually assembly or machine code. Modern compilers consist of
several parts. The front end analyses the input and transforms it into an intermediate
representation. This includes parsing the input into an abstract syntax tree (AST),
which is further analysed to check for the correct types and perform preliminary
optimizations usually specific to the input language. The AST is transformed into
an intermediate representation (IR) by the front end and passed to the middle end.
The intermediate representation is a language and hardware agnostic representation
of a program used by the middle end to apply general optimizations. Finally the
resulting IR is passed to the back end where hardware specific optimizations are
performed and the final assembly created. An IR allows both language front ends as
well as hardware back ends to only target the IR. With n language implementations
targeting m hardware architectures, only n front ends and m back ends are required.
Implementing the same without using an IR would require n · m different compilers.

2.2 Static Single Assignment Form (SSA)
Intermediate representations which are in static single assignment form or SSA [3]
have the property that every variable can only be assigned once. This constraint
allows for easier reasoning and subsequent optimization of the program code. For
example, it is trivial to find the definition of a variable in SSA while it is much
harder to do the same in non-SSA programs since the definition of a variable can
change. To satisfy this constraint, the basic block of a variable assignment needs
to dominate [4] all blocks which use that variable. This is a problem for non-linear
control flow like if-conditions or loops, which change a variable in their body.
As an example, a control flow graph is shown in Figure 2.1. Depending on the

value of x1 it executes the left or right path which both change the variable. After
the conditional it would be impossible to get the resulting value of both paths in a
new variable. To solve this issue SSA uses a phi function which takes two or more
variables and returns the correct variable depending which path the control flow has
taken.

Figure 2.2a is a simple C-like program which contains a loop and prints all numbers
from 0 to 8. The left version is not in SSA-form because it reassigns the variable i in
the body of the loop. After transforming it into Figure 2.2b, phi is used to decide if

9

2.2. STATIC SINGLE ASSIGNMENT FORM (SSA)

x1 = ...
x1 > 3

x2 = 3 x3 = 5

x4 = phi(x2, x3)

Figure 2.1: Controlflow graph in SSA which requires a phi.

void main () {
int i = 0;
while (true) {

if (i >= 9) {
break;

}
print(i);
i = i + 1;

}
}

(a) Program not in SSA-form.

void main () {
int i1 = 0;
while (true) {

i2 = phi(i1 , i3)
if (i2 >= 9) {

break;
}
print(i);
i3 = i2 + 1;

}
}

(b) Program in SSA-form.

Figure 2.2: Simple program before and after SSA-transformation.

10

2.3. LIBFIRM

i is 0 if the loop was just entered, or the value of the last iteration. The phi function
allows every program to be represented in SSA-form.

2.3 libFirm
libFirm[5] is a compiler framework developed since 1996 at KIT. It is a C library
and can be used in compilers as the middle end and back end. Most notably libFirm
uses a directed graph as intermediate representation called firm.

2.3.1 Firm
Firm is the only intermediate representation used in the entire compilation process of
libFirm and gets transformed in each compilation phase. It is a graph and based on
SSA which is inherent to its structure, where every variable is represented as a node.

Every function gets its own graph. The nodes of the graph are either values, basic
blocks or describe the control flow. Values are usually the result of an instruction or
constant values. There are, however, more unusal values:

• Memory is treated as a value. Firm uses it to define the order of all memory
accesses. If a node requires memory, it returns it as well to define the order
of memory accesses where necessary. Usually there is only one memory value
which is passed along the path from the start to the end of a function.

• Tuple is a collection of values. Their individual elements can be separated
using projection nodes. They, for example, appear in load nodes, which return
the memory value and the loaded value.

The edges in firm describe the relation between the nodes. There are four types of
edges [6]:

• Data Dependencies (black): These are the most common edges and describe
what data a node depends on.

• Reversed Control Flow Edges (red): Reversed Control Flow Edges describe
the order of basic blocks. They can only start at basic blocks and point to
control flow nodes (like jump nodes).

• Memory Dependencies (blue): Since the memory value is passed from one
node to another to define the order of memory accesses, memory dependency
edges are used to describe this dependency. Usually every used memory value
originates from the one given at the beginning of the function. There is an
exception to this rule which is used in subsection 3.2.2 and explained in more
detail there.

• Keep (violet): If code is not reachable via the above dependencies but reachable
by the control-flow (like infinite loops) keep edges are used.

11

2.3. LIBFIRM

Start

Proj MJmp

Phi

Const 0

Const 9

Cmp greater

Cond

Proj trueProj false

Jmp

Address &print

Call print

Proj M

Add

Const 1

End

Figure 2.3: A moderately complex firm graph, demonstrating most important con-
cepts required by this thesis.

Unlike the entire graph, the subgraph inside a basic block forms a directed acyclic
graph. As a matter of fact, only phi-nodes are able to introduce cycles into the firm
graph, in order to form loops.
Figure 2.3 is a simplified1 firm graph of Figure 2.2. It starts at the pink start-

node which marks the beginning of the function and returns a tuple containing the
memory value and another tuple of all function arguments. Following the control flow
jmp-node, we reach the second highest basic block which contains the if-condition
inside the loop. The phi-node represents i2 in Figure 2.2b and is the left constant
zero or the result of the add-node in the basic block directly below this one. The
result of the phi-node is compared against a constant nine with the cmp-node.

1There is another phi-node for the memory value, which is left out because is only increases the
complexity and is not important for this thesis.

12

2.4. RELATED WORKS

Depending on the result, a different control flow path is taken with the use of the
cond-, proj false and proj true nodes. If the result is true, we reach the third basic
block. This block calls the print function with the call-node. Since a function can
access memory, every call-node requires a memory value and therefore has a memory
dependency. Additionally, every call-node needs the address where the function is
located in memory, which is usually a constant address. Here, it is the address-node
&print. Finally, depending on the function signature, the call-node needs zero or
more additional arguments. Because the print function only takes one argument
there is one more data dependency from the call-node to the phi which represents
the loop variable and is supposed to be printed. The current basic block additionally
increases the loop variable with the add-node which takes the last value from the
phi-node and adds a constant one value. Once this block is finished the control flow
jumps back to the basic block above. This continues until the condition is false
and the end-node is reached which represents the end of the function and takes the
memory value.

2.4 Related Works

Detection of memory errors has been actively researched and there are multiple
implementations of different approaches. They generally use a combination of three
techniques. There is shadow memory to keep track of metadata, instrumentation
to manipulate the programs behaviour, and a custom allocator to maintain the
invariants expected by the error detection scheme.

2.4.1 Shadow Memory

Shadow memory is a dedicated area of memory which stores metadata about every
piece of data of the running program. Every segment of memory in the address space
gets associated with a segment of memory in the shadow space. Therefore tools that
utilize shadow memory usually incur a high memory footprint. This mapping of an
address to shadow memory is done either by calculation or by using a lookup table.
The latter requires a pointer indirection which costs significant performance, so the
former is generally preferred. The data stored in the shadow space can be used to
check boundaries or similar.
As an example, we could use shadow memory to tell if a byte is allocated when

a corresponding bit in shadow memory is set. We map 8 byte chunks of arbitrary
memory to a byte of shadow memory where each bit corresponds to a byte in the
chunk. Given a pointer p we can calculate the corresponding shadow byte using
b = p

8 + o where o is some offset to ensure that the shadow memory doesn’t start at
NULL. Assuming the 8 byte chunks are aligned we can use p % 8 to find the bit which
corresponds to p.

13

2.5. LOW FAT POINTERS

2.4.2 Instrumentation
A common approach to check if a memory error occurred is to verify every memory
access (pointer dereference). To achieve this behaviour, instrumentation code is
inserted into the program before the memory access to do this check. If such a check
fails during program execution, it can be reported and the program terminated. One
differentiates between compile-time and binary instrumentation, where binary instru-
mentation is applied on a binary executable, while compile-time instrumentations is
additional code inserted by the compiler into the compiled program.

2.4.3 Custom Memory Allocators
Customizing the memory allocator allows invariants about memory to be upheld.
These invariants are used to verify memory accesses. For example such invariants can
be memory allocations at certain positions in the address space or redzones around
an allocation.

2.4.4 Implementations
AddressSanitizer [7] is a popular tool for detecting memory errors, included in the
LLVM compiler framework. It leverages all three of the above mentioned techniques.
It uses shadow memory which is between 1

8 to 1
128 the size of used memory. This

shadow memory encodes whether a byte is currently allocated. The shadow memory is
created and maintained by a custom allocator. Finally, compile-time instrumentation
is used to verify memory accesses as described in subsection 2.4.2.

Memcheck[8] is a memory checker implemented on the Valgrind framework[9].
Valgrind analyzes a binary and constructs its own processor independent IR upon
which several program analysis tools are built. Memcheck can detect several classes
of memory errors, including out of bounds memory accesses, incorrect freeing of
memory, using uninitialized values and memory leaks. Memcheck instruments the
IR with the necessary checks and finally executed. It uses shadow memory to track
which bit values are undefined. Using Memcheck a program runs 20-30 times slower
than without.

Dr. Memory[10] is another tool find memory errors. It uses shadow memory to
categorize every byte into unadressable, uninitialized and defined. This information
can then be used to detect out of bounds accesses and reading of uninitalized
memory. Using a system similar to a tracing GC, it can detect memory leaks based
on reachability. It is built upon DynamoRIO[11], a code manipulation system.

2.5 Low Fat Pointers
Fat Pointers are pointers which carry metadata about their corresponding memory
allocation and therefore take up more memory (hence the name) than normal native
pointers to store their metadata.

14

2.5. LOW FAT POINTERS

struct {
void *ptr;
void *base;
size_t size;

}

They can be represented using a struct with the original pointer ptr and two
additional members for the base and size of its allocation. base points to the
first byte of the allocation and size stores the amount of bytes allocated. Pointer
arithmetic just changes ptr. Everytime such a Fat Pointer is dereferenced it is
possible to check if ptr within the allocation bounds by evaluating if base ≤ ptr <
base + size is true. If this check fails, we know that ptr has left its allocation.
Low Fat Pointers were first proposed in [12] and are like Fat Pointers in that

they remember their bounds metadata, but have the same size as native pointers.
They encode their metadata within the pointer where they utilize the first few most
significant bits to store their metadata. Both Fat Pointers and Low Fat Pointers
break binary compatibility. If a program is compiled with Fat Pointers but is linking
a library which does not support them, both will likely malfunction. Since the
data layout of a Fat Pointer and a native pointer differ, both sides need to use the
same pointer type, otherwise the calling convention is broken when passing pointers
across API boundaries. When using the original Low Fat Pointer encoding, the
calling convention holds but their respective usage is not the same. For example it is
generally not possible to just dereference a Low Fat Pointer because the metadata in
the MSB changes the value of the pointer.
Low Fat Pointers as presented in [2] use a different encoding which leverages

the large virtual address space in 64-bit systems to encode their metadata in their
value, the address they point to. This value can be used to look up the pointer’s
corresponding allocation size inside a table. Additionally, this encoding requires all
allocations to be aligned to a multiple of their size. This is required to allow for
the calculation of the allocation base using only the pointer and its size. Low Fat
Pointers using this encoding are ordinary pointers with all the properties of native
pointers and therefore solve the binary compatibility problem. They can be used by
software compiled without consideration for Low Fat Pointers.

2.5.1 Low Fat Pointer Memory Allocator
The entire virtual address space is divided into regions of equal size. The size is
chosen as some 2n. We follow the original paper in our choice of n = 32 (4GB). Each
region is aligned to its size, meaning that the starting address of a region is a multiple
of 2n. A subset of all regions is chosen to serve as the heap. All other regions are
not mapped by the allocator and are free to be used by other allocators, e.g. the
standard libc allocator. To implement Low Fat Pointers there are two requirements.

1. Every region only allocates objects with a certain size. If no region exists for
an allocation size, the allocation is padded until it does. Each region serves as

15

2.5. LOW FAT POINTERS

a bucket or sub-heap of an allocation size.

2. All objects must be aligned to their size. (The position has to be a multiple of
their size.)

Again we follow [2] in choosing the allocation sizes of

sizes = [16B, 32B, 48B, 64B, . . . , 8KB, 16KB, 32KB, 64KB, . . . , 1GB]

using a total of 530 regions. Finally, each region has an index, starting at index #0
to #655352 in the case of a 4GB region size. We can calculate the index of a region
which contains a given pointer by shifting the pointer by n bits to the right.

2.5.2 Reconstructing Metadata
To check whether a pointer p is within the bounds of its allocation, we need two values:
the allocation’s basep and sizep. p is within bounds if basep ≤ p < basep + sizep.

First, we determine the region index of p by shifting it 32-times to the right. sizep

is reconstructed with the help of a lookup table, indexed by the region index. The
lookup table stores the allocation size of every region.
Finally, basep can be calculated by using the following calculation:

basep = (p/sizep) ∗ sizep

or the equivalent but more efficient

basep = p − (p % sizep)

where /, ∗ and % represent the 64-bit unsigned integer division, multiplication and
modulo operations3.
This reconstruction procedure assumes that p is within bounds. If p has left its

allocation, the calculated metadata will be the metadata of the allocation which
contains the pointer. It is up to the Low Fat Error detector to ensure that it only
calculates the metadata of a pointer which upholds this precondition. We only
need to consider this problem when performing pointer arithmetic and it is further
elaborated in subsection 2.5.5.

Calculating the metadata is a fairly expensive operation since it requires a division
operation which requires up to 123 clock cycles [14]. It should be only used when
absolutely necessary.

2Modern 64-bit systems, only have a 48-bit address space [13], which lowers the amount of regions
significantly.

3libFirm will optimize the first calculation into the second.

16

2.5. LOW FAT POINTERS

2.5.3 Binary Compatibility
Maintaining binary compatibility is a goal of Low Fat pointers. Therefore it is vital
to ensure the program still works if it is passed non-Low-Fat Pointers by external
functions. This is achieved by giving every pointer that is not a Low Fat Pointer the
base of NULL and size of UINT64_MAX. Any bound check will pass with this metadata.
Naturally all safety guarantees get erased for such pointers.

For the implementation this implies that the lookup table has the value UINT64_MAX
for every unused region. In this case the base is:

basep = p − (p % UINT64_MAX) = p − p = NULL

2.5.4 Metadata Propagation
When discussing how to determine the metadata, we need to differentiate between
two types. There is implicit metadata and concrete metadata. Implicit metadata is
the metadata that is stored implicitely within a Low Fat Pointer but we don’t have
direct access to. Concrete metadata is metadata we have direct access to, like if it is
stored inside a variable. To check if a pointer is within correct bounds, a pointer
needs to have its concrete metadata associated with it, which it can use during a
bound check. This metadata is stored in two variables (or nodes in the case of a
firm graph) and needs to be determined for every pointer used in a bounds check. In
most cases it would be possible to fallback to use the fairly expensive calculation
of the metadata using the formula in subsection 2.5.2. Pointer arithmetic presents
the exception to the rule because addition and subtraction are the only operations
which can change the value of the pointer, possibly moving it into the range of a
different allocation.
To avoid the calculation there are other cases where we can infer the metadata

based on its creation:
If p is the result of a phi, we can use the metadata of its inputs to determine the

metadata of p. p needs to inherit the metadata of the input which was returned
by phi. We create a new phi for both the base and size metadata, which take the
corresponding metadata of phis inputs. These new phis will result in the correct
concrete metadata for p.

Constant pointers like the null pointer can be hardcoded with the UINT64_MAX as
size and NULL as base.

If p is the result of an allocation, the function signature of the allocation function
usually can tell us the size metadata of the newly allocated pointer. The returned
pointer is pointing at the beginning of the allocation, therefore representing the base.
In all other cases the metadata is calculated as described in subsection 2.5.2.

2.5.5 Bounds Checking
Naively, one might only check if a pointer is valid if it is dereferenced. This ensures
that every memory access is valid under the assumption that the concrete metadata

17

2.5. LOW FAT POINTERS

values currently associated with this pointer are valid. As described in subsection 2.5.2,
calculating a pointer’s metadata after performing pointer arithmetic can lead to a
wrong result. If the metadata of the original pointer is available this is not an issue
since we can just inherit it. This is impossible if the result of pointer arithmetic
is passed to a function as an argument. The function does not have access to the
metadata of the original pointer and can only calculate it. To ensure that it always
calculates the correct metadata, the pointer must be bound checked before it is
passed to the function. Everytime a pointer escapes the function context like this,
it needs to be checked if it is still within its bounds. Other cases of such escapes
include if a pointer is returned by a function or if the pointer is stored in memory.
This implies the invariant that pointers entering a new function context have to

be within bounds. Therefore, memory accesses or escapes in this new function do
not need to be bound checked if the pointer does not change. Since pointers can only
change because of pointer arithmetic we only need to insert bound checks if such a
change occured.
There is a minor optimization regarding bound checking: Instead of calculating

basep ≤ p and p < basep + sizep, we can use the overflow semantics of binary
numbers to only check p − basep < sizep. If p is less than basep then the subtraction
underflows resulting in a larger unsigned value than sizep.

2.5.6 Tradeoffs
While Low Fat Pointers are an elegant technique to remember the meta-information
of a pointer, this section discusses their drawbacks.

There is only a very limited set of sizes that can be allocated. Different sizes need
to be padded and the pointers forget the exact size which they were supposed to
be allocated as. This results in out-of-bounds accesses not being detected if they
are within the additional padding. This behaviour, however, cannot cause memory
corruption since only the padding is read or written.

However, if Low Fat Pointers are only used for testing, they might not detect out
of bounds accesses which can corrupt memory if the program is shipped without Low
Fat Pointer support. Another possible solution to this problem is to first profile all
allocation sizes and then configure the allocation sizes used by the custom allocator
correspondingly.
Regions can overflow if too many allocations of the same size are made. In this

case the allocator defers to the standard libc allocator. Pointers which don’t originate
from the low fat memory allocator will pass all bound checks because their metadata
has the base of NULL and size of UINT64_MAX.
With our configuration a program would need to allocate more than 4GB of a

single size of allocations. Such programs are deemed rare enough to not explore a
more dynamic approach. One can always change the region size if it is necessary.

18

3 Design and Implementation

The implementation consists of two parts: 1.) The memory allocator for assuring the
positioning invariants of allocations. 2.) The additional compiler phase which inserts
compile-time instrumentation to calculate pointer metadata and check whether they
are within the correct bounds.

3.1 Memory Allocator

To implement the memory allocator as described in subsection 2.5.1, we use freelists.
Since each region serves as a heap for a certain allocation size, each region has a
freelist to keep track of available memory. An advantage of a fixed set of possible
allocation sizes is that there is no need to iterate over the freelist since all elements
are the same size and we can just take the first element and do not have to consider
memory fragmentation.

As each region is 4GB in size, we do not initialize the entire freelist in the beginning,
to avoid physically allocating this much memory in the beginning. Instead, we split
each region into two parts. The first part of a region is the freelist which contains
the currently available segments of memory which can be allocated. The second
part directly follows after the freelist and is unallocated memory which takes up the
remainder of the region and is therefore called remainder. If the freelist is exhausted
it grows into the remainder for additional memory to allocate.

The allocator is initialized on the first invocation of the allocator. It reserves and
maps the memory for all used regions using mmap and initializes all freelists. The
mapped memory is read and write. We follow [2] by using the NO_RESERVE flag to
not reserve physical memory.
To implement an allocator which can be a drop-in replacement for the standard

libc allocator we need to implement ten functions [15].
To support multiple threads using the allocator we give a unique mutex to each

region. Multiple threads can allocate in parallel as long as their allocation sizes are
different.

The use of this allocator is only sensible when the entire low fat sanitizing scheme
is used including the required instrumentation. Therefore, we statically, link the
allocator and specifically call the allocation functions of our custom allocator which
is further explained in subsection 3.2.1. External libraries which are not compiled
with the low fat sanitizer continue to use their standard allocator.

19

3.2. INSTRUMENTATION

3.2 Instrumentation
Within libFirm we insert additional nodes and edges to the firm graph with the
help of an additional compiler phase. The phase is called on the firm graph of every
function. It analyzes the graph and subsequently transforms it. The phase consists
of four phases itself:

1. All allocation function calls from section 3.1 are changed to reference our
custom allocator.

2. The lookup table for the different allocation sizes is initialized if it does not
already exist.

3. The function graph is traversed and all positions which require a bound check
are remembered.

4. All bound checks are inserted and the metadata calculation inserted where
necessary.

3.2.1 Calling Memory Allocator
Since the memory allocator is linked statically the allocation functions have been
renamed to not cause linking issues when the program uses external libraries which
use the normal allocator. Therefore, we need to change all allocation function calls
in the graph to call our allocation functions. We traverse the graph and check if the
current node is a call-node with one of the ten allocation functions. In this case we
change the linking name and continue traversing the graph.

3.2.2 Lookup Table
The lookup table in the final binary is a standard constant array in .RODATA. It is
present in the allocator as well as during the metadata calculation instrumentation.
We tell the linker to treat those as the same array to avoid duplication in the final
binary.
Using the lookup table requires a load-node in the firm graph. Such nodes need

the memory value. While it would be possible to use the normal memory value it is
quite cumbersome because we need to choose a place where we can insert the load
node along the path of memory nodes. Instead we can use an independent memory
value called no_mem which allows us to insert memory accesses anywhere which use
this no_mem instead of the normal memory value. It is up to us to ensure that such
memory accesses do not conflict with others. Because the lookup table is readonly
there is no dependency between the lookup table and any other memory operation
and therefore we can use no_mem for these lookups.

20

3.2. INSTRUMENTATION

P

baseP

sizeP

Load Jmp

(a) Graph before inserted bound
check.

P

baseP sizeP

Add

Cmp lessCmp greater_equal

And

Cond

Proj TrueProj False

Call

Address &error Load

Jmp

(b) Graph after inserting bound check.

Figure 3.1: The left graph shows the dereferencing of a pointer P with known
metadata. It does not use the faster check explained in subsection 2.5.5.
After inserting a bound check between P and the load-node we get the
right graph. The cmp greater_equal node determines if the base of the
allocation is greater or equal than P . The cmp less node determines if
the end of the allocation is less than P . If both are true, P is within
bounds and we can load its value. Otherwise, some error function is
called.

21

3.2. INSTRUMENTATION

3.2.3 Inserting Bound Checks
This section elaborates on the procedure for inserting bound checks into the firm
graph. We begin by searching for all positions in the firm graph where a bound check
is required. Obviously memory accesses need to be checked to ensure that the pointer
is within the correct bounds. Moreover, as explained in subsection 2.5.5, every time
a pointer leaves a function and therefore the graph that is currently analyzed, the
pointer might need to be checked as well. Traversing the firm graph does a recursive
DFS starting from the end-node. It is important to not mutate the graph while
traversing it, because it can invalidate local references held by the DFS.
Every pointer node in the graph needs to keep track of its metadata where the

metadata consists of the base value and size value. Both those values are nodes in
the graph to allow calculations using them during execution. To keep track of the
metadata of a node we use a hashmap which maps a pointer node to its corresponding
metadata nodes. If a pointer node does not appear in the hashmap, its metadata
has not been determined yet.

Figure 3.1 shows the firm graph before and after inserting a bound check before a
load-node. Every time a bound check is inserted we find the associated metadata of
the pointer in the hashmap and instrument the graph to check if the pointer is larger
or equal than its base and smaller than its base plus its size. In this case, the control
flow continues as it would normally, otherwise we call an error function provided
by the runtime. We split the current basic block and move the pointer node, its
metadata nodes and every node they depend on in the new basic block above. Since
the metadata nodes are independent from the pointer node we explicitely need to
move them, because their relation is not described in the firm graph.

If a check fails we print an error message detailing which pointer was out of bounds,
its metadata and type of error, i.e what kind of memory access or type of function
context escape. Additionally we print the location of the error in the original code,
by embedding its corresponding filename and line number inside the binary and
passing it to the error function. Whether the program exits if it encounters an error
is a compile time flag. If the program doesn’t stop subsequent errors can be incorrect
because the metadata calculation is no longer correct once a pointer is out of bounds.
Checking if a pointer is within bounds is a comparatively expensive operation

because it contains a conditional jump instruction. Therefore, we should avoid
inserting bound checks whenever possible. We can omit a bound check if we know
that the pointer does not originate from our allocator. This applies if the pointer is
a constant like the NULL pointer or an address from the binary. If a pointer has not
been changed by pointer arithmetic we do not require a bound check as well.

3.2.4 Finding Metadata
The metadata of a pointer depends how the pointer was created. Due to firm being in
SSA-form each pointer is immutable and has exactly one definition which is used to
determine its corresponding metadata. Once this metadata is found, other pointers

22

3.2. INSTRUMENTATION

Call

Address &malloc size

Proj M Proj P

Figure 3.2: The call-node returns both the memory and a pointer as a tuple. Both
values are extracted using projection nodes1. The pointer projection
node has itself as the base because malloc (and the other allocation
functions) return the start of the allocated area. The size node is an
argument of malloc and can be used as the size metadata for the
returned pointer.

can depend on it without the need to consider that it might change.
Every possible pointer node has to be able to find its metadata based only on

itself or its inputs. In total, there are six cases to consider:
If the pointer is the result of an allocation function, we assume that those functions

are working correctly and use their function arguments and return value to infer
the correct metadata. We consider all functions listed in [15]. malloc, valloc and
pvalloc all return the base address of the allocation and are given the size as the
first argument. Figure 3.2 shows how the firm graph looks for malloc. realloc,
aligned_alloc and memalign behave very similar to the previous three functions
except that their size is the second argument. calloc, while also returning the
base address allocates a size of the multiplication of both arguments, to check for
overflows. We create a mult-node which performs this multiplication and represents
the size. If the the allocation call fails NULL is returned. In this case the inferred
metadata is incorrect. For memory accesses this is not an issue, since a memory
access at NULL is undefined behaviour and out of scope of this thesis. However if
the pointer escapes its current function context it will report an error aswell. This
behaviour is uncommon but if required it is possible to disable inferring the metadata
of allocation functions and fall back to calculating the metadata of the returned
pointer instead.

When the pointer is a result of pointer arithmetic the pointer inherits the metadata
of the original pointer. Figure 3.3 illustrates this in the firm graph. The orange P
node is some pointer with the metadata being the base and size nodes. An add-node
is using this P to calculate a new pointer but its metadata remain the same nodes.

Member-nodes are used to get pointers of members of some struct and effectively
only perform pointer arithmetic on the original pointer. They have to account for

1There is actually another projection node between the call node and Proj P which was left out
for simplicity.

23

3.2. INSTRUMENTATION

Add

PConst 10

baseP

sizeP

Figure 3.3: Metadata propagation of an add-node doing pointer arithmetic. P is
some node with a pointer as an result. P has the nodes base and size
as metadata. The add-node calculates a new pointer which inherits the
base and size nodes from P .

memory layout considerations which is the reason why they are their own node type.
Since they effectively just represent pointer arithmetic we can apply the same logic
used for add-nodes regarding their metadata.
If a phi node has a pointer value all its inputs have to be pointers and therefore

have associated metadata. To create the concrete metadata of a phi we insert two
additional phi-nodes into the firm graph which represent the base and size and
the phi-node. Both of these new phis get the original phis inputs as metadata
correspondingly. Figure 3.4 shows a general example if phi has two inputs.
The metadata propagation of phis for loops is non-trivial. The metadata nodes

of such a phi depends on the metadata of its input. One of these metadata nodes,
however, depend on the metadata nodes of the phi, creating a cyclic dependency. In
order to solve this problem, dummy metadata nodes are created for the phi before
determining the metadata nodes of its inputs. Once the inputs metadata is found,
we can create the correct metadata for the phi using the newly found input metadata
and swap it with the dummy.
If a pointer is a constant value, either NULL or by type casting an integer, we

provide zero safety guarantees for such a pointer since it is completely seperate to
heap allocations. Such pointer get the base NULL and size UINT64_MAX.

If none of the above cases apply to a pointer node, the only option remaining is
to reconstruct the pointers metadata with its position using the procedure outlined
in subsection 2.5.2. Figure 3.5 shows the firm graph of the metadata calculation of
some pointer P . P is converted to an unsigned 64bit value to perform the calculation.
It is shifted to the right by 32 bits to get the region index. Because each element in
the lookup value is 64 bit in size we need to multiply the index by 8 bytes to get
the correct memory offset into the lookup table. To get the actual address we add
the address of the lookup table, called sizes, to the previously calculated memory
offset. The offset needs to be signed to perform pointer arithmetic in the firm graph.
The loaded value is the size metadata node for P . With the size node the base is
calculated by subtracting the remainder of P divided by the size from P . It is again
necessary to convert the unsigned loaded value to a signed value to perform the
subtraction.

24

3.3. PROBLEM

P1

baseP1

sizeP1

Jmp

P2

baseP2

sizeP2

Jmp

Phi

basePhi sizePhi

Jmp

Figure 3.4: Metadata propagation of a phi-node with two pointer inputs. Both
input pointers Pn have corresponding metadata nodes basen and sizen.
The metadata of the phi are two new phi-nodes, one for the base and
the other for the size. These new phi-nodes take their corresponding
metadata nodes from both Pn.

3.3 Problem
It is not undefined behaviour in C for a pointer to be one byte past its allocation
bounds as long as it is not dereferenced. Our current scheme, however, would detect
it as an error if such a pointer leaves the function context. While we could ignore the
error in this case, it can cause false positives as the program will calculate invalid
metadata for this pointer if they are needed as the program continues. This problem
is not discussed in [2]. We only found one option to circumvent the problem by
increasing every allocation by one byte. Pointers which would ordinarily lie one byte
past their allocation are now included and therefore no longer trigger an error. We
pay with increased memory usage and less precise allocations which increase the
likelyhood of false negatives.

25

3.3. PROBLEM

P

Conv Lu Const 32

Shr Const 8

Mul

Conv LsAddress &sizes

Add

Load Lu

Mod

Conv Ls

Sub

size

base

index

Figure 3.5: Firm graph of the metadata calculation of pointer P . P is shifted by
32 to calculate the region index. The region index is used to look up
the size in the sizes lookup table. Finally the base is calculated by
subtracting the remainder of P divided by its size. Projections nodes
are left out for simplicity.

26

4 Evaluation
We benchmark using the SPEC 2006 benchmark suite[16]. The suite was compiled
using cparser with our modified libFirm version with the x86_64 back end. The
benchmarks are executed on a system with an Intel Core i5-8500 clocked at 3.9Ghz
using Ubuntu 18.04.4. Because no Fortran or C++ front end exist for libFirm,
only C benchmarks are tested. We compare our results with the results of [2] where
applicable. Because they sum all timings and memory usage respectively in their
evaluation1, we do the same in ours to be able to compare our results with theirs.

4.1 Performance
Figure 4.1 shows the results of the SPEC2006 benchmark suite. Here, the libFirm
column is the uninstrumented version of the program compiled with libFirm. libFirm
+ LowFatPtr is the instrumented version using our implementation. The last column
LLVM + LowFatPtr are the results presented by [2].

Except for two outliers libquantum and h264ref, we are fairly close to the ratio of
[2]. Exluding those outliers we get a total ratio of 2.10x compared to their 2.06x. We
are not certain of why libquantum and h264ref have such bad performance compared
to them. However, considering that we are using different compiler frameworks, it
could be possible that libFirm has more difficulties optimizing our instrumented
code compared to LLVM.

4.2 Memory Usage
Like [2], we measure the maximum resident set size. SPEC2006 doesn’t support
measuring this metric, so we observe what programs are executed as part of the
benchmark. We repeat their execution and use the GNU time utility to measure the
memory usage. The different benchmark programs are executed multiple times with
different arguments. It appears that [2] only took the execution with the largest
memory footprint into account for their result, as those match the most with our
baseline results. We follow their decision in order to compare our results with theirs.
Figure 4.2 shows our results in the same layout as in Figure 4.1.
While the memory usage of [2] virtually stays the same, we have an increase of

around 33%. There are several possible reasons for our higher memory usage: 1) We
1It appears that they follow AddressSanitizer’s paper[7] which did the same in their evaluation of
memory usage. Their performance evaluation, however, shows an average.

27

4.2. MEMORY USAGE

libFirm libFirm + LowFatPtr LLVM + LowFatPtr
Benchmark base base ratio ratio
perlbench 222 804 3.62x 2.23x
bzip2 339 711 2.10x 2.16x
gcc 181 654 3.61x 3.27x
mcf 175 220 1.26x 1.61x
gobmk 360 767 2.13x 1.58x
hmmer 558 1030 1.85x 2.62x
sjeng 390 773 1.98x 1.39x
libquantum 249 1973 7.92x 4.25x
h264ref 359 3075 8.58x 3.55x
milc 323 615 1.90x 1.92x
lbm 166 223 1.34x 1.81x
sphinx3 577 1136 1.97x 2.57x
total 3899 11981 3.07x 2.47x

Figure 4.1: Performance result of the SPEC2006 benchmark suite. (in s)

libFirm libFirm + LowFatPtr LLVM + LowFatPtr
Benchmark base base ratio ratio
perlbench 567 705 1.24x 0.99x
bzip2 868 874 1.01x 0.99x
gcc 831 1514 1.82x 0.99x
mcf 859 1718 2.00x 1.00x
gobmk 231 353 1.53x 1.00x
hmmer 27 50 1.85x 1.19x
sjeng 180 182 1.01x 1.00x
libquantum 100 166 1.66x 1.00x
h264ref 64 71 1.11x 1.00x
milc 673 714 1.06x 1.01x
lbm 420 421 1.00x 1.00x
sphinx3 400 509 1.27x 1.00x
total 5220 6959 1.33x 0.99x

Figure 4.2: Memory usage of the SPEC2006 benchmark suite. (in Mb)

28

4.3. PRECISION

Benchmark min max median allocations
perlbench 1b 8.48Mb 14b 353.15M
bzip2 16b 231Mb 94.88Kb 140
gcc 1b 253.93Mb 16b 28.43M
gobmk 1b 7.46Mb 16b 620.05K
hmmer 1b 3.7Mb 9b 2.47M
libquantum 8b 32Mb 8b 141
h264ref 4b 2.79Mb 16b 177.77K
milc 16b 199.5Mb 692b 6.51K
sphinx3 1b 2.51Mb 8b 13.90M

Figure 4.3: Unnecessary allocation padding of allocations performed by the
SPEC2006 programs.

are missing an optimization where the actual size of the lookup table is reduced by
mapping the entries of unused regions (which are all UINT64_MAX) onto the same
page. 2) Our error function takes several values to be able to print a useful error
message. This includes a string which contains the filename and a line number.
While there are usually only comparatively few files, every inserted bound check
has potentially a different line number which is 8 bytes each. 3) Finally, we always
have to add one byte to the actual allocation size as described in section 3.3. This
often causes the allocator to use the next larger allocation size as can be seen in
section 4.3.

4.3 Precision
We analyze the precision of our memory error detectory by measuring the precision
of the performed allocations. The closer the size of the performed allocation is
to the requested size by the program, the more likely we detect an out of bounds
pointer. Therefore, for every allocation we measure the difference between the actual
allocation size and the requested allocation size. We refer to this extra unwanted
memory as padding. Figure 4.3 shows the results for the SPEC2006 benchmark
suite. The columns from left to right show the minimal amount padding added to
each allocation, the maximum padding which is added to atleast one allocation, the
median padding of all allocation and the number of allocations performed. We have
left out mcf, sjeng and lbm because they each perform less than five, but very large
allocations and distort the results. The range of the median is usually between 8
bytes to around half a kilobyte. bzip2 performs relatively similar to mcf, sjeng and
lbm by requesting few large allocations. The very large max allocation differences are
explained by the content of the lookup table. As it can be seen in subsection 2.5.1
the table starts at 16 bytes and every subsequent size is incremented by 16 bytes
until we reach 8Kb. At this point the size is doubled and therefore the sizes increase

29

4.4. COMPILATION SPEED

exponentially. If allocations are performed in this size range the difference between
actually allocated and requested sizes increase exponentially as well and are the cause
for such high peak values. Another noteworthy observation is the common median
value of 16 bytes. As a matter of fact, 7.6% of all allocations have a difference of
16 bytes. This is explained by the fact that it is common for programs to allocate
multiple of 16 bytes. Because we need to add an additional byte to the allocation
size (section 3.3), allocations which are a multiple of 16 bytes are moved into the
next allocation size which is usually 16 bytes larger. The most common difference is
14 bytes, which is only first because perlbench performs the most allocations with
significant margin and its allocations seem to favour a difference of 14 bytes.

4.4 Compilation Speed
Since the lookup table is fairly large (65536 entries each 8 byte), it takes libFirm
a significant amount of time to do its integrity checks during compilation in debug
mode, even for very small programs. Those checks are omitted when compiling
an optimized cparser and libFirm. In this case, with our additional phase we are
around 3x slower. Since compilation speed hasn’t been a focus of this work, it can
presumably be improved significantly.

4.5 Results
We were able to reproduce the out of bounds pointer in the perlbench and gcc
benchmarks, which were described in [2].
We found one instance of undefined behaviour within libFirm using our mem-

ory error detector where an out-of-bounds pointer is written to memory. Because
cparser and libFirm are tested with LLVMs AddressSanitizer as part of its conti-
nous integration, it was expected that no illegal memory accesses would be found.
AddressSanitizer was not able to find this case of undefined behaviour because it is
only checking for correct memory read and writes. While our detector, as part of
its metadata propagation technique, has to check a pointer everytime it leaves the
function context, here, writing a pointer into memory.

4.6 Other
The implementation of this memory error detector required only changes in the
libFirm library and none in cparser except to run the instrumentation phase. Since
libFirm is language agnostic it is possible for the memory error detector to used
with any front end for libFirm.

30

5 Conclusion
In this thesis we have designed and implemented a Low Fat Pointer encoding to
detect heap buffer overflows in libFirm. We explored how the required metadata can
be inferred and propagated within the firm graph and what transformations need to
be performed. Our evaluation shows that it is comparable to [2] implementation and
is capable of detecting heap errors.

5.1 Future Work
Based on this work there are several things that can be improved.
Obviously we would like to see further optimizations to our implementation, like

reducing the performance and memory overhead. It is possible to optimize the
metadata calculation by using fixed-point arithmetic instead of integer division, as
was described in [2]. There is possibly a better solution to the problem described in
section 3.3 which could improve our precision as well. Alternatively one could store
the exact size of every allocation to achieve perfect precision.

Currently our implementation is limited to the heap. It is possible to extend this
technique to also check pointer pointing to the stack as presented in [17].

Additionally one could implement additional memory checks, like detecting double
frees or if memory was accessed after it was freed. The former should be possible by
only changing the allocator. Detecting if an allocation has been freed when accessing
memory using Low Fat Pointer presents a harder challenge. One might use shadow
memory to map every possible allocation to a bit.

31

Bibliography
[1] https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=%22buffer+

overflow%22.

[2] G. Duck and R. Yap, “Heap bounds protection with low fat pointers,” pp. 132–
142, 03 2016.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control dependence
graph,” ACM Transactions on Programming Languages and Systems, vol. 13,
pp. 451–490, Oct. 1991.

[4] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles, techniques,”
Addison wesley, vol. 7, no. 8, p. 9, 1986.

[5] G. Lindenmaier, “libFIRM – a library for compiler optimization research imple-
menting FIRM,” Tech. Rep. 2002-5, Sept. 2002.

[6] “Libfirm edge types.” https://pp.ipd.kit.edu/firm/Edge_Types.html.

[7] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer:
A fast address sanity checker,” in Presented as part of the 2012 USENIX Annual
Technical Conference (USENIX ATC 12), (Boston, MA), pp. 309–318, USENIX,
2012.

[8] J. Seward and N. Nethercote, “Using valgrind to detect undefined value errors
with bit-precision.,” pp. 17–30, 01 2005.

[9] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic
binary instrumentation,” in Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’07, (New York,
NY, USA), p. 89–100, Association for Computing Machinery, 2007.

[10] D. Bruening and Q. Zhao, “Practical memory checking with dr. memory,” in
Proceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’11, (USA), p. 213–223, IEEE Computer
Society, 2011.

[11] D. Bruening and D. Lane, “Efcient, transparent, and comprehensive runtime
code manipulation,” 01 2004.

33

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=%22buffer+overflow%22
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=%22buffer+overflow%22
https://pp.ipd.kit.edu/firm/Edge_Types.html

Bibliography

[12] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, G. Bioworks, and A. Dehon,
“Low-fat pointers: compact encoding and efficient gate-level implementation of
fat pointers for spatial safety and capability-based security. ccs,” 2013.

[13] R. Intel, “Intel® 64 and ia-32 architectures software developer’s manual,” vol. 2,
2016.

[14] R. Intel, “Intel 64 and ia-32 architectures optimization reference manual,” Intel
Corporation, Sept, 2014.

[15] “Replacing malloc.” https://www.gnu.org/software/libc/manual/html_
node/Replacing-malloc.html#Replacing-malloc.

[16] “SPEC CPU® 2006.” https://www.spec.org/cpu2006/.

[17] G. Duck, R. Yap, and L. Cavallaro, “Stack bounds protection with low fat
pointers,” 01 2017.

34

https://www.gnu.org/software/libc/manual/html_node/Replacing-malloc.html#Replacing-malloc
https://www.gnu.org/software/libc/manual/html_node/Replacing-malloc.html#Replacing-malloc
https://www.spec.org/cpu2006/

Erklärung

Hiermit erkläre ich, Achim Kriso, dass ich die vorliegende Bachelorarbeit selbst-
ständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis
beachtet habe.

Ort, Datum Unterschrift

35

	Introduction
	Outline

	Basics and Related Works
	Compiler
	Static Single Assignment Form (SSA)
	libFirm
	Firm

	Related Works
	Shadow Memory
	Instrumentation
	Custom Memory Allocators
	Implementations

	Low Fat Pointers
	Low Fat Pointer Memory Allocator
	Reconstructing Metadata
	Binary Compatibility
	Metadata Propagation
	Bounds Checking
	Tradeoffs

	Design and Implementation
	Memory Allocator
	Instrumentation
	Calling Memory Allocator
	Lookup Table
	Inserting Bound Checks
	Finding Metadata

	Problem

	Evaluation
	Performance
	Memory Usage
	Precision
	Compilation Speed
	Results
	Other

	Conclusion
	Future Work

