
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

A Typed Recursive
Ascent-Descent Backend

for Happy

Bachelorarbeit von

David Knothe

an der Fakultät für Informatik

root

E → E · T* * E → E · T*

T → · T + F

shift on (shift on id

T → · F

F → · (E) F → · id

shift on *

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: M. Sc. Sebastian Graf

Abgabedatum: 23. Oktober 2020

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

Top-Down-Parser sind schnell und simpel und können oft von Hand geschrieben
werden; für komplexere Grammatiken werden jedoch Bottom-Up-Parser benötigt.
Diese werden typischerweise mittels Parsergeneratoren erstellt und haben eine große
Anzahl an Zuständen. Rekursiver Aufstieg-Abstieg kombiniert die Top-Down- und
Bottom-Up-Techniken, um die Anzahl der Zustände soweit wie möglich zu reduzieren,
während die volle Mächtigkeit des Bottom-Up-Parsens beibehalten wird.

Wir erweitern den Haskell-Parsergenerator happy um ein rekursives Aufstieg-
Abstieg-Backend. Dabei erzeugen wir Code im continuation-passing style, wodurch
die generierten Parser sowohl effizient als auch voll typsicher sind. Dadurch erzie-
len wir signifikante Geschwindigkeitsverbesserungen im Vergleich zu klassischen
tabellenbasierten LALR-Parsern, wie sie von happy generiert werden.

Wir integrieren hierbei alle wesentlichen Features von happy, was es uns ermöglicht,
den ebenfalls von happy generierten Parser des Glasgow Haskell Compilers (GHC)
durch eine rekursive Aufstieg-Abstieg-Variante zu ersetzen. Hierdurch erreichen wir
Performance-Verbesserungen beim Parsen von Haskell-Code von ungefähr 10%.

While top-down parsers are fast and simple and can often be written by hand,
parsing more complex grammars requires bottom-up parsers. They often have
numerous states and cannot be written by hand but are typically created by parser
generators. Recursive Ascent-Descent parsing combines top-down and bottom-up
parsing to minimize the number of states as much as possible, while still obtaining
the full power of bottom-up parsing.
We extend the popular Haskell parser generator happy by a recursive ascent-

descent backend. Thereby we utilize continuation-passing style, which makes our
generated parsers both efficient and strongly typed. Consequently, we achieve
significant speed improvements compared to regular table-based LALR parsers.

We integrate all essential features of happy, which allows us to replace the parser
of the Glasgow Haskell Compiler (GHC), which is also generated by happy, by a
recursive ascent-descent variant. As a result, we achieve performance improvements
of around 10% when parsing Haskell code.

Contents
1. Introduction 7

1.1. Contributions . 8

2. Preliminaries And Related Work 9
2.1. LL And LR Parsing . 9
2.2. (Generalized) Left Corner Parsing . 10
2.3. Recursive Ascent-Descent . 10
2.4. Scala-bison . 16
2.5. Happy and GHC . 16
2.6. Typed Continuation-Based Parsing 17

3. State Generation 21
3.1. Recognition Points . 21
3.2. About RAD States . 24

3.2.1. RAD-Completion . 25
3.3. Unambiguous Nonterminals . 26
3.4. Algorithmic Generation . 27

3.4.1. State Skeleton Creation . 29
3.4.2. Finalization – Transforming Actions 31

3.5. Default Actions And Happy’s Error Token 41

4. Code Generation 43
4.1. Algorithmic Generation . 43

4.1.1. Parsing a Nonterminal . 43
4.1.2. Parsing a Terminal . 44
4.1.3. Rule Functions . 45
4.1.4. States . 46
4.1.5. Top-Level Entry Points . 52
4.1.6. Semantic Actions . 53

4.2. GHC-Specifics . 54
4.2.1. Monadic Lexers . 54
4.2.2. Higher-Rank Types . 57

5. Evaluation 61
5.1. Experimental Results . 61

5.1.1. Parser Only . 62
5.1.2. Parser-Lexer Combination . 63

5

Contents

5.1.3. GHC: Parsing Haskell . 65
5.2. LL-Ness . 67

6. Conclusion 71
6.1. Future Work . 71

A. Generated Code Examples
A.1. LALR .
A.2. RAD .

6

1. Introduction
Context-free grammars are commonly used to specify the syntax of computer pro-
gramming languages. A context-free grammar consists of production rules – rules
that specify how certain nonterminals can be replaced by strings of terminals and
other nonterminals. A parser takes a list of terminals and creates a valid derivation,
beginning from the grammar’s start symbol. For some classes of context-free gram-
mars there exist efficient parsers: the most prominent ones are LL(k) and LR(k)
grammars. These emit LL, LR and LALR parsers, which can be used to parse an
input string, for example source code of a computer program.

Both LL(k) and LALR(k) parsers are prominent and are used in real compilers.
Those can either be implemented in a table-based form or via mutually recursive
functions in the host language (“directly-executable form”).
All of these variants have certain drawbacks: Directly-executable LL parsers are

fast, but LL parsers, especially LL(1) parsers, can only recognize a very limited set of
context-free grammars. LALR parsers on the other hand are more powerful. Because
they consist of numerous states, they are most often only found in table-based form,
which results in a performance penalty. Directly-executable LALR parsers would be
faster, but would come along with large binary code size because they would contain
a function for every single state.

Horspool [1] introduced Recursive Ascent-Descent Parsing which combines the
advantages of recursive ascent and recursive descent parsing: While being just as
powerful as LALR parsers, Recursive Ascent-Descent (or just RAD) parsers have
significantly fewer states. They switch from bottom-up parsing to top-down parsing
when possible, and only use bottom-up parsing where required.

Independently of and unrelated to RAD parsing, Hinze and Paterson [2] described
the concept of continuation-based parsing: directly executable code can be generated
for LL and LALR parsers so that they are completely stackless – partial parsing
results are not stored on a stack but are passed around via continuation functions.
In addition, these parsers are fully well-typed.

In this thesis we combine the two orthogonal approaches of recursive ascent-descent
parsing and of continuation-based parsing to create powerful, fast and sufficiently
small general-purpose parsers:

1. Powerful and general-purpose, because a RAD(k) parser can parse all LALR(k)
grammars.

7

1.1. CONTRIBUTIONS

2. Fast, because the directly-executable, continuation-based form brings speed
improvements over classical, table-based forms.

3. Sufficiently small, because the compiled code of a continuation-based RAD
parser is often smaller than the compiled code of an equivalent continuation-
based LALR parser.

We extended the popular Haskell parser generator tool happy by a typed,
continuation-based recursive ascent-descent parser generator. As happy is used to
generate the parser for the Glasgow Haskell Compiler (GHC), it was our main aim
of this work to improve GHC itself by generating a parser with better performance
than the one which is currently in use.

Throughout this paper, we only consider grammars and parsers with a single token
of lookahead, like LL(1) and LALR(1). While the ideas can be extended to grammars
and parsers with more lookahead, we deliberately chose LALR(1) as this is both the
most common form of generated parsers and also the form that happy uses, which
allows us to simply use and modify happy’s LALR(1)-states.

1.1. Contributions
• We introduce the reader to the concepts of recursive ascent-descent parsing

and compare them with LL and LALR parsing in section 2. We then unite
recursive ascent-descent parsing with continuation-based parsing in section
4 when we describe the process of continuation-based code generation for a
recursive ascent-descent parser.

• We describe, in detail, how recursive ascent-descent states are generated algo-
rithmically in section 3. We provide more detail than other papers covering
recursive ascent-descent parsing. We also point out and fix an error in the
recursive ascent-descent parser generator scala-bison.

• We implement a continuation-based recursive ascent-descent backend for happy
and evaluate its performance and other metrics in comparison to different parser
variants in section 5.1. We take a special look on the Haskell grammar and the
Glasgow Haskell Compiler.

• We introduce a notion of “LL-ness” of an LR grammar which measures, in-
tuitively, how much a parser can make use of recursive descent when parsing
the grammar. The more “LL” a grammar is, the fewer states are required in
general for a recursive ascent-descent parser.

• We present some possibilities for further performance fine-tuning and optimiza-
tion in section 6.

8

2. Preliminaries And Related Work

2.1. LL And LR Parsing
For any context-free grammar, there exists a nondeterministic pushdown automaton
that accepts exactly the language which is generated by the grammar. This pushdown
automaton can be converted to a deterministic LL or LR parser when working with
an LL or an LR grammar, respectively. This process is described in detail in various
books, for example in Compiler Design [3].

LL(1) parsers derive the input in a top-down way. An LL(1) parser is predictive:
it starts with the grammar’s start symbol and decides at each step which production
to follow, solely based on the next input token, the lookahead token.
An LR or LALR parser follows multiple production candidates at once and only

decides as late as possible which of these productions to actually reduce. This is
typically realized with an LALR automaton. It consists of LALR states, each of
which has a set of core items. An item describes the current position of the process
of parsing a production and looks like this: [A→ α · β]. α is the string of symbols
which has already been derived, while β must still be derived before the rule A→ α β
can be reduced.

Because an LALR parser can follow multiple production candidates at once, LALR
states can have multiple core items. An exemplary LALR state could contain the
following core items: [A → B · C] and [A → B · D]. The nonterminal B has
already been parsed, but it is not yet clear whether the production A → B C or
A→ B D is active.

In addition to its core items, an LALR state has a set of completion (or closure)
items. If a state contains the item [A → . . . · T . . .], the parsing position is
immediately before the T . Now, because the parser might begin parsing a T , the
parser is additionally in all positions of the form [T → · . . .] simultaneously. There-
fore, all items of the type [T → · . . .] must be in the state’s completion. The full
completion set is then derived through the reflexive transitive closure of this operation.

A note on notation: We will use lower-case Latin letters (like a, b, x, id) for
terminals and upper-case Latin letters for nonterminals. We will further use the
word “symbol” to refer to any terminal or nonterminal.

Greek letters like α, β, ω are used to denote arbitrary (possibly empty) strings of
symbols. The empty word is depicted as ε.

9

2.2. (GENERALIZED) LEFT CORNER PARSING

2.2. (Generalized) Left Corner Parsing
As mentioned above, an LL parser recognizes each rule immediately at its left end,
while an LR, SLR (“simple LR”) or LALR parser recognizes each rule at its right end,
after all terminals and nonterminals of the rule have been gathered. An LC parser, as
introduced by Rosenkrantz and Lewis [4], only parses the very first symbol of a rule
in bottom-up-style and recognizes the rule thereafter, switching to top-down-style.
LR grammars are in general not LC and cannot be parsed by an LC parser.

Demers [5] introduced GLC parsing, a generalization of LC parsing which does not
switch from bottom-up to top-down after parsing the first symbol, but at arbitrary
user-defined switch points. These points are typically chosen as the earliest possible
positions where GLC parsing remains deterministic. This minimizes the number of
required states. The class of GLC grammars contains all the LL, LR, LALR and
SLR classes, as these are just special cases of GLC grammars: An LL parser is a
GLC parser where the switch points are always at the left end, and an LR parser is
a GLC parser where they are always at the right end.

2.3. Recursive Ascent-Descent
Demers originally introduced GLC parsing only for SLR grammars. Horspool then
extended these ideas to LR and LALR grammars, calling the resulting parsers XLC
and LAXLC (where the “X” denotes extended).
Recursive Ascent-Descent then describes the implementation of an XLC or LAXLC

parser in directly-executable form, contrary to table-based form. We restrict ourselves
to directly-executable LAXLC(1) parsers and refer to them as RAD(1) or just RAD.

Recursive Ascent-Descent parsers use recognition points to switch from bottom-up
(recursive ascent) to top-down (recursive descent) parsing. The recognition point of
a rule is the leftmost position at which the correct production can be determined
unambiguously. This is often much earlier than at the very right end.

We will now discuss the structure and functionality of a Recursive Ascent-Descent
parser, accompanied by exemplary grammars. Consider the following grammar:

0 : E? → E $
1 : E → + E E

2 : E → (E)
3 : E → id

Here, E? is the start symbol, and $ stands for the eof-token. Note that this
grammar is LL(1), meaning the active rule can always be determined at its very
beginning, only based on the next input token – there are no rule ambiguities at any
time. In other words, the recognition point of any rule is at the very left.

10

2.3. RECURSIVE ASCENT-DESCENT

Figure 2.1.: The structure of a RAD parser of a simple LL(1) grammar. On the left
is the recursive descent part, on the right the recursive ascent part.

rule0:
E* → E $

state0
(E entry)

state1
(E exit)

parse(

parse)

rule1:
E → + E E

rule2:
E → (E)

rule3:
E → id

parse+

parseID

on
‘(’

on
 id

on ‘+’

parse$

on E: goto

always:
accept E

The structure of the corresponding RAD parser can be seen in figure 2.1. On the
left is the recursive descent part, consisting of one function for parsing each rule and
each terminal. On the right is the recursive ascent part, consisting of RAD states,
one function per state.
Recursive descent mode is started by parsing a production rule, i.e. by calling a

rule function. Then, all symbols on the rule’s right-hand side are parsed, one after
the other, by calling their respective parsing functions:

• A terminal is parsed by simply comparing the expected terminal with the
next token from the input, and failing the parse if the token does not match.
For example, a single + is parsed by calling parse+. This is similar to how
terminals are parsed in top-down parsers.

• A nonterminal is parsed by entering a special state (entry state) which is
designed to parse this nonterminal. Here, the recursive ascent part begins.
Once the nonterminal has been parsed, the parser arrives at a special (exit)
state which will then accept the nonterminal and return control back to the
recursive descent part, i.e. to the calling rule function, which then proceeds
with its next symbol.
For example, a single E is parsed by calling state0, the entry state of E. We
will also use parseE as an alias for state0.

For example, parsing rule 1 (E → + E E) would yield one call to parse+, and
then two calls to parseE (i.e. state0). The outgoing arrows of rule1 in figure 2.1

11

2.3. RECURSIVE ASCENT-DESCENT

show exactly these function calls.
Because the above grammar is LL(1), its RAD parser works exactly like an LL(1)

parser. Consider state 0 – it has the following actions (as seen in figure 2.1):

1. on + announce rule 1

2. on (announce rule 2

3. on id announce rule 3

4. on E goto state 1

State 0 decides, based on the next input token, which rule is active. The corre-
sponding rule function is then called (the rule is announced) and parses all symbols
of the rule successively.

E’s exit state, state 1, doesn’t do anything interesting – it just accepts the partial
parse of E every time.
This changes when looking at a grammar that is not quite LL(1). Consider this

modified grammar:

0 : E? → E $
1 : E → E + E ;
2 : E → (E)
3 : E → id

When beginning to parse an E it is unclear whether rule 1 is active or not. This
can only be decided when seeing the next token after an E has been parsed.
It follows that the recognition point of rule 1 is not at the very left but after the

first E. This is depicted as follows: E → E • + E ; – we use small dots for items
and large dots for recognition points inside rules.

Here is the grammar, again, with its recognition points marked:

0 : E? → • E $
1 : E → E • + E ;
2 : E → • (E)
3 : E → • id

Now, when a rule is announced, it is possible that part of the rule’s right-hand
side has already been consumed: a rule is always announced at its recognition point.
Consider rule 1: once rule 1 is recognized, the parse has already advanced beyond
the first E. Therefore, rule1 only parses the symbols after the first E, i.e. after its
recognition point.

The other rules have their recognition point at the very left. Nothing changes here:
they parse all symbols on their right-hand side, one after the other.

12

2.3. RECURSIVE ASCENT-DESCENT

Figure 2.2 shows the structure of the full RAD parser. This time, state 1 (E’s
exit state) has a nontrivial announce action: after an E was parsed, state 1 decides
whether the parse of this E has finished, or whether it should continue with rule 1.

Figure 2.2.: The structure of a RAD parser of a grammar which is not LL(1). On
the left is the recursive descent part, on the right the recursive ascent
part. The recognition point of each rule is marked by a dot.

state0
(E entry)

state1
(E exit)

parse(

parse)

parseID

parse+

parse;

on
‘(’

on
 id

on ‘+’

on ‘)’, ‘;’, ‘$’:
accept E

on E: goto

parse$

rule1:
E → E • + E ;

rule2:
E → • (E)

rule3:
E → • id

rule0:
E* → • E $

State 0
Items:

[_→ · E] (core)
[E → · E + E]
[E → · (E)]
[E → · id]

Actions:
on (announce rule 2
on id announce rule 3

on E goto state 1

State 1
Items:

[_→ E ·] (core)
[E → E · + E] (core)

Actions:
on + announce rule 1
on) accept E
on ; accept E
on $ accept E

These RAD states have so-called artificial items: State 0 has the core item
[_→ · E] which signalizes that state 0 parses exactly an E and that the parser is

13

2.3. RECURSIVE ASCENT-DESCENT

currently located just before this E. State 1 resembles the state after parsing this E
and therefore has the corresponding artificial core item [_→ E ·]. These items have
no direct analogy in an LR parser as they do not belong to an actual rule.
The lookahead sets of these artificial items differ from those in an LALR parser.

Section 3.4.2 addresses the task of calculating these lookahead sets.

The following table, together with figure 2.3, showcases the call tree when parsing
the expression “1 + 2 ;”, step by step. For brevity, we abbreviate state0 with s0
and state1 with s1.

Function call stack Input Action
1 + 2 ; begin parse by

calling top-level rule
rule0 1 + 2 ; (E? → • E $)

→ parse E, then $
rule0 s0 1 + 2 ; on id announce rule 3
rule0 s0 rule3 1 + 2 ; (E → • id) → parse id
rule0 s0 rule3 parseID 1 + 2 ; consume “1”
rule0 s0 rule3 + 2 ; rule 3 has finished
rule0 s0 + 2 ; on E goto state 1
rule0 s0 s1 + 2 ; on + announce rule 1
rule0 s0 s1 rule1 + 2 ; (E → E • + E ;)

→ parse +, E and ;
rule0 s0 s1 rule1 parse+ + 2 ; consume +
rule0 s0 s1 rule1 2 ; continue with rule 1

→ parse E
rule0 s0 s1 rule1 s0 2 ; on id announce rule 3
rule0 s0 s1 rule1 s0 rule3 2 ; (E → • id) → parse id
rule0 s0 s1 rule1 s0 rule3 parseID 2 ; consume “2”
rule0 s0 s1 rule1 s0 rule3 ; rule 3 has finished
rule0 s0 s1 rule1 s0 ; on E goto state 1
rule0 s0 s1 rule1 s0 s1 ; on ; accept E
rule0 s0 s1 rule1 s0 ; E was accepted; return
rule0 s0 s1 rule1 ; continue with rule 1

→ parse ;
rule0 s0 s1 rule1 parse; ; consume ;
rule0 s0 s1 rule1 $ rule 1 has finished
rule0 s0 s1 $ on $: accept E
rule0 s0 $ E was accepted; return
rule0 $ continue with rule 0

→ parse $
rule0 parse$ $ consume $
rule0 rule 0 has finished

parse was successful

14

2.3. RECURSIVE ASCENT-DESCENT

Figure 2.3.: A parse tree of a grammar which is not LL(1). The parse tree resembles
the expression “1 + 2 ;”.

parseID

on id

on ‘+’

on ‘$’: accept E

on ‘;’: accept E

on id

parse+ parse;

rule0

rule3

rule3 state1

state0 parse$

parseID

on E: goto

on E:
goto

state1

rule1

state0

1. The parse begins by calling the top-level rule function, rule0. As rule 0 is
E? → • E $, rule 0 first parses the E by calling state0, and after that parses
the final eof-token by calling parse$. (Note that the recognition is at the very
left and therefore all symbols of rule 0’s right-hand side are parsed.)

2. state0 reads the current lookahead token and sees an id. This triggers the
action on id announce rule 3 and rule 3 is announced by calling rule3.

3. As rule 3 is E → • id, rule3 just calls parseID. parseID consumes the current
token (an id) and passes control back to rule3. Because rule 3 has finished, it
passes control back to state0.

4. Now, the goto action of state 0 is executed: on E goto state 1. This is done by
calling state1.

5. State 1 now decides whether the current parse of E has finished, or whether
we are actually in the middle of rule 1. Because the next token is a +, rule
1 is announced by calling rule1. Note that the dot of state 1’s second core
item, [E → E · + E], is exactly at the recognition point of rule 1! This makes

15

2.4. SCALA-BISON

sense, because a rule is always announced at the position of its recognition
point – it cannot be announced earlier because it would still be ambiguous at
this moment whether the rule is actually in use, and it cannot be announced
later because this would require unnecessary extra states.

6. Announcing rule 1 now parses the remaining symbols of rule 1, beginning at the
recognition point. This means, a “+”, an “E”, and a “;” are parsed successively.

7. parse+ consumes the current token (a +). parseE then again calls state0,
which parses the current E via rule3 and parseID. Now the goto action is
executed, and control goes to state1. State 1 sees the next token, a “;”, and
decides to accept the E and control goes back to rule 1, which parses the final
“;”.

8. Now rule1 returns and control goes back to state1, and this time state 1
decides to accept the E after seeing the eof-token “$”. Control is now back at
rule0. The parse ends after rule0 has consumed the final eof-token.

As opposed to an LALR parser, it is relatively easy for a human to understand
what is happening here. This is because the RAD parser is as similar to an LL parser
as possible, and only uses LALR where required, as little as possible.

An LALR(1) parser of this grammar would require eleven states – the RAD parser
has only two states, and performs the rest of the work via the top-down rule functions,
just like a directly-executable LL(1) parser.

2.4. Scala-bison
Apart from Horspool himself, we only found one other author who actually im-
plemented a Recursive Ascent-Descent parser generator: Boyland and Spiewak [6]
created a tool called scala-bison which generates Recursive Ascent-Descent code
in Scala. Scala-bison takes a “.y” grammar file, invokes bison and reads the
LALR states from the bison output. Those are then converted to RAD states and
eventually to executable Scala code.
The scala-bison paper clarified some ideas and algorithms of Horspool. For

example, it suggested a concrete, sensible algorithm for calculating the recognition
points of a grammar. Especially the open-source implementation [7] of the scala-
bison tool contained several helpful hints and details and helped us understand
some more complex questions and algorithms regarding recursive ascent-descent state
generation.

2.5. Happy and GHC
Happy [8] is an LALR(1)-parser generator written in Haskell which generates Haskell
code. It takes a grammar file which is similar to a bison “.y”-file. It then parses

16

2.6. TYPED CONTINUATION-BASED PARSING

this file (using happy itself) and creates LALR-states, action tables and goto tables
which are then converted to table-based parsing code.

The user of happy can choose between several modes of operation. In normal
mode, the parser just takes a list of tokens, and returns a result (or stops by calling
the user-supplied function happyError.) In monadic mode, the user can supply a
custom monad in which all parsing functions are wrapped.

Additionally, instead of providing a full list of tokens, the user may supply a lexer
function which returns the next token each time it is called. In combination with
a monadic parser, this could be used to keep track of errors and line numbers or
switch between different contexts during parsing. This mode (combined monadic
lexer) is also used to generate the parser for the Glasgow Haskell Compiler, GHC [9].
For lexing, the tool alex [10] is used, which fittingly exports such a lexer function
which is required by happy.

Later, when generating RAD states for an LR grammar, we use happy’s LALR
states, i.e. action and goto tables. This has the advantage that shift-reduce or
reduce-reduce conflicts have already been resolved by happy or by specifications of
the grammar author. There is no need to consider these conflicts ourselves as we
can just take happy’s action and goto tables and process them further.

2.6. Typed Continuation-Based Parsing
In their paper, Hinze and Paterson [2] define the function parse as the inverse
of the flatten function which flattens an AST to a string. Starting from this
definition, they derive sensible definitions for each state function, each shift and goto
action, and develop a parsing machinery which uses continuation-passing style to
pass around parsing results and semantic values. This leads to a stackless parser
which is implemented via mutually recursive state functions.

They begin by defining parse as a set-valued function via parse = flatten−1,
meaning parse may return zero or multiple results. This is reasonable – when the
string is ill-formed, parsing has no result (flatten is not surjective), and if the
grammar is ambiguous, parsing may have multiple results (flatten is not injective).
They later transform parse and all related functions to make them deterministic
(single-valued) and show that this always works as expected for LR grammars.

We will now just consider the deterministic case. The function parse now simply
has the (Haskell) type [Token] -> r: it consumes a list of tokens and returns an
(unspecified at first) value of type r. (Why not Maybe r? When parsing fails, we
don’t want to return Nothing but rather directly fail with an error: this makes the
resulting parser much simpler.) We define a type synonym for the type of parse via
type Parser r = [Token] -> r.

Now consider a state with one core item, for example [A→ b · C]. The task of this
state is to parse the following C. This means, the task of the corresponding function

17

2.6. TYPED CONTINUATION-BASED PARSING

state[A→b·C] is to parse the following C from the token list and return the parsed
semantic value. This parsed value could be an AST, a string, or something different,
but we give it the type C. Thus state[A→b·C] takes a list of tokens and returns the
semantic value of type C and the remaining list of tokens – those which have not
been consumed while parsing the C. So this function could have the following type
signature:

state[A→b·C] :: [Token] -> (C, [Token])

Hinze and Paterson [2] noticed that this can be solved much more elegantly using
so-called continuation-passing style:

state[A→b·C] :: (C -> [Token] -> r) -> [Token] -> r

Instead of returning the remaining tokens and the parsed value of type C, these
are both passed into a continuation. This continuation can further process them and
then return some arbitrary value of any type r, which is then also the result of the
original function.
This allows parsing to take place in a completely continuation-driven manner by

simply using different state functions – states that are reached through a shift or
goto action – as the continuation to any state function. For example, after the above
state parses a C, a normal LALR parser would execute a goto action and switch
into a different state (with a core item [A→ b C ·].) This can be realized by using
this new state function, state[A→bC·], as a continuation to the original one, state[A→b·C].
This process then continues throughout the whole parser, up to a place where parsing
is finally halted by accepting the parse after the full token list was consumed and a
correct derivation was built.

Notice how the type of the above function can be expressed in terms of Parser r:

state[A→b·C] :: (C -> Parser r) -> Parser r

This makes its purpose even more explicit: It parses a C, creates a value of type
C from it (by calling a semantic action, see below), and passes this value to the
continuation function which processes the rest of the input.

When a state has multiple core items from different rules, when entering the state
it is not yet known which of these rules is actually active. This is only decided after
parsing the next symbol, or at an even later point. Expanding on the above idea,
states with multiple core items can simply define multiple continuations and call the
continuation of the core item which is decided to be the correct one. For example,
a state S with the two core items [A→ · B] and [A→ · C] has two continuations
and after actually parsing either a B or a C it calls the correct one, which then con-
tinues parsing in the correct context. The type of this function would be the following:

18

2.6. TYPED CONTINUATION-BASED PARSING

stateS :: (B -> Parser r) -> (C -> Parser r) -> Parser r

One other thing we need to consider are items with multiple symbols after the dot.
Considering the item [A→ b · c D e], a corresponding state S1 would parse the c
and then call a state S2 with core item [A→ b c · D e], which would, after parsing
the D, call a state S3 with core item [A→ b c D · e]. This leads to the following
conclusion about the types of these state functions:

stateS1 :: (c -> D -> e -> Parser r) -> Parser r
stateS2 :: (D -> e -> Parser r) -> Parser r
stateS3 :: (e -> Parser r) -> Parser r

Why? stateS2 can be used in the completion of stateS1 like this:

stateS1 cont = let c = ... in cont c stateS2

Here, c is a value of type c (which was obtained by taking the next token from
the input stream). Calling the continuation with a value of type c and a function
of type D -> e -> Parser r exactly matches its type. The same is then true for
stateS2 and stateS3 :

stateS2 cont = let d = ... in cont d stateS3

The remaining task of creating a working parser is threefold:

• determine the concrete semantic types of the symbols

• consider shift, reduce and goto actions and semantic actions and define corre-
sponding functions

• implement the state functions.

We will briefly talk about the first two points. The subsequent example will then
give a good intuition on how a complete parser will look like and work. The exact
procedure can, of course, be studied in-depth in the paper of Hinze and Paterson [2].

We talked of semantic values and types of symbols and referred to them by just
placing a dash over the symbol. But how do we know what these types are concretely?
These types are actually specified by the creator of the grammar. They know that, for
example, the type of the semantic value produced by an E should be Expr, because
they defined Expr to be a suitable type depicting an AST. The type could also be a
simple Int or whatever else – the main thing being that it is specified by the user.

Also, what is the type of a terminal? If the terminal has an associated value, like
an id token, the type may be an Int. Other tokens may have no sensible semantic
value, like a + token. Here, a parent type Token must exist (and must be specified

19

2.6. TYPED CONTINUATION-BASED PARSING

by the user) which can be used as the semantic type of all tokens. Tokens like id
could use their own type like Int, but every token can always use the Token type if
nothing more specific is known.

Let us briefly consider semantic actions. After a rule was fully parsed, its right-
hand-side components are reduced to the rule’s left-hand-side nonterminal. For
example, when reducing E → E + T , values of type E, + and T (or concretely, Expr,
Token and Term) are taken and transformed to a single value of type E (Expr). This
is done by the semantic action of this rule. Working with continuation-passing style,
this would look as follows:

actionE→E+T :: (E -> Parser r) -> E -> + -> T -> Parser r
actionE→E+T k v1 v2 v3 = k (Plus v1 v3)

Here, k is the continuation while v1, v2, v3 are the semantic values of the corre-
sponding symbols. The Plus constructor then creates an Expr given an Expr and a
Term. The semantic value of the + is not used because it is uninteresting. Finally,
the continuation is called with the freshly created value of type Expr.

We now give an example implementation of two LALR state functions. The
code should speak for itself – note that the tokens which are compared in the case
statements are exactly the shift actions of the states, and the g functions are exactly
the goto actions.

-- [T -> (· E)]
state5 :: (Expr -> Token -> Parser r) -> Parser r
state5 k ts = case ts of

t@(TokenInt v):tr -> state4 (action4 g5 v) tr -- on INT shift to state 4
t@(TokenOB):tr -> state5 (action3 g5 t) tr -- on (shift to state 5
_ -> error
where

g4 x = state8 (action1 g4 x) (k x) -- on E goto state 8
g5 x = state3 (action2 g4 x) -- on T goto state 3

-- k1: [E -> E · + T]
-- k2: [T -> (E ·)]
state8 :: (Token -> Term -> Parser r) -> (Token -> Parser r) -> Parser r
state8 k1 k2 ts = case ts of

t@(TokenPlus):tr -> state7 (k1 t) tr -- on + shift to state 7
t@(TokenCB):tr -> state9 (k2 t) tr -- on) shift to state 9
_ -> error

20

3. State Generation
The process of state generation proceeds in two main steps: After calculating the
recognition points for all rules, RAD(1) states are generated based on existing
LALR(1) states.

3.1. Recognition Points
Demers [5] defined the concept of recognition points when introducing Generalized
Left Corner Parsing. The recognition point is, as formulated by Horspool, “the
point in the rule’s right-hand side which has been reached before the parser has
unambiguously determined that it is this particular rule that is being matched”
[1]. This is closely related to free positions – positions at which a semantic action
can freely be inserted. Purdom and Brown [11] gave a graph-based algorithm to
determine free positions.

Scala-bison [6] uses a modified version of Purdoms and Browns algorithm to cal-
culate free positions and derive the recognition points for all rules. We present it here.

In an LALR(1) parser, an LALR state depicts a single moment during the parsing
process. If the state has multiple core or completion items, the parser is in all these
positions simultaneously. The next token then decides what happens and either a
shift or reduce action is performed. We define an item to be free with respect to an
LALR state if the next executed action always safely determines whether this item is
active or not. If an item is conversely non-free, this is only decided in a subsequent
LALR state.

This can easily be visualized and calculated with a graph. We construct one graph
per LALR state. The graph for the LALR state L is created as follows:

• Create one root vertex root.

• For each item c in the completion of L (the core is included in the completion),
create one vertex v(c).

• For each shift and reduce action of L, create one vertex.

• For each item c in the core of L, create an edge from root to v(c).

• Create an edge v1→ v2 between item vertices v1 and v2 iff v2 is of the form
[X → · . . .], where the token after the dot in v1 is X. For example, there
would be an edge from [A→ b · C] to [C → · x y].

21

3.1. RECOGNITION POINTS

Figure 3.1.: An example graph of an LALR state with the single core item [A→
a · B]. All non-free items have a dashed border.

A → a · B

root

B → · C eB → · C d

C → · a b D → · D x

D → · y

shift on “a“
shift on “y“

B → · D

0

1

2 3 4

5 6

7

8

9

• Create an edge between an item vertex v and a shift or reduce action vertex iff
the action is directly caused by this item. A shift is directly caused by an item
I if the shift is performed on the token which is after the dot in I. A reduce is
caused by I when the reduced rule is the rule of I and when I has its dot at
the right end.

Now, an item is non-free with respect to L iff there exists a leaf node (i.e. an
action) which can be reached from the item’s vertex, but is not dominated by it.
Figure 3.1 shows such a graph for an LALR state with the single core item

[A→ a · B]. Node 1 is free because every path from root to one of the leaf nodes
(8 and 9) passes through node 1. Node 2 on the other hand is non-free because, even
though node 8 is reachable from node 2, it is not dominated by node 2: there exists
a path from root to node 8 which does not pass through node 2. Analogously, node
3 is non-free. Node 6 is also non-free: it does not dominate node 9 even though it
reaches it. All other items are free.

If an item is non-free in at least one state graph, it is called non-free. Only if it is
free in every state graph where it appears, it is called free.

We can now define the recognition point of a rule to be the leftmost position inside

22

3.1. RECOGNITION POINTS

the rule which is free and where all following positions are free. For example, when
the item [B → · C d] is non-free, the recognition point of the corresponding rule
B → C d cannot be at position 0. It could either be at position 1 or at the end,
depending on whether the item [B → C · d] is free or not.

In an LALR(1) grammar, the rightmost item of a production is always free (as for
example shown by Horspool [1]) – this is because, when an LALR state has an item
with its dot at the rightmost position, it must decide whether to reduce this item’s
rule oder not. If it couldn’t decide this at that moment, the grammar wouldn’t be
LALR(1).
Exactly if all rules have their recognition point at the very left, the grammar is

LL(1).

Finally we present an exemplary grammar with its recognition points. The grammar
is a simple expression grammar extended by an exponentiation operation, denoted
by “∗∗”.

0 : E? → E $ E? → • E $
1 : E → E ∗ T E → E ∗ • T
2 : E → E ∗ ∗ T E → E ∗ • ∗ T
3 : E → T E → • T
4 : T → T + F T → T • + F
5 : T → F T → • F
6 : F → (E) F → • (E)
7 : F → id F → • id

Five of the eight rules have their recognition point at the very left (position 0),
while no rule has its recognition point at the very right.

The graph in figure 3.2 justifies the position of the recognition points for rule 1 and
2. Consider the LALR state S with the core items [E → E · ∗ T], [E → E · ∗ ∗ T]
and [F → (E ·)] (and no further completion items) and its graph:

Figure 3.2.: The graph of state S. All non-free items have a dashed border.

E → E · T
1

E → E · T
2

root

shift on
4

shift on)
5

0

F → (E ·)
3

*

*

* *

23

3.2. ABOUT RAD STATES

One immediately sees that the items [E → E · ∗ T] and [E → E · ∗ ∗ T] are
both non-free, which means that the recognition point of the respective rules it at
least at position two.

This grammar is used as an example in the rest of this work, and the appendix
contains complete code examples for this grammar.

3.2. About RAD States
As discussed in section 2.3, when in top-down-mode, a RAD parser parses a nontermi-
nal by entering a special entry state which is designed to parse just this nonterminal,
switching to bottom-up mode. The parse of this nonterminal ends by reaching the
nonterminal’s exit state and accepting the nonterminal.
This means that there are three different types of states in a RAD parser: entry

states, exit states and auxiliary states (which are neither entry nor exit states). We
will describe them and how they are constructed in the following sections.

Any RAD state consists of the following parts:

• A set of core items

• A set of completion items

• A set of shift actions, announce actions and accept actions

• A set of goto actions.

In addition, entry and exit states have a designated nonterminal – this will be
discussed later.

• Shift and goto action are known from LR and LALR parsers and work iden-
tically: on seeing a specific token, the parser may shift and enter a different
(or the same) state. When coming back from a state (which has been entered
either through a shift or an announce action), a goto action may be performed
and a new state is entered.

• An announce action announces a specific rule after seeing, but without con-
suming, a specific token. When a rule is announced, the remaining symbols of
the rule – all symbols after the recognition point – are parsed in a top-down
fashion via switching to the recursive descent part.
RAD states do not have reduce actions, as a reduce action is just a special case
of an announce action – in particular, when a rule has its recognition point at
the very right, an announce action behaves similar to a reduce action, as no
further symbols have to be parsed and the rule is reduced to its left-hand side.
If the recognition point is not at the very right, further symbols are parsed
before reducing the rule’s full right-hand side to its left-hand side.

24

3.2. ABOUT RAD STATES

• Accept actions are only present in exit states and denote that the partial parse
of the exit state’s nonterminal has ended and control is passed back to the
active rule function which entered the nonterminal’s entry state. Like announce
actions, accept actions do not consume the current token.

The main difference between entry, exit and auxiliary states is, beneath their
purpose, the presence of an artificial item in the state’s core. An entry state with
the nonterminal NT always contains the artificial core item [_ → · NT], while a
respective exit state contains the artificial core item [_→ NT ·] – auxiliary states
do not contain an artificial core item. The left-hand side “_” signifies that this
parse does not depend on the rule or context in which NT was encountered – every
top-down parse of NT proceeds identically, irrespective of the rule or state that
was previously active! This is, of course, the reason that a RAD parser often has
significantly less states than a respective LALR parser: a RAD parser “reuses” states
where possible.

3.2.1. RAD-Completion
Let’s consider core and completion items. An item in an LALR state’s core or com-
pletion can either produce more completion items (if its dot is before a nonterminal),
produce a shift action (if its dot is before a terminal), or produce a reduce action (if
its dot is at the right end). The recognition graphs from above visualize exactly this
idea. In particular, every item with a dot in front of a nonterminal NT recursively
results in new items in the completion, all of the form [NT → · . . .].

In a RAD state, when an item’s dot is at the recognition point, the respective rule
will be announced when seeing a matching token. Instead of entering a specific state
that depends on the exact token, every matching token will announce the rule and
begin a top-down parse of its remaining symbols. In other words: An item of the
form [A→ · B] (where the dot is at the recognition point) will not yield any shift or
reduce actions for any item of the form [B → · . . .] – instead of shifting or reducing
to a specific state, rule A→ • B is simply announced. This means that items of the
form [B → · . . .] do not belong in the RAD state’s completion.
We therefore characterize the RAD-completion of a set of items as follows: An

item with its dot before a nonterminal NT is only further completed (by all rules of
the form [NT → · . . .]) if the dot is before its recognition point.

This will later lead to the fact that all RAD states only have core and completion
items where the dot is at or before the recognition point – never afterwards.

We remark that the artificial item of an entry state, [_→ · NT], has no notion of
recognition point and is therefore always completed at least one step with all items
of the form [NT → · . . .].

As an example, recall the extended expression grammar from above:

25

3.3. UNAMBIGUOUS NONTERMINALS

0 : E? → E $ E? → • E $
1 : E → E ∗ T E → E ∗ • T
2 : E → E ∗ ∗ T E → E ∗ • ∗ T
3 : E → T E → • T
4 : T → T + F T → T • + F
5 : T → F T → • F
6 : F → (E) F → • (E)
7 : F → id F → • id
Consider a state with the single core item [T → · T + F]. This item will yield

one more completion item: [T → · F]. The item [T → · F] is not further completed
as its dot is already at the recognition point.
Now, intuitively, shift and reduce actions of an LALR state which emerged from

completion items that are no longer in the RAD-completion of a respective RAD
state will get transformed into announce actions. While this idea will be formalized
later, one can receive illustrative insight using the state graphs from above: In figure
3.3, the actions shift on (and shift on id are transformed into announce actions. In
particular, the item from which these actions emerged in the state graph – [T → · F]
– will be announced. The dot is exactly at the recognition point, which is of course
no coincidence.

Figure 3.3.: Left: state graph of an LALR state with the core item [T → · T + F].
Right: state graph of a respective RAD state with the same core item.

T → · T + F

shift on (shift on id
announce on id

(T → · F)
announce on (

(T → · F)

T → · F

F → · (E) F → · id

T → · T + F

T → · F

3.3. Unambiguous Nonterminals
We now shortly introduce the notion of unambiguous nonterminals, as they have
been called by scala-bison. A nonterminal NT is called unambiguous in a grammar
if there exists some rule R in which NT appears somewhere after R’s recognition
point.
In the extended expression grammar from above, every nonterminal (expect for

26

3.4. ALGORITHMIC GENERATION

E?) is unambiguous. The following grammar shows that this is not always the case:

0 : A? → A $ A? → • A $
1 : A → B ∗ C A → B ∗ • C
2 : A → B ∗ ∗ C A → B ∗ • ∗ C
3 : B → b B → • b
4 : C → c C → • c

A and C are unambiguous because they appear after the recognition point of some
rule, while B does not and is therefore not an unambiguous nonterminal.

Note that the start symbol S of any grammar is always unambiguous as we always
consider the extended grammar containing the extra production S? → S $, having
the new start symbol S?.

A direct consequence is the following: If a nonterminal NT is unambiguous then
there exists at least one LALR state S =: entry(NT) which has a core or completion
item I where both:

• I’s dot is at or after the recognition point and

• I’s dot is immediately before NT .

This is clear because, per definition, there exists such an item I. As long as the
rule is both reachable from the start symbol and can actually produce a string of
terminals (which we both assume because we can just remove all rules that don’t), it
follows that this item must exist in some LALR state.

Analogously holds: If a nonterminal NT is unambiguous then there exists at least
one LALR state S =: exit(NT) which has a core or completion item I where both:

• I’s dot is at or after the recognition point and

• I’s dot is immediately after NT .

As an example, using the small grammar from above: A is unambiguous. The only
rule containing A is A? → • A $. Therefore, there exists an LALR state entry(A)
which has the item [A? → · A $] and an LALR state exit(A) which has the item
[A? → A · $].

3.4. Algorithmic Generation
We can now describe the algorithmic generation of all RAD states. The following
algorithm is mostly borrowed from the scala-bison code and paper.

1. Begin with a grammar and its set of LALR states.

2. Calculate all recognition points and unambiguous nonterminals.

27

3.4. ALGORITHMIC GENERATION

3. For each unambiguous NT, create two RAD state skeletons: an entry and an
exit state (as described below).

4. These entry and exit state skeletons which have just been created are now
extended to full RAD states. In this finalization process, new state skeletons
may be created.

5. If there are new state skeletons, extend all of them to full RAD states by
finalizing them. This may again yield new state skeletons.

6. Repeat step 5 until no new state skeletons have been created.

7. Once there are no more state skeletons, the algorithm has finished. It has
produced a set of (finalized) RAD states.

Why do we need the distinction between state skeletons and finalized states?
A state skeleton just describes three fundamental properties of a RAD state: its

type, its associated LALR state and its set of core items. The state skeleton does
not yet contain any shift, announce, accept and goto actions.

These actions are then created during the finalization process, by using and mod-
ifying the actions of the associated LALR state. During this action modification
process, it may become necessary to create a new RAD state, e.g. as a target for a
shift action. If this is the case, we can just create a new state skeleton for this target.
It will then be finalized later.

As an example, a finalized RAD state could look as follows:

Entry state for A
Items:

[_→ · A] (core)
[A→ · x + B]
[A→ · x + + B]
[A→ · C]
[A→ · D]

Actions:
on x shift to state 15
on c announce rule 3: A→ • C
on d announce rule 4: A→ • D

The skeleton would only contain the information about the type (entry), the
associated LALR state and the core.
The recursive finalization process of a set of RAD states and skeletons can be

described as follows:

28

3.4. ALGORITHMIC GENERATION

recFinalize :: [Skeleton] -> [RADState] -> ([Skeleton], [RADState])
recFinalize [] states = ([], states)
recFinalize skeletons states =

let finalized = map finalize skeletons
newStates = map fst finalized
newSkeletons = concatMap snd finalized

in recFinalize newSkeletons (states ++ newStates)

-- "finalize" finalizes a skeleton to a full state, and possibly
creates more skeletons↪→

finalize :: Skeleton -> (RADState, [Skeleton])

We describe the two main processes in detail: creation of state skeletons, and
finalization of state skeletons.

3.4.1. State Skeleton Creation
There are two situations in which a state skeleton is created:

1. At the beginning, an entry and exit skeleton is created for each unambiguous
nonterminal.

2. During the finalization process, further state skeletons are created.

State skeletons created in the first way are of type entry or exit, while skeletons
created in the second way are always auxiliary states.

Every RAD state is associated to an LALR state. In the finalization process, this
state will be used as a foundation for the action creation. We call this LALR state
the associated state and denote it with assoc(S), where S is a RAD state or skeleton.

So, a state skeleton is created with three parameters: its type (entry, exit or
auxiliary), its associated LALR state and a set of core items. These core items can
be different than the core items of the associated state – for example, entry states
have the single core item [_→ · NT].
The completion of a RAD state is always calculated via the previously-defined

RAD-completion and only depends on a state’s core.

Entry And Exit States

We now look at the creation of entry- and exit-skeletons for an unambiguous nonter-
minal.
An unambiguous nonterminal NT yields two skeletons: Sentry and Sexit.
We first consider Sentry which is specified as follows:

• type: entry

29

3.4. ALGORITHMIC GENERATION

• assoc. state: entry(NT)

• core: {[_→ · NT]}

Here we make use of the properties of entry(NT): For an unambiguous nonterminal
NT , there exists an LALR state entry(NT) which has an item of the form [X →
. . . ·NT . . .] with the dot at or after the recognition point. In an LALR parser, this
state has the job to begin parsing NT when it sees a matching token in first(NT).
Then, control is passed to a different state, depending on the token that was read.
The state may also have other different, unrelated items in its core. Later, when
finalizing the entry-skeleton, we just add and transform the actions and gotos which
are actually relevant for parsing NT – the other actions and gotos are ignored in the
finalization process.

Therefore, it suffices to include the single core item [_→ · NT] and later add all
relevant actions.

Before considering Sexit, we think about the following general question: When
having an LALR state L and a goto action on S goto G, where S is any symbol,
what core items does G have?

When L has a core or completion item I = [X → . . . · S . . .], where the dot is
before the symbol S, then G needs to have a core item with the dot after this S, i.e.
[X → . . . S · . . .].
Hinze and Paterson [2] therefore introduced the following operation:

Q+X := {A→ αX · β | A→ α ·Xβ ∈ Q},

where Q is a set of items, X a terminal or nonterminal, and α and β are strings of
symbols of arbitrary length.
Then, the core of G can simply be defined as core(G) := completion(L) + S.

Now we can consider Sexit. Of course, we will later need a goto action for Sentry:
on NT goto Sexit. We specify Sexit as follows:

• type: exit

• assoc. state: exit(NT)

• core: completion(Sentry) +NT

Here, completion(Sentry) is the completion (which is calculated via the above-
defined RAD-completion) of Sentry’s core.

Consider the extended expression grammar:

30

3.4. ALGORITHMIC GENERATION

0 : E? → E $ E? → • E $
1 : E → E ∗ T E → E ∗ • T
2 : E → E ∗ ∗ T E → E ∗ • ∗ T
3 : E → T E → • T
4 : T → T + F T → T • + F
5 : T → F T → • F
6 : F → (E) F → • (E)
7 : F → id F → • id

We now state, as an example, the core and completion items of the entry and
exit skeletons for all unambiguous nonterminals, E, T and F . The completion is no
additional property of a skeleton or RAD state as it is always directly calculated via
the RAD-completion of the skeleton’s core.

core additional completion
Sentry(E) {[_→ · E]} {[E → · E ∗ T], [E → · E ∗ ∗ T], [E → · T]}
Sentry(T) {[_→ · T]} {[T → · T + F], [T → · F]}
Sentry(F) {[_→ · F]} {[F → · (E)], [F → · id]}

core add. compl.
Sexit(E) {[_→ E ·], [E → E · ∗ T], [E → E · ∗ ∗ T]} ∅
Sexit(T) {[_→ T ·], [T → T · + F]} ∅
Sexit(F) {[_→ F ·]} ∅

The additional core items of an exit state, beneath [_→ NT ·], are always intro-
duced due to left-recursive rules of the form NT → NT . . . , or mutually recursive
rules of the form NT → A . . . and A→ NT

Note that no entry and exit states are required for terminals which are not
unambiguous – because they don’t appear after any rule’s recognition point, they
are never parsed in top-down mode.

3.4.2. Finalization – Transforming Actions

Now we consider the finalization process: Given a state skeleton S, we create a
finalized RAD state, and possibly new state skeletons.

A state skeleton S is defined by three properties: its type, its core and its associated
LALR state assoc(S).

The process of finalizing then takes the shift, reduce and goto actions of assoc(S)
and transforms them into shift, announce, accept and goto actions of S. In addition,
entry and exit states may receive further actions. We will consider these one by one.

Before beginning, we need to modify Hinze-Paterson’s definition of “+” to exclude

31

3.4. ALGORITHMIC GENERATION

any items where the dot has advanced after the recognition point:
Q+rad X := {I ∈ Q+X | I’s dot is before or at the recognition point}

Shift Actions

Consider a shift action shift := on t shift to state Q of assoc(S) where t is a terminal
and Q another LALR-state. This shift action can either translate to a shift action,
an announce action, or no action at all, as follows:

1. if newCore := completion(S) +rad t is non-empty:
• Create new or reuse auxiliary state A with core = newCore and

associated state Q
• Add shift action to S: on t shift to state A.

2. else, if R := getAnnouncedRule(shift) is non-null:
• Add announce action to S: on t announce rule R.

3. else: discard the shift action.
We will discuss these three points now.
1. If there is an item of the form [X → . . . · t . . .] in the completion of S, where

the dot is before the recognition point, then a normal shift must occur, just
like in an LALR parser. But we do not want to shift beyond the recognition
point; if the dot is at or after the recognition point, this could lead to an
announce action, but never to a shift action. This justifies the use of the “+rad”
operation (instead of “+”).
What does create new or reuse auxiliary state mean? We need an auxiliary
state with the given core items and the given associated state (which will be
relevant when finalizing the new state). If such a state was already created –
with the same core and associated state – during the finalization process of
another RAD state, it can (and must) be reused. This avoids creating the
same state multiple times.
If no state can be reused, a new state skeleton is created.

2. We will define getAnnouncedRule below. Intuitively, if the shift action belongs
to a completion item of assoc(S) which is no longer in the RAD-completion of
S itself, then the corresponding rule will be announced. For example, in figure
3.4, consider a RAD state which has the two yellow items as its completion.
The actions shift on (and shift on id are translated into announce actions:
announce T → • F .

3. If a shift action neither translates to a shift nor an announce action, then it is
completely unrelated to S. It came from an item in assoc(S) which is neither
in S’s completion nor does it have a parent in the state graph of assoc(S).
Therefore, it is simply discarded. This is the case for the action shift on ∗ in
figure 3.4 – it doesn’t relate to any of the yellow items.

32

3.4. ALGORITHMIC GENERATION

GetAnnouncedRule

As an example of how shift actions are transformed, consider the following LALR
state and its state graph.

Items:
[E → ∗ · T] (core)
[E → ∗ · ∗ T] (core)
[T → · T + F]
[T → · F]
[F → · (E)]
[F → · id]

Actions:
on (shift to state 2
on ∗ shift to state 11
on id shift to state 1

on T goto state 12
on F goto state 5

Figure 3.4.: State graph of the LALR state from above. Yellow: completion of an
entry state. Blue: core and completion of an auxiliary state.

root

E → E · T* * E → E · T*

T → · T + F

shift on (shift on id

T → · F

F → · (E) F → · id

shift on *

33

3.4. ALGORITHMIC GENERATION

Now let us consider an entry state with the nonterminal T . It has the single core
item [_→ · T]. Its completion is marked in yellow in figure 3.4.
Now consider the shift action shift on (. How do we translate it?
Well, it cannot be translated to a shift action – the relevant item [F → · (E)] is

not in the (yellow) completion of our RAD state. This is because the item [T → · F]
has its core at the recognition point. In other words: this item is ready to announce
its rule. Therefore, when encountering a (, we announce the rule T → • F .

The same happens for the action shift on id: On id we also announce the rule
T → • F . What happens for the third shift action of the LALR state, shift on ∗? It
is completely irrelevant to our entry state and should be discarded.

This gives us an intuition for what getAnnouncedRule should do. We will now
describe it algorithmically. Thereby, getAnnouncedRule takes a shift or reduce
action of an LALR state L and returns either a rule to be announced, or nothing
(null).

Let S be a RAD state skeleton. Considering the state graph of assoc(S), when
a shift action is a (direct or indirect) child node of an item which has its dot at
the recognition point, the shift action cannot be translated to a shift action in S.
Instead, the rule of this item is announced. This works because the dot of the item
is definitely at the recognition point (because this vertex is a cut-off point), which
means the rule can be announced and the symbols after the recognition points can
be parsed top-down.

We can find this item and its rule as follows:

1. begin with the shift or reduce action vertex in the recognition graph of assoc(S)

2. go to any parent vertex

3. if this vertex is in the RAD-completion of S and its dot is at the recognition
point, return this item’s rule

4. else:
• if the item has no parent (i.e. it is in assoc(S)’s core): return null
• if the item has a parent: go to any parent and go back to step 3.

If a vertex has multiple parents, we must follow all possible paths to the top until
finding an item with the desired properties – the item is in the RAD-completion
of S and has its dot at the recognition point. If there are multiple different items
with this property, we can choose the one we want to announce freely, or we can
output an announce conflict because now there are multiple, possibly different valid
derivations.

34

3.4. ALGORITHMIC GENERATION

Note that the artificial item of an entry or exit state cannot be announced – it is
not part of the state graph.
As an example, we look at two RAD-states, both emerging from the same

associated LALR state, shown in figure 3.4.

1. The first RAD state we consider (which already served as an example above)
is an entry state with the nonterminal T , having the single core item
[_→ · T] – its associated state is the LALR state from above. Its completion
is marked in yellow in figure 3.4.
First we note that none of the shift actions are translated into shift actions.
The question is whether and which rule should be announced for each shift
action.

• The action shift on ∗ is discarded: there is no yellow parent node.
• Both actions shift on (and shift on id are translated to announce rule
T → • F , as this is the first yellow parent item which has its dot at the
recognition point.

2. The second RAD state we consider is an auxiliary state with the two core
items [E → E ∗ · ∗ T] and [E → E ∗ · T], marked in blue in figure 3.4.
Here, also, its associated state is the same LALR state from above, and none
of the shift actions are translated into shift actions. But we can easily see the
following:

• The action shift on ∗ is translated to announce rule E → E ∗ • ∗ T .
• The actions shift on (and shift on id are translated to announce rule
E → E ∗ • T .

As you see, this LALR state is actually used as a basis for two different RAD
states! Thereby, one of these RAD states entails “reusable” parts of the LALR state,
i.e. the parse of a T .

Reduce Actions

Again, let S be a state skeleton. Consider a rule R = A→ ω, where ω is an arbitrary
string of symbols, and a reduce action reduce := on t reduce rule R of assoc(S)
where t is a terminal. The reduce action can either translate to an announce action
or to no action at all, as follows:

1. if [A→ ω ·] ∈ completion(S):
• Add announce action to S: on t announce rule A→ ω •.

2. else, if R′ := getAnnouncedRule(reduce) is non-null:
• Add announce action to S: on t announce rule R′.

3. else: discard the reduce action.

35

3.4. ALGORITHMIC GENERATION

Why?

1. As stated earlier, a reduce action is a special case of an announce action. In
particular, when a rule has its recognition point at the very right, an announce
action behaves similar to a reduce action, as no further symbols have to be
parsed and the rule is reduced to its left-hand side.
Also, every completion item of a RAD state has its dot before or at the
recognition point. Therefore, if [A → ω ·] ∈ completion(S), the recognition
point must be at the very right, which means we can announce the rule (and
immediately reduce it).

2. Just like in the case of shift actions, when the item which is related to the
reduce action (in this case [A → ω ·]) does not belong to the RAD state’s
completion, the rule of the RAD-completion-item from which this reduce action
emerged must be announced. Therefore we use getAnnouncedRule and do not
give an example because this works absolutely the same way as in the shift
case.

3. If the reduce action belonged to an item of assoc(S) which is completely
unrelated to S itself, it is simply ignored.

Accept Actions

Accept actions are only present in exit states. If a full parse of the nonterminal NT
of the exit state S was performed, NT is accepted.
Consider, as an example, the expression grammar:

0 : E? → E $ E? → • E $
1 : E → E ∗ T E → E ∗ • T
2 : E → E ∗ ∗ T E → E ∗ • ∗ T
3 : E → T E → • T
4 : T → T + F T → T • + F
5 : T → F T → • F
6 : F → (E) F → • (E)
7 : F → id F → • id

Let us consider the exit state of E. We need to accept E on every token that can
come after E in some top-down parse of E. Imagine some rule has been announced,
and it just parsed an E. Now, the next valid token which can follow the E must be
the token which comes after the E in the currently active rule.
Which tokens could this be? E appears in the right-hand side of the following

rules: E? → • E $, F → • (E), E → E ∗ • T and E → E ∗ • ∗ T . In the
last two of these rules, E cannot be parsed in a top-down parse because it comes
before the recognition point. Therefore the last two rules do not need to be considered.

36

3.4. ALGORITHMIC GENERATION

So what tokens can follow a top-down parse of E? In the rule E? → • E $, a “$”
can follow the parse, and in the rule F → • (E), a “)” can follow the parse. This is
already the whole top-down-follow-set of E: rad-follow(E) = {“)”, “$”}.

We define rad-follow(NT) for a nonterminal NT as follows:

1. For every occurrence of NT in a rule A→ α NT β, where α and β are arbitrary
strings of symbols and NT appears after the recognition point:

• If β can produce ε (i.e. ε ∈ first(β)): add follow(A) ∪ first(β)\{ε} to
rad-follow(NT).

• Else: just add first(β) to rad-follow(NT).

If the symbols in a rule after NT can produce ε – which is also the case if
NT appears at the very right – we must of course add the full follow-set of the
left-hand-side A in the list of tokens. Else, the first-set of the symbols after NT
suffices.
Here, first and follow are functions which are already well-known from LALR

and other parsers. Notice that the first step didn’t just specify every rule, but every
occurrence of NT in a rule, as NT may occur multiple times after the recognition
point in the same rule.
After having defined rad-follow, we generate accept actions:

1. for each token T ∈ rad-follow(NT):
• if there is not already another action for T :

– Add accept action to S: on T accept NT

This means that we accept NT on all tokens that can possibly follow NT in a
top-down parse and that have no other associated shift or announce actions. These
other shift or announce actions could come from parsing the nonterminal itself and
must have higher priority than the accept action – as long as we can continue parsing
the nonterminal, we must do this; only when the nonterminal cannot be extended, it
may be accepted.

Goto Actions

As described in section 3.4.1, an entry state S always receives a goto action to its
corresponding exit state E: on NT goto state E.

Now let S be a state skeleton and consider a different1 goto action on X goto state
G of assoc(S), where X is a nonterminal and G is an LALR state.

1Different means: in an entry state, the goto-action of NT is not transformed – a respective action
already exists.

37

3.4. ALGORITHMIC GENERATION

Similar to a shift action, after coming back from parsing an X, we want to shift
the dot one position to the right in every item of the form [A→ . . . ·X . . .]. Because
we do not want to shift past the recognition point, we use “+rad”.

Then, the goto action is transformed as follows:

1. if newCore := completion(S) +rad X is non-empty:
• Create new or reuse auxiliary state A with core = newCore and

associated state G
• Add goto action to S: on X goto state A.

2. else: discard the goto action.

Again, the goto action is discarded if its corresponding item is not relevant to
the RAD state S. In this case, “+rad” returns ∅ because either no item of the form
[A→ . . . ·X . . .] was in completion(S) to begin with, or these items had their dots
at their recognition points which means that one will never come back to this state
after parsing an X: rather, X is parsed top-down after announcing the corresponding
rule. In both cases, no goto action is required.

Epsilon-Announce Actions for Entry States

Finally, we add additional announce actions to entry states. Consider a nonterminal
NT which can produce ε, i.e. NT ∗→ ε, or equivalently, ε ∈ first(NT).

Now consider S, the RAD entry state of NT . When seeing a token in
rad-follow(NT), NT must apparently be reduced to ε by announcing a match-
ing rule. If there is a direct rule NT → ε, i.e. if NT produces ε directly, we can
just announce this rule. Then everything will work out: as there are no symbols to
be parsed, announcing the rule does nothing. Then S executes its goto action on
NT and goes to the exit state, which just accepts on a token in rad-follow(NT),
as seen above.

But what happens if there is no direct rule NT → ε – for example, if ε is produced
indirectly, via NT → A and A → ε? Here we must choose the correct rule to
announce. This is in general neither a rule of the form NT → ... nor A→ ε.
Let’s look at the following example grammar (the start symbol is S):

0 : S → a B c S → • a B c
1 : B → C B → C •
2 : B → D B → D •
3 : C → C x y C → C x • y
4 : C → E C → • E
5 : D → C x D → C x •
6 : E → e E → • e
7 : E → ε E → •

38

3.4. ALGORITHMIC GENERATION

There is one epsilon-production, E → ε. So, the entry-state of E would just
announce the rule E → ε on all tokens in rad-follow(E) = {c, x}.

But now consider the entry-state of B, which has the following items:

[RAD state]: B’s entry state:
[_→ · B] (core)
[B → · C]
[B → · D]
[C → · C x y]
[C → · E]
[D → · C x]

Figure 3.5.: Left: the full state graph starting with [_→ · B]. Right: the reduced
graph, only containing items that can produce ε.
The algorithm finally chooses the outlined item, [C → · E], as the rule
to announce.

_ → · B

B → · C B → · C

B → · D

D → · C x

C → · C x y

C → · E

E → · e E → · E → ·

C → · E

_ → · B

We want to know which rule should be announced on rad-follow(B) = {c}.
Therefore we apply the following algorithm for the nonterminal B, which is visualized
in figure 3.5:

1. Build a state graph, starting with the core item [_→ · B], and containing all
LALR-completion items. This graph can contain items which are not in the
RAD-completion of the state. This graph definitely contains a valid derivation
of B ∗→ ε (because B can produce ε per assumption).

2. Remove all vertices whose right-hand-side does not produce ε, and remove

39

3.4. ALGORITHMIC GENERATION

all edges connected with any of these vertices. For example, all items with a
terminal in their right-hand-side are removed.

3. Now consider the remaining graph. It still contains a valid derivation of B ∗→ ε,
per assumption. It is seen on the right in figure 3.5.

4. If there are multiple leaf items of the form X → ε, or if there are multiple ways
from the top node to any leaf, output an announce conflict: there are multiple
valid derivations of ε.

5. Else, there is a single, linear way from the top node to the leaf node (as seen
on the right side of figure 3.5). We consider the remaining items one by one
and find at least one rule that can be announced. It must fulfill the following
conditions:

• The dot must be at the recognition point. Because all items in the state
graph have their dot at position 0, this is where the recognition point
must be.

• The item must be in the RAD-completion of S – there could be items
which are in the LALR-completion of [_→ · B] (which is what the graph
consists of), but not in the RAD-completion of S.

• The left-hand-side nonterminal of the item must have a goto action in S.
This is no new condition as it follows from the first two.

6. There is always at least one valid item. Choose one – this is the rule which
will be announced.

In figure 3.5, the right side shows the graph after removing items that do not
produce ε. Which of these items is the rule that should be announced (which item is
chosen as valid by steps 5 and 6 of the algorithm)?

• [_→ · B]: The artificial item cannot be announced.

• [B → · C]: This item has its dot before the recognition point and can therefore
not be announced.

• [C → · E]: This item is valid.

• [E → ·]: This item is not in the RAD-completion of S and can therefore not
be announced.

One valid item remains, it is [C → · E], so we choose to announce the rule
C → • E on each token in rad-follow(B). If there were multiple valid options, we
can just choose any one of them – this only changes the call sequence of state and
rule functions, but not of the built derivation nor of semantic action functions.

40

3.5. DEFAULT ACTIONS AND HAPPY’S ERROR TOKEN

We now point out an error in scala-bison: it is this case of an indirect epsilon-
production (i.e. NT ��→ ε, but NT ∗→ ε) which is not handled by scala-bison.
Instead of considering whether the rule can be announced due to the position of
its recognition point, scala-bison always chooses to announce some rule of the
form NT → This is correct when NT produces ε directly, but not if it does so
indirectly.
In the entry state of B from above, scala-bison would erroneously choose to

announce B → C (instead of C → E), which is simply not possible because the
recognition point of the rule is after the C (B → C •), but in the corresponding item
of S ([B → · C]), the dot is before the C. So a scala-bison-generated parser would
skip a full C which eventually leads to some internal error or a wrong derivation.
In strongly-typed, continuation-based parsing code, such an error would already

be detected at compile-time: skipping a symbol by accident would lead to a type
error – some continuation expects a C, but announcing the rule B → C • doesn’t
produce a C, et voilà, a type error.

3.5. Default Actions And Happy’s Error Token
After a state was generated, we can choose an action as default action. A default
action is an action which is executed if no other action matched the token. Default
actions do not change the behavior of the parser, but make the states smaller, which
will later lead to possibly faster execution.

Especially on RAD parsers, using default actions can often save much more space
than on LALR parsers – this is because often, many different shift or reduce actions of
an LALR state will be translated to the same announce action on the corresponding
RAD state, which can then be taken as a single default action.

Actually, the behavior of the parser is changed: an erroneous token may not
immediately be detected by a state which has a default action, but only later, when
trying to shift over this token, or parse it directly via its parseToken function.
Therefore, the exact state where the error occurs may change, but the token where
it occurs remains the same.

With this in mind, we can define the following default actions:

• Announce actions can be defaulted: If an announce action is executed on a
token where the parser should fail, the parser will fail on the next shift or
parseToken action. If it wouldn’t, then the announce wasn’t erroneous in the
first place.

• The same is true for accept actions.

• Shift actions cannot be defaulted as they consume a token, in contrast to
announce and accept actions.

41

3.5. DEFAULT ACTIONS AND HAPPY’S ERROR TOKEN

This means that we can take the largest accept or announce action and make it
into a default action, removing as much individual actions from the state as possible,
which reduces the size of the generated parser as much as possible.

Happy’s Error Token
Happy has a special terminal, the so-called error token. This token works as a
fallback: if no token matched the valid tokens of a state, the error token is matched
and shifted automatically without consuming a token from the input. Consider a
state with the items [A → a · b] and [A → a · error]: on b, a normal shift is
performed. On any other token, the error token is matched, and we come in a state
of this form: [A→ a error ·]. But matching the error token does not consume the
current token from the input – it will be processed by a subsequent state.

During state generation, the error token is handled just like any other token. It
appears in items and in actions, i.e. shift, announce or accept on error.

We must consider two things when dealing with the error token: recognition points
of affected rules and default actions.

• Because of their special nature, the recognition point of any rule must come
after all error tokens in this rule. In other words, items with an error token
after the dot are always non-free.

• Handling of error tokens can conveniently be implemented using default actions:
the action of a state which is performed on the error token must be used as a
default action. For example, on error announce rule R would yield the default
action announce rule R.
We must be careful with shift actions: The action on error shift to state S
does translate to a default action shift to state S, but this default shift action
does not consume a token from the input stream and is therefore a special shift
action.

42

4. Code Generation
In the following we present the process of code generation for a RAD parser in
continuation-based, strongly-typed style. The style is very similar to the style used
by Hinze and Paterson [2], as presented in chapter 2.3.

As happy generates Haskell code, we do the same and work with Haskell code in
the following sections.

4.1. Algorithmic Generation
The continuation-based code of a RAD parser consists of the following parts:

1. User-supplied header

2. Entry points: Parse function for each parsing entry point

3. One state function per state

4. One rule function per rule

5. One parse function per terminal

6. One parse function per nonterminal

7. One semantic action function per rule

8. User-supplied footer

With the exception of the user-supplied parts, the generation of all parts will be
discussed in detail in the following.

4.1.1. Parsing a Nonterminal
Consider an unambiguous nonterminal NT . As discussed in sections 3.3 and 3.4, a
RAD parser generator creates an entry state and an exit state for this nonterminal.
When parsing NT , it suffices to call the corresponding state function of the entry
state E.
Following section 2.6, the generated parse function has the following type:

parseNT :: (NT -> Parser r) -> Parser r

43

4.1. ALGORITHMIC GENERATION

This is because parseNT takes a list of tokens and returns a fully parsed NT
(having type NT) and a list of remaining tokens, which can be rewritten in terms of
Parser r using continuation-passing style (remember: Parser r = [Token] -> r).

Then, parseNT is just defined via parseNT = stateE, i.e. via NT ’s entry state.

4.1.2. Parsing a Terminal
Like in a top-down parser, parsing a specific terminal is equivalent to compar-
ing the next input token with the token that belongs to the expected terminal. If
the token matches, it is returned via the continuation; if not, a parse error is produced.

Just like in the nonterminal case, this function has the following type, considering
some terminal T :

parseT :: (T -> Parser r) -> Parser r

Remember that T can either be the container type Token or a more specific type.
This can be specified by the user of happy – if a token constructor has a nonzero
arity, one of its arguments can be used as the semantic value of the token.

As an example, first consider the terminal + and its associated token TokenPlus.
The corresponding parse function looks as follows:

parse+ :: (Token -> Parser r) -> Parser r
parse+ k (t@(TokenPlus):tr) = k t tr
parse+ k ts = happyError ts

The function parse+ takes two arguments, the continuation k and the token list.
If the head of the token list matches the expected token, in this case TokenPlus,
the continuation is called with the value of this token (which is TokenPlus it-
self) and with the remaining tokens, i.e. the tail of the token list. If not, an error
is produced. Happy provides therefore the function happyError :: [Token] -> r.

Now consider a terminal with an associated value, such as id, and its associated
token with the constructor TokenID Int. Instead of passing the whole TokenID
constructor to the continuation, we can now just use the wrapped value of type Int.
Hence, the corresponding parse function looks as follows:

parseID :: (Int -> Parser r) -> Parser r
parseID k ((TokenInt v):tr) = k v tr
parseID k ts = happyError ts

Here, the semantic value v is passed to the continuation which therefore has the
type Int -> Parser r instead of Token -> Parser r.

44

4.1. ALGORITHMIC GENERATION

4.1.3. Rule Functions
After having considered nonterminal and terminal functions, we can move on to rule
functions.
A rule function parses the symbols of a rule after its recognition point, one after

the other. After all symbols have been parsed, the continuation is called with the
semantic values of every symbol.

This causes the type of the continuation function to be
α1 -> α2 -> ... -> αk -> Parser r,

where α1, . . . , αk are the symbols after the recognition point.

There are two ways we can achieve the intended task of a rule function: tuple-based
and continuation-based.

1. In tuple-based form, after the rule function has parsed a symbol, the remaining
tokens are explicitly passed to the next symbol function while all semantic values
are stored locally. Only after all symbols have been parsed, the continuation k
is called with all semantic values.

2. In continuation-based form, the rule function parses a symbol, but instead of
explicitly storing the result, it is passed to the continuation function which
parses the next symbol. Thereby, a continuation chain is created, at the end of
which is the call to the top-level continuation k.

Consider the rule F → • (E). The corresponding rule function rule0 must have
the following signature:

rule0 :: (Token -> Expr -> Token -> Parser r) -> Parser r

In tuple-based form, rule0 would look as follows:

rule0 :: (Token -> Expr -> Token -> Parser r) -> Parser r
rule0 k ts0 = k v1 v2 v3 ts3 where

(v1, ts1) = parse((,) ts0
(v2, ts2) = parseE (,) ts1
(v3, ts3) = parse) (,) ts2

rule0 begins by parsing a (via parse(. Thereby, the provided continuation is
(,), which simply creates a tuple from the semantic value v1 and the remaining
tokens ts1. The remaining tokens are then used as explicit input to parseE, and so
on.
At the end, after all three symbols were parsed, k is called with the semantic

values v1, v2 and v3 and the token rest ts3.

Continuation-based form looks different:

45

4.1. ALGORITHMIC GENERATION

rule0 :: (Token -> Expr -> Token -> Parser r) -> Parser r
rule0 k = parse((cont1) where

cont1 v1 = parseE (cont2 v1)
cont2 v1 v2 = parse) (cont3 v1 v2)
cont3 v1 v2 v3 = k v1 v2 v3

Here, rule0 also begins by parsing a (. Instead of storing the result, the con-
tinuation cont1 receives the semantic value v1. cont1 then simply calls parseE
and provides cont2 as continuation. cont2 calls parse) and with the continuation
cont3, which now has all three semantic values as arguments. From here, k is called.
The token list is handled implicitly – all continuation functions receive the re-

maining token list as an additional argument after the semantic values. All declared
functions are initially only partially applied, and are fully evaluated only when the
token list is explicitly passed to rule0.

There are two special cases we can consider additionally to generate more concise
code, depending on the number of symbols after the recognition point of the rule:

• When a rule has no symbol after its recognition point, nothing has to be done.
In this case, the rule function is the identity.
The rule A→ B • would emit the following function: rule0 = id.

• When a rule has a single symbol after its recognition point, after parsing this
symbol, the continuation of the rule function is called. After noticing that the
type of the rule function matches the type of the symbol’s parse function, one
can simply define the rule function directly via the symbol’s parse function:
The rule A → • B would emit the function rule0 = parseB. The same
works for a terminal after the dot: the rule A→ • b would emit the function
rule1 = parse_b.

4.1.4. States
Consider a RAD state S. As discussed in section 3.2, a RAD state is defined by its
set of core items, shift actions, accept actions, announce actions and goto actions.
Also, a RAD state may have a default action (section 3.5).

A state function must execute the correct action, depending on the next input
token. When returning from another state, the appropriate goto action must be
executed. Finally, when one of the state’s core items was parsed, the appropriate
continuation must be called.
For this to work correctly, we generate the state functions the same way as de-

scribed by Hinze and Paterson [2], with minor modifications for the RAD-specific
parts.

Consider the following (fictional) RAD state as an example for this section.

46

4.1. ALGORITHMIC GENERATION

State 4
Items:

[A→ x · + B] (core)
[A→ x · + + B] (core)
[A→ · C] (core)
[A→ · D] (core)
[C → · x y]
[C → · x z]
[C → · E]
[C → · F]

Actions:
on + shift to state 10
on x shift to state 15
on d announce rule 4: A→ • D
on e announce rule 5: C → • E
on f announce rule 6: C → • F

on C goto state 2

We begin with the signature of the state function. As discussed in section 2.6, this
function has one continuation per core item.
Our example state has four core items and its signature looks like this:
state4 :: (+ -> B -> Parser r) -> (+ -> + -> B -> Parser r) ->

(C -> Parser r) -> (D -> Parser r) -> Parser r

Different actions are executed depending on the next input token. We use a switch:

state4 k1 k2 k3 k4 ts = case ts of
(TokenPlus:tr) -> ...
(Token_x:tr) -> ...
(Token_d:tr) -> ...
(Token_e:tr) -> ...
(Token_f:tr) -> ...

We now translate each of the actions into code.

Shift Shift actions are translated to code exactly as described by Hinze and Paterson
[2] – readers of [2] may skip this paragraph.
Consider a RAD state S. A shift action on T shift to state Q takes one or more

completion items where the dot is before T and shifts the dot over T ; state Q has
these shifted items in its core. For each of the completion items, there are two cases:

47

4.1. ALGORITHMIC GENERATION

• The item is in the core of S. Then, there is a continuation in stateS’s function
declaration – say k1 – which is associated to this core item. It expects as first
argument a value of type T. This means that we can partially apply k1 with
the semantic value of T , and pass it as a continuation to stateQ.
In the state from above, there is an action on + shift to state 10 which includes
two core items: [A→ x · + B] and [A→ x · + + B] – these are associated
with k1 and k2. State 10’s core consists of exactly these two items in shifted
form: [A→ x + · B] and [A→ x + · + B]. This translates as follows:
state8 k1 k2 k3 k4 ts = case ts of

(t@(TokenPlus):tr) -> state10 (k1 t) (k2 t) tr
...

We must not forget to pass the token rest tr to state10 after passing the
partially applied continuations.

• The item is not in the core of S, only in its completion. Then, there is no
direct continuation to partially apply. We rather construct a continuation
consisting of the semantic action of the item’s rule and of the goto action of its
left-hand-side. This process is motivated and derived in [2].
Consider the non-core item I and its rule R : A→ ω. The continuation that we
construct looks as follows: action_R g_A. Thereby, action_R is the semantic
action of the rule, while g_A is the local (i.e. belonging to state S) goto action
of A which is introduced later.
In our example state, there is the action on x shift to state 15 including the
non-core items [C → · x y] and [C → · x z]. This is translated as follows:
state8 k1 k2 k3 k4 ts = case ts of

(t@(Token_x):tr) -> state15 (action7 g_C) (action8 g_C) tr
...

Here, g_C is the local goto action of C, while action7 and action8 are the
respective semantic actions of the rules C → x y and C → x z.

These two cases can appear together if a shift action is associated to multiple
items, some of which are in the state’s core and some are not.

Announce When a rule R is announced, there is exactly one item I in the core or
completion of our considered RAD state S that corresponds to this rule and has its
dot at the rule’s recognition point.

When announcing the rule R, we call its rule function rule_R and pass something
sensible into its continuation. We do the same as in the shift case and distinguish on
whether I is in S’s core or not.

• If I is in the core of S, we announce the rule and then just call the continuation
associated to I.
In the example above, we can consider the core item [A→ · D] and its action

48

4.1. ALGORITHMIC GENERATION

on d announce rule 4: A→ • D. The associated continuation of the item is
k4. This translates as follows:
state8 k1 k2 k3 k4 ts = case ts of

(Token_d:_) -> rule4 k4 ts
...

The type of k4 is D -> Parser r and therefore exactly matches the type of
the continuation that is expected by rule4.
An important thing to notice is that an announce action never consumes the
token it has read. Instead, the token is ignored and the full token list (ts) is
passed to rule4.

• If I is not in the core of S, we use the same construct as above. Let R : A→ ω
be the rule of I. Then we construct the continuation as follows: action_R g_A,
where action_R is the semantic action of the rule, while g_A is the local goto
action of A.
In our example state, we have two such announce actions: on e announce rule
5: C → • E and on f announce rule 6: C → • F . Both associated items are
not in the core of S. This translates as follows:
state8 k1 k2 k3 k4 ts = case ts of

(Token_e:tr) -> rule5 (action5 g_C) ts
(Token_f:tr) -> rule6 (action6 g_C) ts
...

Note that a rule and its semantic action appear together here.

Accept Our example state has no accept actions as it is not an exit state.
If a state S is an exit state, it has the artificial core item [_→ NT ·]. It comes

always at the first place and is therefore associated with the continuation k1.

Accepting NT is realized by simply calling the continuation k1 – this moves control
back to the entry state (which called the exit state via a goto action), which moves
control back to its caller.

As an example, consider the extended expression grammar and look at the nonter-
minal E and its entry and exit states.
The generated code is as follows:

1 -- _ -> · E
2 state0 :: ((Expr) -> Parser r) -> (Parser r)
3 state0 k1 ts = case ts of
4 (TokenOB:_) -> rule3 (action3 g4) ts -- on (announce rule 3
5 (TokenID:_) -> rule3 (action3 g4) ts -- on id announce rule 3
6 where
7 g4 x = state1 (k1 x) (action1 g4 x) (action2 g4 x) -- on E goto

state 1↪→

49

4.1. ALGORITHMIC GENERATION

State 0 (E entry)
Items:

[_→ · E] (core)
[E → · E ∗ T]
[E → · E ∗ ∗ T]
[E → · T]

Actions:
on (announce rule 3: E → • T
on id announce rule 3: E → • T

on E goto state 1

State 1 (E exit)
Items:

[_→ E ·] (core)
[E → E · ∗ T] (core)
[E → E · ∗ ∗ T] (core)

Actions:
on ∗ shift to state 2
on) accept E
on $ accept E

8

9 -- _ -> E ·
10 -- E -> E · '*' T
11 -- E -> E · '*' '*' T
12 state1 :: (Parser r) -> ((Token) -> (Term) -> Parser r) -> ((Token)

-> (Token) -> (Term) -> Parser r) -> (Parser r)↪→

13 state1 k1 k2 k3 ts = case ts of
14 t@(TokenTimes):tr -> state2 (k2 t) (k3 t) tr -- on * shift to

state 2↪→

15 (TokenCB:_) -> k1 ts -- on) accept E
16 (TokenEof:_) -> k1 ts -- on $ accept E

state1 is called (and only called) via state0’s goto action g4. Thereby, the first
argument of state1 is k1, the first (and only) continuation of state0. This k1 was
provided by the caller of state0. And the caller of state0 is always a rule function
(because state 0 is an entry state).

This means that, when state1 decides to accept E, k1 of state1 is called, which
translates to k1 of state0, which moves control back to the caller of state0 and
the partial parse of this E is finished – control is back at the recursive descent part.

Goto This is also borrowed directly from Hinze and Paterson [2]; readers of [2] may
skip this paragraph. Consider the RAD state S and a goto action on NT goto state
Q, where NT is some nonterminal.

Each of Q’s core items emerged of a completion item of S by shifting the dot over
NT . For example, the completion item [A→ · C] of S induces a core item [A→ C ·]
in the goto-state of C.

The goto action simply calls the goto-state stateQ and supplies sensible contin-
uations. Each continuation of stateQ belongs to a core item of Q and therefore

50

4.1. ALGORITHMIC GENERATION

belongs to a completion item of S when shifting the dot one place to the left. We
then distinguish, just as above, on whether the item is a core or a completion item of S.

Following the example of E’s entry state (state 0), state 0 has one goto action: on
E goto state 1. Thereby, state 1 has the three core items: [_→ E ·], [E → E · ∗ T]
and [E → E · ∗ ∗ T]. Each core item of state 1 belongs to a completion item of
state 0 by shifting the dot one position to the left:

1. [_→ E ·] belongs to [_→ · E], which is a core item of state 0. It is associated
to state 0’s continuation k1.

2. [E → E · ∗ T] belongs to [E → · E ∗ T], which is no core item of state 0.
Therefore, the continuation action1 g4 is generated – action1 is the semantic
action of the rule R : E → E ∗ T , while g4 is the goto function of E, as E is
the left-hand side of rule R.

3. [E → E · ∗ ∗ T] belongs to [E → · E ∗ ∗ T], which is no core item of state
0. The continuation looks as follows: action2 g4.

This leads to the local goto-action g4 of state 0 being declared as follows:

g4 x = state1 (k1 x) (action1 g4 x) (action2 g4 x) -- on E goto state 1

Default The last thing we consider are default actions. A default action is performed
when no other action matched the current input token. A default action can either
be an announce or an accept action. Additionally, happy’s error token can induce a
shift action as a default action (shift on error).

Announce or Accept The default action is included in the state’s switch expres-
sion as a default case. Because announce or accept actions do not consume the input
token, there is no need to evaluate it – we can just execute the announce or accept
action as described above.
This could look as follows:

state0 k1 k2 k3 ts = case ts of
(t@(TokenPlus):tr) -> state4 (k1 t) tr
(TokenTimes:_) -> rule4 k2 ts
_ -> rule5 k3 ts

This state has a shift action on + and an announce action on ∗. In addition, it has
a default announce action, which is simply executed when neither + nor ∗ is matched.

As described in section 3.5, this can be done for every RAD state which has at
least one announce or accept action – the largest one (the one which is executed on
the most number of different tokens) can be used as a default action.

51

4.1. ALGORITHMIC GENERATION

Shift An item like [A→ B · error C] induces a default-shift action in its state.
This default-shift action must be executed when no other action was matched. In
contrast to a normal shift action, the next input token is not consumed.

state0 k1 k2 ts = case ts of
(TokenTimes:_) -> rule4 k1 ts
_ -> state4 k2 ts

Notice that the continuation of the error-item, k2, does not receive a semantic
value as it is nonsensible to talk about the semantic value of an error terminal.

Instead of giving no value to k2, we could also define an explicit type for the error
terminal and then just provide a dummy value as the semantic value:

data ErrorToken = ErrorToken

state0 k1 k2 ts = case ts of
(TokenTimes:_) -> rule4 k1 ts
_ -> state4 (k2 ErrorToken) ts

This method has the advantage that it does not alter the number of arguments in
the continuation function and in related semantic actions.

4.1.5. Top-Level Entry Points
In happy, the user can define multiple top-level parsing entry points. An entry
point is a nonterminal N from where the full derivation should begin. For each entry
point N , a top-level parse function is generated. There are two types of entry points:
normal and partial entry points.

1. For each normal entry point N , happy generates a new production N? → N $,
where $ denotes the eof-token. Then the grammar with the start symbol N? is
considered.

2. A partial parse does not need to end on the eof-token, but ends whenever the
top-level nonterminal has been parsed and cannot be parsed further.
Therefore, for each partial entry point P , happy generates a new production
P ? → P error, where error denotes happy’s error-token, accepting any
following token, including the eof-token. Then the grammar with the start
symbol P ? is considered.

When a grammar has multiple entry points, the user of the parser must specify
which one to use. This is easily possible since there is one top-level parsing function
for each entry point.

Consider a normal entry point N . We want to call the associated rule function
(N? → N $) and then extract and return the value of type N. Because this is a top-
level function, we actually return the parsed value instead of calling a continuation.

52

4.1. ALGORITHMIC GENERATION

Therefore, the entry function has the following type:

entryN :: Parser N

Here we instantiate a concrete instance of Parser the first time! entryN takes a
list of tokens and returns an N.

We implement entryN in a straightforward way: we call the associated rule function
and then just extract the value using const as continuation. This could look as
follows:

entry_E :: Parser Expr
entry_E = rule0 const

This works because const has the type a -> b -> a, which is just what the con-
tinuation of rule0 expects: we discard the remaining token list (which is empty
anyway) and just return the value of type Expr.

Partial entry points work exactly the same, with the exception that the remaining
token list does not need to be empty. Still, the remaining tokens are discarded, and
the generated entry function looks identical to a normal entry function.

Actually, there is a small implementation detail which is different in our parser
generator: the top-level rules do not contain the eof- or the error-token; this is an
artifact of happy. Instead of N? → N $, the top-level rule would look like this:
N? → N . Then, the burden of checking whether the token list is empty would fall
on the entry function entryN. It would then look like this:

entry_N :: Parser N
entry_N = rule0 (parseEof . const)

where parseEof is a function of type Parser r -> Parser r which just checks
whether the token list is empty – it does not pass a semantic value to its continuation.
If the token list is not empty, parseEof raises an error.
The call to parseEof would not be required for partial entry points.

4.1.6. Semantic Actions
Semantic action functions look just like described by Hinze and Paterson [2] and
have already been addressed shortly in section 2.6.

A semantic action function takes semantic values of each symbol in a rule’s right-
hand side and reduces them to a single value of the semantic type of the rule’s
left-hand side symbol. The rule’s recognition point is hereby irrelevant. For the rule
E → E + T , this could look as follows:

53

4.2. GHC-SPECIFICS

action1 :: (Expr -> Parser r) -> Expr -> Token -> Term -> Parser r
action1 k v1 v2 v3 = k (Plus v1 v3)

The expression inside the parentheses – Plus v1 v3 – is what comes directly from
the user of happy. The user can supply arbitrary expressions here, as long as they
match the type requirements.

An example of a generated parser in just described continuation-based style can
be found in the appendix. It contains both an LALR parser, as described by Hinze
and Paterson [2], and a RAD parser, using our above-described style.

4.2. GHC-Specifics
There are additional features of happy and of Haskell itself that are used by GHC’s
Haskell-grammar that we had to take care of. The main features are monadic lexers
and higher-rank types.

4.2.1. Monadic Lexers
Happy provides the option to wrap a monad around the parsing result, allowing
for context-sensitive actions inside semantic actions. Following an example from the
happy user guide [12], the user could create a parser monad as follows:

-- User-defined types and functions
data P = Ok a | Failed String

thenP :: P a -> (a -> P b) -> P b
thenP = ...

returnP :: a -> P a
returnP a = Ok a

failP :: String -> P a
failP err = Failed err

This enables the use of monadic semantic actions in the grammar declaration:

prec : int {% if $1 < 0 || $1 > 9
then failP "Precedence out of range"
else returnP $1}

In this semantic action, the generated parser raises an error inside the monad
when the token value is out of range.

54

4.2. GHC-SPECIFICS

Combined with a monadic parser, happy allows to use a monadic lexer. Then the
input to the parser is no longer a list of tokens – instead, every time a new input
token is required, the parser calls the lexer function which has the following type:

lexer :: (Token -> P a) -> P a

This function reads the next token from the input and returns it via a continuation.
This originally comes from alex [10] – a lexer generator for Haskell which is often
used in conjunction with happy.

When happy is used with a monadic parser and lexer, our generated functions
must be adapted accordingly to match new type requirements and to implement the
continuation-based lexing style.
We first note that we need a special handling for the lookahead token: because

announce and accept actions do not consume the lookahead token, it needs to be
repeated somehow in order for the next function that calls lexer to receive the
lookahead token instead of the next token from the input stream.
We therefore redefine the type Parser r as follows:

type Parser r = Maybe Token -> P r

The first argument is the repeat token – if we want to repeat the lookahead token
which was just read, we assign it to the repeat token; else, the repeat token contains
Nothing. We need to define two auxiliary functions:

lexerWrapper :: (Token -> Parser a) -> Parser a
lexerWrapper cont (Just la) = cont la Nothing
lexerWrapper cont Nothing = lexer (\t -> cont t Nothing)

repeatTok :: Token -> Parser r -> Parser r
repeatTok tok parser _ = parser (Just tok)

When the repeat token is non-empty, lexerWrapper repeats it and resets the
repeat token to Nothing. repeatTok is used to update the repeat token.

It was our aim that the user of the parser does not notice anything of the wrapper
type Parser r – the user should only ever have to work with their own type P r
and should not notice our implementation details around the repeat token.

Therefore, user-defined functions like happyError, lexer and thenP need a wrap-
per to match the internal type requirements of our parser functions, which work with
Parser r.

We briefly discuss how our generated functions need to change when using a
monadic parser and lexer.

55

4.2. GHC-SPECIFICS

Parse Terminals We parse and consume the next token from the input. Because we
need to consider the repeat token if it is non-empty, we need to call lexerWrapper:

parsePlus :: (Token -> Parser r) -> Parser r
parsePlus k = lexerWrapper $ \t -> case t of

TokenPlus -> k t
_ -> happyErrorWrapper t

happyErrorWrapper is a wrapper around the user-defined happyError to accom-
modate for our type requirements:

-- happyError can only receive a single token due to the monadic lexer
happyError :: Token -> P r
happyError _ = failP "Error"

happyErrorWrapper :: Token -> Parser r
happyErrorWrapper = const . happyError

States Similar to above, we need to call lexerWrapper to receive the correct token.
In addition, when performing an accept, announce or a default-error-shift action, we
need to repeat the lookahead token with repeatTok:

state5 :: (Token -> Parser r) -> (Token -> Term -> Parser r) ->
(Token -> Term -> Parser r) -> Parser r↪→

state5 k1 k2 k3 = lexerWrapper $ \t -> case t of
TokenPlus -> state8 (k2 t)
TokenMinus -> repeatTok t $ rule4 k3
_ -> repeatTok t $ k1

The type of the continuations or of the state function itself does not change
compared to a non-monadic lexer – Parser r is still used everywhere.

Semantic Actions In a monadic parser, a semantic action can either be normal
or monadic. While nothing changes for normal actions, monadic actions must be
considered separately.
Consider the monadic action from before:

prec : int {% if $1 < 0 || $1 > 9
then failP "Precedence out of range"
else returnP $1}

The result of the action is a P r while the continuation function of the semantic
action expects a Parser r. We solve this as follows:

action123 :: (Prec -> Parser r) -> Int -> Parser r
action123 k v1 = (if v1 < 0 || v1 > 9

56

4.2. GHC-SPECIFICS

then failP "Precedence out of range"
else returnP $1)

`thenWrapP` k

-- Wrapper around thenP
thenWrapP :: P a -> (a -> Parser b) -> Parser b
thenWrapP a f la = a `thenP` (flip f la)

-- Remember: thenP was user-defined and had the type:
P a -> (a -> P b) -> P b

The result of the user-provided code is a P r which we need to convert to a
Parser r, wherefore we create a wrapper around the user-defined function thenP.
This wrapper combines the result of the user-provided code with the continuation k.

Entry Points Because the entry points are ultimately called by the user of the
parser, we want them to have the type P T instead of Parser T (where T is the type
of the respective top-level nonterminal).
This looks as follows:

entry_E :: P Expr
entry_E = rule0 (parseEof . const . returnP) Nothing

rule0 has a continuation of type Expr -> Parser r.

• returnP converts the Expr into a P Expr

• const :: P Expr -> b -> P Expr converts the P Expr into a Parser Expr
(i.e. Maybe Token -> P Expr) by discarding the repeat token

• parseEof checks for the final eof-token

• Finally calling the function of type Parser Expr (i.e. Maybe Token -> P
Expr) with the initial repeat token Nothing begins the parse and returns a
P Expr, as desired.

More The other generated things – rules and parsing nonterminals – do not change.
They look identical to their non-monadic counterparts.

4.2.2. Higher-Rank Types
When defining a function such as const :: a -> b -> a, the type variables are
implicitly universally quantified: const :: forall a b. a -> b -> a.
The explicit use of the forall-keyword is not legal in standard Haskell, but can

be enabled via GHC-specific language extensions (like RankNTypes). When using
the forall-keyword explicitly, one can create higher-rank types:

57

4.2. GHC-SPECIFICS

f :: (forall a. a -> a) -> (forall b. b -> b) -> Bool

The occurrence of forall-keywords can be nested arbitrarily deep inside a type
signature – the highest level of nesting which can not be resolved determines the
rank of the type.

While type inference of a program only using rank-1 and rank-2 types is decidable,
this problem gets undecidable once rank-3 or higher-rank types are used [13]. This
means that Haskell programmers have to assist the compiler in type inference by
explicitly stating the types of functions and statements which are critical for type
inference.

This can become a problem in our continuation-based parser:
Consider a nonterminal N which has the following semantic type (which was

defined in the “.y”-grammar file):

forall b. DisambECP b => [Located b]

This is a modified example from GHC’s Haskell grammar. Here, DisambECP is a
class. This is no problem by itself, but now consider the type of the rule function
parsing the rule A→ • N :

rule0 :: ((forall b. DisambECP b => [Located b]) -> Parser r) ->
Parser r↪→

Because the type of N is now two layers deep inside the left-hand side of a ->,
this type is already rank-3!
Considering a rule like A→ • N x y z, the type of N is already 5 layers deep in

the continuation function, giving the associated rule function a rank of 6.

When using types like these, GHC will struggle to compile the generated parser
and fail during type inference. To fix this, we need to help GHC by stating the type
of some further functions explicitly.

Look at this generated code for the Haskell grammar:

-- aexp1 -> aexp1 • { fbinds }
rule535 :: forall r. (Token -> (forall b. DisECP b => [b]) -> Token

-> Parser r) -> Parser r↪→

rule535 k la = parse426 cont1 la where
cont1 :: Token -> Parser r
cont1 v1 la = parse259 (cont2 v1) la
cont2 :: Token -> (forall b. DisECP b => [b]) -> Parser r
cont2 v1 v2 la = parse427 (cont3 v1 v2) la
cont3 :: Token -> (forall b. DisECP b => [b]) -> Token -> Parser r
cont3 v1 v2 v3 la = k v1 v2 v3 la

58

4.2. GHC-SPECIFICS

This rule parses an fbinds, which has a universally-quantified type.
The local continuations cont1 through cont3 receive prefixes of the full parse

({ fbinds }): cont1 receives {, cont2 receives { fbinds and cont3 receives the full
{ fbinds }.

Therefore, it is not enough to just state the type of rule535, but we also need to
state the types of all local continuation functions where fbinds appears – in this case
cont2 and cont3 – because these cannot be inferred by GHC automatically.
Because we now explicitly use universal quantification in the type of rule535

and its local continuations, we can no longer use universal quantification implicitly
– which explains the leading forall r in the type of rule535. This is required so
that the r of Parser r which is used in cont1, cont2 and cont3 is considered the
same.

The same thing applies not only to rule functions but also to state functions and
their local goto actions:

-- core: [_ -> · fbinds]
state202 :: forall r. ((forall b. DisambECP b => [b]) -> Parser r)

-> (Parser r)↪→

state202 k = lexerWrapper $ \t -> case t of
(L _ ITas) -> repeatTok t $ rule652 (action652 g259)
...
_ -> repeatTok t $ rule653 (action653 g259)
where

g259 :: (forall b. DisambECP b => [b]) -> (Parser r)
g259 x = state643 (k x)

Here, both state202 and g259 have a higher-rank type which must be annotated
explicitly in order for the generated parser to compile under GHC.

Conclusively, it is required to explicitly annotate the types of some top-level-
functions and related local functions when the user specifies universally quantified or
higher-rank types for some nonterminals. This is, for example, the case in GHC’s
Haskell-grammar.
Our generator backend does this of course automatically, and precise details can

be taken from the implementation.

59

5. Evaluation

5.1. Experimental Results
In this section, we compare the performance of our parsers with classical happy-
generated ones.

We conduct performance evaluations on multiple different grammars: our example
expression grammar, a JSON grammar, a C and a Rust grammar. Also, we evaluate
the parsing performance of GHC itself, comparing the standard happy-generated
GHC parser to a RAD parser.

In the following, we will compare six different types of generated parsers:

1. happy: the classical LALR parser generated by happy.

2. happy -acg: a table-based version of happy, using GHC-specific optimizations
and string-encoded arrays for better size and performance.

3. happy -acg --strict: in addition to -acg, semantic actions are evaluated
strictly, at the moment they are invoked. Removing Haskell’s laziness brings
another performance gain.

4. lalr: a continuation-based LALR parser, generated by our backend. Uses
happy’s LALR states and generates a parser in the continuation-based style
of Hinze and Paterson [2].

5. rad: a continuation-based RAD parser, as described in this thesis, generated
by our backend.

6. rad --optims: this version brings two performance optimizations to the gen-
erated RAD parser: all rule functions are marked INLINE, and all applications
of goto and k functions are eta-expanded. For example, a goto action could
look like this:
g228 x la = state751 (\la -> k1 x la) (action581 (\z la -> g229
z la) x) la.

Disk space nowadays is cheap and not nearly as big a factor as in the past. Still,
while good performance is the number one quality we strive for, we want our generated
parsers to be reasonably small in comparison to happy-generated parsers.
Here, “reasonably small” means “not excessively large” – as our parsers are not

table-based, but have a function for each rule, state, and symbol, we cannot expect

61

5.1. EXPERIMENTAL RESULTS

them to be as small as happy-generated ones. Instead, we want their size to be
around the same order of magnitude.
We compare the size of a parser by looking at the “.o”-file generated by GHC; it

contains the compiled object code of the parser module.

5.1.1. Parser Only
We begin by looking at two rather small grammars: the extended expression grammar
which we used throughout this thesis, and a (slightly modified) JSON grammar.1

While our expression grammar has 8 rules and 9 symbols, the JSON grammar
already has 42 rules and 39 symbols.

Both of these grammars were parsed using happy’s normal parsing style: The
parsers receive a full list of tokens as input, which has previously been created by a
lexer. We compare two different performance metrics: First, the time of the parser
alone, receiving a fully-evaluated token list as input. Second, the combined time
of lexer and parser. The difference here is that the token list is not fully evaluated
when being passed to the parser, but is lazily evaluated by the lexer. This introduces
additional caching effects which may have a negative impact on performance; it
is also the more realistic metric to measure (as a lexer will always be involved in
real-world use).

Tables 5.1 and 5.2 show the results. We used large randomly generated files
(several hundred kBs) for the performance evaluation.

Table 5.1.: Expression grammar. Filesize: 686kB, 524k tokens.

Type T(parse) T(lex & parse) .o-size
happy 105.8± 1.4 ms 306.1± 3.8 ms 120 kB
-acg 120.5± 4.0 ms 329.9± 4.4 ms 74 kB
--strict 90.0 ± 0.1 ms 249.8 ± 0.3 ms 74 kB
lalr 29.4± 1.8 ms 221.0± 4.0 ms 41 kB
rad 35.7± 2.1 ms 226.9± 4.4 ms 33 kB
--optims 28.0 ± 1.9 ms 219.6 ± 3.7 ms 33 kB

The execution time values are stated in the form t± σ, where t is the mean of the
measurements and σ is the standard deviation. We used the tool gauge2 to perform
the measurements. The parsers were compiled using GHC 8.8.1 and with the -O2 flag.

In the expression grammar, the lexer performs significant work by creating id
tokens from longer number strings such as “34” and “−12”. The JSON lexer, on the

1The official JSON grammar, from www.json.org
2https://hackage.haskell.org/package/gauge

62

www.json.org
https://hackage.haskell.org/package/gauge

5.1. EXPERIMENTAL RESULTS

Table 5.2.: JSON grammar. Filesize: 341kB, 341k tokens.

Type T(parse) T(lex & parse) .o-size
happy 61.1 ± 1.8 ms 64.3 ± 1.4 ms 447 kB
-acg 86.9± 3.4 ms 97.8± 2.3 ms 306 kB
--strict 66.2 ± 1.7 ms 69.4 ± 1.3 ms 297 kB
lalr 16.7± 0.9 ms 19.0± 0.5 ms 248 kB
rad 16.1± 0.9 ms 18.4± 0.5 ms 251 kB
--optims 15.3 ± 0.8 ms 18.1 ± 0.5 ms 261 kB

other hand, does not perform any nontrivial work and converts each character to a
respective token.

Both the best respective parser of classical happy and our best parser are marked
in bold. It can immediately be seen that the optimized RAD parser beats happy’s
best parser significantly in both grammars. Just comparing the plain parsing times,
the optimized RAD-parser is 3 to 4 times faster. In addition, the continuation-based
parsers are actually smaller than their happy-counterparts!

5.1.2. Parser-Lexer Combination
We shift our focus onto programming languages and their grammars. We look at a
C grammar3 and a Rust grammar4.

Both of these grammars use a monadic parser-lexer combination. This means that
tokens are lexed on-demand (using alex). We can now no longer talk about the
plain parsing time as we cannot separate the interconnected parser from the lexer.

The grammars are, in addition, much larger than those from before: the C grammar
has 502 rules and 257 symbols, and the Rust grammar features a decent number of
1209 rules and 358 symbols.

We used a single large file per parser for evaluation. Tables 5.3 and 5.4 show
the results. Here we see different results than before: While the RAD parser still
beats the happy-parser in the case of Rust, this doesn’t hold anymore for the C
grammar. Here, the best happy-parser performs as well as the optimized RAD parser.

The C grammar brings a different, very interesting insight: Comparing the compiled
size of our continuation-based parsers, the RAD parsers are much smaller than the
LALR parser – up to a factor of 4 (27 MB vs 6.6 MB).

This seems a little counterintuitive at first – an LALR parser for the C grammar
just has 963 states, while a RAD parser has 542 states, 502 rule functions and 257

3from https://hackage.haskell.org/package/language-c
4from https://hackage.haskell.org/package/language-rust

63

https://hackage.haskell.org/package/language-c
https://hackage.haskell.org/package/language-rust

5.1. EXPERIMENTAL RESULTS

Table 5.3.: C grammar. Filesize: 375kB.

Type T(lex & parse) .o-size
happy 136.1 ± 1.7 ms 5.3 MB
-acg 139.3 ± 1.7 ms 1.3 MB
--strict 108.0 ± 2.2 ms 1.3 MB
lalr 118.3 ± 1.7 ms 27 MB
rad 115.4 ± 1.9 ms 7.8 MB
--optims 108.3 ± 1.9 ms 6.6 MB

Table 5.4.: Rust grammar. Filesize: 156kB.

Type T(lex & parse) .o-size
happy 78.9 ± 0.4 ms 19 MB
-acg 73.0 ± 0.6 ms 5.3 MB
--strict 71.5 ± 0.8 ms 5.3 MB
lalr 67.4 ± 0.6 ms 35 MB
rad 68.3 ± 0.6 ms 32 MB
--optims 66.9 ± 0.5 ms 32 MB

symbol functions. Why is it that the RAD parser still produces significantly smaller
compiled code? We can think of two reasons:

1. Many of the rule and symbol functions are simple (as they just link state and
symbol functions together) and get optimized away

2. RAD states are generally smaller than LALR states:
• A RAD state often has equally many or less actions than the LALR state

it emerged from, because some of its actions may have been discarded.
• Often, a RAD state’s default action includes more actions/tokens than

the default action of its associated LALR state (because many different
shift and reduce actions of an LALR state may collapse into the single
same announce action, which is then used as default a action).

We also notice another connection playing a role here: the LL-ness of a grammar
(which will be introduced in section 5.2) states, intuitively, how close a grammar is
to being LL. This then also correlates with the ratio of unambiguous nonterminals
and how good states can be reused, as seen later.
This seems to play a great role in the size saving phenomenon:

1. the LL-ness of the Rust grammar is very low. Here, the size saving effect nearly
vanishes (from 35MB to 32MB).

2. the LL-ness of the C grammar is much greater. The effect is strong (factor 4).

64

5.1. EXPERIMENTAL RESULTS

3. the LL-ness of the Haskell grammar (section 5.1.3) is even larger. The effect is
even greater (factor 4.5).

This is a compelling advantage, besides speed, of a continuation-based RAD parser:
it can produce really small compiled code compared to a continuation-based LALR
parser.

5.1.3. GHC: Parsing Haskell
GHC uses a monadic parser-lexer combination to parse Haskell code. As one might
already expect, GHC uses happy -acg --strict to generate the parser for their
Haskell grammar (which is quite large having 834 rules and 479 symbols).
As GHC is written in Haskell itself, compilation of GHC proceeds in two phases:

in the first phase, an existing GHC on the system is used to compile the GHC
sources. This then produces the stage-1 GHC. Then, this stage-1 GHC is used to
again compile the sources to produce the stage-2 GHC.

We performed our tests with both stage-1 and stage-2 GHCs. The results cannot
be compared between stage-1 and stage-2 runs, however, as different underlying
GHC versions were used to compile them: stage-1 was compiled with GHC 8.8.1,
while stage-2 was compiled with stage-1 which is a GHC 8.10.1 clone.

GHC was compiled with BuildFlavour = perf, which is meant to produce a
performant GHC ready for distribution. Before looking at performance results, we
first compare the sizes of the produced Parser.o files.

Table 5.5.: Sizes of compiled Parser.o files. --strict is the status quo GHC parser.

Type size (stage-1) size (stage-2)
happy 12 MB 12 MB
-acg 2.4 MB 2.4 MB
--strict 2.4 MB 2.4 MB
lalr 15 MB 33 MB
rad 6.3 MB 7.1 MB
--optims 5.9 MB 7.6 MB

As already stated earlier, the RAD parser is significantly smaller than the conti-
nuation-based LALR parser, especially in stage-2. Also, while the RAD parser is not
as small as the status quo happy parser, it is still in the same order of magnitude –
it is only 3 times as large.

The Haskell files that we used to measure the parsing performance are large files
either from GHC itself or generated by us.

We now show two performance comparisons. The first one is a stage-1 comparison
of parsing a 1.1 MB Haskell file (Parser-RAD.hs), the second one a stage-2 comparison
of parsing a 6.4 MB file (ManyTokens.hs). Tables 5.6 and 5.7 show the results.

65

5.1. EXPERIMENTAL RESULTS

Table 5.6.: Parser-RAD.hs (1.1 MB), parsed using stage-1.

Type T(lex & parse) Allocations
happy 814.4 ± 2.5 ms 1.31 G
-acg 826.4 ± 2.1 ms 1.36 G
--strict 783.7 ± 2.2 ms 1.31 G
lalr 693.0 ± 3.3 ms 1.24 G
rad 695.5 ± 2.3 ms 1.25 G
--optims 680.2 ± 2.5 ms 1.19 G

Table 5.7.: ManyTokens.hs (6.4 MB), parsed using stage-2.

Type T(lex & parse) Allocations
happy 4941 ± 26.0 ms 6.60 G
-acg 4447 ± 22.9 ms 5.73 G
--strict 3459 ± 10.2 ms 5.39 G
lalr 3247 ± 14.1 ms 6.46 G
rad 3311 ± 7.0 ms 6.55 G
--optims 3162 ± 6.4 ms 5.97 G

We used -ddump-timings to extract the parsing time and the number of allo-
cated bytes during parsing from GHC. Naturally, the number of allocated bytes is
also an attribute one should strive to minimize, as a greater number of allocations
corresponds to greater execution time. Note that the times and allocations only
concern the plain parsing/lexing time, no subsequent steps in the compilation process.

In both cases, the optimized RAD parser beats the status quo happy-parser.
Table 5.8 shows the comparison results for 4 files, considering stage-1 and stage-2

separately each time. We only included the --strict and --optims parsers.

Table 5.8.: Comparison between the status-quo --strict parser and our optimized
RAD parser.

--strict --optims
Test Stage Time [ms] Allocs Time [ms] Allocs Gain

ManyTokens 1 3780 ± 10.3 6.63 G 3051 ± 11.7 6.01 G 19.4%
2 3459 ± 10.2 5.39 G 3162 ± 6.4 5.97 G 8.6%

TcTyClsDecls 1 60.1 ± 0.32 95.5 M 55.5 ± 0.25 90.3 M 7.7%
2 47.0 ± 0.20 87.0 M 45.8 ± 0.27 90.6 M 2.5%

Parser 1 432.2 ± 1.9 950 M 387.2 ± 1.2 913 M 11.4%
2 404.1 ± 2.4 883 M 382.0 ± 1.0 914 M 5.5%

Parser-RAD 1 783.7 ± 2.2 1.31 G 680.2 ± 2.5 1.19 G 13.3%
2 748.0 ± 2.2 1.11 G 712.8 ± 2.7 1.19 G 4.9%

66

5.2. LL-NESS

The last column, Gain, shows the relative performance gain which would come
from replacing the status quo parser with an optimized RAD parser.

Looking at the table, we see: with a directly-executable RAD parser just 3 times
as large as the table-based LALR one, we get performance speedups from 5% to
10% with stage-2 parsers, and up to 20% with stage-1 parsers. As these stages are
dependent on the exact underlying GHC version, these values can of course vary
from version to version.

Also note that the times describe combined parsing and lexing. Would we somehow
just extract the pure time that is spent in the parser, the relative performance gain
would be even higher. On the other hand, the parsing/lexing process is only one of
many steps of a full compilation process, where other steps such as type checking,
optimizations and code generation often dominate the total compilation time.

Readers of Hinze and Paterson [2] may have noticed that our performance speedups
on the Haskell grammar are not as high as those achieved in [2], using their
frown -cs5 LALR(1) parser generator which generates continuation-based code.
We can say two things about this: First, our lalr parsers are very similar to

the parsers generated by frown -cs – we deliberately created this lalr option to
generate code in Hinze-Paterson style. Second, Hinze and Paterson [2] didn’t conduct
tests using GHC – they used a much smaller Haskell 98 grammar, only having 277
rules and 482 states, and performed parsing tests using this grammar, independently
from GHC.
Speedups that have been achieved by frown -cs can of course be reproduced

using our lalr parsers, and in many cases even be surpassed with our rad --optims
parsers.

5.2. LL-Ness
This section is dedicated to a key aspect of RAD parsing. As described throughout
this thesis, a RAD parser can parse any LR grammar. Thereby it tries to make
use of LL-like features as much as possible: rules are parsed in a top-down manner
starting at their recognition points. During a top-down parse, states are “reused”:
parsing a nonterminal leads to entering its entry state, which is reused each time
this nonterminal is encountered after a recognition point. This distinguishes RAD
parsing from LALR parsing where a new state is required for every parsing situation
where the nonterminal appears – states are not reused.

Also, it is clear that the top-down ratio of a RAD parser is higher the further left
the recognition points are, as this allows for earlier transition into the top-down part
of a rule. A grammar with all recognition points on the very left is already LL.

This leads us to two definitions which try to measure how good a RAD parser can
make use of existing top-down aspects, or, in other words, how much LL a grammar
is.

5https://hackage.haskell.org/package/frown

67

5.2. LL-NESS

1. LL-ness. We define the LL-ness of a grammar as 1 −
#Spacesleft

#Spaces , where
#Spacesleft is the number of spaces left to recognition points in all rules and
#Spaces the number of total spaces in all rules, excluding the rightmost space.
For example, the rule A→ b • C D has 3 total spaces (before the b, before
the C, before the D – we do not count the rightmost space), one of which is
left to the recognition point.

2. State reuse. We define the state reuse of a grammar as
#Statesentry/exit

#States , where
#Statesentry/exit denotes the number of entry- and exit states (or 2 times the
number of unambiguous nonterminals) and #States denotes the total number
of generated RAD states.

Why do we exclude the rightmost space when calculating the LL-ness? Consider
the rule A → B C. The recognition point could be in three different locations:
A→ • B C, or A→ B • C, or A→ B C •. If we would define the LL-ness for this
single rule, we would want it to be 0 for the first variant, 1

2 for the second, and 1 for
the third variant. Therefore we need to divide by 2, as there cannot be more than
2 spaces left to the recognition point – this is why we do not count the rightmost
space, as this wouldn’t allow for an LL-ness of 1.

As an example, consider the expression grammar:

0 : E? → E $ E? → • E $
1 : E → E ∗ T E → E ∗ • T
2 : E → E ∗ ∗ T E → E ∗ • ∗ T
3 : E → T E → • T
4 : T → T + F T → T • + F
5 : T → F T → • F
6 : F → (E) F → • (E)
7 : F → id F → • id

There is a total of 17 spaces inside rules and there are 5 spaces left to recognition
points. Therefore, the LL-ness is 12

17 ≈ 71%. Considering the state reuse, there are
six entry- / exit-states and one auxiliary state (see appendix), which leads to a state
reuse of 6

7 ≈ 86%.

Of course, we want LL grammars to have 100% LL-ness and state reuse. This
works:

1. In an LL grammar, all recognition points are on the left. Then, #SpacesLeft is
0 and the LL-ness is 100%.

2. In an LL grammar, there are no auxiliary states (as there are no shift actions
but only announce actions) – the state reuse is 100%.

68

5.2. LL-NESS

The following table shows the LL-ness and state reuse for the grammars that were
used for the performance evaluation in section 5.1.

Table 5.9.: Properties of multiple grammars, including LL-ness and state reuse.

Grammar #Rules #NTs #LALR- #RAD-S. State LL-ness(unamb.) States (#E/E) reuse
Rust 1209 219 (98) 2404 1773 (196) 11.1% 24.2%
C 502 135 (80) 963 542 (160) 29.5% 48.0%
Haskell (GHC) 834 327 (247) 1435 907 (494) 54.5% 62.3%
JSON 42 20 (15) 67 48 (30) 62.5% 62.5%
Expression 8 4 (3) 16 7 (6) 85.7% 70.6%
Any LL – – – – 100% 100%

The third column shows the number of nonterminals and how much of them
are unambiguous. Looking at the Rust grammar, there are only 98 unambiguous
nonterminals, which results in 196 entry- and exit-states (which can be seen in the
fifth column) – at a total of 1773 RAD states. A RAD parser therefore does not
bring much benefit over an LALR parser in the case of the Rust grammar. This
can also be seen when comparing the object file sizes (as seen in section 5.1.2): The
compiled Rust RAD parser is nearly as large as a corresponding LALR parser (32
MB vs 35 MB) – RAD parsing simply cannot realize much of its potential on the
Rust grammar.

The other grammars have a higher LL-ness and state reuse and perform accordingly
better under these aspects. In the Haskell grammar, for example, more than half
of all states are “reusable” entry- and exit-states. Consequently, a compiled RAD
parser for Haskell is much smaller than an LALR parser.

There are further conceivable properties which could be used as similar LL-ness
indicators for a grammar: for example, the ratio between shift and announce actions,
or the ratio of states that are saved by transitioning from LALR to RAD.

Note that LL-ness and state reuse are grammar-specific definitions, as they can
vary between multiple grammars producing the same language. We concludingly
remark that the notions of LL-ness and state reuse can naturally be extended from
grammars to languages by defining the LL-ness (state reuse) of a language to be the
greatest LL-ness (state reuse) of any LR grammar generating this language, but this
would exceed the scope of this thesis.

69

6. Conclusion
In this thesis we combined the two rather unknown concepts of well-typed continu-
ation-based parsing and recursive ascent-descent parsing. We described the inner
workings of recursive ascent-descent parsers and how they can reuse a single state in
completely different parsing situations, which is what distinguishes them from LALR
parsers. We introduced the notions of LL-ness and state reuse which try to capture
how strong a RAD parser can make use of top-down parsing and said state reuse.

We implemented a parser generator backend producing continuation-based parsing
code, both in LALR or RAD form. We compared the performance of classical table-
based LALR parsers, as generated by happy, with our continuation-based LALR and
RAD parsers and came to the result that continuation-based RAD parsers actually
outperform all other types of parsers that we considered. Both in small grammars
with few rules and in large grammars which describe programming languages, RAD
parsing brings good advantages over LALR parsing regarding the number of states,
while the continuation-based, directly-executable (i.e. function-based) form improves
the speed compared to a table-based approach. We employed some optimizations,
which were ultimately suggestions of and come from analyses by our advisor Sebastian
Graf, to improve the parser performance even more. Without these optimizations,
the performance advantage over GHC’s status-quo parser would have vanished in
many cases.
As a result emerged a parser for Haskell which is faster than the current Haskell

parser. Considering stage-2 compilers, our parser brings a performance gain of 5%
to 10% for parsing Haskell code. This comes at the cost of extra 5 megabytes of
object code, which is something we think GHC users and programmers are willing
to swallow.

6.1. Future Work
As mentioned, even a tiny bit of optimization (rule function inlining and massive
eta-expanding) brought a significant performance gain to our RAD parsers. But why
stop there?

While we didn’t have the time to profoundly look into further optimization ideas,
we believe that there is a lot of unexploited optimization potential. We could think of
the following ideas, each of which may or may not be helpful for further performance
tuning:

• By looking at the tables in section 5.1, one sees that parsers generated via
happy -acg --strict always outperform corresponding parsers generated via

71

6.1. FUTURE WORK

happy -acg significantly. The --strict flag causes the parser to evaluate
intermediate results such as partial ASTs which emerged through semantic
actions immediately instead of lazily at the end. Lazy evaluation doesn’t make
sense here – the full parsing result is always required for further processing,
which is why a strict parser is very sensible. In addition to the execution time,
allocations went also down considerably when using a strict parser inside GHC.
We didn’t make use of any strictness features in our generated code, but
ultimately we could expect similar results when using them. Evaluating
semantic actions early could bring performance gains comparable to those
introduced by happy’s --strict flag.

• Another interesting phenomenon, which we couldn’t explain, is the occasional
performance regression between stage-1 and stage-2 parsers generated by our
backend. For example, for the file Parser-RAD.hs, as visible in table 5.8, the
stage-1 RAD parser performs better than the stage-2 RAD parser. This is
peculiar as this does never happen to happy-generated parsers, but only to our
RAD parsers. In the future, this phenomenon could maybe be explained and
then resolved.

• When going from stage-1 to stage-2, our RAD parsers hardly change in their
number of allocations, while the happy -acg --strict-parser does reduce its
allocations significantly between stage-1 and stage-2. We could also try to
leverage this behavior to generate stage-2 parsers which are even faster than
stage-1 ones.

• Our parser generator could take the LL-ness and state reuse of the input
grammar into account and perform specific optimizations based on these values.
For example, inlining of specific functions could be decided based on whether
the parser behaves a lot like an LL parser or not.

• Our way to repeat tokens seems inefficient: a call to repeatTok is always
immediately followed by a call to lexerWrapper to retrieve the token which was
just repeated. As the compiler does not know this (due to the myriad of state
functions and their announce or accept actions, each of which is accompanied
by a repeatTok call), it probably doesn’t optimize this phenomenon as well
as it could. Short cut fusion1 is an optimization technique which tries to
merge two matching function calls into one. Thereby, intermediate results and
data structures can be removed in some cases. repeatTok and lexerWrapper
match these requirements – repeatTok produces a value which is immediately
consumed by lexerWrapper. If this behavior can be made evident to the
compiler, it could probably generate code which performs much fewer allocations
and is consequently faster.

1As described in https://wiki.haskell.org/Short_cut_fusion

72

https://wiki.haskell.org/Short_cut_fusion

6.1. FUTURE WORK

In addition to performance tuning, there are further things that can be incorporated
into our parser generator. While Horspool [1] described how an LAXLC parser can
be converted into directly-executable form, calling it in this case a RAD parser,
he also discussed different ways of code realization. When dividing the parser into
the rule (top-down) and control (bottom-up) components, he showed that it is
possible to realize the control component either as an explicit LALR automaton
using table-based form, or in recursive ascent style using mutually recursive functions.
A user which is more concerned about code size could then choose to generate the
control part in table-based form, while the rule part is still in recursive descent form.
Even happy itself has multiple ways of generating its LALR parsers: normal

happy uses explicit shift and action functions and stores the full automaton state
on a stack. Calling happy with -acg causes it to use actual array-encoded action
tables.
We could integrate similar functionalities into our new happy backend: the

user could decide on the form of the generated control component, choosing either
table-based or recursive-ascent style. Further, instead of using the function call
stack as an implicit parser state storage, a recursive-ascent implementation could
also use an explicit stack as happy does. Whether and how this would however
interfere with the strongly-typed continuation-based code style would have to be seen.

In addition to pure implementation aspects, future work could also be concerned
with more theoretical aspects of recursive ascent-descent parsing. For example,
explicit relations between, or explicit bounds for indicators such as the LL-ness or
state reuse could be formulated. Further characteristics of LR grammars could be
examined and put in relation to LL-ness and state reuse.

73

Bibliography
[1] R. N. Horspool, “Recursive ascent-descent parsing,” Computer Languages, vol. 18,

pp. 1–15, july 1991.

[2] R. Hinze and R. Paterson, “Derivation of a typed functional LR parser,” 2005.

[3] R. Wilhelm, H. Seidl, and S. Hack, Compiler design. Syntactic and semantic
analysis. Springer, 2013.

[4] D. J. Rosenkrantz and P. M. Lewis, “Deterministic left corner parsing,” in 11th
Annual Symposium on Switching and Automata Theory (swat 1970), pp. 139–152,
IEEE, 1970.

[5] A. J. Demers, “Generalized left corner parsing,” in Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL
’77, (New York, NY, United States), pp. 170–182, Association for Computing
Machinery, jan 1977.

[6] J. Boyland and D. Spiewak, “Tool paper: ScalaBison recursive ascent-descent
parser generator,” Electronic Notes in Theoretical Computer Science, vol. 253,
pp. 65–74, sept. 2010.

[7] “scala-bison.” https://github.com/djspiewak/scala-bison, 2020. Scala-
Bison’s GitHub page. Accessed 25. Sep. 2020.

[8] A. Gill and S. Marlow, “happy: Happy is a parser generator for haskell.” https:
//hackage.haskell.org/package/happy, 2020.

[9] haskell.org, “The glasgow haskell compiler.” https://www.haskell.org/ghc/,
2020.

[10] C. Dornan and S. Marlow, “alex: Alex is a tool for generating lexical analysers
in haskell.” https://hackage.haskell.org/package/happy, 2020.

[11] P. Purdom and C. A. Brown, “Semantic routines and LR(k) parsers,” Acta
Informatica, vol. 14, pp. 299–315, oct. 1980.

[12] A. Gill and S. Marlow, “Happy user guide.” https://www.haskell.org/happy/
doc/html/index.html, 2009.

75

https://github.com/djspiewak/scala-bison
https://hackage.haskell.org/package/happy
https://hackage.haskell.org/package/happy
https://www.haskell.org/ghc/
https://hackage.haskell.org/package/happy
https://www.haskell.org/happy/doc/html/index.html
https://www.haskell.org/happy/doc/html/index.html

Bibliography

[13] A. J. Kfoury and J. B. Wells, “A direct algorithm for type inference in the
rank-2 fragment of the second-order λ-calculus,” in Proceedings of the 1994
ACM Conference on LISP and Functional Programming, LFP ’94, (New York,
NY, USA), pp. 196–207, Association for Computing Machinery, 1994.

76

Erklärung

Hiermit erkläre ich, David Knothe, dass ich die vorliegende Bachelorarbeit selbst-
ständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis
beachtet habe.

Ort, Datum Unterschrift

77

A. Generated Code Examples
The following two sections contain generated parsing code in the above described
well-typed, continuation-based style. One section showcases a classical LALR(1)
parser, having 16 states, while the other section presents a RAD parser, having
seven states.
The grammar is a simple expression grammar extended by an exponentiation

operation, denoted by “∗∗”. These are the productions with their respective recog-
nition points:

0 : E? → E $ E? → • E $
1 : E → E ∗ T E → E ∗ • T
2 : E → E ∗ ∗ T E → E ∗ • ∗ T
3 : E → T E → • T
4 : T → T + F T → T • + F
5 : T → F T → • F
6 : F → (E) F → • (E)
7 : F → id F → • id

Both parsers were generated with our extended version of happy, using the new
continuation-based LALR and RAD backends.

A.1. LALR

1 type Parser r = [Token] -> r
2

3 -- User-supplied definitions
4 data Token = TokenInt Int | TokenTimes | TokenPlus | TokenOB | TokenCB
5

6 data Expr = Times Expr Term | Pow Expr Term | Term Term
7 data Term = Plus Term Factor | Factor Factor
8 data Factor = Num Int | Expr Expr
9

10 happyError :: [Token] -> a
11 happyError _ = error ("Parse error!")
12

13

14 -- Main parsing entry point.
15 entry :: Parser Expr
16 entry = state0 (parseEof . const) where
17 parseEof k [] = k []
18 parseEof k ts = happyError ts
19

20

21 -- core: [E' -> · E]
22 state0 :: (Expr -> Parser r) -> Parser r
23 state0 k ts = case ts of
24 t@(TokenInt v):tr -> state5 (action7 g6 v) tr
25 t@(TokenOB):tr -> state6 (action6 g6 t) tr
26 _ -> happyError ts

A.1. LALR

27 where
28 g4 x = state7 (k x) (action1 g4 x) (action2 g4 x)
29 g5 x = state3 (action3 g4 x) (action4 g5 x)
30 g6 x = state4 (action5 g5 x)
31

32 -- core: [E -> · E * T]
33 state1 :: (Expr -> Token -> Term -> Parser r) -> Parser r
34 state1 k ts = case ts of
35 t@(TokenInt v):tr -> state5 (action7 g6 v) tr
36 t@(TokenOB):tr -> state6 (action6 g6 t) tr
37 _ -> happyError ts
38 where
39 g4 x = state2 (k x) (action2 g4 x)
40 g5 x = state3 (action3 g4 x) (action4 g5 x)
41 g6 x = state4 (action5 g5 x)
42

43 -- core: [E -> E · * T], [E -> E · * * T]
44 state2 :: (Token -> Term -> Parser r) -> (Token -> Token -> Term -> Parser r)

-> Parser r↪→

45 state2 k1 k2 ts = case ts of
46 t@(TokenTimes):tr -> state8 (k1 t) (k2 t) tr
47 _ -> happyError ts
48

49 -- core: [E -> T ·], [T -> T · + F]
50 state3 :: Parser r -> (Token -> Factor -> Parser r) -> Parser r
51 state3 k1 k2 ts = case ts of
52 t@(TokenPlus):tr -> state10 (k2 t) tr
53 _ -> k1 ts
54

55 -- core: [T -> F ·]
56 state4 = id
57

58 -- core: [F -> NUM ·]
59 state5 = id
60

61 -- core: [F -> (· E)]
62 state6 :: (Expr -> Token -> Parser r) -> Parser r
63 state6 k ts = case ts of
64 t@(TokenInt v):tr -> state5 (action7 g6 v) tr
65 t@(TokenOB):tr -> state6 (action6 g6 t) tr
66 _ -> happyError ts
67 where
68 g4 x = state9 (action1 g4 x) (action2 g4 x) (k x)
69 g5 x = state3 (action3 g4 x) (action4 g5 x)
70 g6 x = state4 (action5 g5 x)
71

72 -- core: [E' -> E ·], [E -> E · * T], [E -> E · * * T]
73 state7 :: Parser r -> (Token -> Term -> Parser r) -> (Token -> Token -> Term

-> Parser r) -> Parser r↪→

74 state7 k1 k2 k3 ts = case ts of
75 t@(TokenTimes):tr -> state8 (k2 t) (k3 t) tr
76 [] -> k1 ts -- %eof
77 _ -> happyError ts
78

79 -- core: [E -> E * · T], [E -> E * · * T]
80 state8 :: (Term -> Parser r) -> (Token -> Term -> Parser r) -> Parser r
81 state8 k1 k2 ts = case ts of
82 t@(TokenInt v):tr -> state5 (action7 g6 v) tr
83 t@(TokenTimes):tr -> state14 (k2 t) tr
84 t@(TokenOB):tr -> state6 (action6 g6 t) tr
85 _ -> happyError ts

A.1. LALR

86 where
87 g5 x = state13 (k1 x) (action4 g5 x)
88 g6 x = state4 (action5 g5 x)
89

90 -- core: [E -> E · * T], [E -> E · * * T], [F -> (E ·)]
91 state9 :: (Token -> Term -> Parser r) -> (Token -> Token -> Term -> Parser r)

-> (Token -> Parser r) -> Parser r↪→

92 state9 k1 k2 k3 ts = case ts of
93 t@(TokenTimes):tr -> state8 (k1 t) (k2 t) tr
94 t@(TokenCB):tr -> state12 (k3 t) tr
95 _ -> happyError ts
96

97 -- core: [T -> T + · F]
98 state10 :: (Factor -> Parser r) -> Parser r
99 state10 k ts = case ts of

100 t@(TokenInt v):tr -> state5 (action7 g6 v) tr
101 t@(TokenOB):tr -> state6 (action6 g6 t) tr
102 _ -> happyError ts
103 where
104 g6 x = state11 (k x)
105

106 -- core: [T -> T + F ·]
107 state11 = id
108

109 -- core: [F -> (E) ·]
110 state12 = id
111

112 -- core: [E -> E * T ·], [T -> T · + F]
113 state13 :: Parser r -> (Token -> Factor -> Parser r) -> Parser r
114 state13 k1 k2 ts = case ts of
115 t@(TokenPlus):tr -> state10 (k2 t) tr
116 _ -> k1 ts
117

118 -- core: [E -> E * * · T]
119 state14 :: (Term -> Parser r) -> Parser r
120 state14 k ts = case ts of
121 t@(TokenInt v):tr -> state5 (action7 g6 v) tr
122 t@(TokenOB):tr -> state6 (action6 g6 t) tr
123 _ -> happyError ts
124 where
125 g5 x = state15 (k x) (action4 g5 x)
126 g6 x = state4 (action5 g5 x)
127

128 -- core: [E -> E * * T ·], [T -> T · + F]
129 state15 :: Parser r -> (Token -> Factor -> Parser r) -> Parser r
130 state15 k1 k2 ts = case ts of
131 t@(TokenPlus):tr -> state10 (k2 t) tr
132 _ -> k1 ts
133

134

135 -- Semantic actions:
136

137 -- E -> E * T
138 action1 :: (Expr -> Parser r) -> Expr -> Token -> Term -> Parser r
139 action1 k v1 v2 v3 = k (Times v1 v3)
140

141 -- E -> E * * T
142 action2 :: (Expr -> Parser r) -> Expr -> Token -> Token -> Term -> Parser r
143 action2 k v1 v2 v3 v4 = k (Pow v1 v4)
144

145 -- E -> T

A.2. RAD

146 action3 :: (Expr -> Parser r) -> Term -> Parser r
147 action3 k v1 = k (Term v1)
148

149 -- T -> T + F
150 action4 :: (Term -> Parser r) -> Term -> Token -> Factor -> Parser r
151 action4 k v1 v2 v3 = k (Plus v1 v3)
152

153 -- T -> F
154 action5 :: (Term -> Parser r) -> Factor -> Parser r
155 action5 k v1 = k (Factor v1)
156

157 -- F -> (E)
158 action6 :: (Factor -> Parser r) -> Token -> Expr -> Token -> Parser r
159 action6 k v1 v2 v3 = k (Expr v2)
160

161 -- F -> NUM
162 action7 k v1 = k (Num v1)

A.2. RAD
The user-supplied data types (Token, Expr etc.) and the semantic action functions
are identical to the LALR case, which is why we omitted them.

1 type Parser r = [Token] -> r
2

3 -- Main parsing entry point.
4 entry :: Parser Expr
5 entry = rule0 (parse12 . const)
6

7

8 -- RECURSIVE DESCENT PART: RULE FUNCTIONS AND SINGLE SYMBOLS
9

10 -- E' -> • E
11 rule0 :: (Expr -> Parser r) -> Parser r
12 rule0 = parse4 -- E
13

14 -- E -> E * • T
15 rule1 :: (Term -> Parser r) -> Parser r
16 rule1 = parse5 -- T
17

18 -- E -> E * • * T
19 rule2 :: (Token -> Term -> Parser r) -> Parser r
20 rule2 k ts = parse9 cont1 ts where -- *
21 cont1 v1 ts = parse5 (k v1) ts -- T
22

23 -- E -> • T
24 rule3 :: (Term -> Parser r) -> Parser r
25 rule3 = parse5 -- T
26

27 -- T -> T • + F
28 rule4 :: (Token -> Factor -> Parser r) -> Parser r
29 rule4 k ts = parse8 cont1 ts where -- +
30 cont1 v1 ts = parse6 (k v1) ts -- F
31

32 -- T -> • F
33 rule5 :: (Factor -> Parser r) -> Parser r

A.2. RAD

34 rule5 = parse6 -- F
35

36 -- F -> • (E)
37 rule6 :: (Token -> Expr -> Token -> Parser r) -> Parser r
38 rule6 k ts = parse10 cont1 ts where -- (
39 cont1 v1 ts = parse4 (cont2 v1) ts -- E
40 cont2 v1 v2 ts = parse11 (k v1 v2) ts --)
41

42 -- F -> • NUM
43 rule7 = parse7 -- NUM
44

45

46 -- E
47 parse4 = state0
48

49 -- T
50 parse5 = state1
51

52 -- F
53 parse6 = state2
54

55 -- NUM
56 parse7 k (t@(TokenInt v):tr) = k v tr
57 parse7 k ts = happyError ts
58

59 -- +
60 parse8 :: (Token -> Parser r) -> Parser r
61 parse8 k (t@(TokenPlus):tr) = k t tr
62 parse8 k ts = happyError ts
63

64 -- *
65 parse9 :: (Token -> Parser r) -> Parser r
66 parse9 k (t@(TokenTimes):tr) = k t tr
67 parse9 k ts = happyError ts
68

69 -- (
70 parse10 :: (Token -> Parser r) -> Parser r
71 parse10 k (t@(TokenOB):tr) = k t tr
72 parse10 k ts = happyError ts
73

74 --)
75 parse11 :: (Token -> Parser r) -> Parser r
76 parse11 k (t@(TokenCB):tr) = k t tr
77 parse11 k ts = happyError ts
78

79 -- %eof
80 parse12 :: Parser r -> Parser r
81 parse12 k [] = k []
82 parse12 k ts = happyError ts
83

84

85 -- RECURSIVE ASCENT PART: STATE FUNCTIONS
86

87 -- core: [_ -> · E]
88 state0 :: (Expr -> Parser r) -> Parser r
89 state0 k ts = case ts of
90 _ -> rule3 (action3 g4) ts
91 where
92 g4 x = state3 (k x) (action1 g4 x) (action2 g4 x)
93

94 -- core: [_ -> · T]

A.2. RAD

95 state1 :: (Term -> Parser r) -> Parser r
96 state1 k ts = case ts of
97 _ -> rule5 (action5 g5) ts
98 where
99 g5 x = state4 (k x) (action4 g5 x)

100

101 -- core: [_ -> · F]
102 state2 :: (Factor -> Parser r) -> Parser r
103 state2 k ts = case ts of
104 (TokenInt _):tr -> rule7 (action7 g6) ts
105 _ -> rule6 (action6 g6) ts
106 where
107 g6 x = state5 (k x)
108

109 -- core: [_ -> E ·], [E -> E · * T], [E -> E · * * T]
110 state3 :: Parser r -> (Token -> Term -> Parser r) -> (Token -> Token -> Term

-> Parser r) -> Parser r↪→

111 state3 k1 k2 k3 ts = case ts of
112 t@(TokenTimes):tr -> state6 (k2 t) (k3 t) tr
113 _ -> k1 ts
114

115 -- core: [_ -> T ·], [T -> T · + F]
116 state4 :: Parser r -> (Token -> Factor -> Parser r) -> Parser r
117 state4 k1 k2 ts = case ts of
118 (TokenPlus):tr -> rule4 (k2) ts
119 _ -> k1 ts
120

121 -- core: [_ -> F ·]
122 state5 = id
123

124 -- core: [E -> E * · T], [E -> E * · * T]
125 state6 :: (Term -> Parser r) -> (Token -> Term -> Parser r) -> Parser r
126 state6 k1 k2 ts = case ts of
127 (TokenTimes):tr -> rule2 (k2) ts
128 _ -> rule1 (k1) ts

	Introduction
	Contributions

	Preliminaries And Related Work
	LL And LR Parsing
	(Generalized) Left Corner Parsing
	Recursive Ascent-Descent
	Scala-bison
	Happy and GHC
	Typed Continuation-Based Parsing

	State Generation
	Recognition Points
	About RAD States
	RAD-Completion

	Unambiguous Nonterminals
	Algorithmic Generation
	State Skeleton Creation
	Finalization – Transforming Actions

	Default Actions And Happy's Error Token

	Code Generation
	Algorithmic Generation
	Parsing a Nonterminal
	Parsing a Terminal
	Rule Functions
	States
	Top-Level Entry Points
	Semantic Actions

	GHC-Specifics
	Monadic Lexers
	Higher-Rank Types

	Evaluation
	Experimental Results
	Parser Only
	Parser-Lexer Combination
	GHC: Parsing Haskell

	LL-Ness

	Conclusion
	Future Work

	Generated Code Examples
	LALR
	RAD

