
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

An Improved Interface for
Interactive Proofs in

Separation Logic

Masterarbeit von

Lars König

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuender Mitarbeiter: M. Sc. Sebastian Ullrich

Abgabedatum: 30. September 2022

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

Seit Software entwickelt wird, stellt sich die Frage, ob diese korrekt ist, d.h. ob sie
das tut, was sie tun soll. Gegeben eine formale Spezifikation der Anforderungen, ist
eine Aufgabe der Softwareverifikation also zu beweisen, ob eine Implementierung diese
Spezifikation erfüllt. Diese Aufgabe kann schwierig zu lösen sein, wenn die verwendete
Programmiersprache Befehle mit globalem Effekt erlaubt, sodass diese andere Befehle
in unabhängigen Teilen des Programms beeinflussen können, zum Beispiel durch einen
gemeinsam genutzten Heap-Speicher. Separation-Logic löst dieses Problem, indem es
Aussagen um einen separierenden Operator erweitert, wodurch es möglich ist, Teile
eines Programms als unabhängig vom Rest des Programms anzusehen. Ein Werkzeug,
das Beweise zur Softwareverifikation unterstützt, sind interaktive Theorembeweiser.
Allerdings benötigen Separation-Logic-Beweise in interaktiven Theorembeweisern,
besonders mit nicht-linearem Typsystem, viel manuellen Aufwand zur Verwaltung
der benötigten Datenstrukturen. Dies kann vermieden werden, indem dem Nutzer
eine Schnittstelle zur Verfügung gestellt wird, die Beweise auf der typischen, höheren
Abstraktionsebene ermöglicht. Diese Arbeit beschreibt eine neue Schnittstelle für
Separation-Logic-Beweise in dem interaktiven Theorembeweiser Lean 4, basierend
auf dem Iris-Projekt, und die Verbesserungen an dieser Schnittstelle.

For as long as software has been developed, a major concern has been to know
whether it is correct in the sense that is does what it is supposed to do. Given a
formal specification of the requirements, one task of software verification is to prove
that an implementation fulfills the specification. This task can be difficult if the used
programming language allows commands to have global effect, such that they can
influence commands in unrelated parts of the program, for example through a shared
heap. Separation logic aims to solve this problem by adding a separating operator to
propositions, which makes it possible to treat parts of a program as independent of
the rest. One tool that supports software verification proofs are interactive theorem
provers. However, performing separation logic proofs in interactive theorem provers,
especially with non-linear type systems, requires a lot of boilerplate code and manual
bookkeeping. This can be avoided by providing the user with an interface that
allows proofs on the common, higher abstraction level. This work describes a new
separation logic interface for the interactive theorem prover Lean 4 based on the Iris
project and the improvements made to this interface.

iii

Contents
1. Introduction 1

2. Separation Logic 3
2.1. Bunched Implications . 3
2.2. Separation Logic . 6
2.3. Concurrent Separation Logic . 7
2.4. Iris Logic . 8

3. Lean 4 9
3.1. Typeclasses . 10
3.2. Macros . 11
3.3. Meta Programming . 13

4. Implementation 15
4.1. Logic, Interface and Notation . 15
4.2. Environment and Goal Display . 23
4.3. Tactics . 30
4.4. Proofs . 38

5. Evaluation 51
5.1. Logic Instance . 51
5.2. Proof Example and Comparison . 55
5.3. Environment Definition . 59
5.4. Limitations of Setoid Rewriting . 63

6. Conclusion and Future Work 65

Bibliography 67

A. Appendix 71

v

1. Introduction
One of the main tasks of software verification is proving the correctness of software
relative to a specification. Although this can already be difficult for pure functions,
it becomes much more complex if functions are allowed to modify a shared global
state, e.g., a shared data structure or a heap. Operations that modify a global state
are often implemented using pointers or references. With the ability to modify parts
of the memory unrelated to the task of the function, specifications and correctness
proofs have to laboriously account for any global view of the function.
As O’Hearn et al. noticed, this is contrary to the informal understanding of the

effect of functions [1]. Instead, specifications should focus on the part of the memory
affected by a function. For unrelated parts, it should be possible to conclude that
they are unchanged automatically. This is achieved by using separation logic [1] for
the specifications and correctness proofs. Separation logic introduces the separating
conjunction ∗ (read “sep”) from the logic of bunched implications (BI) [2] to separate
parts of a data structure. The proposition P ∗Q then states “that [the propositions]
P and Q hold for separate parts of a data structure” [1]. When describing the effect
of a function on a data structure using pre- and postconditions, both can then be
extended with the same proposition on an unrelated part of the data structure. This
allows specifying the local effect of the function, which can automatically be extended
to the global effect where necessary. Separation logic can furthermore be used to
reason about concurrent programs [3] where two functions on separate parts of a
data structure cannot interfere, even if they are executed concurrently.
One platform for software verification proofs are interactive theorem provers

(ITPs), which support the user by providing a comprehensive proof interface. The
available tools include logic notation, proof state displays, context management
for hypotheses and functions for simple and complex steps in a proof. Performing
separation logic proofs in an ITP requires extending this proof interface with new
notation, extended displays, additional contexts and adapted proof steps. A proof
interface for separation logic hides the functions and proofs necessary for embedding
the separation logic in the base logic of the ITP, which is especially relevant if the
ITP does not support substructural logics by default. The interface should also
be extensible for custom separation logics, providing entry points to integrate a
separation logic in the available facilities.
The aim of this work is to enable interactive separation logic proofs in the ITP

Lean 4 [4] by adding an extensible interface for separation logic. The provided
implementation includes the embedding of separation logic in Lean’s non-linear base
logic and supports writing separation logic proofs with added notation and tactics.
In addition, the management of the separation logic contexts is available together

1

with a Lean-style display that integrates seamlessly in the available interface. As an
example, the new interface is instantiated with classical separation logic [5] and a
custom notation to show its extensibility. The syntactic and semantic description
of a language model using separation logic in the pre- and postconditions of its
specifications is however out-of-scope and suggested for future research on the topic.
The implementation of the new interface largely relies on the formalization of

MoSeL [5, 6] in the different ITP Coq. MoSeL is an extensible separation logic frame-
work included in the Iris project [7], which features its own concurrent separation
logic with a complex algebra and advanced features. MoSeL succeeds the Iris Proof
Mode [8] and can be instantiated with arbitrary affine and non-affine separation logics.
Re-using parts of the implementation of MoSeL in the new separation logic interface
for Lean is possible since the two ITPs have similar type systems. Their approaches
for meta-programming are however different and Lean has a more flexible front end,
useful, for example, for the syntax of the included tactics. The new implementation
also improves the internal representation of the separation logic contexts, visible in
the related functions and proofs. In addition, the interface is adapted to match the
established conventions in Lean.

This work first explains the theory of separation logic, including bunched implica-
tions, in chapter 2 and gives an introduction to Lean in chapter 3. The introduction
includes relevant features, such as typeclasses, macros and meta programming. The
implementation of the new separation logic interface is presented in chapter 4, fea-
turing the definition of separation logic in Lean, the provided notation and the
necessary context management with the context display extension. In addition, the
implemented tactics for separation logic proofs are shown together with examples of
correctness proofs, available for all definitions. The interface is evaluated in chapter 5
where the instantiation for classical separation logic is shown, as well as an example
of a proof using the new interface. It is then compared to MoSeL regarding its
extent, the chosen proof styles and the improvements in this implementation. Lastly,
a limitation of the interface is discussed together with possible solutions, preventing
the instantiation of the interface for the entire Iris logic. Chapter 6 summarizes
the improvements to interactive proofs in separation logic using Lean and points to
possibilities for future research.

2

2. Separation Logic
An important feature found in many programming languages are pointers in a heap,
i.e., a shared part of the memory. While this enables powerful algorithms, it also
comes with difficulties for software verification. When reasoning about a small part
of an algorithm that touches only a small part of the shared memory, one does not
have guarantees that other parts of the memory remain unchanged. This requires
manual work and a global view on the memory to ensure that local changes only
have local effect. This is contrary to the informal understanding of functions as small
building blocks of software and introduces unnecessary complexity.
Separation logic [1], explained in section 2.2, is an extension of Hoare logic that

aims to solve this problem by providing constructs for separating the part of the
memory that is required by an algorithm from the rest. This separation comes with
a guarantee that the remaining part of the memory remains unchanged. This allows
performing a proof on the local changes without having to worry about the global
state of the memory. Separation logic builds on the logic of bunched implications,
using its logical connectives to express the separation of memory parts. The logic of
bunched implications is explained in section 2.1. Separation logic can be extended
to reason about concurrent programs as well, including the separation of memory
parts between processes, as shown in section 2.3. One modern concurrent separation
logic is Iris [7]. The separation logic interface MoSeL [5] introduced with Iris is the
basis of the implementation described in this work. Therefore, although the complex
separation logic of Iris itself is not part of the implementation, a high-level overview
is given in section 2.4 for the sake of completeness.

2.1. Bunched Implications
Linear logic [9] introduces additive and multiplicative logic connectives by restricting
the use of weakening (adding a hypothesis to the context) and contraction (removing
a duplicate hypothesis from the context) in intuitionistic logic (IL). Weakening and
contraction are only possible in the additive part of linear logic, but not in the
multiplicative part. Intuitionistic logic can be defined in terms of linear logic, but it
is not just the additive part of it. One reason is that linear logic does not contain
the intuitionistic implication →.
The logic of bunched implications (BI) [2] now combines IL as the additive part

with the multiplicative part of linear logic (called multiplicative intuitionistic linear
logic (MILL)). The resulting logic contains the additive connectives of IL, including
the intuitionistic implication →, and the multiplicative connectives of MILL, except

3

for the multiplicative disjunction, as shown in figure 2.1. The connectives emp, ∗
(read “sep”) and −∗ (read “wand”) are the multiplicative counterparts of True, ∧
and →. As with linear logic, weakening and contraction are only allowed for the
additive connectives.

Additive True, False, ∧, ∨, →
Multiplicative emp, ∗, −∗

Figure 2.1.: Additive and multiplicative connectives. The symbols used for the unit
connectives True, False and emp are defined as in MoSeL [5], while
they have different symbols (1, ⊥ and I) in the original definition of
BI [2].

However, when considering logical consequences of the form Γ ` ψ, having two
conjunctions, one that admits weakening and contraction and one that does not, leads
to the question whether propositions in the context Γ can be duplicated and discarded
or not. In BI this is solved by introducing different context-forming operations “;” and
“,” for the additive and multiplicative combination of propositions in Γ. As with the
connectives, weakening and contraction are only allowed for the additive combination.
The introduction rule for ∧ then uses “;” as its context-forming operation, while
the introduction rule for ∗ uses “,”, as shown in figure 2.3. The same is true for the
intuitionistic (additive) implication → and the linear (multiplicative) implication −∗
where the former uses “;” and the latter uses “,” as the context-forming operation
in its introduction rule. The consequence is that the premise of −∗ must be used
exactly once in the proof of the conclusion, while the premise of → can be used an
arbitrary number of times by duplicating or discarding the premise in the context.

Γ ::= φ propositional assumption
| Γ; Γ additive combination
| Γ,Γ multiplicative combination

Figure 2.2.: A bunch is a tree-like structure with propositions φ as leafs and additive
(“;”) or multiplicative (“,”) context-forming operations as inner nodes.

With different context-forming operations, the context Γ can no longer be rep-
resented as a list of propositions. Instead it is a tree-like structure (called bunch)
with propositions φ as leafs and additive (“;”) or multiplicative (“,”) combination
as inner nodes, as shown in figure 2.2. The propositions True and emp are defined
to be the units of additive and multiplicative combination, respectively. This is a
simplification from the original work, where the empty contexts {}a and {}m are
used instead. The definition of the deduction rules for BI is shown in figure 2.3.

4

Identity and Structure

φ ` φ
Id

Γ(∆) ` φ
Γ(∆; ∆′) ` φ Weakening Γ(∆; ∆) ` φ

Γ(∆) ` φ Contraction

Additives

Γ ` φ ∆ ` ψ
Γ; ∆ ` φ ∧ ψ ∧ -Intro Γ(φ;ψ) ` χ ∆ ` φ ∧ ψ

Γ(∆) ` χ ∧ -Elim

Γ;φ ` ψ
Γ ` φ→ ψ

→ -Intro Γ ` φ→ ψ ∆ ` φ
Γ; ∆ ` ψ → -Elim

Γ ` φi

Γ ` φ1 ∨ φ2
(i ∈ {1, 2}) ∨ -Intro Γ ` φ ∨ ψ ∆(φ) ` χ ∆(ψ) ` χ

∆(Γ) ` χ ∨ -Elim

Γ ` False
Γ ` φ False-Elim

Multiplicatives

Γ ` φ ∆ ` ψ
Γ,∆ ` φ ∗ ψ ∗ -Intro Γ(φ, ψ) ` χ ∆ ` φ ∗ ψ

Γ(∆) ` χ ∗ -Elim

Γ, φ ` ψ
Γ ` φ−∗ ψ −∗-Intro

Γ ` φ−∗ ψ ∆ ` φ
Γ,∆ ` ψ −∗-Elim

Figure 2.3.: Deduction rules for the logic of bunched implications. The notation
Γ(∆) describes a bunch Γ in which a bunch ∆ appears as a subtree.

5

2.2. Separation Logic
Similar to Hoare logic, separation logic [1] is concerned with statements {P} C {Q}
where P and Q are the pre- and postconditions of a code fragment C. In a language
that contains pointers in a shared data structure (e.g., a heap), these conditions can
contain propositions that describe the state of cells in that data structure. The central
idea of separation logic is to use the separating conjunction ∗ from BI, explained in
section 2.1, to combine two propositions P and R that hold for separate parts of the
data structure. In consequence, P and R can be proven separately with each proof
considering only the relevant part of the data structure (parallel rule). In general,
this property is described by the frame rule shown in figure 2.4. It allows writing a
local specification for a code fragment without the need to include the unmodified
parts of the data structure - they remain unchanged by design.

{P} C {Q}
{P ∗R} C {Q ∗R}

Modifies(C) ∩ Free(R) = ∅

Figure 2.4.: The frame rule of separation logic. Modifies(C) is the set of all variables
assigned in C, while Free(R) is the set of all free variables in R. Since
C requires a corresponding resource to modify a variable and R is
added using the separating conjunction, it is required that the two sets
are disjoint.

One interpretation of separation logic [1] is that the propositions in the precondition
are resources that are required by the code to modify the associated cells and then
used by the proof of the postcondition. The resources are spatial and must be used
exactly once. This is visible in the definition of the frame rule in figure 2.4 where the
proposition R must be in used in the pre- and postcondition. Non-spatial resources
can be modeled using the weakening and contraction rules for additive connectives.
Figure 2.5 shows an example usage of the frame rule in a language with simple

heap cell assignments. In the example, the assignment [x] := b sets the value of the
heap cell x to b. Using the frame rule, it is now possible to derive that the heap cell
y remains unchanged, i.e., if the value at y was c before, it will still be c after the
assignment. This is without knowing anything about the actual values of x and y.
The separating conjunction ∗ alone guarantees that the two heap cells are different

{x 7→ a} [x] := b {x 7→ b}
{(x 7→ a) ∗ (y 7→ c)} [x] := b {(x 7→ b) ∗ (y 7→ c)} Frame

Figure 2.5.: Example of applying the frame rule to the specification of the assign-
ment of a single heap cell.

6

and rules out that x and y could be aliases, something that otherwise would have to
be checked manually. This example demonstrates the locality of the specification
of a single heap cell assignment, which implicitly includes that the remaining heap
remains unchanged.

2.3. Concurrent Separation Logic

Having a guarantee that two parts of a program don’t interfere on a shared data
structure simplifies proofs of sequential programs, but it is even more useful if these
two program parts are executed in different processes or threads. The easiest example
of applying concurrent separation logic [3] contains two program parts C and C ′

that are executed concurrently (written as C || C ′). Figure 2.6 shows that if C and
C ′ operate on disjoint parts of a data structure, it is guaranteed that they do not
interfere when executed concurrently. This is expressed by combining the pre- and
postconditions of the two program parts with the separating conjunction ∗. The rule
of disjoint concurrency then states that the correctness of C and C ′ can be proven
separately.

{P} C {Q} {P ′} C ′ {Q′}
{P ∗ P ′} C || C ′ {Q ∗Q′}

Figure 2.6.: The rule of disjoint concurrency for two concurrently executed program
parts C and C ′.

Seeing that two program parts that work on different parts of a data structure
don’t interfere is not surprising. But a lot of common use cases of concurrency
include program parts that work on the same part of a data structure, just not at
the same time. Fortunately, concurrent separation logic supports proofs of these
programs as well. The core idea is based on the resource interpretation of separation
logic with the addition that resources can be passed from one process to another.
A concurrency primitive (e.g., a semaphore) is then seen as a resource manager
that allows the process that owns the managed resource to access the associated
part of a shared data structure. When a process has finished accessing the shared
data structure, it returns the resource to the resource manager and another thread
can receive it from there. The required specification for each instance of a resource
manager is encoded in separation logic invariants. This approach enables proofs
about concurrent programs that share memory between processes with guarantees
that these processes never interfere.

7

2.4. Iris Logic
Iris [10, 7] is a higher-order concurrent separation logic based on resource algebras
(an extension of partial commutative monoids) and invariants that allows specifying
protocols for concurrent programs. Invariants allow gaining temporary access to
a shared resource that must be given up when the invariant is reestablished after
the operation. Since invariants can depend on other invariants and even themselves,
Iris uses step-indexing to formulate rules in which a proposition P holds after one
additional step of computation. This is written as . P where . is called the later
modality. This requires a new kind of equivalence n= which comes from an ordered
family of equivalences (OFE). This equivalence is used to state that two propositions
“are equivalent for n steps of computation”, i.e., “they cannot be distinguished by a
program running for no more than n steps.” [7]

In addition to the shared heap memory (the physical state), Iris introduces a logical
state, the so-called ghost state, whose cells have values from the user-defined resource
algebra. Since this ghost state is independent of the physical state, it can be updated
at any time through so-called view shifts. This concept is useful to keep track of the
computation history of a program, but also more generally to “describe a thread’s
knowledge about a shared state” [10]. This allows the sharing of resources beyond an
exclusive ownership of resources. To ensure that a value in the ghost state mirrors a
value in the physical state, one can use invariants that require updating the value in
the ghost state whenever the corresponding physical value is modified.

With its complex logic, Iris aims at “simplifying and consolidating the foundations
of modern separation logics” [7], which is visible in the extensibility of the logic and
its proof framework. Iris is not tied to a specific programming language, but can be
instantiated with an arbitrary language instead.

8

3. Lean 4
Interactive theorem provers (ITPs) are integrated development environments for
proving and checking formal statements. They are successfully used in mathematics
and software verification. Lean [4], in the upcoming version 4, is a fully extensible
ITP and functional programming language. It features dependent types, typeclasses,
hygienic macros, meta programming and efficient code generation in a single language
and enables coarse and fine grained automation of proof steps.

theorem and_replace (hr : R) :
P ∧ Q → P ∧ R

:= by
intro hpq
apply And.intro ?left ?right
· exact hpq.left
· exact hr

· case left
R P Q : Prop
hr : R
hpq : P ∧ Q
` P

· case right
R P Q : Prop
hr : R
hpq : P ∧ Q
` R

Figure 3.1.: The left side shows an example of a proof in Lean 4. The intro tactic
destructs an implication and makes the premise available in the local
context. The apply tactic replaces the goal with one or more goals
that imply the original goal and the tactic exact solves the goal by
providing a proof term for it. On the right, the state after using the
apply tactic is shown. For each goal (left and right), the state
includes the available hypotheses and the goal.

Figure 3.1 shows an example of a theorem and its proof in Lean on the left side.
The first two lines contain the statement to prove and its arguments, which can also
be proofs. Following the keyword by is the proof in tactic mode. The proof is written
by the user, but automation tactics make it possible to delegate parts of the proofs.
If executed in a supported editor, the state between two tactic invocations is shown
to the user, including the local context with all available hypotheses and the goal, as
shown on the right side of figure 3.1. When starting the proof, the goal is exactly
the theorem statement, but tactics may change the goal by, for example, destructing
or solving parts of it. During this process, the tactics generate a proof term for the
original statement, which is verified by the kernel when the proof is finished.

9

def List.get (list : List α) (idx : Fin list.length) : α :=
. . .

Figure 3.2.: The type of the second argument is dependent on the value of the first
argument.

Lean is based on the Calculus of Inductive Constructions with Universes [11].
Building on the Curry-Howard correspondence, it enables having logical statements
and proofs as common objects in a typed functional programming language. More
advanced features of Lean’s type system include inductive and dependent types.
Dependent types are types that depend on elements of other types. In the example
shown in figure 3.2, the type of the second argument idx depends on the value of
the first argument list.

3.1. Typeclasses
Typeclasses in Lean [12] are a way of enabling ad-hoc polymorphism for functions.
In contrast to parametric polymorphism, this allows functions to behave differently
on inputs of different types. This can be useful for overloaded operators on different
types, but also for requiring additional properties for certain types, for example that
a relationship is reflexive.

class Semigroup (α : Type) where
mul : α → α → α
mul_assoc : ∀ a b c : α, mul (mul a b) c = mul a (mul b c)

instance : Semigroup Nat where . . .

def mul_idemp_right_id [Semigroup α] (a b : α) . . .

Figure 3.3.: Example of the use of typeclasses in Lean. class declares a structure
that can be used in instance implicit arguments. instance defines
a value of the typeclass that participates in typeclass instance search.
Arguments in square brackets are instance implicit, i.e., they are not
required to be explicitly provided, but synthesized by typeclass resolu-
tion.

A typeclass in Lean is an inductive datatype which can be used as the type of an
instance implicit argument. Typeclasses are most often structures, i.e., datatypes with
a number of fields. Typeclass instances are elements of these types that participate
in typeclass instance search. When a definition or theorem requires an instance of a
typeclass to be present by declaring it as an instance implicit argument, the instance

10

is searched in the context of the definition or theorem. An example of this is shown
in figure 3.3.

Typeclasses in Lean are allowed to overlap for given arguments and depend on other
typeclass instances. Resolving typeclass instances therefore requires a backtracking
search through the available instances. In a naïve backtracking search, however,
this can cause exponential search times or non-termination, which is why Lean uses
a tabled typeclass instance search [12] that “caches” found typeclass instances to
avoid these problems in most cases. The backtracking typeclass instance search
can be used to perform simple logic programming, although this is limited by the
requirement that parameters have to be either input or output parameters. By
default, parameters of a typeclass are input parameter, which means they have to be
known to start the search for a specific typeclass instance. Output parameters have
to be declared explicitly when declaring the typeclass by marking the parameter
types with outParam. The value of the argument is then determined by the found
instance during typeclass instance search. Mixed parameters, i.e., parameters that
can be input or output parameters, are not supported to preserve the determinism
of the typeclass instance search, following the approach for typeclasses with multiple
parameters used in Haskell [13].

3.2. Macros

Extensible syntax is a typical feature of ITPs, because it reduces the cognitive
overhead when processing complicated structures or expressions. This can either
be used to declare new syntax that can be mixed with exisiting syntax, but also to
establish a domain specific language (DSL) where terms are built from the new syntax
exclusively. Lean features a powerful system for extending syntax [14], explained in
this section.

infixr:25 " ` " => entails

notation:25 P:26 " ` " Q:25 => entails P Q

macro:25 P:term:26 " ` " Q:term:25 : term => `(entails $P $Q)

syntax:25 term:26 " ` " term:25 : term
macro_rules

| `($P ` $Q) => `(entails $P $Q)

Figure 3.4.: Examples using the most common commands for declaring new syntax
in Lean. Each of the command sequences declares the same syntax
with the same interpretation.

11

The macro system in Lean allows the user to define new syntax on different levels of
abstraction, from simple notations to complex syntax transformations, such that users
can choose the simplest solution that is powerful enough for their use case. Figure 3.4
shows the most common commands for declaring new syntax and its interpretation:
infix, notation, macro, syntax and macro_rules. The infix command creates
an infix operator with a symbol (“`” in the example), replacing each use of the
operator with a call to the provided function (“entails” in the example). The user
can optionally provide the precedence (“25” in the example) and associativity (“r” in
the example) of the defined operator. Similar commands exist for prefix and postfix
operators. The notation command allows a more complex expression on the right
hand side where the named arguments (“P” and “Q” in the example) can be used. It
is also possible to assign custom precedences to the arguments (“26” and “25” in the
example). The macro command has two powerful features: it allows specifying the
syntax category of the arguments and the result (term in the example) and providing
the syntax to which the macro is expanded explicitly. This can be done using syntax
quotations (“`()”), but also an arbitrary function that returns a syntax object.
Macros with syntax generating functions are called procedural macros. The macro
command actually consists of two steps, which can be executed manually: declaring
the syntax using the command syntax and specifying how to expand the macro
using the command macro_rules. Separating the two concerns allows reusing and
overloading syntax, for example by matching on different types of arguments to the
macro when defining its behavior.

notation "inc " x => add x 1

def calculate : Nat :=
let add (a b : Nat) :=

a + 1 + b
inc 2

Figure 3.5.: An example of a macro where naïve syntax replacement would lead to
accidental name capture, i.e., the macro would use the local function
add instead of the global function in scope at the definition of the
macro. In this case, the function would return 4, even though the
expected behavior of inc is to increase its argument by one.

Macros in Lean are not implemented as naïve textual replacement, which would
create problems such as (accidental) name capture shown in figure 3.5, but by
performing hygienic macro expansion [14], which keeps the identifiers in an expanded
macro definition inaccessible from the surrounding code. A recent advancement in
Lean introduces an additional feature when defining macros called typed macros [15].
Using a type system for syntax categories, this prevents generating ill-formed syntax
when defining macros and allows Lean to disambiguate more variable uses in syntax
quotations.

12

3.3. Meta Programming
Lean 4 is the first version almost completely written in Lean itself, which makes
it easier to provide the comprehensive reflection framework. This allows writing
meta programs as normal Lean functions running in monads which provide access
to internal data structures. Relevant internal data includes the environment, i.e.,
available definitions and theorems, and the tactic state, including the goals and their
local contexts [16]. A common use case for meta programming is tactic programming,
i.e., writing custom tactics that can be used when writing a proof in tactic mode.

The simplest way of writing tactics in Lean is using macros. This works by defining
a macro in the syntax category tactic, which expands to one or more tactics. An
example of this is shown in figure 3.6 where a new tactic close is defined that
executes the tactic simp, passing the given identifier of a definition or theorem,
followed by the tactic done. The newly defined tactic can then be executed like any
other tactic.

macro "close " name:ident : tactic => `(tactic|
simp [$name:ident] ;
done

)

Figure 3.6.: Example of a macro-based tactic.

A more powerful way of writing tactics, especially when it is not possible to build
them from existing tactics, is writing a meta function in the tactic monad TacticM
with access to the relevant internal data structures. A separate tactic programming
language on a higher abstraction level does not yet exist in Lean.
Figure 3.7 shows typical tasks of a monadic tactic function. The macro elab

expands to a syntax definition and a monadic function of type Syntax → TacticM
Unit, matching on the defined syntax to extract the arguments. For tactics with
input parameters, a tactic function first needs to parse the given Syntax objects.
This can be as simple as retrieving the identifier from a Syntax object, but can
also include parsing a pattern from a custom syntax category. For the main part
of the tactic function, two important data structures are the goals and the list of
hypotheses per goal, reflecting the tactic state shown in figure 3.1. The main goal
can be retrieved using the function getMainGoal. The returned value is a meta
variable of the type Expr, representing a proof term expression in the kernel. This
meta variable can be solved by assigning an expression to it using assignExprMVar.
Here, the assigned expression is allowed to contain meta variables itself. The list of
hypotheses available in the main goal is part of the local context, accessed using
getLCtx. The local context can be searched by name, as shown in the example, but
it is also possible to loop over the available hypotheses and, for example, inspect
their types. The types and values of declarations from the local context are all of
the type Expr, since the tactic function operates on the meta level.

13

elab "exact " name:ident : tactic => do
-- parse syntax
let name := name.getId
if name.isAnonymous then

throwUnsupportedSyntax

-- retrieve main goal
let goal ← getMainGoal

-- find hypothesis in local context
let lctx ← getLCtx
let some decl := lctx.findFromUserName? name

| throwError "hypothesis not found"

-- assign expression to solve goal
assignExprMVar goal decl.toExpr

Figure 3.7.: Example of a monadic tactic.

A combination of a monadic tactic function and calls to existing tactics can be
achieved by using the function evalTactic that executes the given tactic mode
syntax. An example of this technique is shown in figure 3.8. Variables of type Syntax
can be used directly in the syntax of evalTactic, e.g., arguments of the surrounding
tactic function. If common objects should be used in a call to evalTactic, they need
to be converted to the syntax level first, using the function quote. This function
performs a best-effort conversion based on the typeclass Quote.

elab "my_rfl" : tactic => do
let hyp : Name ← findReflexivityTheorem

evalTactic (← `(tactic|
exact $(quote hyp)

))

Figure 3.8.: Example use of evalTactic to use a macro-style call to an existing
tactic inside a monadic tactic function. The function quote converts
a common object to a Syntax object.

14

4. Implementation
This chapter describes and explains the implementation of the new separation logic
interface in Lean 4. It is largely based on the Coq formalization of MoSeL [5]. There
are four main parts of the implementation: Section 4.1 provides the formalization of
the logic, including the separation logic interface, the Lean notation for the logic and
the derived laws. Since the base logic of Lean is non-linear, explicit management
of the hypothesis contexts is necessary, for which an environment is presented in
section 4.2. To visualize these contexts, a custom display for the tactic state is
included as well. An important part of the implementation are the separation logic
tactics, explained in section 4.3, which enable performing proofs on the same level of
abstraction as in usual Lean logic. Section 4.4 concludes by showing the proofs done
in the implementation, which includes proofs for the derived laws, the properties
of propositions in form of typeclasses, the tactic theorems and the soundness of
operations on the separation logic context.

4.1. Logic, Interface and Notation
The starting point for the implementation is the separation logic interface, which
can be instantiated with a custom separation logic. The interface is implemented as
a typeclass and split up into two parts: the interface BIBase, shown in figure 4.1,
which includes the required connectives for a separation logic, and an extension of
that interface called BI, which adds the axioms that each separation logic must fulfill.
The interface is split up because the separation logic notation for the connectives is
defined in between and used in the definition of the axioms in the second interface.
A mutual definition of a typeclass and its notation is currently not possible in Lean.

Most of the connectives in BIBase resemble the BI connectives introduced in
chapter 2. This includes the additive connectives and, or and impl, as well as the
multiplicative connectives emp, sep and wand. The connectives forall and exist are
the common additive variants from intuitionistic logic. The function entails is used
to express a logical consequence of separation logic propositions (of type PROP) inside
the base logic of Lean. The type of propositions in Lean is Prop, while the type PROP
for separation logic propositions is the carrier type of the separation logic and can
be defined by the user when instantiating the logic. Although the logic of bunched
implications is used as the interface for separation logics, this implementation does
not support arbitrary proofs in general BI, as described by Krebbers et al. for
MoSeL [5]. Instead of a separate context type, as introduced in section 2.1 and
shown in figure 2.2, a separation logic proposition is used on the left side of the

15

class BIBase (PROP : Type) where
entails : PROP → PROP → Prop
pure : Prop → PROP

and : PROP → PROP → PROP
or : PROP → PROP → PROP
impl : PROP → PROP → PROP

emp : PROP
sep : PROP → PROP → PROP
wand : PROP → PROP → PROP

forall {α : Type} : (α → PROP) → PROP
exist {α : Type} : (α → PROP) → PROP

persistently : PROP → PROP

Figure 4.1.: Interface for the required connectives of a separation logic. This is an
incomplete interface for a separation logic, since it misses the axioms
that every separation logic must fulfill. The complete interface BI is
an extension of this interface and adds the separation logic axioms.
Note the difference between the type Prop of Lean propositions and
the type PROP of separation logic propositions.

entailment. The different context-forming operations “;” and “,” then correspond
to the connectives ∧ and ∗. This not only simplifies the definition but also allows
an easier embedding of the context representation in this implementation, which is
explained in section 4.2. A Lean proposition φ can be embedded in the separation
logic as a pure separation logic proposition, written as pφq. The unit connectives
True and False of separation logic are defined as the pure propositions True and
False. The function persistently is used to implement the <pers> modality, which
adds additional properties to a separation logic proposition. Modalities are explained
in subsection 4.1.1.
The interface BI extends the interface BIBase with the axioms required to be

fulfilled by all separation logics. None of the axioms in this interface can be derived
from the other axioms and all derived laws of separation logic build on these axioms.
The first axiom in the interface states that the entailment relation on separation logic
propositions is a preorder, i.e., it is reflexive and transitive. The axiom is written using
the typeclass PreOrder, which bundles the typeclasses Reflexive and Transitive.
Having one typeclass per property is useful when a definition or theorem requires
a reflexive or transitive relation, but does not require it to be a preorder. Another
important axiom is the introduction rule for pure propositions: φ→ P ` pφq (note
that → is the Lean implication, not the separation logic implication). It states that,
for all contexts P , a pure separation logic proposition pφq can be proven by proving

16

the Lean proposition φ without having to use the propositions from the context. This
also makes an introduction rule for the separation logic proposition True unnecessary,
since it is defined as pTrueq and can therefore be proven by using the introduction
rule from the base logic. The remaining axioms are the deduction rules of separation
logic, building on the deduction rules for bunched implications shown in figure 2.3.
Examples include the introduction rule for ∧: (P ` Q) → (P ` R) → P ` Q ∧ R
(→ is again the Lean implication) and the statements that emp is the left unit of ∗:
P ` emp ∗ P and emp ∗ P ` P .

4.1.1. Modalities
A modality is a unary operator for a separation logic proposition that assigns
additional properties to it. Modalities are required to be monotone, i.e., if P ` Q
holds, then for all modalities m, mP ` mQ must also hold. In addition, they must
distribute over ∗. There is only one required modality, persistency, which cannot be
derived from the other connectives of separation logic and is therefore part of the
interface. Other modalities can be derived using the separation logic connectives and
users of the interface can extend the logic with their own modalities. A separation
logic proposition without modalities is spatial, i.e., it cannot be duplicated or
discarded when used in a separating conjunction. The persistency modality <pers>
changes this by adding two properties to the affected proposition: it allows the
duplication of propositions, i.e., <pers> P ` <pers> P ∗ <pers> P , and it makes
the proposition absorbing, which allows discarding other propositions combined
with a separating conjunction: <pers> P ∗ Q ` <pers> P . This property is called
“absorbing”, because the proposition absorbs the resources of the other proposition,
i.e., the resources are not actually discarded. The idea of persistency is that the
affected proposition ignores all attached resources. Since they are ignored, additional
resources can be added, and duplication is possible since the proposition cannot
depend on any of the ignored resources. Pure propositions, including True and
False, are always persistent. It turns out that for persistent propositions, ∧ and ∗
are interchangeable. In both cases, propositions can be duplicated and discarded
as long as at least one proposition in the conjunction remains, such that the held
resources are never discarded.

<affine> P := emp ∧ P
<absorb> P = True ∗ P

� P := <affine> <pers> P

Figure 4.2.: Definitions of the predefined, derived modalities.

There are three more predefined modalities which are derived from the separation
logic connectives. Their definitions are shown in figure 4.2. The absorbing modality

17

<absorb> is a weaker version of <pers>, which does not make the proposition
duplicable. This is visible in the definition: True is pure, and therefore persistent,
and can be used to absorb other propositions. In contrast, P in the definition does not
have any modalities and is therefore not duplicable. The affine modality <affine>
on the other hand allows discarding the affected proposition itself in a separating
conjunction: P ∗ <affine>Q ` P . This is achieved by placing the proposition in a
non-separating conjunction with emp. A proposition in a non-separating conjunction
can always be discarded, since the propositions in a non-separating conjunction
share the held resources. However, when P is discarded, only emp remains, which
is the unit of separating conjunction and can therefore also be discarded. Since
emp states that no resources are known and the conjunction can be reduced to
emp, affine propositions are not allowed to contain resources and can therefore be
discarded. The intuitionistic modality � is then added to create propositions with
the same properties as in intuitionistic logic: they can be duplicated and discarded,
but are not absorbing. For this purpose, it is important that <affine> is the outer
modality, since otherwise the proposition would only be persistent. This is because a
proposition <pers> <affine>P can contain resources, which is not allowed for affine
propositions. There are also conditional variants of all four modalities, written as,
for example, �?p P , that add the modality to the proposition iff a boolean variable
p is true.

4.1.2. Notation
The functions in the separation logic interface are already enough to write logical
statements in separation logic, but they quickly become unreadable without a
notation. Compare the two equal statements in figure 4.3 for an example. When
defining the notation for a system, an important question is whether to define it
as a closed domain specific language (DSL) or to integrate it in the available term
syntax. The first choice allows tighter control over the available constructs, but in
the case of separation logic, it is in fact necessary to be able to mix common syntax
constructs with separation logic notation. This is used, for instance, in the definition
of conditional modalities: �?p P := if p then� P else P . Mixing elements from
separation logic syntax and Lean’s syntax alone would be as easy as defining the new
syntax in Lean’s default syntax category term. However, problems arise when syntax
is reused, for example in the case of ∧. Although it is possible to overload syntax,

Without notation:
entails (and (persistently P) Q) (sep P Q)

With notation:
<pers> P ∧Q ` P ∗Q

Figure 4.3.: Comparison of equal statements without and with a notation for sepa-
ration logic.

18

using the same operator for Lean propositions and separation logic propositions,
which can occur together in the same statement, confuses Lean’s type inference. To
avoid this, the separation logic syntax is defined in the syntax category term with
the additional notation `[iprop| t] to indicate that a term t should be interpreted
as a separation logic proposition. Separation logic syntax that occurs outside of
this quotation does not have an interpretation. Syntax without an interpretation in
separation logic inside the iprop quotation is interpreted in term as usual. There
is also the notation `[term| t] to force the term interpretation of overloaded
syntax inside an iprop quotation. Note that the behavior of the iprop quotations,
including the fallback to term, is automatically available in Coq by declaring a
notation scope for separation logic propositions. In addition, using notation scopes
allows specifying a scope for the arguments of functions and typeclasses at declaration
time. Automatically inserting iprop quotations for certain arguments would also be
possible in Lean, but is not currently part of this implementation.
The notation for the separation logic entailment is required to use the more

powerful macro command instead of the infix command for infix operators, since
the latter does not allow modified arguments in the expanded syntax. This is however
required to pass the iprop quotations to the arguments, such that the arguments are
also interpreted as separation logic notation. The same technique is used for most
operators, as demonstrated on a few examples in figure 4.4. When a notation requires
syntax that is not already defined in Lean, it is first added using the syntax command.
The macro_rules command is then used to define the interpretation of the new or
overloaded syntax. Notice that the left side of the syntax replacements also contains
the iprop quotations, which limits the syntax interpretation to separation logic
propositions. This is not necessary for the entailment, since a statement P ` Q is a
Lean proposition, not a separation logic proposition (see figure 4.1 for the definition).
It is therefore often not necessary for the user of the separation logic interface to use
the `[iprop|] quotation, since statements in separation logic are typically logical
consequences of the form P ` Q, which can be written without additional quotations
as explained. One use case where iprop quotations are required is when writing
standalone separation logic propositions, for example to use them as arguments for a

macro:25 P:term:29 " ` " Q:term:25 : term =>
`(BIBase.entails `[iprop| $P] `[iprop| $Q])

syntax:35 term:36 " ∗ " term:35 : term
macro_rules

| `(`[iprop| $P ∧ $Q]) => `(BIBase.and `[iprop| $P] `[iprop| $Q])
| `(`[iprop| $P ∗ $Q]) => `(BIBase.sep `[iprop| $P] `[iprop| $Q])
| `(`[iprop| True]) => `(BIBase.pure True)

Figure 4.4.: Examples of the definition of separation logic notation. The syntax for
the operator ∧ is already defined in Lean and can be reused/overloaded.

19

typeclass as shown in figure 4.5. The last example in figure 4.4 is the definition of
True in separation logic, which is defined as the pure separation logic proposition
True. Since True on the right side of the syntax replacement is a Lean proposition,
it is written without an iprop quotation.
It is also possible to define additional notation beyond the separation logic con-

nectives, even after the logic has been instantiated. Predefined additional notation
includes the notation for the predefined derived modalities and the conditional
modalities, as well as bidirectional variants of the entailment and the separating and
non-separating implication. The notation ` P := emp ` P is introduced to simplify
statements with an empty context. There are also the so-called big operators, which
fold an operator over a list of propositions, e.g., [∧] Ps = P1 ∧ P2 ∧ P3 if Ps contains
the propositions P1, P2 and P3.

class Persistent [BI PROP] (P : PROP) where
persistent : P ` <pers> P

class Absorbing [BI PROP] (P : PROP) where
absorbing : <absorb> P ` P

instance intuitionisticallyPersistent [BI PROP] (P : PROP) :
Persistent `[iprop| � P]

where
persistent := . . .

instance persistentlyAbsorbing [BI PROP] (P : PROP) :
Absorbing `[iprop| <pers> P]

where
absorbing := . . .

Figure 4.5.: Examples of typeclasses that require properties of a modality for a
proposition. Note that � P is not in relation to <absorb> P due to
the different directions of the entailments used in the typeclasses. The
instance implicit argument [BI PROP] requires that the type PROP is
the carrier type of a separation logic instance. Elements of type PROP
are then propositions in this separation logic.

4.1.3. Typeclasses
Typeclasses are widely used through the separation logic framework to require certain
properties for given propositions. The most basic typeclasses assert that a proposition
fulfills the properties of a modality. The typeclasses Persistent and Absorbing
are shown as two examples in figure 4.5 together with an instance of each typeclass.
Note that the two typeclasses use the modality on different sides of the entailment.
The typeclass Persistent requires that the proposition P is enough to deduct the

20

proposition <pers> P from it. This means, since <pers> P can be duplicated, P
must be duplicable as well. One group of propositions for which this holds, is
intuitionistic propositions, i.e., propositions with the � modality, which is expressed
by the instance intuitionisticallyPersistent. The proposition persistent to
prove in intuitionisticallyPersistent is then � P ` <pers> � P , which does
hold. The typeclass Absorbing works in the opposite direction. In fact, it is easy
to prove that P ` <absorb> P holds for every P . The reason is that it is always
possible to generate an additional True, which is pure and can therefore absorb other
propositions, but it cannot be discarded. The typeclass Absorbing instead requires
that P can be deducted from <absorb>P , which means that P must be able to hold
the potential additional resources that were absorbed by <absorb>P . This is true for
persistent propositions and visible in the typeclass instance persistentlyAbsorbing.
These typeclasses can also be instantiated with custom modalities or constructs
defined by the user of the separation logic interface to indicate that these groups of
propositions fulfill the properties of the predefined modalities.

Instead of requiring properties of propositions, it is also possible to specify proper-
ties of an entire separation logic instance. For example, there are affine logics, in
which every proposition is affine. The corresponding typeclass BIAffine extends
the typeclass BI and requires that, for each proposition P, there must be a typeclass
instance of Affine P. The typeclass also makes this instance available, such that it
is not required to write <affine> P for every proposition when working with affine
logics. Definitions or theorems requiring an instance of Affine for a proposition will
then find the instance generated by BIAffine. There are other possible properties of
separation logic instances, but none of them are currently part of this implementation.

abbrev Relation (α : Type) := α → α → Prop

class PreOrder (R : Relation α) extends Reflexive R, Transitive R
class Comm (R : Relation α) (f : β → β → α) where

comm {x y : β} : R (f x y) (f y x)

Figure 4.6.: Examples of general-purpose typeclasses on relations. A Relation is
defined to be a proposition on two values of the same type α.

This implementation also comes with typeclasses that are not exclusive to separa-
tion logic, but can be used on any relation. Two examples of typeclasses on relations
are shown in figure 4.6. One of them is the typeclass PreOrder, of which an instance
for the entailment relation is required in the separation logic interface represented
by BI and BIBase (see figure 4.1). The typeclass PreOrder combines the properties
of Reflexive and Transitive. The typeclass Comm, on the other hand, requires a
new property to prove that a function f is commutative for all x and y in a relation
R on the result type α of f . An example instance of this typeclass for separation
logic is shown in figure 4.8.

21

class inductive TCOr (T U : Sort _)
| l : [T] → TCOr T U
| r : [U] → TCOr T U

Figure 4.7.: Definition of the typeclass TCOr, which implements a logical disjunction
on typeclasses. The type of T and U is Sort _, which is a superset
of Prop and Type and includes arbitrary typeclasses.

As mentioned in section 3.1, it is also possible to perform simple logic programming
with typeclasses. This is used to require that a proposition should have at least
one of two properties, which requires a logical disjunction on typeclasses. Since
Lean does not include typeclasses for logic programming, they are also part of this
implementation. The typeclass TCOr is shown in figure 4.7. TCOr is a typeclass based
on an inductive datatype, which means there are multiple constructors with which an
instance of the typeclass can be created. The two constructors each take exactly one
of the two typeclasses T and U in the disjunction. This means that an instance of
either typeclass is enough to instantiate TCOr. An example usage of this typeclass is
shown in figure 4.9. There is also the typeclass TCIte, which requires an instance of
one of two typeclasses depending on a boolean condition. The condition can, however,
not be an arbitrary boolean expression, since Lean reduces only functions marked
with the attribute reducible during typeclass instance search, which is not the case
for most of the predefined boolean operators. There are workarounds for simple
boolean expressions, which is enough for the requirements of this implementation.

instance sep_comm [BI PROP] :
Comm (α := PROP) (· a` ·) (`[iprop| · ∗ ·])

where
comm := . . .

Figure 4.8.: Example instance of the typeclass Comm, shown in figure 4.6, where the
relation R is the bidirectional entailment a` and the binary function
f is ∗. The proposition comm to prove is x ∗ y a` y ∗ x for all
separation logic propositions x and y. The center dot · in parentheses
is a placeholder for an abstracted argument, i.e., (1 + ·) is expanded
to fun a => 1 + a. Multiple center dots refer to different arguments
and are processed in the order of their appearence in the term.

4.1.4. Derived Laws
The derived laws in this implementation are theorems that are not required to be
provided by the user of the separation logic interface. Instead, they are derived from
the set of separation logic axioms in the typeclass BI. The resulting propositions are

22

valid for all instantiations of the separation logic interface and therefore all separation
logics. The necessary proofs of the derived laws are discussed in subsection 4.4.1.
One part of the derived laws are the propositions in the instances of typeclasses,

which specify properties of separation logic propositions and connectives. Examples
of two instances of typeclasses describing propositions were shown in figure 4.5. An
additional example of an instance of a typeclass describing a connective is presented
in figure 4.8. The instance sep_comm states that the separation logic connective ∗ is
commutative using the typeclass Comm. With this instance, the function comm can be
used in proofs where the commutativity of ∗ is required. Another important instance
is entails_anti_symm, which proves that the entailment is antisymmetrical with
the bidirectional entailment as its equivalence relation. This means that if P ` Q
and Q ` P then P a` Q.

theorem affinely_and_l [BI PROP] {P Q : PROP}
: <affine> P ∧ Q a` <affine> (P ∧ Q)

theorem sep_elim_l [BI PROP] {P Q : PROP} [TCOr (Affine Q) (Absorbing P)]
: P ∗ Q ` P

Figure 4.9.: Examples of derived separation logic laws.

Most of the derived laws, however, are theorems proving additional properties of
separation logic propositions and connectives. Two examples of derived laws are
shown in figure 4.9. The first theorem affinely_and_l states that an <affine>
modality on the left operand of ∧ can be moved out to the entire conjunction
and vice-versa. At first this may seem unintuitive, since discarding one operand
is different from discarding the entire conjunction, but the definition of <affine>
adds an emp to the conjunction, which can be used to discard each operand or the
entire conjunction. Note that, like ∗, ∧ is commutative and associative. The second
theorem sep_elim_l shows that theorems can include typeclass instances to require
that propositions have certain properties. In this case, the theorem requires either
Q to be affine or P to be absorbing. If Q is affine, it can be discarded, and if P is
absorbing, it allows discarding Q as well. This is specified using the typeclass TCOr
introduced in figure 4.7. The theorem holds if at least one of the typeclass instances
can be found. It is not necessary that, for example, P is exactly <absorb> P ′ for
some P ′. Figure 4.5 demonstrates this by showing an instance of Absorbing for
<pers> P .

4.2. Environment and Goal Display
In section 2.1 on bunched implications, bunches were introduced to serve as context
Γ in a statement Γ ` ψ of logical consequence. A structured representation instead
of a list is necessary to keep track of which parts of the context allow weakening

23

and contraction. The introduction and elimintation rules for → and −∗, however,
show that there is a duality of propositions on the left side of ` and propositions in
the premise of an implication or wand, depending on the context-forming operation.
This implementation therefore follows the approach used in MoSeL and defines the
entailment P ` Q based on the definition of the separating implication −∗. In this
definition, P and Q are therefore both separation logic propositions. The context-
forming operations “;” and “,” in Γ then correspond to the conjunctions ∧ and ∗ in P .
The additive variants both admit weakening and contraction, while the multiplicative
variants do not. As an example, compare the context representation P , (Q1 ;Q2) using
bunches with the representation as a separation logic proposition: P ∗(Q1∧Q2). Both
the conjunctions and the context-forming operations are associative and commutative,
which allows arbitrary reorderings in a multiplicative or additive part of the context.
Note that it is not possible to distribute the operators over each other.

inductive Env (α : Type)
| nil : Env α
| cons : α → Env α → Env α

structure Envs (PROP : Type) [BI PROP] where
intuitionistic : Env PROP
spatial : Env PROP

def of_envs [BI PROP] : Envs PROP → PROP
| 〈Γp, Γs〉 => `[iprop| � [∧] Γp ∗ [∗] Γs]

def envs_entails [BI PROP] (∆ : Envs PROP) (Q : PROP) : Prop :=
of_envs ∆ ` Q

Figure 4.10.: Definition of the environments, i.e., the separation logic context,
including the embedding in a statement of logical consequence. The
function of_envs extracts the two context parts Γp and Γs from its
first argument of the type Envs PROP using pattern matching and the
anonymous constructor notation 〈a, b〉 where a and b are the fields
of a structure in the order of their definition.

While the form P ` Q is convenient for the definition of separation logic, it is
impractical to work with in separation logic proofs in an ITP. The separation logic
interface should instead allow the user to introduce hypotheses and list the available
hypotheses. This mimics the behavior of Lean, which was shown on the right side
of figure 3.1. For that purpose, the context is divided into an intuitionistic part of
hypotheses that can be duplicated and discarded and a spatial part of hypotheses
that must be used exactly once. Each part of the context, called an environment
in this implementation, is then represented as a list of hypotheses, encoded in the
inductive datatype Env. The entire separation logic context is implemented as the

24

structure Envs, which contains two instances of Env, one for the intuitionistic and
one for the spatial part, as shown in figure 4.10. The Lean context is sometimes
referred to as pure context, since it contains hypotheses that can be used in pure
separation logic propositions, as explained in section 4.1.
In order to use the Envs structure as the context P in a statement of logical

consequence P ` Q, there must be an embedding as separation logic proposition.
This embedding is performed by the function of_envs shown in figure 4.10. For
the spatial environment Γs, the embedding is as simple as combining the contained
hypotheses with ∗, written as [∗] Γs using a big operator. The spatial conjunction
ensures that the hypotheses cannot be duplicated or discarded, which is the definition
of the spatial context. Note that the individual hypotheses can have modalities, which
can permit duplicating or discarding them. For the intuitionistic environment Γp, it
must be ensured that the contained hypotheses can be duplicated and discarded. For
that purpose, each hypothesis is assigned with an intuitionistic modality. However,
for convenience, the intuitionistic modality is written in front of the big operator
in the expression � [∧] Γp. Note that � distributes over ∧, while for ∗ this is not
true for arbitrary separation logics. The two environment representations are then
combined with ∗ to a single separation logic proposition. An example of an Envs
object and its representation as a separation logic proposition is shown in figure 4.11.
The function envs_entails further shows how to construct a statement of logical
consequence from an Envs object ∆ and a separation logic proposition Q.

Envs object:
{ intuitionistic := [Q1, Q2]e, spatial := [P, <affine> R]e }

Representation as separation logic proposition:
� (Q1 ∧Q2) ∗ P ∗ <affine>R

Figure 4.11.: Example of an Envs object and its representation as a separation
logic proposition as defined by the function of_envs. Note that the
big operators [∧] and [∗] are already expanded in this example. The
notation []e is used to indicate that the intuitionistic and spatial
contexts are objects of type Env.

As shown in figure 3.1, the user assigns names to the introduced hypotheses and
refers to them by name when they are used in a proof. It is, however, not desirable to
attach the names to the hypotheses in the definition of Envs, since the operations on
Envs and their proofs of soundness should not be concerned with (potentially failing)
string lookups. Instead, the hypotheses are referenced using indices of the dependent
type Fin, which ensures that the contained index value is a valid index for the target
data structure. For Envs, this is implemented in the inductive datatype EnvsIndex,
which contains either an index for the intuitionistic or the spatial part. The definition
of EnvsIndex is shown in figure 4.12. For a more convenient creation of indices on
the meta level, the arguments of EnvsIndex are the length of the intuitionistic and

25

spatial part instead of the Env objects themselves. It is, however, possible to directly
require an index for a given Envs object using the function EnvsIndex.of.

structure Fin (n : Nat) where
val : Nat
isLt : val < n

inductive EnvsIndex (lp ls : Nat)
| p : Fin lp → EnvsIndex lp ls
| s : Fin ls → EnvsIndex lp ls

abbrev EnvsIndex.of [BI PROP] (∆ : Envs PROP) :=
EnvsIndex ∆.intuitionistic.length ∆.spatial.length

Figure 4.12.: Definition of EnvsIndex which is used to reference hypotheses in
Envs. The definition of Fin is included in Lean and only shown for
completeness. Note that the datatype Nat contains only non-negative
numbers.

Using EnvsIndex is a clean way of indexing a hypothesis in the context, but the
user should still be able to refer to hypotheses by their assigned name. To achieve that,
the names are stored on the meta level where the tactic functions and the goal display
are defined. On the meta level, the hypotheses are represented as kernel expressions
of type Expr. The definition of Expr allows attaching arbitrary information in a
key-value store to an expression using the constructor Expr.mdata. Attached meta
data is ignored by the kernel when processing expressions. When a name is assigned
to a hypothesis, it is added to the Expr representing the hypothesis as meta data.
When the user refers to an expression by name, the list of all hypotheses (represented
as Exprs) in both parts of the context is searched for a hypothesis with this name
attached as meta data. When the name is not assigned to any hypothesis, the lookup
fails in the implementation of the tactic and no EnvsIndex object will be created.
The string lookup in the context is therefore irrelevant for the implementation of
operations on Envs. As a consequence, the assigned names also do not appear in the
proof terms generated for separation logic proofs. Note that this is different from
the Coq implementation of MoSeL, where the names are stored directly in Envs. A
comparison of both approaches is shown in section 5.3.
As an example, an application of envs_entails is shown in figure 4.13 as a

kernel expression. The separation logic context in envs_entails contains a single
proposition in the intuitionistic context with the name HQ attached as meta data.
The applications of the function envs_entails and the constructors of Envs and
Env are represented as combinations of the Expr constructors app and const. The
additional arguments for the separation logic proposition type PROP and the required
typeclass instances are omitted for readability. The free variables `_uniq.65 and

26

`_uniq.64 in the Expr constructor fvar represent the separation logic goal and the
hypothesis HQ, respectively.

Φ := app (app (const `envs_entails) ∆) (fvar `_uniq.65)
∆ := app (app (const `Envs.mk) Γp) Γs

Γp := app (app (const `Env.cons) P) (const `Env.nil)
P := mdata [(`name, DataValue.ofName `HQ)] (fvar `_uniq.64)

Figure 4.13.: Example of the (simplified) representation of a Lean goal Φ containing
a separation logic context ∆ in an application of envs_entails as
a kernel expression of type Expr. Placeholders for expression terms
are marked in green.

The tactic implementations do not directly modify Envs, but use the provided
operations shown in figure 4.14. Each of the operations has a soundness proof which
is used in the correctness proof of the tactic implementations. The Env datatype
has the same structure as a common list, which includes that elements are added
in the front of the list using the constructor Env.cons. This is reasonable since the
environment indices implemented in EnvsIndex count the hypotheses front-to-back.
It is however not the preferred way of adding hypotheses to a context (spatial or
intuitionistic) when performing a proof.

def append [BI PROP] : (p : Bool) → (P : PROP) → (∆ : Envs PROP) →
Envs PROP

def delete [BI PROP] : (rp : Bool) → (∆ : Envs PROP) →
(i : EnvsIndex.of ∆) → Envs PROP

def lookup [BI PROP] : (∆ : Envs PROP) → (i : EnvsIndex.of ∆) →
Bool × PROP

def replace [BI PROP] : (∆ : Envs PROP) → (rp : Bool) →
(i : EnvsIndex.of ∆) → (p : Bool) → (P : PROP) → Envs PROP

def split [BI PROP] : (∆ : Envs PROP) → (mask : List Bool) →
(mask.length = ∆.spatial.length) → Envs PROP × Envs PROP

Figure 4.14.: Signatures of important operations on Envs. The shown functions
are implemented using additional functions on Env. In Lean, tuple
types are written as A× B where A and B are types.

When the user introduces a hypothesis to a context, it should be shown on the
bottom of the list of hypotheses in the respective context, as shown in figure 3.1.

27

This is done using the function append, which adds a hypothesis P to the end of a
context in ∆. The context is determined by the parameter p where true indicates
that the hypothesis is added to the intuitionistic context and false that it is added
to the spatial context. The parameter is defined as Bool in order to use it in
conditional modalities like �?p P . A hypothesis can be removed from a context with
the function delete where the EnvsIndex i references the hypothesis in a specific
context. The correct context in ∆ can be determined by the constructor used to
create the EnvsIndex instances as shown in figure 4.12. The additional parameter
rp (short for remove intuitionistic) is considered when deleting a hypothesis from
the intuitionistic context and ignored when i references a spatial hypothesis. Calling
the function with rp = true is, for example, useful when the referenced hypothesis
is destructed and no longer needed. The value false is specified when a hypothesis
is used in a proof, since intuitionistic hypotheses can be used more than once. A
function that does not modify the environments is lookup. This function is used
to retrieve the hypothesis referenced by i from ∆. The resulting tuple contains a
boolean value that indicates whether the hypothesis comes from the intuitionistic
(true) or spatial (false) context and the retrieved proposition. The function always
succeeds since elements of EnvsIndex.of ∆ must contain a valid index for ∆. The
function replace combines the functions delete and append. Note that the inserted
proposition is added to the end of the respective context, which is the expected
behavior when considering the goal display. Using replace instead of delete and
append has the additional advantage of being able to use the soundness proof for
the entire operation.
The function split on Envs is the most complex one and also shown in figure

4.14. It is used to split the spatial context ∆.spatial into two parts, such that each
hypothesis is in exactly one of the two parts. The hypotheses are distributed using
the list mask which is required to be of the same length as ∆.spatial. The boolean
values in mask define whether the hypothesis at the same position in ∆.spatial is
placed in the left part (true) or the right part (false) of the result. This function
is used when performing a proof of two propositions combined with the separating
conjunction ∗. Since every proposition in the spatial context can only be used
once, the user must decide whether to use it for the proof of the proposition on the
left-hand or right-hand side of ∗. Since the propositions in the intuitionistic context
can be used multiple times, they are available for the proofs on both sides of ∗. The
entire intuitionistic context of ∆ is therefore used in both parts of the result. The
approach of using a boolean mask to split the hypotheses is different from the one
in the Coq formalization of MoSeL. There, a list of string identifiers is given and
a boolean value that indicates whether the referenced hypotheses should be placed
in the left or right part of the result. The remaining hypotheses are placed in the
opposite part. The two approaches are compared in section 5.3.
There are cases in which the spatial context is required to contain only affine

propositions, e.g., when a proof is concluded and the remaining hypotheses must be
discarded. The intuitionistic context does not need to be checked since intuitionistic
hypotheses are always affine. Instead of iterating over the hypotheses in the spatial

28

class AffineEnv [BI PROP] (Γ : Env PROP) where
affineEnv : ∀ P, P ∈ Γ → Affine P

instance affineEnvNil [BI PROP] :
AffineEnv (PROP := PROP) .nil

instance affineEnvConcat [BI PROP] (P : PROP) (Γ : Env PROP) :
[Affine P] → [AffineEnv Γ] → AffineEnv (.cons P Γ)

instance affineEnvBi (Γ : Env PROP) :
[BIAffine PROP] → AffineEnv Γ

Figure 4.15.: Definition and instances of the typeclass AffineEnv, which is used
to determine whether a given environment Γ contains only affine
hypotheses. The argument PROP is specified explicitely in the instance
affineEnvNil because it cannot be infered automatically for the
typeclass AffineEnv.

context, this check is implemented using the typeclass AffineEnv, shown in figure
4.15. This allows extensions to the separation logic interface to introduce additional
modalities or structures with new instances of the typeclass Affine. The typeclass
AffineEnv requires that for each proposition P , it must hold that if P is contained
in the environment Γ, there must be an instance of the typeclass Affine for P .
The more convenient notation ∀ P ∈ Γ is not yet defined in Lean. The instances
of AffineEnv in figure 4.15 show three cases in which an environment contains
only affine hypotheses. The first two instances implement an inductive approach.
The instance affineEnvNil states that the empty environment contains only affine
hypotheses, while the instance affineEnvConcat performs the induction step by
stating that an affine environment Γ remains affine when an affine hypothesis P is
added. The last instance affineEnvBi is a shortcut for when the separation logic
contains only affine propositions, indicated by an instance of the typeclass BIAffine.
The last part of the implementation of the separation logic context is the goal

display. It is supposed to list the introduced hypotheses in the same way as the
local context in Lean is shown (see figure 3.1). The display should contain both the
intuitionistic and the spatial context in addition to the already available Lean context,
as well as the current goal Q on the right side of the Lean goal P ` Q. An example
of the resulting display is shown in figure 4.16. Notice that the goal display produces
only the part after the ` in line 5 where the Lean goal would usually be displayed.
This is because the goal display is implemented as a so-called delaborator for the
function envs_entails, which contains the Envs object ∆, as well as the separation
logic proposition Q in the Lean proposition of_envs ∆ ` Q. This proposition is
the (Lean) goal during a separation logic proof. A delaborator maps a meta level
expression of the type Expr, representing an application of the associated function,
to a Syntax object that can be shown to the user. The implementation of the goal
display first destructs the expressions for `, Envs and Env and then retrieves the

29

1 case Ind_1
2 PROP : Type
3 inst : BI PROP
4 P Q1 Q2 R : PROP
5 ` Iris Proof Mode
6 -----------------------------
7 HQ1 : Q1
8 HQ2 : Q2
9 ----------------------------- �

10 HP : P
11 HR : <affine> R
12 ----------------------------- ∗
13 P −∗ R

case Ind_2
PROP : Type
inst : BI PROP
P Q1 Q2 R : PROP
` Iris Proof Mode

HQ : Q1 ∧ Q2
----------------------------- �
HP1 : � P
HP2 : � P
HR : R
----------------------------- ∗
R

Figure 4.16.: Examples of the separation logic goal display showing three contexts
per goal (Ind_1 and Ind_2 in this example): The Lean context in
lines 2-4, the intuitionistic context above the line with the intuitionistic
modality � and the spatial context above the line with the separating
conjunction ∗. Notice that hypotheses with an intuitionistic modality,
like �P in the context of the right goal, can also appear in the spatial
context. The goals P −∗R and R are shown below the last line.

hypotheses of both contexts as expressions. The resulting expressions contain the
names of the hypotheses as meta data. An example of an environment as an Expr is
shown in figure 4.13. The destruction of Expr objects is explained in the context
of tactics in subsection 4.3.3. The produced syntax is then assembled, including
the hypotheses of both contexts with their names, the goal and additional styling
elements (lines and symbols) shown in figure 4.16. The syntax for the hypotheses is
created by the delaborator for separation logic propositions.

4.3. Tactics
With the ability to instantiate custom separation logics, write statements using
the established notation, and visualize the context of proofs steps, the only thing
missing from the separation logic interface are the tactics that allow writing proofs
on the high abstraction level common in ITPs. Separation logic proofs would also be
possible without these tactics by applying the provided axioms and derived laws, but
they would be much more complicated and less readable. Instead, using the provided
tactics, the separation logic proofs read like other Lean proofs regarding both the
abstraction level and the known proof concepts like introduction and destruction of
hypotheses. Although the implementation of the tactics is based on MoSeL, their
signatures, including names and syntax patterns, follow the Lean conventions. A list
of all provided tactics can be found in figure A.1.

30

4.3.1. Separation Logic Proof Mode
When writing a separation logic theorem, the statement to prove is a logical conse-
quence of the form P ` Q where P and Q are separation logic propositions. The
entire statement is a Lean proposition as visible from the definition of ` in figure 4.1.
Since the separation logic tactics and the goal display require a structured context
to introduce and access hypotheses, the user must first enter the separation logic
proof mode. The structured context is then represented as an Envs object. The
concept of separation logic environments was explained in section 4.2. The two
tactics used to enter and leave the separation logic proof mode are istart and istop.
The “i” prefix is used to distinguish the separation logic tactics from the Lean
tactics. The tactic istart enters the proof mode by turning the goal from P ` Q
into an application of envs_entails, which includes an instance of Envs. Since the
proposition P can be arbitrarily complex, it is not trivial to decide where it should
be split into hypotheses in the created context. The Envs object is therefore created
with two empty Env objects, i.e., both the intuitionistic and the spatial context are
empty. This is done in two steps: First the typeclass AsEmpValid is used to turn
the proposition P ` Q into emp ` (P −∗Q), justified by the elimination rule for −∗
shown in figure 2.3. Then, the goal is turned into envs_entails ∆0 (P −∗Q) where
∆0 is the empty Envs object. The user can now reintroduce the proposition P to the
context and destruct it if necessary. The tactic istart is also called implicitly by
other tactics where applicable, such that the user can start a proof with, for example,
the tactic iintro without having to enter the proof mode manually beforehand. The
tactic istop works in the opposite direction and is used to remove the application of
envs_entails from the Lean proposition in the goal. This is done by reducing the
definition of envs_entails and of_envs shown in figure 4.10. The hypotheses in
the intuitionistic and spatial context are combined using ∧ and ∗, respectively, and
the proposition representing the intuitionistic context is prepended with an �. The
resulting proposition is then again of the form P ` Q where P is an unstructured
separation logic proposition containing all hypotheses from the Envs object ∆.

4.3.2. Tactics and Theorems
As explained in section 3.3, custom tactics in Lean are usually implemented

using the elab macro which generates the tactic syntax and registers the given
monadic function to elaborate usages of the tactic. The implementation of the
tactic functions follows the example of MoSeL and adds theorems used by the
monadic functions to modify the focused Lean goal, i.e., the separation logic context
and goal. The additional theorems allow implementing the tactic behavior on the
theorem/object level instead of dealing with kernel expressions on the meta level.
Another advantage is that the tactic theorems come with correctness proofs for the
implemented actions, whereas arbitrary meta operations may create misformed proof
terms which would then be rejected by the verification in the kernel. Figure 4.17
shows the implementation of the simplest tactic in this implementation: iex_falso.

31

elab "iex_falso" : tactic => do
evalTactic (← `(tactic|

refine tac_ex_falso _ ?_
))

theorem tac_ex_falso [BI PROP] {∆ : Envs PROP} (Q : PROP) :
envs_entails ∆ `[iprop| False] → envs_entails ∆ Q

Figure 4.17.: Implementation of the tactic iex_falso showing the two parts of
tactic implementations: a monadic function and a number of accom-
panying theorems. The tactic iex_falso replaces the separation
logic goal Q with False, keeping the context ∆ unchanged.

In this example, the monadic function does nothing more than use the Lean tactic
refine to replace the goal with a proposition that implies the goal. The required
implication is the tactic theorem that is passed to refine. Since the monadic
function is executed on the meta level, the usage of refine must be wrapped in
evalTactic, as shown in figure 3.8. The tactic theorem tac_ex_falso states that
for all environments ∆ and separation logic propositions Q, if the goal is of the form
envs_entails ∆ Q (separation logic proof mode is activated), it can be replaced
with envs_entails ∆ False, since the latter implies the former.

4.3.3. Meta Operations
Usually, the monadic tactic functions consist of more than just using refine to

transform the goal. One example of a task on the meta level is parsing additional
parts of the tactic syntax. In the example of the tactic isplit, shown in figure
4.18, these additional parts include the variables side and hyps. Both variables
are TSyntax objects, i.e., typed syntax objects with their syntax kind as type. The
syntax kind of side is determined by the custom category splitSide, which is
also shown in figure 4.18, while hyps is an array of elements of the syntax kind
ident, which is predefined in Lean. In order to determine which side the argument
side specifies (internally encoded as a boolean value), it is matched against the two
possible values of splitSide: l and r. The syntax used in the match is written
using syntax quotations (“`()”). The optional syntax kind produced by the syntax
quotations is prepended using a vertical bar as separator. Since the syntax category
splitSide can be extended after its declaration, it is necessary to include a last
case in the match, throwing an exception for all other values. The argument hyps is
processed by extracting the string identifier from each syntax element in the array.

Another important task on the meta level is extracting information from the Lean
goals, which are available to meta functions as kernel expressions of type Expr. Imple-
mentations of the separation logic tactics often need to destruct the separation logic
proof mode goal envs_entails ∆Q. This destruction is performed by the function

32

declare_syntax_cat splitSide
syntax "l" : splitSide
syntax "r" : splitSide

elab "isplit" side:splitSide "[" hyps:ident,* "]" : tactic => do
let splitRight ← match side with

| `(splitSide| l) => pure false
| `(splitSide| r) => pure true
| _ => throwUnsupportedSyntax

let names := hyps.getElems.map (·.getId)
. . .

Figure 4.18.: Example of parsing additional syntax elements in a monadic tactic
function. The tactic isplit is used to destruct a separating conjunc-
tion ∗ and distribute the hypotheses from the spatial context to the
spatial contexts of the created goals. Its syntax contains the side
on which the listed hypotheses are placed and the identifiers of these
hypotheses in square brackets separated by commas.

extractEnvsEntailsFromGoal shown in figure 4.19. The function first retrieves all
unsolved goals using getUnsolvedGoals and extracts the first goal from the returned
list. It is common for Lean tactics to use the first goal as the main goal to work on.
If there are no goals, an exception is thrown. The variable goal then contains a meta
variable representing the goal. A meta variable has a type, which is the goal propo-
sition shown in the goal display, and can have a value assigned to it, which would
be a proof of the proposition. The function extractEnvsEntailsFromGoal works
on the type level and receives the type of the meta variable goal from the function
getMVarType. This type is given as a kernel expression of type Expr. Since Lean does
not support expression quotations by default 1, the expression is destructed manually
using extractEnvsEntails?. After reducing any pending function calls in the given
expression, this function checks that the expression is an application (Expr.app) of
the function envs_entails with two arguments ∆ and Q, both also expressions. If
so, it further checks that the first argument is an application of the constructor of
Envs with the two arguments Γp and Γs. If all checks succeed, the three values Γp,
Γs and Q are returned. The function extractEnvsEntailsFromGoal continues by
returning the same values. The implementation of the function findHypothesis uses
extractEnvsEntailsFromGoal to find a hypothesis in the intuitionistic or spatial
context by name. Since it is a meta function, both the contexts and the contained
hypotheses are expressions of type Expr. After extracting the intuitionistic and
spatial contexts from the goal, findHypothesis continues by destructing repeated
applications (Expr.app) of Env.cons, checking if the meta data (Expr.mdata) asso-

1There is the package quote4 [17] for expression quotations in Lean 4, but it is currently not used
in this implementation.

33

ciated with the hypotheses in the contexts contains the specified name. If successful,
the index of the found hypothesis is returned.

def extractEnvsEntailsFromGoal : TacticM (Expr × Expr × Expr) := do
let goal :: _ ← getUnsolvedGoals

| throwNoGoalsToBeSolved
let expr ← getMVarType goal

let some (Γp, Γs, Q) ← extractEnvsEntails? expr
| throwError "not in proof mode"

return (Γp, Γs, Q)

Figure 4.19.: Implementation of the function extractEnvsEntailsFromGoal.
The vertical bar in a line after a let contains the value to return if
the match in the let statement is unsuccessful.

Some tactics need to inspect hypotheses from the Lean context, e.g., the tactic
iassumption_lean shown in figure 4.20. This is easier to implement than using
hypotheses from the separation logic context, since Lean provides the necessary
functions as part of its meta API. The Lean hypotheses are contained in the so-called
local context of each goal. In order to access the local context, iassumption_lean
first calls getUnsolvedGoals to retrieve the main goal. It then uses getMCtx to
receive the meta variable context where information on all meta variables is stored.
Finding the meta variable declaration of goal using findDecl?, the declaration decl
can be used to access the local context (decl.lctx). The local context contains an
array of local declarations, which are exactly the hypotheses in the Lean context of
goal. These local declarations have, beside other properties, a name (userName)
and a type (type). The tactic iassumption_lean uses the type of each hypothesis
to validate that it is of the form ` Q with an empty context. Note that the type
is again given as an expression of type Expr. If the hypothesis is of the required
form, the goal is closed using the theorem tac_assumption_lean where the name

elab "iassumption_lean" : tactic => do
let goal :: _ ← getUnsolvedGoals

| throwNoGoalsToBeSolved
let some decl := (← getMCtx).findDecl? goal

| throwError "ill-formed proof environment"

for h in decl.lctx do
let (name, type) := (h.userName, ← instantiateMVars h.type)
. . .

Figure 4.20.: Implementation of the tactic iassumption_lean. The tactic closes
a separation logic goal with a Lean proposition of the type ` Q.

34

of the hypothesis is used in the construction of the syntax object for the tactic call
as shown in figure 3.8.

4.3.4. Typeclasses
As shown in figure 4.17, tactics in the separation logic interface are implemented
as monadic functions together with accompanying theorems. These theorems are
used to modify the Lean goal and come with correctness proofs. With the use
of typeclasses, the theorems also become extensible for the user of the separation
logic interface. Figure 4.21 shows one of the theorems used in the tactic iintro
as an example of this. The theorem tac_wand_intro_intuitionistic is used to
introduce (a modified version P ′ of) the premise P of a goal P −∗Q (or similar) to the
intuitionistic context. For that purpose, it states (in the last line) that a Lean goal of
the form envs_entails ∆R, i.e., a separation logic goal R with a context ∆, can be
transformed into the proposition envs_entails ∆′ Q where ∆′ = ∆.append trueP ′

is the new context containing the introduced proposition. The modified context
is created from the previous context ∆ using the function append, which adds the
proposition P ′ to one of the two separation logic contexts. The intuitionistic context
is specified by providing true for the first argument.
The instance implicit arguments are used to destruct and validate properties of

the propositions using typeclasses as explained in section 3.1. The typeclass used
first is FromWand, which extract the premise P and conclusion Q from a wand R
and is also shown in figure 4.21. The proposition R from the original goal is given
as a normal argument, while the other propositions P and Q are specified to be
output parameters (outParam), which are determined by the typeclass instance as
explained in section 3.1. To keep the check extensible for the user of the separation
logic interface, R does not have be constructed using −∗, but it must be derivable
from P −∗ Q. This allows treating the separation logic goal as P −∗ Q, since the
original wand R is derivable from it. The predefined instance of FromWand handles
the default case and specifies R = P −∗Q. The proposition P −∗Q is then destructed
to introduce the premise: P is added to the intuitionistic context as P ′ and Q
replaces the separation logic goal.
The remaining part of tac_wand_intro_intuitionistic, shown in figure 4.21,

is concerned with validating that the premise P can be treated as intuitionistic,
which is required in order to add it to the intuitionistic context. To be able to
treat a proposition as intuitionistic, it must be affine and persistent. This is ful-
filled by a proposition � P , but also for propositions with certain combinations
of the <affine> and <pers> modalities. Note that not all propositions with com-
binations of the two modalities have both properties, e.g., <pers> <affine> P is
not affine, as explained in subsection 4.1.1. Having P as the premise of the wand,
tac_wand_intro_intuitionistic therefore first checks that P is affine, using the
typeclass Affine. P can however also be treated as affine if Q is absorbing, which is
checked using the typeclass Absorbing. The two required typeclass instances are
therefore combined using TCOr, which implements a logical disjunction on typeclasses

35

class FromWand [BI PROP] (R : PROP) (P Q : outParam PROP)
where

from_wand : (P −∗ Q) ` R
class IntoPersistent (p : Bool) [BI PROP] (P : PROP) (P′ : outParam PROP)
where

into_persistent : <pers>?p P ` <pers> P′

instance intoPersistentPersistently (p : Bool) [BI PROP] (P P′ : PROP) :
[IntoPersistent true P P′] → IntoPersistent p `[iprop| <pers> P] P′

instance intoPersistentAffinely (p : Bool) [BI PROP] (P P′ : PROP) :
[IntoPersistent p P P′] → IntoPersistent p `[iprop| <affine> P] P′

instance intoPersistentHere [BI PROP] (P : PROP) :
IntoPersistent true P P

theorem tac_wand_intro_intuitionistic [BI PROP] {∆ : Envs PROP}
{P P′ Q R : PROP} : [FromWand R P Q] →
[IntoPersistent false P P′] → [TCOr (Affine P) (Absorbing Q)] →
envs_entails (∆.append true P′) Q → envs_entails ∆ R

Figure 4.21.: The tactic theorem tac_wand_intro_intuitionistic (bottom)
together with two of the typeclasses used to validate and destruct
the separation logic hypotheses (top). In addition, instances of the
typeclass IntoPersistent are shown (middle).

as shown in figure 4.7. The remaining check that P is persistent is performed by the
typeclass IntoPersistent, which is also responsible for removing <affine>, <pers>
and � modalities from P . Since P will be added to the intuitionistic context, it is
unnecessary to keep those modalities. The definition of IntoPersistent and the
instances mentioned in this paragraph are shown in figure 4.21. Note that a proposi-
tion <affine> <pers> P is persistent, even though <affine> is the outer modality.
The used typeclass IntoPersistent resembles the typeclass Persistent introduced
in subsection 4.1.3, but in addition to checking that P is persistent, it generates a
new proposition P ′ without the listed modalities. The boolean parameter p is used
to indicate whether it is already established that P is persistent and set to false
when the typeclass instance search is started in tac_wand_intro_intuitionistic.
Using p is necessary to continue removing other modalities after the first <pers>
modality is found. The instance intoPersistentPersistently therefore specifies
that if the goal is of the form <pers>?p <pers> P for any boolean value p (right side
of the implication), the typeclass instance search can continue with P (without the
<pers> modality) and p set to true (left side of the implication), since it is already
established that P is persistent. The result P ′ of the continued search is used as
the result of intoPersistentPersistently. One instance that removes a modality
without changing p is intoPersistentAffinely. Here the only change is that the
typeclass instance search is continued with P , having stripped the <affine> modality.

36

The result P ′ of the continued search is again used as the result. If there are no more
modalities to remove, i.e., the argument P of IntoPersistent does not match any
of the arguments in intoPersistentPersistently and intoPersistentAffinely,
the typeclass intoPersistentHere is used to end the typeclass instance search by
stating that P is persistent if p was set to true anywhere during the typeclass
instance search. There are also other instances of IntoPersistent that provide
support for extensions with new instances of Persistent for custom modalities or
constructs. Note that the typeclass instance search in this use case requires priorities
for the typeclass instances, e.g., the typeclass instance intoPersistentHere has a
lower priority than intoPersistentPersistently and intoPersistentAffinely.
After the typeclass instance search is finished, tac_wand_intro_intuitionistic
introduces the result P ′ to the intuitionistic context.

4.3.5. Composite Tactics
One of the most powerful tactics is icases, which destructs a hypothesis in a context
using a pattern. Besides others, there are patterns to destruct ∧, ∗ and ∨, as well as
to move hypotheses between the intuitionistic and the spatial context. A destructed
hypothesis is replaced with the resulting hypotheses in its context. Figure 4.22 shows
an example usage of the tactic. The first step in the example is the destruction of
the existential quantifier ∃ in HP, which is done using the anonymous constructor
notation 〈x, ...〉 where x is the bound variable. Existentially bound variables are
introduced to the pure context. Next, the three-argument separating conjunction
P1 ∗ · · · ∗ <affine> <pers> (P3 −∗ P4) is destructed using again the anonymous
constructor notation: 〈HP1, ..., �HP3〉. The intuitionistic modality � indicates
that the hypothesis HP3 should be placed in the intuitionistic context. This is possible
since the separation logic proposition is both affine and persistent, which is enough
to treat it as intuitionistic as explained in subsection 4.1.1. Note that in the Coq
formalization of MoSeL, there are two conjunction patterns, one with two arguments
and one with multiple arguments. This is also discussed in section 5.2. The last step
is destructing the disjunction �P2∨P2 inside the conjunction. The notation uses a
vertical bar “|” to separate the arguments of the disjunction: �HP2 | HP2. Using
the same name for both arguments is allowed, since they are placed in different goals
(Ind_1 and Ind_2). It is also allowed to move only one of the hypotheses between
contexts, here by using � on the first argument of the disjunction. The tactic
icases can be used as a standalone tactic, as shown in this example, but it is also
automatically executed when introducing hypotheses. The tactic iintro therefore
allows using icases patterns instead of names for the introduced hypotheses.

The implementation of icases traverses the parsed pattern syntax recursively and
executes various actions for the different pattern constructs. Non-recursive actions
like renaming a hypothesis or moving it to the intuitionistic context are directly
executed by calling the corresponding tactics irename or iintuitionistic. For
recursive actions like the destruction of a conjunction, additional functions are used
to destruct the proposition and return the resulting propositions together with the

37

Separation logic proposition HP:
∃ x, P1 x ∗ (� P2 ∨ P2) ∗ <affine> <pers> (P3−∗ P4)

Usage of icases:
icases HP with 〈x, 〈HP1, �HP2 | HP2, �HP3〉〉

Resulting separation logic contexts:
case Ind_1
x : Nat
` Iris Proof Mode

HP2 : P2
HP3 : P3 −∗ P4
----------------------------- �
HP1 : P1 x
----------------------------- ∗

case Ind_2
x : Nat
` Iris Proof Mode

HP3 : P3 −∗ P4
----------------------------- �
HP1 : P1 x
HP2 : P2
----------------------------- ∗

Figure 4.22.: Example usage of the tactic icases on a separation logic proposition
HP. Before the call to icases, the proposition in the example is
assumed to be in the spatial context. The two goal displays show the
contexts of the two goals created by executing icases on HP with
the resulting hypotheses. Additional elements in the Lean context, as
well as the separation logic goal, are omitted in this example.

remaining parts of the pattern. To support destruction patterns with more than two
arguments, a stack-based approach is used to destruct the binary right-associative
separation logic connectives ∧, ∗ and ∨. The recursive calls to destruct the arguments
of destructed propositions are performed on the top level of the implementation to
separate the goal manipulations from the destruction of the propositions. This is
relevant for the destruction of disjunctions, which generates one goal per argument.
In addition, arguments that are processed later in surrounding patterns have to
be applied to all of the generated goals. The destruction of a proposition using a
specific pattern usually considers various cases, such as different ways of destructing a
non-separating conjunction ∧ depending on the pattern arguments. Each destruction
variant uses a theorem to perform the necessary changes to the separation logic goal
and contexts, similar to the example shown in figure 4.17. The theorems themselves
use typeclasses to destruct the propositions as demonstrated in figure 4.21. This
allows users to extend the implementation of icases for their custom connectives.

4.4. Proofs
The implementation of the separation logic interface contains propositions in many
different places and often Lean expects a proof of these propositions. This guarantees
that the separation logic and the transformations performed in the interface are sound

38

relative to their definitions, as well as it allows users to validate their separation logic
proofs within Lean’s kernel. Without these proofs, a mapping from the separation
logic proof to a proof in Lean’s base logic would not be possible. Proofs are required
in different places in this implementation: Building on the axioms in the separation
logic interface BI (see figure 4.1), additional laws of separation logic propositions are
derived, as shown in subsection 4.1.4. Proofs are required to validate that the stated
laws are correct for arbitrary separation logics. Another important category contains
the propositions made in typeclasses, which are used to state that separation logic
propositions or relations fulfill certain properties. The concept of using typeclasses
for this was explained in section 3.1. Proving the related propositions guarantees
that the separation logic propositions for which a typeclass is instantiated have the
stated properties. The most complex propositions in the separation logic interface
are those describing the modifications of tactics on a separation logic goal and its
context. These propositions are used by the tactic implementations to execute the
modifications, as described in subsection 4.3.2. Adding proofs for them justifies that
the modifications can be used to create correct and validatable proofs. The last class
of propositions are those made about the separation logic environments introduced in
section 4.2. Proving these ensures that the embedding in separation logic statements
and the defined operations are sound. This section explains proof examples from
each class of propositions and some of the basic techniques used in the proofs.

4.4.1. Derived Laws
The first class of propositions builds on the separation logic axioms specified in
the interface BI for a separation logic. From these axioms, many additional laws
can be derived, which are part of this implementation and used in proofs of other
parts of the separation logic interface. An example of a derived law considering the
behavior of the <pers> modality in the context of non-separating conjunctions ∧ is
shown together with its proofs in figure 4.23. The proposition made in the theorem
persistently_and states that the terms <pers> (P ∧Q) and <pers> P ∧ <pers>Q
are equivalent, expressed by the bidirectional entailment a` between them. In the
proof of the theorem, the first step is to split this bidirectional entailment into two
entailments, since the two directions require different proofs. This is done by applying
the field anti_symm of the typeclass AntiSymm, which states that the relation ` is
antisymmetrical with the relation a` as its equivalence relation. Applying this
proposition generates two goals left and right for the two directions. The goal
right for the reverse direction <pers> P ∧ <pers> Q ` <pers> (P ∧Q) is directly
proveable with the separation logic axiom persistently_and_2. The opposite
direction does not require a separate axiom, but is derivable from other laws. Since
the right side of the entailment <pers> (P ∧Q) ` <pers> P ∧ <pers>Q is a ∧, it is
destructed by applying the introduction rule and_intro to prove the two arguments
of ∧ separately. The left and right side of ` in both remaining goals are wrapped
in a <pers> modality, which allows using the persistently_mono rule stating that
(P ` Q) → (<pers> P ` <pers> Q). The last step is proving P ∧ Q ` P and

39

P ∧ Q ` Q, which is done using the two elimination rules of ∧, and_elim_l and
and_elim_r, respectively.

theorem persistently_and [BI PROP] {P Q : PROP} :
<pers> (P ∧ Q) a` <pers> P ∧ <pers> Q

:= by
apply anti_symm
case left =>

apply and_intro
<;> apply persistently_mono
· exact and_elim_l
· exact and_elim_r

case right =>
exact persistently_and_2

Figure 4.23.: Proof of the derived law persistently_and stating that <pers>
can be distributed over ∧. The notation <;> tac applies the tactic
tac to every goal created by the preceding tactic, while the notation
· tacs applies the tactics tacs to the first unsolved goal and closes it.

It is often impractical to completely destruct complex propositions using intro-
duction rules. Instead, it is much more convenient to use so-called rewriting. In
normal Lean proofs, this is as simple as replacing instances of a proposition a with
a proposition b anywhere in a proposition given a proof that a = b. This is more
complicated in separation logic where statements have the form P ` Q or P a` Q.
The latter is easier to handle here, since it states that P and Q are equivalent, i.e.,
P can be replaced with Q anywhere in a separation logic statement. Implementing
this in Lean is however not straightforward, since Lean only supports rewriting with
equalities instead of equivalences. The easiest solution is to define the bidirectional
entailment a` as equality and use the rewriting facilities provided by Lean. The
user of the separation logic interface is then required to ensure that the equality
on separation logic propositions resembles the equivalence relation a`. This can
be achieved by using setoids that provide an equality for equivalence classes on an
embedded type, which would be the actual type of the separation logic propositions.
The setoid type would then be used as the carrier type in the BI interface. While
this allows using Lean’s rewriting tactics, it comes with major limitations for the
separation logic interface, further discussed in section 5.4.

Rewriting with a separation logic statement of the form P ` Q is however entirely
unsupported by Lean. This is different from Coq, which is why the following solution
differs from the Coq formalization of MoSeL, although it is based on the same
concepts. Rewriting with statements P ` Q has a different effect compared to
rewriting with equivalences or equalities. First, it is unidirectional, i.e., in a given
position, either P can be replaced with Q or Q can be replaced with P , but never both.
Second, the direction in which the rewriting occurs is dependent on the position of

40

@[rwMonoRule]
theorem absorbingly_mono [BI PROP] {P Q : PROP} :

(P ` Q) → <absorb> P ` <absorb> Q

@[rwMonoRule]
theorem and_mono [BI PROP] {P P′ Q Q′ : PROP} :

(P ` Q) → (P′ ` Q′) → P ∧ P′ ` Q ∧ Q′

Figure 4.24.: Examples of two rules used for rewriting in separation logic statements.
The notation @[attr] associates the attribute attr with the following
definition or theorem.

the replacement in a statement. The rules stating how rewriting is allowed for certain
separation logic connectives are one of the key points of rewriting with entailments.
The base rule describes rewriting around the entailment ` itself: Rewriting with
P ` Q on the left side of ` allows replacing P with Q (forward direction) while
rewriting on the right side of ` allows replacing Q with P (reverse direction). This
is a direct consequence of the transitivity of ` which states that if P ` Q holds
then it is sufficient to prove Q ` R to receive a proof of P ` R. In the example of
rewriting on the left side of `, this means that given P ` Q, the goal P ` R can be
replaced with Q ` R, which is the same as replacing P with Q on the left side of
`. Examples of further rewriting rules for separation logic connectives are shown in
figure 4.24. The theorem absorbingly_mono states that when rewriting with P ` Q,
it is also possible to rewrite with <absorb> P ` <absorb> Q. Combined with the
rewriting rule for `, this allows replacing P with Q when rewriting with P ` Q on
the left side of <absorb> P ` R. This is done by first using absorbingly_mono to
derive <absorb> P ` <absorb>Q from P ` Q and then using the transitivity of `
to replace <absorb> P with <absorb>Q and receive <absorb>Q ` R. The theorem
and_mono states the same for a binary separation logic connective, i.e., given P ` Q
it is possible to replace P with Q on the left or the right side of ∧. For constructing
proofs where one side of a binary connective should remain unchanged, the reflexivity
of ` can be used, i.e., P ` P for all separation logic propositions P . In the example of
and_mono, this allows using the rewriting rule as (P ` Q)→ P ∧Q′ ` Q∧Q′ as well.
Both the reflexivity and transitivity of ` are part of the PreOrder typeclass of which
an instance for ` is required in the interface BI for separation logics. There are more
complex rewriting rules for other separation logic connectives, e.g., the rewriting
direction in a −∗ changes for the premise, but stays the same for the conclusion.

Applying the rewriting rules by hand allows performing the rewrite, but it is still
impractical and clutters proofs with the destruction of separation logic connectives.
Using the meta programming capabilities of Lean, this implementation therefore
includes the tactic rw′ which automates applying the rewriting rules and enables Lean-
style rewriting with entailments, i.e., reflexive and transitive relations with rewriting
rules. The tactic first applies the transitivity rule to enable rewriting on the specified

41

side of the entailment, e.g., `. It then recursively tries to apply the available rewriting
rules to find a position in which the given rewrite term can be used. The tactic
assumes that there is at most one rewriting rule per connective and does therefore
not perform backtracking. All generated goals that do not match the rewrite term
are closed using the reflexivity of the entailment. Transitivity and reflexivity of the
entailment relation are required using the typeclasses Transitive and Reflexive,
while the rewriting rules can be added using the attribute rwMonoRule, as shown in
figure 4.24.

theorem absorbingly_wand [BI PROP] {P Q : PROP} :
<absorb> (P −∗ Q) ` <absorb> P −∗ <absorb> Q

:= by
apply wand_intro_l
rw [← absorbingly_sep]
rw′ [wand_elim_r]

-- <absorb> P ∗ <absorb> (P −∗ Q) ` <absorb> Q
-- <absorb> (P ∗ (P −∗ Q)) ` <absorb> Q
-- <absorb> Q ` <absorb> Q

Figure 4.25.: Example of a proof using the tactic rw′. The right side shows the goal
after the tactic in the same line on the left side has been executed.

An example of a proof, in which the new rewriting tactic rw′ for entailments is
used, is shown in figure 4.25. After the theorem wand_intro_l is applied to move
<absorb> P from the right side of the entailment to the left, the Lean tactic rw is
used with absorbingly_sep to move the <absorb> modality out of the separating
conjunction ∗. The theorem absorbingly_sep is a bidirectional entailment, i.e.,
an equality, which is why rw can perform the rewrite. The theorem wand_elim_r
on the other hand is a unidirectional entailment ` requiring rw′. The syntax is
the same as for the Lean tactic, but in this example it allows rewriting with the
proposition P ∗ (P −∗Q) ` Q inside of the <absorb> modality. The remaining goal
<absorb>Q ` <absorb>Q is automatically solved by rw′ using the reflexivity of `.

4.4.2. Typeclass Instances
Proofs are also part of many typeclass instances used to specify properties of separa-
tion logic propositions and relations. The proofs are typically short and use derived
laws in order to make the results reusable for other proofs. Two proofs that are a
part of typeclass instances are shown as an example in figure 4.26.

The first proof in figure 4.26 is part of the instance andAffineL. The field affine
of the typeclass Affine states that if P is affine, then P ∧Q is affine for all separation
logic propositions P and Q. The proposition to prove is P ∧Q ` emp and the tactic
rw′ is used to rewrite with two entailments. The first rewrite term is again the
field affine, this time as part of the instance Affine P , which replaces P with
emp. The typeclass instance Affine P is given as an instance implicit argument of
andAffineL and guarantees that the known proposition P is affine. The remaining
statement to prove is emp ∧ Q ` emp, which can directly be solved using the left
elimination rule of ∧.

42

instance andAffineL [BI PROP] (P Q : PROP) :
[Affine P] →
Affine `[iprop| P ∧ Q]

where
affine := by

rw′ [affine, and_elim_l]

instance intoPersistentIntuitionistically [BI PROP]
(p : Bool) (P Q : PROP)
[instP : IntoPersistent true P Q] :
IntoPersistent p `[iprop| � P] Q

where
into_persistent := by

rw′ [← instP.into_persistent]
cases p
case false =>

exact intuitionistically_into_persistently_1
case true =>

apply persistently_if_mono
exact intuitionistically_elim

Figure 4.26.: Examples of instances that state properties of separation logic propo-
sitions. Both instances contain the proof that the properties hold for
the specified propositions.

The proof of the second instance intoPersistentlyIntuitionistically in figure
4.26 requires a case distinction to prove the proposition into_persistent. The
statement to show is, if it is already established that P is persistent and removing
its modalities results in Q, then adding an � in front of P results in a valid instance
of IntoPersistent without requiring again that P is persistent (hence p is not
required to be true in the resulting instance). For a definition of the typeclass
IntoPersistent see figure 4.21. The proof again starts by rewriting with the
proposition given by the available typeclass instance, which is <pers>?true P `
<pers> Q. The notation ← is used to rewrite with the entailment in the reverse
direction, in this case on the right side of the entailment in the goal. After that,
the statement left to prove is <pers>?p� P ` <pers>?true P , which either requires
that � P is persistent (p = false) or that � can be dropped from � P (p = true).
The two cases of p are distinguished using the tactic cases. The first case false is
directly solved using the derived law intuitionistically_into_persistently_1.
The second case has a conditional <pers> modality with the same value of p on both
sides. The theorem persistently_if_mono can therefore be applied, which states
that P ` Q is sufficient to prove <pers>?p P ` <pers>?p Q for all p. The remaining
statement is then � P ` P , which is proven using intuitionistically_elim.

43

4.4.3. Tactic Theorems

The theorems used by the separation logic tactics to modify the separation logic
goals and their contexts are the most complex ones since they combine requirements
of properties of propositions and changes to the separation logic environments and
goals. These theorems commonly use the typeclasses explained in subsection 4.1.3
and subsection 4.3.4, as well as the environment operations explained in section 4.2.
Their proofs typically rely on the separation logic axioms, the derived laws and the
soundness proofs of the environment operations.

Figure 4.27 shows an example of a theorem used in the tactic iintro together with
its proof. The theorem tac_wand_intro_intuitionistic was already shown in
figure 4.21 with the definition of the two typeclasses FromWand and IntoPersistent,
however without the proof. The described modification moves the premise P of a wand
R to the intuitionistic context as P ′ with the modalities related to the � modality
stripped. The necessary proof ensures that if the user provides a proof for Q with the
modified context containing P ′, it implies the original proposition with the separation
logic goal R and P ′ not in the context. After reducing the definition of envs_entails
(see figure 4.10) using simp only, the proof of of_envs(Envs.appendtrueP ′ ∆) ` Q
is therefore introduced as the hypothesis h_entails and the remaining goal after all
introductions in line 7 is of_envs ∆ ` R. The typeclass instance FromWand R P Q
guarantees that R can be replaced with the wand P −∗Q on the right side of `, which
is done by rewriting with from_wand in line 8. The second rewrite term in this line
is the soundness proof of the environment operation append, which states that a
proposition P ′ can be appended to an environment ∆ in the conclusion of a wand
with P ′ as its premise, i.e., of_envs ∆ ` �?pP ′−∗ of_envs (Envs.append pP ′ ∆). If
P ′ should be added to the intuitionistic context (p = true), it is required to have the
intuitionistic modality �. Since the right side of ` in the goal is P −∗Q after using
from_wand, the introduction rule wand_intro_l can be used to move P from the
premise of the wand to the left side of `. The goal after applying the introduction
rule in line 9 is then P ∗ (�?trueP ′−∗of_envs (Envs.append trueP ′ ∆)) ` Q. This
almost allows using a wand elimination rule, except that P does not yet have the
intuitionistic modality and may carry additional modalities that are already removed
from P ′. The intuitionistic modality can be added in two different ways, depending
on whether the instance inst_affine_absorbing of TCOr contains an instance of the
typeclasses Affine or Absorbing. A case distinction on inst_affine_absorbing
is performed in line 10 to prove the two cases l and r separately.

In the case l, with an instance of Affine available, the theorem affine_affinely
can be used in line 13 to replace P with <affine>P . Rewriting with the derived law
persistently_if_intro_false to add a <pers>?false in front of P is only required
to use into_persistent in line 15 which replaces <pers>?falseP with <pers>P ′ as
guaranteed by the instance of IntoPersistent. The proposition <affine><pers>P ′

is then equivalent to the premise �?true P ′ of the wand and the elimination rule
wand_elim_r can be used in line 16 to receive of_envs(Envs.appendtrueP ′ ∆) ` Q,
which is exactly the new goal available as h_entails.

44

1 theorem tac_wand_intro_intuitionistic [BI PROP] {∆ : Envs PROP}
2 {P P′ Q : PROP} (R : PROP) : [FromWand R P Q] →
3 [IntoPersistent false P P′] → [TCOr (Affine P) (Absorbing Q)] →
4 envs_entails (∆.append true P′) Q → envs_entails ∆ R
5 := by
6 simp only [envs_entails]
7 intro _ _ inst_affine_absorbing h_entails
8 rw′ [← from_wand, envs_append_sound true P′]
9 apply wand_intro_l ?_

10 cases inst_affine_absorbing
11 case l =>
12 rw′ [
13 ← affine_affinely P,
14 persistently_if_intro_false P,
15 into_persistent,
16 wand_elim_r,
17 h_entails]
18 case r =>
19 rw′ [
20 persistently_if_intro_false P,
21 into_persistent,
22 ← absorbingly_intuitionistically_into_persistently,
23 absorbingly_sep_l,
24 wand_elim_r,
25 h_entails,
26 absorbing]

Figure 4.27.: Proof of the tactic theorem tac_wand_intro_intuitionistic used
in the tactic iintro. Note that the tactic rw′ redirects equality
rewrites to rw.

45

The proof of the case r is similar, although instead of an instance of AffineP , an in-
stance of AbsorbingQ is available, which requires a slightly different approach. First,
into_persistent is used again in line 21 to replace P with <pers>P ′. Then, differing
from the proof of case l, absorbingly_intuitionistically_into_persistently
is used in line 22 to replace the <pers> modality with <absorb>�. This law does
not require an instance of Absorbing yet. After that, the <absorb> modality of
<absorb>� P ′ is extended to the entire left side of ` using absorbingly_sep_l in
line 23. The remaining goal is then <absorb> (�P ′ ∗ (�?trueP ′−∗ . . .)) ` Q. Using
the same steps as in case l allows resolving everything under the <absorb> modality
to Q, leaving <absorb>Q ` Q as the goal after line 25. This is solved exactly by the
field absorbing of the typeclass Absorbing.

4.4.4. Environments
The correctness proofs of the modifications to the separation logic proof mode envi-
ronments, performed in the tactics, rely on the soundness proofs of the environment
operations. The tactic theorems use the operations defined on the combined en-
vironment type Envs, which are implemented using operations on the Env objects
representing the intuitionistic and spatial context. The definition of the environment
types and their embedding in separation logic propositions was presented in figure
4.10. Since this definition is different from the one in the Coq formalization of MoSeL,
its soundness proofs are also unrelated. The operations on Env come with their own
soundness proofs, which are used as parts of the soundness proofs of operations on
Envs. Since the Env objects do not have their own embeddings in separation logic
propositions, their soundness proofs specify the behavior of the operations in the
context of big operators.

As an example, the soundness proof of the operation append on the environments
type Envs is shown in figure 4.28. This proof was used in the proof of the tactic
theorem tac_wand_intro_intuitionistic in figure 4.27. The theorem states that it
is possible to add a proposition Q to the environment ∆ using append if Q is given as
the premise of a −∗. If Q is added to the intuitionistic context (p = true), it must have
the intuitionistic modality �. The proof of the theorem starts by moving the premise
�?pQ to the left side of ` using wand_intro_l. A case distinction is then necessary
to treat the two cases of adding Q to the intuitionistic or spatial context. In both
cases, targeted using the notation <;>, the conditional modality is resolved and the
definition of of_envs is reduced. The resulting goals contain the embedding of Envs
as a separation logic proposition using big operators, as shown in figure 4.10. The goal
in the first case is thenQ∗(�[∧]Γp)∗([∗]Γs) ` (�[∧]Γp)∗([∗](Env.appendΓsQ)) where
Γp is the intuitionistic and Γs the spatial context. The other case is similar, but has a
�Q instead ofQ on the left side andQ is appended to Γp instead of Γs on the right side.
The key theorem applied in the case p = false is env_big_op_sep_append which
states that a proposition Q that is appended to an environment in [∗] can instead be
combined using ∗ on the right side of [∗]. The definition of env_big_op_sep_append
together with its proof is shown in figure 4.29. After moving Q outside of [∗], all parts

46

theorem envs_append_sound [BI PROP] {∆ : Envs PROP}
(p : Bool) (Q : PROP) :
of_envs ∆ ` �?p Q −∗ of_envs (∆.append p Q)

:= by
apply wand_intro_l ?_
cases p
<;> simp only [bi_intuitionistically_if, of_envs]
case false =>

rw′ [
env_big_op_sep_append,
(assoc : _ ∗ (_ ∗ Q) a` _),
(comm : _ ∗ Q a` _)]

case true =>
rw′ [

env_big_op_and_append,
(comm : _ ∗ � Q a` _),
← (assoc : _ a` (� Q ∗ _) ∗ _)]

Figure 4.28.: Soundness proof of the operation append on the environments type
Envs. The patterns behind the commutativity and associativity rules
comm and assoc instruct Lean on where to use them in the proposition.
The notation <;> tac applies the tactic tac to every goal created by
the preceding tactic.

(Q and the embedding of the two contexts) are equal on both sides and combined
using separating conjunctions ∗. The only thing left is to use associativity and
commutativity to bring the propositions in the correct structure. The proof of the
case p = true is similar, but uses env_big_op_and_append instead, which moves a
proposition Q outside of � [∧] as �Q and combines them with ∗. It is then again
enough to use associativity and commutativity rules.
The theorem env_big_op_sep_append shown in figure 4.29 is an example of

a soundness proof of an operation on Env. It is used in the soundness proof
envs_append_sound shown in figure 4.28 and states that a proposition Q can be
moved out of a call to append inside the big operator [∗] and instead combined
with a single ∗. The proposition of the theorem is an equivalence, which means
the reverse direction is possible as well. For this proof, it is not enough to un-
fold the definition of the big operator [∗]. The constructor cons of the inductive
datatype Env prepends the added proposition, as visible in its definition in figure
4.10, which is why [∗] performs a right fold of ∗ over an environment Γ. This means
that a proposition on the left side of Γ can be separated from [∗]. The operation
append on the other hand adds a proposition to the right side of Γ such that the
user finds introduced propositions on the end of the hypothesis list. It is therefore
required to perform an induction over Γ to proof the soundness of append. After
reducing the definition of Env.append in both goals, the goal in the base case is

47

theorem env_big_op_sep_append [BI PROP] {Γ : Env PROP} {Q : PROP} :
[∗] (Γ.append Q) a` [∗] Γ ∗ Q

:= by
induction Γ
<;> simp only [Env.append]
case nil =>

simp only [big_op]
rw′ [(left_id : emp ∗ _ a` _)]

case cons Q′ Γ′ h_ind =>
rw′ [

!big_op_sep_cons,
h_ind,
← (assoc : _ a` (Q′ ∗ _) ∗ _)]

Figure 4.29.: Soundness proof of the operation append on the environment type
Env. The notation “!” in front of a rewrite term in rw′ performs the
rewrite as often as possible.

[∗] (consQ nil) a` [∗] nil ∗Q where cons and nil are the two constructors of Env.
Reducing the definition of [∗] implemented as big_op on the left side of a` yields Q
while on the right side emp remains as the result of [∗] nil. The statement left to
prove is Q a` emp∗Q which is true since emp is the left unit of ∗. The induction step
is then allowed to use the induction hypothesis [∗](Γ′.appendQ) a` [∗]Γ′∗Q to prove
that [∗] (cons P (Γ′.appendQ)) a` [∗] (cons P Γ′) ∗Q. Applying big_op_sep_cons
on both sides of a` moves P out of the big operator and allows rewriting with the
induction hypothesis on the left side of a`. In addition to reducing the definition
of big_op, the theorem big_op_sep_cons handles the case of an empty remaining
context Γ′. The remaining goal is then P ∗ ([∗] Γ′ ∗Q) a` (P ∗ [∗] Γ′) ∗Q which is
solved using the associativity of [∗]. This concludes that a proposition Q that is
appended on the right side of Γ can be moved out of [∗] to the right.

Another important theorem is env_big_op_sep_delete_get, which states that it
is possible to move out any hypothesis from a context Γ inside a [∗] using the functions
delete and get on Env. Both functions have to be used with the same index i in
Γ. The proof of the theorem, shown in figure 4.30, is again an induction, this time
over the environment Γ and the index i together. This is made possible by providing
the custom eliminator env_idx_rec, which handles contradicting cases (valid index
with empty environment) and transforms the induction hypothesis. The goal in the
base case is [∗] (cons P ′ Γ′) a` [∗] ((cons P ′ Γ′).delete i0) ∗ ((cons P ′ Γ′).get i0)
where i0 is the index with value 0 in Γ. Reducing the definition of Env.delete
removes P ′ from cons P ′ Γ′, while doing the same with Env.get selects P ′. The
remaining goal is then [∗] (cons P ′ Γ′) a` [∗] Γ′ ∗ P ′ which is solved by moving P ′

out of cons using big_op_sep_cons again and reordering the terms with comm. The
goal in the induction step is the same as in the base case, except instead of i0 the

48

theorem env_big_op_sep_delete_get [BI PROP]
{Γ : Env PROP} (i : Fin Γ.length) :
[∗] Γ a` [∗] (Γ.delete i) ∗ (Γ.get i)

:= by
induction Γ, i using env_idx_rec
case zero P′ Γ′ _ =>

rw′ [
Env.delete,
Env.get,
big_op_sep_cons,
(comm : P′ ∗ _ a` _)]

case succ P′ Γ′ i′ _ _ h_ind =>
rw′ [

env_delete_cons,
env_get_cons,
!big_op_sep_cons,
← (assoc : _ a` (P′ ∗ _) ∗ _),
← h_ind]

Figure 4.30.: Proof that is is possible to extract a single hypothesis from the context
Γ inside a [∗] using delete and get. The required index i is given
as a Fin object with the length of Γ as the upper bound.

index is i′1 with the value i′.val + 1 for some index i′. The induction hypothesis
h_ind states that [∗] Γ′ a` [∗] (Γ′.delete i′) ∗ Γ′.get i′ for all i′. Since the value
of the index i′1 is not 0, both Env.delete and Env.get skip P ′ in cons P ′ Γ′ when
reduced. The theorems env_delete_cons and env_get_cons in addition handle the
necessary transformation of the Fin index. The goal after reducing both functions is
then [∗] (cons P ′ Γ′) a` [∗] (cons P ′ (Γ′.delete i′)) ∗ (Γ′.get i′) with the index i′1
eliminated. Moving P ′ out of cons and applying the associativity rule assoc for ∗
leaves the goal P ′ ∗ [∗] Γ′ a` P ′ ∗ [∗] (Γ′.delete i′) ∗ (Γ′.get i′) which is solved by
rewriting with the induction hypothesis h_ind. This proves that any hypothesis in a
context Γ can be moved out of [∗] Γ and appended using a separating conjunction ∗,
independent of its position in Γ.

49

5. Evaluation
This chapter evaluates the usage of this implementation of a separation logic interface
in the Lean theorem prover and compares it to the Coq implementation of MoSeL [5],
which was the basis for this implementation. The evaluation includes instantiating
the separation logic interface for classical separation logic in section 5.1, including
proofs of the axioms and a custom notation, as well as an example of a setoid
instance for separation logic propositions. It further shows an example of a proof
in a separation logic in section 5.2 using the provided tactics and compares it to
an equivalent proof in the Coq implementation, as well as to a proof of a similar
statement in the pure logic of Lean. One difference between the two implementations
is the definition of the environment, which is compared in section 5.3. Lastly, this
chapter discusses a limitation of this separation logic interface regarding the rewriting
of equivalences using Lean’s Setoid class in section 5.4. This is relevant for an
instantiation of this interface with the Iris separation logic. There are additional,
smaller differences between the two implementations, originating in the availability
of different features in the two ITPs, which are not included in the evaluation.

5.1. Logic Instance
The starting point for using the provided separation logic interface is to instantiate
the typeclasses BIBase and BI presented in section 4.1. The typeclass BIBase
contains the separation logic connectives and was shown in figure 4.1. The typeclass
BI extends BIBase with the necessary axioms for a separation logic. An instantiation
for a custom separation logic must provide instances of both typeclasses to use the
full separation logic interface including the tactics.
As an example, the typeclass BIBase is instantiated for classical separation logic

[5, 1] in figure 5.1. The resources in classical separation logic are cells in a heap,
which is expressed using the function State. This function describes a heap by
mapping indices of the type Nat to values of the type Option Val. These values
will be available if the resource for the cell is owned. The value type Val can be
chosen individually for each classical separation logic statement. The type of classical
separation logic propositions is called HeapProp and is defined to be a proposition
Prop on a part of the heap, represented by an object of State Val, which consists
of the owned resources. The type Val is again a parameter for the definition of
HeapProp. The instance shown in figure 5.1 then defines the required separation
logic connectives in terms of HeapProp. The provided connectives are implemented
as propositions on a given state σ. For example, the separation logic proposition

51

abbrev State (Val : Type) := Nat → Option Val
abbrev HeapProp (Val : Type) := State Val → Prop

instance (Val : Type) : BIBase (HeapProp Val) where
entails P Q := ∀ σ, P σ → Q σ
emp := fun σ => σ = ∅
pure ϕ := fun _ => ϕ
and P Q := fun σ => P σ ∧ Q σ
or P Q := fun σ => P σ ∨ Q σ
impl P Q := fun σ => P σ → Q σ
«forall» Ψ := fun σ => ∀ a, Ψ a σ
exist Ψ := fun σ => ∃ a, Ψ a σ
sep P Q := fun σ =>

∃ σ1 σ2 , σ = σ1 ∪ σ2 ∧ σ1 || σ2 ∧ P σ1 ∧ Q σ2
wand P Q := fun σ => ∀ σ′, σ || σ′ → P σ′ → Q (σ ∪ σ′)
persistently P := fun _ => P ∅

Figure 5.1.: Part of the instantiation of the separation logic interface for classical
separation logic. The notation σx ∪ σy represents the union of the
two states σx and σy, while the notation σx || σy is a proposition of
disjointness for σx and σy.

emp asserts that the state is empty, i.e., that no resources are owned. In contrast,
the functions pure and persistently ignore the given state, which makes them
persistent as described in subsection 4.1.1. The difference between the additive
non-separating conjunction and and the multiplicative separating conjunction sep
is visible in the respective definitions. In the definition of and, both P and Q are
allowed to use the entire known state σ, while for sep, the state must be split in
two disjoint states σ1 and σ2, which are made available to P and Q, respectively.
The disjoint union on states is expressed by stating that σ is the union of σ1 and σ2
using ∪ and requiring σ1 and σ2 to be disjoint with the operator ||. The entailment
on classical separation logic propositions is a Lean proposition and states that the
consequence Q must hold on all states on which the premise or context P holds.
As mentioned in subsection 4.1.2, the user can define custom notations for the

instantiated logic that can be used together with the predefined notation. This
is done in the same way as in the implementation of the interface by providing
additional syntax (if necessary) using Lean’s syntax command. The interpretation
of the syntax as separation logic proposition is then defined using the command
macro_rules. Terms that describe separation logic propositions have to be wrapped
in an `[iprop|] quotation on both sides of the syntax transformation. An example
of a custom notation for classical separation logic is shown in figure 5.2. Here, the
operator 7→ is defined to allow propositions on single heap cells. The term l 7→ v
states that the cell with the index l contains the value v, as visible in the definition
of maps_to. Note that the terms l and v in the macro_rules command do not have

52

def maps_to (l : Nat) (v : Val) : HeapProp Val :=
fun state => state l = some v

syntax:52 term:53 " 7→ " term:53 : term
macro_rules
| `(`[iprop| $l 7→ $v]) => `(maps_to $l $v)

Figure 5.2.: Example of a custom notation for the instantiated separation logic.

`[iprop|] quotations on the right side of the syntax transformation, since they
are not separation logic propositions, but of the types Nat and Val, respectively.

As explained, the user of the separation logic interface must provide an instance of
the typeclass BI with the proofs of the separation logic axioms. While the instance
of the typeclass for classical separation logic is too long to show it completely, the
three examples of separation logic axioms already mentioned in section 4.1 are shown
in figure 5.3 with their proofs.
The first axiom pure_intro in figure 5.3 states that φ → P ` pφq where → is

the implication on Lean propositions. The proof starts by reducing the definition
of the separation logic connectives entails and pure given in the instantiation of
BIBase. Since the definition of entails specifies that the implication between the
propositions must hold for all states σ and pure ignores the state, the resulting goal
after reducing is φ→ ∀ σ, P σ → φ. Introducing φ as h and ignoring σ and P σ, the
goal is solved by providing the proof h of φ. Although this seems trivial in the logic
of Lean, the proof shows that it is possible to ignore the context of an entailment for
a pure goal in classical separation logic.

As a second example, the proof of the ∧-introduction rule and_intro is shown in
figure 5.3. The proposition to prove is (P ` Q)→ (P ` R)→ P ` Q ∧R, which is
again reduced to the underlying definition using simp only. The resulting statement
is first destructed by introducing the implication premises h_PQ and h_PR. The first
hypothesis h_PQ has the type ∀ σ, P σ → Q σ and the type of h_PR is the same with
R instead of Q. The remaining statement is also universally quantified over σ, which
originates in the definition of ` in classical separation logic, as shown in figure 5.1.
Introducing σ leaves P σ → Q σ ∧ R σ from which P σ is introduced as h_P. The
resulting conjunction is destructed using the tactic constructor and the two sides
of ∧ are proven separately. The proof of the left side, provided with exact, is an
instantiation of h_PQ for the state σ with h_P as the proof of P σ. The proof of the
right side is the same with h_PR instead of h_PQ.
The last proof shown in figure 5.3 ensures that emp is the left unit of ∗ on the

left side of `. The corresponding axiom is called emp_sep_2 and requires that
emp ∗ P ` P . Reducing all relevant definitions leaves the existential from the
definition of sep, shown in figure 5.1 on the left side of the implication caused by
the definition of ` in classical separation logic. The existential is destructed using
the anonymous constructor notation 〈 〉, which introduces the two states σ1 and σ2,

53

instance : BI (HeapProp Val) where
equiv_entails :=

. . .
pure_intro := by

simp only [BIBase.entails, BIBase.pure]
intro _ _ h _ _
exact h

and_intro := by
simp only [BIBase.entails, BIBase.and]
intro _ _ _ h_PQ h_PR σ h_P
constructor
· exact h_PQ σ h_P
· exact h_PR σ h_P

emp_sep_2 := by
simp only [BIBase.entails, BIBase.sep, BIBase.emp]
intro _ _ 〈σ1, σ2, h_union, h_disjoint, h_empty, h_P〉
rw [h_empty] at h_union
rw [h_union]
rw [← empty_union]
exact h_P

. . .

Figure 5.3.: Selection of proofs of the separation logic axioms in the instantiation
of the typeclass BI for classical separating logic with propositions of
type HeapProp. The notation · tacs applies the tactics tacs to the
first unsolved goal and closes it. Additional underscores after the tactic
intro are often used to ignore implicit variables.

as well as the proofs h_union and h_disjoint, stating together that the disjoint
union of σ1 and σ2 is equal to the original state σ. This is part of the behavior of ∗
where each resource must either be used in the left argument or the right argument.
The proofs of the two arguments of ∗ are introduced as h_emp and h_P where h_emp
states that σ1 must be the empty state ∅, following the definition of emp in classical
separation logic. Rewriting with h_emp turns the union proof h_union into σ = ∅∪σ2
which implies σ = σ2, proven by the theorem empty_union for arbitrary states. This
fact is used to change the remaining goal from P σ to P σ2, which is exactly the
proof of the second argument of ∗, the hypothesis h_P.

One important proof in the instance of the typeclass BI is equiv_entails, which
connects the entailment with the equality on separation logic propositions. It would
be favorable to use an equivalence relation instead, but as explained in subsection
4.4.1, in order to use Lean’s rewriting tactic, equality is required. If it is not possible
to use the equality on separation logic propositions, one solution is to substitute
the separation logic type with a quotient type instead, replacing the equality on
separation logic propositions with an equality on their equivalence classes. The

54

instance heapPropSetoid (Val : Type) : Setoid (HeapProp Val) where
r P Q := ∀ σ, P σ ↔ Q σ
iseqv := { refl := . . ., symm := . . ., trans := . . . }

instance (Val : Type) : BIBase (Quotient (heapPropSetoid Val))

Figure 5.4.: Setoid instance for classical separation logic propositions and the usage
of the setoid type in the declaration of the BIBase instance.

associated equivalence relation is specified as part of the Setoid instance for the
separation logic proposition type. The limitations of this approach are discussed in
section 5.4. Figure 5.4 shows the instantiation of the Setoid typeclass for classical
separation logic propositions. In addition to the equivalence relation r, the typeclass
Setoid requires a proof iseqv that the specified relation is in fact an equivalence
relation, i.e., that it is reflexive, symmetrical and transitive. For classical separation
logic, the natural equivalence relation is the bidirectional implication on propositions,
given the definition of the entailment shown in figure 5.1. It is easy to prove that this
relation is an equivalence relation by using the according theorems of the bidirectional
implication. The interfaces BIBase and BI are then instantiated with the quotient of
the separation logic proposition type, i.e., for equivalence classes of separation logic
propositions. This requires proving that the separation logic connectives return the
same result for all members of an equivalence class. As an example, the connective
and requires a proof that P ≈ P ′ → Q ≈ Q′ → P σ ∧ Q σ = P ′ σ ∧ Q′ σ for all
states σ based on the definition of and shown in figure 5.1. The proof is again simple
for classical separation logic, since the equivalence relation ≈ is the bidirectional
implication ↔.
For classical separation logic, however, it is not necessary to use a setoid type in

the instantiation of the typeclasses BI and BIBase. The reason for that is that Lean
already allows proving an equality with a bidirectional implication, a fact that is
called propositional extensionality. This is used in the form of the theorem propext
in the proof of equiv_entails to replace the required equality with a bidirectional
implication. The remaining proof is then to show that a bidirectional implication is
equivalent to implications in both directions.

5.2. Proof Example and Comparison
The main goal of the separation logic interface is to provide users with the infras-
tructure to write proofs in separation logic. This requires the definition of the logic,
the management of the separation logic context, the notation for separation logic
propositions and tactics to assist in writing the proofs. All of these elements were
presented in chapter 4. Figure 5.5 now shows an example of a separation logic proof
using this implementation and compares it to a proof of the same proposition in

55

the Coq formalization of MoSeL. At the end of the section, a proof of a similar
statement in the pure logic of Lean is shown to demonstrate that the interface reaches
the same level of abstraction for separation logic proofs. The proposition in the
two separation logic theorems is written using the same notation in Lean and Coq,
differing only slightly in the argument for the BI instance. Note that the shown
proof does not require a specific instance of the separation logic interface, but works
for all separation logics.

theorem proof_example [BI PROP]
(P Q R : PROP)
(Φ : α → PROP) :
P ∗ Q ∗ � R `
� (R −∗ ∃ x, Φ x) −∗
∃ x, Φ x ∗ P ∗ Q

:= by
iintro 〈HP, HQ, �HR〉 �HRΦ
ispecialize HRΦ HR as HΦ
icases HΦ with 〈x, HΦ〉
iexists x
isplit r
· iassumption
isplit l [HP]
· iexact HP
· iexact HQ

Lemma proof_example {A} {PROP : bi}
(P Q R : PROP)
(Φ : A → PROP) :
P ∗ Q ∗ � R `
� (R −∗ ∃ x, Φ x) −∗
∃ x, Φ x ∗ P ∗ Q.

Proof.
iIntros "[HP [HQ #HR]] #HRΦ".
iDestruct ("HRΦ" with "HR")

as (x) "HΦ".
iExists x.
iFrame.
iAssumption.

Qed.

Figure 5.5.: Example of a separation logic proof in Lean using this implementation
(left) and in Coq using MoSeL (right).

The proof in figure 5.5 then starts by introducing the hypotheses HP , HQ, HR and
HRΦ. The last two hypotheses are introduced to the intuitionistic context, specified
in Lean using the prefix “�” and in Coq using “#”. There is however a greater
difference in the notation of the introduction patterns. In Lean, the introduction
pattern is written as a Lean term, while in Coq, it is written as a string literal. This
is because the Coq implementation is required to parse the pattern string itself. In
contrast, the Lean implementation uses the Lean parser and matches directly on
the defined syntax. This allows extending the syntax of conjunction and disjunction
patterns to multiple arguments easily. The conjunction and disjunction patterns in
Coq allow only two arguments by default, but there is an additional notation using
the operator “&” for conjunctions with more than two arguments.
The next step in the proof is to process the hypothesis HRΦ. The necessary

actions include providing the required proof of R and destructing the existential
quantifier. Resolving a wand with a proof of the premise is done using the tactic
ispecialize, which is implicitly called in the Coq version through the pattern in
the first argument of iDestruct (the Coq version of icases in Lean). The tactic
ispecialize introduces (besides other features) the conclusion of a wand to the

56

context. If this hypothesis and the hypothesis with the proof of the premise are
in the spatial context, they are discarded. Otherwise they are kept in addition to
the new hypothesis. After executing ispecialize in the example, the hypothesis
HΦ : ∃x,Φx is part of the intuitionistic context. The temporary hypothesis generated
by the first pattern in iDestruct is unnamed. The hypotheses HRΦ and HR remain
in the intuitionistic context, but are no longer needed in the proof. The existential
quantifier is then destructed using icases in Lean and iDestruct in Coq. The
naming of the tactics follows the respective conventions in the two ITPs. In Lean,
the anonymous constructor pattern 〈 〉 is used again, while in Coq, parentheses are
used to introduce variables from existential quantifiers. As a result, the hypothesis
HΦ : Φ x is placed in the intuitionistic context in both cases, replacing the previous
hypothesis HΦ in Lean.

After introducing and destructing the hypotheses, the existential quantifier in the
goal is resolved by providing the witness x. This is done in both versions of the
proof shown in figure 5.5 using the tactic iexists. The Coq version of the proof can
now use the tactic iFrame to apply the frame rule (see figure 2.4). The tactic uses
the hypotheses HP and HQ to solve the propositions P and Q in the goal, leaving
Φ x to be solved by iAssumption. Since the tactic iframe is not yet available in
this implementation, the goal must be destructed manually using the tactic isplit.
The tactic generates two goals for the two arguments of a separating conjunction
and requires specifying how the hypotheses in the spatial context are split. For that
purpose, the first argument indicates for which side the hypotheses should be listed
(l for left and r for right). The remaining hypotheses will automatically be included
in the spatial context of the other side. If no hypotheses are specified, then all
hypotheses are moved to the respective side. The intuitionistic context is available
to all generated goals. The first call to isplit therefore leaves no hypotheses in
the spatial context of the left argument Φ x for which the tactic iassumption finds
the hypothesis HΦ as a proof. The remaining conjunction P ∗Q is again destructed
using isplit, this time moving the hypothesis HP to the left side and (implictly)
HQ to the right. Both hypotheses are then used to close the respective goals using
the tactic iexact. Destructing the goal manually would work the same way in Coq.
The proof example in figure 5.5 already shows differences between the two im-

plementations, e.g., the availability of certain tactics. The Coq implementation
of MoSeL lists 20 core tactics, 15 of which are currently supported in the Lean
implementation. The missing tactics can often be replaced with other tactics and
include, for example, iApply, iRevert and iAssert. There are additional, more
specific tactics, such as for modalities, induction and rewriting/simplification, that
are also not part of the Lean implementation yet. Figure A.1 shows a complete list
of the currently supported tactics, including smaller tactics that are not mentioned
in the list of tactics in the Coq implementation. Another difference between the
two implementations is the use of patterns in the arguments of tactics. The Coq
implementation includes powerful patterns for selecting, introducing and specializing
hypotheses, while the Lean implementation often requires multiple tactic calls to
achieve the same behavior. This is visible in the example shown in figure 5.5 where

57

the behavior of the tactic call iDestruct in the Coq implementation is achieved in
the Lean implementation using a combination of ispecialize and icases. The
specialization of HRΦ is performed in the Coq implementation using the specializa-
tion pattern in the first argument of iDestruct. Introduction patterns are also more
powerful in Coq and allow, for example, immediate rewriting with an introduced
hypothesis, although the syntax of the patterns is more general in Lean. The shorter
style in the Coq proofs using patterns is not necessarily an advantage and is rather
the result of the different proof styles in Lean and Coq, independent of the separation
logic frameworks.

theorem proof_example [BI PROP]
(P Q R : PROP)
(Φ : α → PROP) :
P ∗ Q ∗ � R `
� (R −∗ ∃ x, Φ x) −∗
∃ x, Φ x ∗ P ∗ Q

:= by
iintro 〈HP, HQ, �HR〉 �HRΦ
ispecialize HRΦ HR as HΦ
icases HΦ with 〈x, HΦ〉
iexists x
isplit r
· iassumption
isplit l [HP]
· iexact HP
· iexact HQ

theorem proof_example
(P Q R : Prop)
(Φ : α → Prop) :
P ∧ Q ∧ R →
(R → ∃ x, Φ x) →
∃ x, Φ x ∧ P ∧ Q

:= by
intro 〈HP, HQ, HR〉 HΦ
specialize HΦ HR
cases HΦ with | intro x HΦ =>
apply Exists.intro x
constructor
· assumption
constructor
· exact HP
· exact HQ

Figure 5.6.: Comparison of the separation logic proof from figure 5.5 (left) to a
proof of a similar (yet weaker) statement in the pure logic of Lean
(right).

Figure 5.6 compares the proof in figure 5.5 to a proof in the pure logic of Lean. The
statement in the pure proof is obtained by converting all separating conjunctions to
non-separating conjunctions and removing the modalities. In addition, the base logic
of Lean is intuitionistic, which means that its propositions can be used multiple times.
In the shown proofs, most tactic usages can be directly translated, including parts of
the syntax, e.g., the pattern in the calls to iintro and intro or the keyword with
in the syntax of icases and cases. The tactic ispecialize supports renaming the
specialized hypothesis using the keyword as, which is not possible in the standard
Lean tactic. On the other hand, the tactic cases is more powerful than icases and
supports the destruction of arbitrary inductive types by generating individual goals
for the constructors. Similarly, the more general tactic apply, which is not available
in this implementation, can be used to destruct an existential quantifier. Although
the proofs are not equal, the comparison visualizes that this implementation of a

58

separation logic interface supports proofs on the same level of abstraction as used
for common proofs in Lean.

inductive Env (α : Type)
| nil : Env α
| cons : α → Env α → Env α

def get : (Γ : Env α) → Fin (Γ.length) → α
| .cons a _ , 〈0 , _〉 => a
| .cons _ as, 〈i + 1, h〉 => as.get 〈i, Nat.lt_of_succ_lt_succ h〉

Inductive env (A : Type) : Type :=
| Enil : env A
| Esnoc : env A → ident → A → env A.

Fixpoint env_lookup {A} (i : ident) (Γ : env A) : option A :=
match Γ with
| Enil => None
| Esnoc Γ j x => if ident_beq i j

then Some x
else env_lookup i Γ

end.

Figure 5.7.: Definition of the inductive type Env representing one of the separation
logic contexts in the Lean (top) and Coq (bottom) implementation. In
addition, the operation for retrieving a hypothesis from a context is
shown for both implementations.

5.3. Environment Definition
A major point in which this implementation differs from the Coq formalization of
MoSeL is the definition of the environment, which models one of the separation logic
contexts (intuitionistic or spatial). The key difference is that this implementation
uses indices of a dependent finite datatype with the length of the environment as
its upper bound. The definition of the inductive datatype Env is then of the same
structure as a common list. On the other hand, the environment in the Coq version
is a map with string identifiers as keys. Both definitions are shown together with
the operations for retrieving a hypothesis from the environment in figure 5.7. The
complete implementation of the environment datatypes was described in section 4.2.
The signatures of the operations get and envs_lookup in figure 5.7 already show
one difference between the two implementations: In Lean, the operation returns a
hypothesis of type α, since the finite index is always valid. In Coq, on the other
hand, the lookup may fail if the identifier is not a key in the map, which is why the

59

function returns an element of the type option A. The implementation of the Coq
operation env_lookup shows this lookup where the identifier i is compared to every
identifier j in the map. In contrast, in the function get in the Lean implementation,
the list is traversed until the correct position is found (i = 0). The case .nil does
not need to be considered, since the index i is always a valid index in Γ. There
is however additional work necessary to adapt the proof of the finite index when
decreasing its value, performed by the predefined theorem Nat.lt_of_succ_lt_succ.
Similar transformations are also required for other operations, the most complex
one being from an index j of the type EnvsIndex.of ∆ to the index j′ of the type
EnvsIndex.of (∆.delete rp i) referring to the same hypothesis in the modified
environments. Since the user of the separation logic interface specifies hypotheses by
name in both the Lean and the Coq implementation, a lookup with string identifiers
is also necessary in the Lean version. It is however performed on the meta level in
the tactic implementations as described in subsection 4.3.3.

theorem tac_wand_intro [BI PROP]
{∆ : Envs PROP} {P Q : PROP} (R : PROP) :
[FromWand R P Q] →
envs_entails (∆.append false P) Q →
envs_entails ∆ R

Lemma tac_wand_intro {PROP : bi}
(∆ : envs PROP) (i : ident) (P Q R : PROP) :
FromWand R P Q →
match envs_app false (Esnoc Enil i P) ∆ with
| None => False
| Some ∆′ => envs_entails ∆′ Q
end →
envs_entails ∆ R.

Figure 5.8.: Example of the usage of the environment operation append/envs_app
to add a hypothesis to a separation logic context in the tactic theorem
tac_wand_intro in the Lean (top) and Coq (bottom) implementation.

The fact that environment operations can fail is also visible in tactic theorems using
these definitions. The theorem tac_wand_intro is shown in figure 5.8 as an example
of using the environment operation append (envs_app in Coq) to add a hypothesis
P to the context ∆. Note that the shown operation modifies an entire Envs object,
choosing the appropriate context based on the boolean parameter of append. In this
case, the hypothesis is added to the spatial context, since the parameter is false. In
the Lean implementation, the operation append directly returns the new Envs object
and is always successful. In contrast, in the Coq implementation, the result of the
operation envs_app is either the modified Envs object, in which case it is inserted
into envs_entails, or None if the operation failed. As the result of an unsuccessful

60

operation, the proposition False becomes a premise in the theorem and it cannot be
used to transform the enviroment. The operation envs_append fails if the identifier
i of the added hypothesis P is already present in the context ∆. On the tactic level
this can also happen in the Lean implementation, but the necessary check for this is
performed before the tactic theorems are used.

Inductive env_wf {A} : env A → Prop :=
| Enil_wf : env_wf Enil
| Esnoc_wf Γ i x :

Γ !! i = None → env_wf Γ → env_wf (Esnoc Γ i x).

Record envs_wf′ {PROP : bi} (Γp Γs : env PROP) := {
env_intuitionistic_valid : env_wf Γp;
env_spatial_valid : env_wf Γs;
envs_disjoint i : Γp !! i = None ∨ Γs !! i = None

}.

Definition of_envs′ {PROP : bi} (Γp Γs : env PROP) : PROP :=
(penvs_wf′ Γp Γsq ∧ � [∧] Γp ∗ [∗] Γs)%I.

Figure 5.9.: Definitions of well-formedness, i.e., that all identifiers are unique, for
the environment types env and envs in the Coq implementation of
the separation logic interface. The operator !! is a shorthand for
the function envs_lookup and the postfix operator %I is used to
indicate that the preceding term should be interpreted as separation
logic proposition, similar to the iprop quotation in this implementation.

One additional requirement for naming the hypotheses in the separation logic
context is that the names must be unique. While this is handled entirely on the meta
level in Lean, since the environment operations are only concerned with indices, the
Coq implementation requires a proof of the uniqueness. The necessary definitions are
shown in figure 5.9. For a single env object, this proof is encoded in the inductive
type env_wf, which characterizes the well-formedness of an env object. It states
that an env object is well-formed if it is either empty (Enil_wf) or the identifier i of
the next hypothesis x does not appear in the previous context Γ and Γ is already
well-formed (Esnoc_wf). This well-formedness property is required for both the
intuitionistic and spatial context. For that purpose, the record envs_wf combines
two well-formedness proofs and adds the requirement that the two env objects must
be disjoint, i.e., that no identifier is used in both contexts. An object of envs_wf
states the well-formedness of an entire envs object consisting of the intuitionistic
context Γp and the spatial context Γs. The embedding of the environment, for
the Lean implementation explained in section 4.2, must then also carry this well-
formedness proof. It is therefore added as a pure proposition to the embedding of

61

the intuitionistic and spatial context in of_envs′. The well-formedness proofs must
be reestablished in the soundness proofs of the operations where necessary.

A related task involving the names of hypothesis is the generation of fresh names
that are not specified by the user, which can be useful for introducing anonymous
hypotheses. Since hypothesis names are only available on the meta level in the Lean
implementation, new names can be generated using the function mkFreshUserName
from Lean’s meta API. The environment representation and its operations are
completely detached from this process. In the Coq implementation, on the other
hand, a different approach is used to generate new hypothesis names on the object
level. For that purpose, the field env_counter is added to the datatype envs besides
the intuitionistic and the spatial context. The counter is increased by the tactic
iFresh when a new hypothesis name is generated. Additional effort is necessary to
ensure that the value of the counter does not have an influence on the equality of
environment objects and that no additional steps are generated in the proof term
when the value of the counter is increased.

def split : (Γ : Env α) → (mask : List Bool) →
(mask.length = Γ.length) → Env α × Env α
| .nil, .nil, _ => (.nil, .nil)
| .cons a as, b :: bs, h =>

let (ls, rs) := split as bs (length_cons_list_cons h)
if b then (.cons a ls, rs) else (ls, .cons a rs)

Fixpoint envs_split_go {PROP} (js : list ident) (∆1 ∆2 : envs PROP) :
option (envs PROP * envs PROP) :=
match js with
| [] => Some (∆1, ∆2)
| j :: js =>

′(p,P,∆1′) ← envs_lookup_delete true j ∆1;
if p : bool

then envs_split_go js ∆1 ∆2
else envs_split_go js ∆1′ (envs_snoc ∆2 false j P)

end.

Definition envs_split {PROP} (d : direction) (js : list ident)
(∆ : envs PROP) : option (envs PROP * envs PROP) :=
′(∆1,∆2) ← envs_split_go js ∆ (envs_clear_spatial ∆);
if d is Right then Some (∆1,∆2) else Some (∆2,∆1).

Figure 5.10.: Definition of the environment operations for splitting the spatial
context in Lean (top) and Coq (bottom). Note that the operation is
defined for a single environment (Env) in Lean, while it is defined for
the combined separation logic environments (envs) in Coq.

62

Another operation where this implementation uses a different approach, is the
splitting of the spatial context in the tactic isplit. The idea of the approach was
already described in section 4.2. Figure 5.10 now shows the implementation of the
environment operations in the Lean and the Coq implementation. The function
split in the Lean implementation uses a boolean mask mask to distribute the
hypotheses in the environment Γ between two environments. The mask is required to
have the same length as Γ, which is guaranteed by the proof h. The implementation
then consists of a match on the environment and the mask, appending the next
hypothesis to the left environment after the recursive call if the value in the mask
is true and to the right environment if the value is false. The cases in which the
environment is empty and the mask is not or vice versa do not have to be taken
into account due to the proof that they have the same length. The proof that the
remaining parts as and bs of the environment and the mask have the same length
is performed by length_cons_list_cons. The Coq implementation, on the other
hand, uses string identifiers in the implementation of the function envs_lookup
shown in figure 5.7. The function envs_split moves the hypotheses referenced by
the identifiers js to the left or right environment, depending on the argument d,
and keeps the remaining hypotheses in the other environment. For that purpose,
the helper function envs_split_go is called with the environment ∆, containing
all hypotheses, and the environment envs_clear_spatial ∆ with an empty spatial
context. The intuitionistic context is available in both environments as explained in
section 4.2. The function envs_split_go then moves the hypotheses js from the
first environment ∆1 to the environment ∆2. This is done by iterating over the
list js and removing and retrieving each hypothesis P from ∆1 using the identifier
j. The resulting environment is called ∆1′. One important case distinction is to
check whether the removed hypothesis was part of the intuitionistic context, in which
case the environment ∆1′ cannot be used, since the split considers only the spatial
context. This problem does not occur in Lean, since the boolean mask for the spatial
context cannot target the intuitionistic context. If the hypothesis was part of the
spatial context, it is added to the environment ∆2. The function envs_split_go
always performs the move of the hypotheses from left to right (∆1 to ∆2), so the
function envs_split is required to swap the environments if the direction d is Left.
The user of the tactic isplit in the Lean implementation specifies the hypotheses
in the same way as in Coq, but the hypothesis names are already resolved on the
tactic level where the mask for the spatial context is created.

5.4. Limitations of Setoid Rewriting
The use of so-called rewriting in the necessary proofs of this separation logic interface
was discussed in subsection 4.4.1. It was also mentioned that Lean’s rewriting tactic
rw only supports rewriting with equalities and that this is a major limitation for a
separation logic interface. In a separation logic interface, two relations are relevant
for rewriting: equivalences of the form P a` Q (or similar) and entailments of the

63

form P ` Q. The approach in this interface is to use Lean’s rewriting tactic for the
former relation and the custom rewriting tactic rw′ for the latter, since rewriting
with implications or entailments is unsupported. In order to use Lean’s rw tactic for
the equivalence relation a`, it is necessary to define it as an equality. This often
requires using a setoid type for the separation logic propositions, as explained in
section 5.1.

There are however equivalence relations for which Lean’s Setoid class cannot be
instantiated. One example is the relation n= from an ordered family of equivalences
(OFE) in the Iris separation logic described in section 2.4. The relation is a step-
indexed equivalence, which cannot be expressed in the non-parameterized class
Setoid. Rewriting with this equivalence is in addition only allowed under certain,
so-called non-expansive, functions, which preserve an equivalence when applied to its
arguments. In contrast to Coq, Lean’s rewriting tactics do not offer support for this
conditional rewriting, which is one reason for the current inability to instantiate this
separation logic interface with the Iris logic.

One possible solution could be to generalize the custom rewriting tactic rw′, which
is part of this implementation, to (parameterized) equivalences. This would require
adding rewrite rules for the bidirectional entailment a` and supported separation
logic connectives, as described for the entailment ` in subsection 4.4.1. For the step-
indexed equivalence n=, additional rewrite rules and proofs of the non-expansiveness
of the connectives would also be required.

64

6. Conclusion and Future Work
This work provides an interface for separation logic proofs in the interactive theorem
prover Lean 4. After explaining the theoretical background of separation logic [1]
in chapter 2, including the logic of bunched implications [2] and the concurrent
separation logic Iris [7], a short introduction to the interactive theorem prover
Lean [4] was given in chapter 3. The mentioned topics include typeclasses, used in
the interface to require properties of propositions and relations, macros and meta
programming, which are both relevant for the provided notation and tactics. Chapter
4 continued with describing the main parts of the implementation: the typeclasses for
instantiating the interface with a custom separation logic, the notation for separation
logic propositions, the context management for separation logic proofs and the
context display, as well as the tactics used in separation logic proofs. In addition, an
overview of the proofs of the theorems in the implementation was given.
The evaluation in chapter 5 showed that the provided separation logic interface

can be instantiated with custom separation logics and an example instance was given
for classical separation logic [1]. A proof of a separation logic statement using the
provided tactics was presented and compared to a proof using the separation logic
interface MoSeL [5] in Coq. The proof example showed that the provided interface
is capable of supporting separation logic proofs in Lean and highlighted advantages,
different styles and features that are not yet implemented compared to MoSeL. A
proof of a similar statement in the pure logic of Lean indicates that the proofs in the
provided separation logic interface are able to reach the abstraction level of common
proofs in Lean. Discussing the definition of internal data structures made clear that
this implementation contains improvements over the implementation of MoSeL.
One improvement of this implementation is based on the decision to keep the

identifiers of hypotheses entirely on the meta level, which leads to a simpler definition
of the separation logic context. This is visible in the definition of the respective
datatypes, the functions and theorems that use them, and the soundness proofs
of the operations. It does however require complex index transformations and the
tactic implementations have to manually process kernel expressions. In contrast,
using string identifiers on the object level in the implementation of MoSeL requires
a more complex environment definition and the operations and additional proofs on
the object level cause larger proof terms for the validation in the kernel.

The presented separation logic interface is already capable of performing interactive
proofs in separation logic, but more work is necessary to improve the interface and
allow instantiating it with more complex logics, such as the concurrent separation
logic Iris. The necessary changes include the definition of equivalence, a more general
logic interface and additional separation logic modalities. The implementation should

65

also be extended by adding more tactics to simplify proofs containing, for example,
modalities or induction. There are furthermore possibilities to improve the usability,
as well as the error handling of the already available tactics. Additional examples
of instances with different separation logics, as well as semantic languages models
using the provided separation logic interface would help to further evaluate the
implementation.

66

Bibliography
[1] P. O’Hearn, J. Reynolds, and H. Yang, “Local Reasoning about Programs that

Alter Data Structures”, en, in Computer Science Logic, G. Goos, J. Hartmanis,
J. van Leeuwen, and L. Fribourg, Eds., vol. 2142, Series Title: Lecture Notes
in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 1–19, isbn: 978-3-540-42554-0 978-3-540-44802-0. doi: 10.1007/3-540-
44802-0_1.

[2] P. W. O’Hearn and D. J. Pym, “The Logic of Bunched Implications”, en,
Bulletin of Symbolic Logic, vol. 5, no. 2, pp. 215–244, Jun. 1999, issn: 1079-
8986, 1943-5894. doi: 10.2307/421090.

[3] P. W. O’Hearn, “Resources, concurrency, and local reasoning”, en, Theoretical
Computer Science, vol. 375, no. 1-3, pp. 271–307, May 2007, issn: 03043975.
doi: 10.1016/j.tcs.2006.12.035.

[4] L. de Moura and S. Ullrich, “The Lean 4 Theorem Prover and Programming
Language”, in Automated Deduction – CADE 28, A. Platzer and G. Sutcliffe,
Eds., Cham: Springer International Publishing, 2021, pp. 625–635, isbn: 978-3-
030-79876-5.

[5] R. Krebbers, J.-H. Jourdan, R. Jung, J. Tassarotti, J.-O. Kaiser, A. Timany, A.
Charguéraud, and D. Dreyer, “MoSeL: A general, extensible modal framework
for interactive proofs in separation logic”, en, Proceedings of the ACM on
Programming Languages, vol. 2, no. ICFP, pp. 1–30, Jul. 2018, issn: 2475-1421.
doi: 10.1145/3236772.

[6] R. Jung, R. Krebbers, et al., The Coq development for Iris, en. [Online].
Available: https://gitlab.mpi-sws.org/iris/iris/-/tree/96883dbdd
500f9688fb5f241361969a098dfec63 (visited on 2022-09-19).

[7] R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer,
“Iris from the ground up: A modular foundation for higher-order concurrent
separation logic”, en, Journal of Functional Programming, vol. 28, e20, 2018,
issn: 0956-7968, 1469-7653. doi: 10.1017/S0956796818000151.

[8] R. Krebbers, A. Timany, and L. Birkedal, “Interactive proofs in higher-order
concurrent separation logic”, en, in Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, Paris France: ACM, Jan.
2017, pp. 205–217, isbn: 978-1-4503-4660-3. doi: 10.1145/3009837.3009855.

[9] J.-Y. Girard, “Linear Logic”, en, Theoretical Computer Science, vol. 50, no. 1,
pp. 1–101, 1987.

67

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.2307/421090
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3236772
https://gitlab.mpi-sws.org/iris/iris/-/tree/96883dbdd500f9688fb5f241361969a098dfec63
https://gitlab.mpi-sws.org/iris/iris/-/tree/96883dbdd500f9688fb5f241361969a098dfec63
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3009837.3009855

[10] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and
D. Dreyer, “Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent
Reasoning”, en, in Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Mumbai India: ACM, Jan.
2015, pp. 637–650, isbn: 978-1-4503-3300-9. doi: 10.1145/2676726.2676980.

[11] L. de Moura, J. Avigad, S. Kong, and C. Roux, Elaboration in Dependent
Type Theory, en, arXiv:1505.04324 [cs], Dec. 2015. [Online]. Available: http:
//arxiv.org/abs/1505.04324.

[12] D. Selsam, S. Ullrich, and L. de Moura, Tabled Typeclass Resolution, en,
arXiv:2001.04301 [cs], Jan. 2020. [Online]. Available: http://arxiv.org/abs/
2001.04301.

[13] M. P. Jones, “Type Classes with Functional Dependencies”, en, in Programming
Languages and Systems, G. Goos, J. Hartmanis, J. van Leeuwen, and G.
Smolka, Eds., vol. 1782, Series Title: Lecture Notes in Computer Science,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 230–244, isbn: 978-3-
540-67262-3 978-3-540-46425-9. doi: 10.1007/3-540-46425-5_15.

[14] S. Ullrich and L. de Moura, “Beyond Notations: Hygienic Macro Expansion
for Theorem Proving Languages”, en, Logical Methods in Computer Science,
vol. Volume 18, Issue 2, p. 7421, Apr. 2022, issn: 1860-5974. doi: 10.46298/
lmcs-18(2:1)2022.

[15] S. Ullrich, Typed Macros, en, Jun. 2022. [Online]. Available: https://github.
com/leanprover/lean4/pull/1251 (visited on 2022-08-21).

[16] A. Paulino, D. Testa, E. Ayers, H. Böving, J. Limperg, S. Gadgil, and S. Bhat,
A Lean 4 Metaprogramming Book, en. [Online]. Available: https://github.
com/arthurpaulino/lean4-metaprogramming-book (visited on 2022-08-22).

[17] G. Ebner, Expression Quotations for Lean 4, en. [Online]. Available: https:
//github.com/gebner/quote4 (visited on 2022-09-02).

68

https://doi.org/10.1145/2676726.2676980
http://arxiv.org/abs/1505.04324
http://arxiv.org/abs/1505.04324
http://arxiv.org/abs/2001.04301
http://arxiv.org/abs/2001.04301
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.46298/lmcs-18(2:1)2022
https://doi.org/10.46298/lmcs-18(2:1)2022
https://github.com/leanprover/lean4/pull/1251
https://github.com/leanprover/lean4/pull/1251
https://github.com/arthurpaulino/lean4-metaprogramming-book
https://github.com/arthurpaulino/lean4-metaprogramming-book
https://github.com/gebner/quote4
https://github.com/gebner/quote4

Erklärung

Hiermit erkläre ich, Lars König, dass ich die vorliegende Masterarbeit selbstständig
verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht
und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis beachtet
habe.

Ort, Datum Unterschrift

69

A. Appendix

istart
Start the separation logic proof mode.

istop
Stop the separation logic proof mode.

irename nameFrom to nameTo
Rename the hypothesis nameFrom to nameTo.

iclear hyp
Discard the hypothesis hyp.

ispecialize hyp args as name
Specialize the wand or universal quantifier hyp with the hypotheses and
variables args and assign the name name to the resulting hypothesis.

iexists x
Resolve an existential quantifier in the goal by introducing the variable x.

iexact hyp
Solve the goal with the hypothesis hyp.

iassumption_lean
Solve the goal with a hypothesis of the type ` Q from the Lean context.

iassumption
Solve the goal with a hypothesis from any context (intuitionistic, spatial or
pure).

Figure A.1.: List of all tactics currently supported in this implementation of a sepa-
ration logic interface for Lean 4. The “i” prefix is used to distinguish
the separation logic tactics from the Lean tactics.

71

iex_falso
Change the goal to False.

ipure hyp
Move the hypothesis hyp to the pure context.

iintuitionistic hyp
Move the hypothesis hyp to the intuitionistic context.

ispatial hyp
Move the hypothesis hyp to the spatial context.

iemp_intro
Solve the goal if it is emp and discard all hypotheses.

ipure_intro
Turn a goal of the form pφq into a Lean goal φ.

isplit
Split a conjunction ∧ into two goals, using the entire spatial context in
both of them.

isplit (l|r) [hyps]
Split a separating conjunction ∗ into two goals using the hypotheses hyps
as the spatial context for the left (l) or right (r) side. The remaining
hypotheses in the spatial context are used for the opposite site.

ileft
iright

Choose to prove the left or right side of a disjunction in the goal.

icases hyp with pat
Destruct the hypothesis hyp using the pattern pat.

iintro pats
Introduce up to multiple hypotheses and destruct them using the patterns
pats.

Figure A.1.: Continued list of all tactics currently supported in this implementation
of a separation logic interface for Lean 4.

72

	Introduction
	Separation Logic
	Bunched Implications
	Separation Logic
	Concurrent Separation Logic
	Iris Logic

	Lean 4
	Typeclasses
	Macros
	Meta Programming

	Implementation
	Logic, Interface and Notation
	Environment and Goal Display
	Tactics
	Proofs

	Evaluation
	Logic Instance
	Proof Example and Comparison
	Environment Definition
	Limitations of Setoid Rewriting

	Conclusion and Future Work
	Bibliography
	Appendix

