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Zusammenfassung
TypeScript ist eine beliebte Erweiterung für JavaScript, die es erlaubt auch typisiert

zu programmieren. Funktionen und Objekte aus externen JavaScript Modulen können
weiterhin eingebunden werden, erhalten aber keine Unterstützung durch TypeScripts
Typprüfung.

Um diese Unterstützung nachzureichen, können eigene Typdefinitionen geschrieben
werden, die die API der jeweiligen Modulen widerspiegeln. Gerade wegen der Existenz
der rund 5.000 handgeschriebenen Typdefinitionen ist TypeScript sehr beliebt. Diese
Zahl verblasst jedoch im Angesicht einer Gesamtzahl von ∼670.000 npm-Modulen,
die keine Typdefinitionen besitzen.

In dieser Arbeit präsentieren wir Inferium. Mit diesem Werkzeug lassen sich auto-
matisch Typdefinitionen aus JavaScript Modulen erzeugen. Unsere Ergebnisse zeigen,
dass Funktionstypen, Objekte, und sogar generische Parameter allein durch die Ana-
lyse von JavaScript Code inferiert werden können. Zusätzlich kann Inferium bereits
vorhandene Typdefinitionen einbinden, um die Analyseergebnisse zu verbessern.

Abstract
TypeScript is a popular extension for JavaScript, that allows statically typed

programming. Functions and objects from external JavaScript modules can be
imported, but do not get any support from TypeScript’s type checker.
To enable type checking support, type definitions that mirror the modules’ APIs

can be written by hand. TypeScript is popular especially because of the existence
of around 5,000 handwritten type definitions. This number, however, is vanishingly
small when compared to the ∼670,000 existing npm modules that do not have type
definitions.
To automate this manual task, we present Inferium. This tool can automatically

generate TypeScript type definitions from JavaScript modules. Our results show that
function types, objects, and even generic parameters can be inferred using only static
analysis on JavaScript code. Additionally, Inferium can use existing type definitions
to improve the results of the analysis.
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1 Introduction
JavaScript is one of the most used programming language today [1]. Being the
standard scripting language in the web environment, this is not likely to change
any time soon either. The opposite is the case: Since the introduction of Node.js,
which enables the development of desktop and server applications in JavaScript, its
popularity is rising more than ever.

Because of its history and its intended use as easy-to-learn programming language
for small UI scripts, JavaScript lacks features other programming languages have to
support the programmer in keeping large code bases maintainable.
To counter this shortcoming, different secondary programming languages have

since been developed, which offer additional programming features and often their
own ecosystem, but in the end compile their code into JavaScript.
The most popular of these languages is TypeScript. As the name indicates, its

main feature is the introduction of an optional type system, which not only permits
the TypeScript compiler to find type errors by static type checking, but also enables
editors and IDEs to support functions like code completion and refactorings.
TypeScript can use external JavaScript code, but the compiler will not be able

to provide type checking or editor support for it without additional type definitions
that are given to the compiler via a type definition file. Those files only declare the
interface of a JavaScript module and do not contain any implementation themselves.
Type definitions have to be written by hand, though a public repository exists,

that hosts type definitions for nearly 5,000 packages1.
These already typed packages, however, stand against more than 670,000 packages

that are currently registered on npm [2], with an average submission rate of around
400 packages that are published each day.

The manual creation of a type definition file is tedious and often error prone,
as APIs are often undocumented and supporting tools are limited. dts-gen [3], for
example, is a tool that generates simple type definitions for JavaScript code by
executing it and examining the resulting object. This provides a good starting point
for a type definition, but parameter and return types of functions are not analyzed
and therefore not annotated with helpful types.

The aim of this work is to create a tool that generates type definitions that are
helpful to the programmer.

The usual approach for type inference is the gathering of type constraints based on
the abstract syntax tree of a given code. The patterns and idioms that are used in

1https://github.com/DefinitelyTyped/DefinitelyTyped/
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1.1. CONTRIBUTIONS

JavaScript code make a purely constraint based inference unviable, because variables
are often created and updated in different contexts, and even have different types at
different locations.
To our knowledge, there is only one other tool that tries to generate TypeScript

type definitions by analyzing JavaScript code: TSINFER [4]. It’s flow-insensitive data
flow analysis is a definite improvement over dts-gen, but it lacks the precision, to
find more sophisticated types. It also does not take existing type definitions into
account and can not process Node.js packages.

For this work, we choose a similar path as TAJS [5], an analysis tool to statically
find errors in JavaScript code. It performs a flow-sensitive data flow analysis, with
the ability to precisely handle JavaScript objects. Unfortunately, it is only able to
perform a whole-program analysis and lacks the ability to analyze uncalled functions.
This, however, is vital for our purpose of annotating parameters and return values of
functions.

1.1 Contributions
We present Inferium, a tool that generates type definitions for Node.js packages. Our
multi-step process loads existing type definitions, performs an extensive data flow
analysis on the target package’s code, and generates TypeScript type definitions.
After giving a broad overview over JavaScript and TypeScript in chapter 2, in

chapter 3 we discuss the concepts our analysis uses to gather precise information
about variables and properties of objects.

In section 3.2 we give an overview of the internal graph representation of Inferium’s
anlysis.
We describe the allocation-site abstraction (3.3) and recency abstraction (3.5)

to model object allocations and introduce assignment-site abstraction (3.6) to
achieve partial path-sensitivity for our analysis.

In section 3.7 and 3.9, we introduce probes, elements we use to gather information
about parameters in functions and from which we later infer TypeScript types and
even generics.

Afterwards, we define the exact lattice for our analysis (3.8) and bring an example
for a node’s state transformation function (3.11).

In section 3.12, we describe how assignment-site abstraction can be used to achieve
path-sensitivity.

Section 3.14 describes how our analysis handles whole Node.js packages and argues
about the termination of Inferium’s analysis.

How types are extracted from the data-flow analysis is described in sections 3.8.4
and 3.15.
In chapter 4 we discuss our approach on implementing the heap for our analysis,

before we present the results of our work in chapter 5, related works in chapter 6
and our conclusion in chapter 7.
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2 Background

2.1 JavaScript
JavaScript was created by Brendan Eich for the Netscape browser in 1995 as an
easy-to-learn but powerful programming language. Its light syntax and dynamic
nature enabled fast development for the websites of the rapidly expanding World
Wide Web. Only available in Netscape, other browser manufacturers had to follow
suit and implement their own versions of JavaScript. Microsoft, for example, released
JScript for the Internet Explorer in 1996. Slight differences in implementation and
available features made scripts incompatible between the browsers. In 1997 the
language was eventually standardized under the name of ECMAScript. Since then,
every other year a new version of ECMAScript is released, adding new features.
The three paradigms JavaScript uses to become lightweight but stay powerful at

the same time are the lack of a static type system, coercion, and object orientation
that models inheritance via prototypes. We will give a short overview over these
features before discussing the way TypeScript tries to capture them in its own type
system.

2.1.1 JavaScript’s Type System

As mentioned before, JavaScript does not have a static type system. Rather, types
are handled exclusively at runtime and are independent of variables. In the following
code, for example, x is 0 and therefore of type number, the next line assigns a string
to y. In the third line, however, y is assigned to x. Before that assignment x was of
type number, while after that assignment x is of type string.

var x = 0;
var y = "I’m a string";
x = y;

A static type system would normally forbid such an assignment; in JavaScript this
is totally fine.

JavaScript differentiates between two kind of types: primitives and objects. Primi-
tives are handled as values that are copied when assigned, while objects are handled
with references. Assigning objects just copies the references that still point to the
same object.

7



2.1. JAVASCRIPT

undefined The undefined-type has only one member, namely undefined. Its the
result when reading unwritten variables or properties, and the return value of
functions that do not have an explicit return statement.

boolean The type containing true and false.

string The type of all string literals.

number The type containing all numbers. There are also the three special numbers
∞, −∞, and NaN.

The type of a variable can be acquired at runtime by using the typeof-expression.
typeof true, for example, results in the string "boolean".
Behind the object type certain special objects called exotic objects are hidden.

They are for all intents and purposes ordinary objects (including writable properties
and a prototype chain), but their behavior differs in certain situations. Functions for
example are the only objects that are callable (meaning they can be used in a call
expression like func(arg1, arg2)). All non-function-values, in contrast, will throw
exceptions when used in calls. They are also special in the way that typeof will
evaluate to "function" for them. All other objects will result in "object", including
the null-value.

// functions are first class citizens in JavaScript
// function expression
var f = function func1 () {

return "I’m a function "
}

// function declaration (func2 is hoisted and can be called
// even before the declaration)
function func2 () {

return "I’m a second function "
}

typeof f === " function "
typeof func1 == " undefined "
typeof func2 == " function "

2.1.2 Inheritance with prototypes
Objects also hold a special internal property called prototype. If the programmer tries
to read a property that does not exist on the targeted object, the object referenced as
prototype will be searched. This behavior will be repeated until either the property
is found or the prototype is null, which – by definition – has no prototype. The
prototype mechanism is used to mimic object oriented inheritance, but is, in fact,
more powerful. For example, prototypes can be changed for existing objects at
runtime.
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2.1. JAVASCRIPT

Objects can be created in two ways: Either by using an object expression, where the
properties are directly written into the expression, or by using a constructor, where
the constructor must initialize the properties. Any function can be a constructor as
the following code shows.

function Point(x, y) {
this.x = x
this.y = y

}

Point. prototype .distSq = function () {
return this.x * this.x + this.y * this.y

}

// Object created with constructor
var p = new Point (10, 10)

// p.distSq () == 200
// p.x == o.x == 10

// Object created with object expression
var o = { x: 10, y: 10 }
// o.distSq is undefined here

For the function Point, here used as constructor with the expression new Point
(10, 10), JavaScript will create a new empty object p, set its prototype to Point
.prototype, and use it as the this object for the call to Point alongside the given
arguments. Through the this expression the properties x and y of the object are
initialized. After the call, the newly created object is returned as the result of the
construction expression. A function, called distSq, is added to Point’s prototype
object. When it is called on the new object, JavaScript searches the object itself.
Because it only holds the properties x and y, its prototype is examined next. There
the needed property exists and is called with p as the this object.

Note that most objects will have a common prototype as the end of their prototype
chain. In many other languages like Java or C# this common object is called Object.
In JavaScript Object exists as well, though it is not the actual common object but its
constructor. Object.prototype, called {}, is the top object of most prototype chains.

The diagram in figure 2.1 shows the objects’ relationships of the code above.
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2.1. JAVASCRIPT

Function Function.prototype

{}

Point Point.prototype distSq

Object

p x, y

Figure 2.1: Inheritance via prototypes.
Dashed lines indicate properties, while normal lines show prototype relations. p is
the newly created object that has the properties x and y. Because it was created
using the Point constructor, its prototype field points to Point.prototype, which in
turn has the property distSq. All functions have the prototype Function.prototype,
including Function itself.

10



2.2. NODE.JS

2.1.3 Coercion
The last important concept of the JavaScript type system is coercion. To handle the
different types more easily, JavaScript will convert them dependent on the context
they are used in. A string that contains a number (like "-88") will be converted
automatically into a number primitive when used in a calculation. This conversion
is called coercion and frees the programmer from manually converting types, but the
rules are also complex and can lead to confusion. Every operator has basically its
own set of rules how to coerce its arguments.
The == operator itself does conversion on its arguments, which results in some

curious results. The following expressions are all true.
!"true" == !"false"
[] == ""
8 > null
[’x’] == ’x’

To also check for type equality the === operator exists. It first checks if both
operands are of the same type and compares them afterwards.
When used in boolean contexts (in conditions of conditionals or loops), types

are also coerced. Only the following values will be coerced to false: false, null,
undefined, 0, NaN, ’’, "". They are therefore called falsy. All other values are called
truthy.
The concept of coercion is important when talking about the correct type of

operators. Is it correct to say the * operator only takes numbers, when it might also
take two strings containing numbers, coerce them, and multiply them correctly?

2.2 Node.js
Until the release of Node.js, JavaScript was mainly used to control websites and was
running mostly in web browsers. Server-sided applications, with which JavaScript
front-ends often communicate, were written in other languages. Node.js changed
that by taking V8 – Google Chrome’s JavaScript engine – and equipping it with
built-in functions and additional libraries to enable programmers to write server-side
applications.
Additionally, the Node.js team released a package manager, called npm, which

enabled developers to encapsulate their code into packages, publish them into a
centralized database, and in turn use others’ modules within their own projects.
As JavaScript did not have its own module system (in the browser environment,

different script files and libraries were imported by referencing them in the HTML
code), Node.js introduced its own. Every file is itself a module. When a module
is loaded, the containing JavaScript code is executed. Other modules can then
be imported by using the provided require function and local definitions can be
exported by using an exports object, which is also implicitly available and different
for every module.
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2.3. TYPESCRIPT

lib.js
// import global module
var assert

= require ("assert")

// export function hello
exports .hello

= function(name) {
assert(name !== "")
return "Hello " + name

}

main.js
// import local module
var m = require ("./ lib")

// calling imported function
console .log(m.hello("you!"))

Local modules can be imported by using a rela-
tive path. Built-in modules like the above men-
tioned assert module will be imported by name.
Installed packages are downloaded and put in the
node_modules directory by npm. Node.js uses a sim-
ple algorithm to find the named modules.

If main.js, as shown right, want’s to import mod-
ule external_module, Node.js will cascadingly search
its parent paths for the node_modules directory. In
that directory it will search the named module and
– when found – import it.

project

node_modules

external_module
...

...

src

main.js

lib.js

package.json

2.3 TypeScript
TypeScript was released in 2012 by Microsoft to make the development of JavaScript
software more manageable. Its main goal is to enable static type checking by
introducing a static type system, while staying close to JavaScript, syntax wise. The
TypeScript compiler will therefore take TypeScript code, check the code for type
errors, and output JavaScript code.
A type of a variable is determined at its definition by either type inference or

explicit annotation. In the following TypeScript code, the parameter left and right
are explicitly typed by stating their types after a ":". The type of the variable result
is not explicitly specified, but rather infered implicitly by looking at the type of
the initialization expression, which is number in this case. The return type of the
function is infered similarly.

function subtract (left: number , right: string) {
var result = left - right
return result

}

12



2.3. TYPESCRIPT

In the code above right is annotated to be a string, which is not allowed as the
right operand of the subtract operator. Consequently, the compiler will generate the
following error message:

The right -hand side of an arithmetic operation must be of
type ’any ’, ’number ’ or an enum type.

Despite of the error, TypeScript is able to generate the corresponding JavaScript
code, which looks quite similar and has only the type annotations removed.

function subtract (left , right) {
var result = left - right;
return result;

}

2.3.1 Union types
Before we have a closer look at the basic types, we have to examine union types. As
shown in the first JavaScript example, variables can have different types in different
contexts. To be able to type variables that may be of different types, TypeScript
introduces union types, which combine the set of possible values of different types.

var x: number | string = 0;
var y: string = "I’m a string";

// no type error here , because x can be a number as well as a
string

x = y;

2.3.2 Basic types
TypeScript’s builtin types are modeled after JavaScript’s runtime types to stay as
close to the target language as possible.

In addition to the counterparts of JavaScript’s primitives (undefined, boolean, string,
symbol), TypeScript comes with a few additional types

any The any type can be assigned to every other type and every other type can be
assigned to any. Essentially, it disables type checking for a variable annotated
with any.

never This type indicates that an assignment of it does never actually happens at
runtime. It can be used as the result of functions that never return (because of
endless loops or because they always throw an exception).
Note, that for any type X the type never | X is equal to X.

null, undefined Like undefined, null can be null as only possible value. By default
every variable can implicitly be undefined or null, though with version 2.0,

13



2.3. TYPESCRIPT

the compiler option –strictNullChecks was introduced to TypeScript, removing
this implicitness. If a variable can be undefined or null it has to be explicitly
stated. In our analysis both types will be handled independently of one another.

void void is used as return type of functions that don’t return anything. Only
undefined and null are assignable to it.

object The object type contains all objects. Note that object differs from Object,
which denotes the class of JavaScript’s {} object.

In some situations it is handy to be more specific than using a primitive type. For
booleans, numbers, and strings TypeScript introduces literal types, which can only
hold one specific value.

var greeting : "Hello" | " Welcome " = "Hello"
var everything : 42 = 42

greeting = " Welcome " // ok
everything = 0 // error

2.3.3 Interfaces & Classes

Objects can be typed by writing their properties and their respective types in between
curly brackets.

var o: { x: number , y: number } = { x: 10, y: 10 }
o.distSq () // Error: Property ’distSq ’ does not exist on type

’{ x: number; y: number; }’.

Next to the type and existence of properties, they can also be annotated with
additional modifiers. TypeScript supports for example readonly to prevent writing
to properties.

To make the notation more convenient, object types can be named using interfaces
and classes. Classes will additionally create constructor functions and prototype
objects.

For checking the assignment of objects, TypeScript uses structural subtyping. An
object type S can be assigned to an object type T if S has at least all properties of
T and the types of these properties also are subtypes of their respective types in T.

14



2.3. TYPESCRIPT

// equivalent to { distSq: () => number }
interface Length {

distSq (): number
}

// "implements Length" forces Point to implement the distSq
method , but won’t change the prototype.

class Point implements Length {
readonly x: number
readonly y: number

constructor (x: number , y: number) {
this.x = x
this.y = y

}

distSq () {
return this.x * this.x + this.y * this.y

}
}

var p: Point = new Point (10, 10)
p.x = 39 // Error: x is readonly
var l: Length = p // Ok

// Ok, because of structural subtyping
var l: { readonly x: number } = p

2.3.4 Generics
TypeScript supports generics for functions, interfaces, and classes. Upper bounds can
be used to narrow generic types. Type parameters are always handled bivariantly
even if that can later lead to type errors at runtime, which is the primary reason
that TypeScript’s type system is unsound.

// T has to be an object
interface Box <T extends object > {

value: T
}

function boxed <T extends object >(v: T): Box <T> {
return { value: v }

}

boxed (8) // Error: number not assignable to object
var aBox: Box <{ a: number }> = boxed ({ a: 0 }) // Ok

15



2.3. TYPESCRIPT

// Ok, because of bivariance
var objBox: Box <{}> = aBox

// Ok, but aBox points to an empty object now
objBox.value = {}

2.3.5 Type Definitions
Code written in TypeScript can be checked by the compiler and converted into
JavaScript code. Because JavaScript is the target language, TypeScript can also call
functions and use objects that are defined in JavaScript code (by installed packages,
for example). When the compiler performs type checking, however, it knows nothing
about these functions and will report a missing definition or a type error. In fact
the require method, that can be used to import foreign and in JavaScript written
modules, has any as return type. This is a working but unsatisfactory compromise.
The compiler will not throw any type errors, but it will not report wrong usage either.
Additionally many editors are capable of providing type information about functions
and objects for TypeScript code to the programmer. This is especially helpful in the
case of modules that are written by other people and of which the programmer has
not much knowledge himself. The any type is not very helpful in that case.

To still use external JavaScript code with full support for type checking, TypeScript
has the ability to read so called type definition files (recognizable by the file ending
.d.ts). These provide types for global definitions and for the exports object of
modules, which can then be used by the compiler to offer full type checking support.
Type definitions look like normal TypeScript code but without the actual imple-

mentation of functions.
// Length and Point are not exported ,
// and are therefore not members of the imported module type.
// They will however be available as types
export interface Length {

distSq (): number
}

export class Point implements Length {
readonly x: number
readonly y: number

constructor (x: number , y: number)

distSq (): number
}

// hello is exported and is available on the import object
export function hello(name: string): string

16



3 Design
In this chapter we will present the design of our solution including the AST transfor-
mation into a node-based graph representation, the lattice that is used to describe
the state of our abstract interpretation of the Node.js package, the transfer function
that transforms the abstract state depending on the node type, and the final type
generation.

3.1 Overview
The goal of our project, Inferium, is to generate type definitions for a given Node.js
package.
To accomplish this we perform multiple steps to gather information about the

targeted package and then start an extensive data-flow analysis to determine in
which contexts which values can occur in which variables and properties.

We are only interested in the values that can occur as arguments, return values,
and those which are reachable through the exports object, because those will directly
be printed out in the final type definition. Objects and functions that are only
internally used by Node.js modules are, nevertheless, very important, because they
might influence the values of other variables that are printed later.
Inferium performs the following steps of which 5-8 are the steps of the actual

data-flow analysis.

1. Download the target package and its dependencies.

2. Load type definitions for dependencies that are already typed.

3. Parse the code of the main module into an AST and transform it into a graph
representation.

4. Create an analysis state that contains all predefined JavaScript objects and
functions.

5. Use this state to analyze the main module using the data-flow analysis. If
further modules are needed, load their code.

6. The resulting state is the state in which the client code gets control. It holds
functions which could potentially be called by the client code.

7. Find these user-callable functions and analyze them. Use probes as arguments
for each function to record how the arguments are used.

17



3.2. GRAPH REPRESENTATION

8. Join the state resulting from the analysis of the user functions with the user
state and repeat steps 5 - 8 until the user state doesn’t change anymore. Note
that return values can themselves contain new user-callable functions.

9. Extract the possible parameters and return values, condense them into types,
and print the TypeScript type definitions.

3.2 Graph representation
To analyze the JavaScript code, we transform the AST of the parsed code into
a graph representation. Each node in the graph represents the transformation of
one or more incoming execution states into a new execution state. Edges model
the potential control-flow between nodes. Control-flow means that the resulting
execution state of one node is given to another.

A single execution state models the full state of a JavaScript engine at a particular
moment in the execution of a program. Chapter 3.8 describes the execution state in
detail. Here we will give only a brief overview:

Expression Stack Some nodes produce temporary values that need to be passed to
subsequent nodes. In the expression !true, for example, the true is generated
by a node and has to be passed to the node that models the not operator,
which in turn will further process the true. There are several ways to model
this like additional data edges through which the values are passed directly
and independent of the control flow edges. In our analysis, we choose a stack
based approach, where the temporary values are pushed on and popped off an
expression stack.

Heap All objects and their properties that exist at a given moment are represented
as a partial map from object labels to object descriptors, which in turn hold
mappings from property names to property descriptors. We call this the heap.

This Every state has a current this value. It is only used in the this expression,
where it is the resulting value of the expression.

Lexical Frames The Lexical Frames are a chain of objects, which store the local
variables of the current scopes. Each frame refers to a different scope, starting
from the most outer scope. For example, a state for a function that is defined
in the top-most scope — the module scope — has at least two lexical frames:
the frame for the module-scope and the frame for its own function scope.

Each node in the graph performs a fundamental transformation of the execution
state, so that a minimal set of different nodes is required to represent a JavaScript
program. The following nodes exist:
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merge Joins all incoming states into a new state.

cond t1, t2 A conditional jump. Reads a value from the stack. If the value might
be truthy, control flow goes to t1. If it might be falsy, control flow goes to t2.
Note, that control flow can be passed to t1 and t2. Here we also perform a
filtering of the condition (See 3.12).

throw Takes a value from the stack and gives control to the next catch target if that
is not empty. The taken value is used as exception.

ret This node marks the end of a function and handles the return value.

end This node marks the end of a script and has no other purpose than to capture
the incoming execution state.

push L Pushes the literal L onto the stack.

binary Op Takes two values from the stack and applies the binary operator Op. The
following operators exist: !=, !==, %, &, *, **, +, -, /, <, <<, <=, ==, ===, >, >=,
>>, >>>, ^, in, instanceof, |

unary Op Takes a value from the stack and applies the unary operator Op. The
following operators exist: !, +, -, typeof, ~

pop N Erases the first N elements from the expression stack.

dup N Duplicates the topmost stack value N times.

dup2 Duplicates the two topmost stack values.

pushLex Creates a new object and adds it to the lexical frames.

readL S Reads the variable S in the current lexical environment.

writeL S Writes the variable S in the current lexical environment.

pushThis Pushes the this value of the current state onto the stack.

call N Takes a function object and N arguments from the stack and calls the
function.

invoke N Takes a value, a function object, and N arguments from the stack and
calls the function with the value as new this value.

allowObj Creates a new object and pushes it onto the stack.

allowArray N Creates a new array and initializes it with N values from the stack.

allowFunc F Allocates a new function object for function F .
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new F N Takes a constructor function F and N arguments from the stack, creates
a new object, and executes the function with the newly created object as this
object.

readP S Takes an object from the stack and reads the property S.

writeP S Takes an object and a value from the stack and writes the value to the
property S.

readDyn Takes an object and a property name from the stack and tries to read the
property on the object.

writeDyn Takes an object, a property name, and a value from the stack and tries to
write the value into the property of the object.

When an AST is transformed into a graph, the transformation process ensures
that every node gets additional information like a lexical environment and a catch
target. The lexical environment is a map from existing variable names to an offset of
the lexical frames and is used to determine the exact lexical frame on which local
variables are read. Consider the following function.

var x
var y

function test () {
var x

x = 42
y = 42

}

In function test, the outer lexical frame holds x any y, while the inner lexical
frame only holds x. When the two assignments in test are analyzed, the writeL nodes
need to know on which lexical frame to find x and y. This information is stored in
the lexical environment, which has offset 1 for x and offset 0 for y for both writeL
nodes in the above example.
The aforementioned catch target is either the merge node which starts the catch

graph of the nearest enclosing try-catch statement or empty in case there is no
enclosing try-catch statement.

Figure 3.1 shows a representation of the graph where all nodes that have a single
predecessor or a single successor are merged, so that one box represents multiple
consecutive nodes.
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try {
if (!x) {

x = {};
}
x.p = "Test"

} catch (e) {
console .log("Error!")

}

a A simple program with control flow
and a try-catch-block.

readL x
unary [!]
cond L11, L13

allocObj
writeL x
pop

merge[2 nodes]
readL x
push "Test"
writeP p
pop
jmp L41

catch-merge[1 nodes]
writeL e
pop
readL console
dup 1
readP log
push "Error!"
invoke (1 args)
pop

merge[2 nodes]
end

b The produced graph

Figure 3.1: An example program and its graph representation. Consecutive nodes
are shown in one box. The catch-merge is a normal merge node which
gets control flow when one of the nodes in the linked box might throw
an exception.

21



3.3. ALLOCATION-SITE ABSTRACTION

3.3 Allocation-site abstraction

As many other languages JavaScript supports local variables as well as dynamically
allocated objects.
Local variables normally exist only once per function frame (ignoring closures)

and are therefore easy to analyze via data-flow analysis, because operations that use
those variables will know exactly on which values of the program they operate.
For operating on properties that are part of allocated objects this is not true,

generally. Consider the following code.

var a
var b

for (var i = 0; Math.random () > 0.5; ++i) {
var o = { index: i }
if (Math.random () > 0.5) {

a = o
} else {

b = o
}

}

console .log(a.index)
console .log(b.index)

Not only do we not know to which object a or b actually point, we don’t even
know how many objects are created in the loop.

This is a major problem for the analysis, because it still needs to handle reads and
writes to the property index, which can exist potentially infinitely often. We can’t
create a new object for the analysis every time the analysis processes the allocObj
node either, because we still have to find a fixed-point of the analysis, which won’t
exist if we keep adding objects.

To handle this, we use the allocation-site abstraction [6] [7]. With that, we create
a single abstract object, labeled l, for every allocObj node in the graph. l represents
all objects that are possibly created at that particular allocation site.

In the above code we can now easily see that a as well as b are pointing to the same
abstract object while also potentially being undefined, which models the possibility
that they are not initialized at all.
With this technique, finding a fixed-point does not become impossible, because

both variables won’t change in a second round of analyzing the loop. Same is true
for the property index, which only exists once.
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3.4 Strong vs weak update

When dealing with abstract objects, where multiple potential objects are referred
to by one single label per allocation site, updating properties becomes a problem,
because the analysis does not know to which object a value is written. Unfortunately,
this leads to imprecision when combined with followup reads like in the following
code.

var a
while(Math.random () > 0.5) {

a = {}
a.prop = "test"
console .log(a.prop)

}

Here it is obvious that all objects that are created inside of the loop must have
a property prop, and that a.prop is always "test" when printed in the last line.
But because a always refers to all potentially created objects, the write to prop
immediately after the object allocation, has to make sure that a.prop can be
potentially absent, resulting in a.prop being undefined at the time it is printed. We
call this a weak update. Respectively, we call writes to objects where the analysis
can be certain that only a single object is written to strong update.

3.5 Recency abstraction

Because objects are allocated independently from their initialization in JavaScript,
it is important that writes to newly created objects are strong updates. In the last
section, we examined exactly such a situation. The object is allocated in one line
and initialized in the next line.

To enable strong updates on newly created objects we use the recency abstraction
[8]. The idea behind the recency abstraction is to use two abstract objects per
allocation site. One is the object that refers to the most recently created object at an
allocation site. We label it l@ and call it most recent object. The other object, which
we label l∗ and call summary object, models all other objects that were potentially
allocated at that exact same allocation site.
In our analysis, allocObj will take the incoming state and push a label l@ of

the most recent object for that allocation site onto the stack. At the same time,
the properties of the most recent object are joined into the summary object. To
differentiate between the new reference to l@ and the already existing references, all
existing l@ that had been in the incoming state will be changed to the summary
counterpart l∗.

Note that the recency abstraction is not the solution for all situations where strong
updates are possible.
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var a
if (Math.random () > 0.5) {

a = { prop: "hello" }
} else {

a = { prop: "world" }
}

a.prop = "bye!"
console .log(a.prop)

Here, a could potentially point to two different most recent objects and the
assignment of "bye!" to a.prop has to be weak. This leads to three possible values
that could be printed in the next line: "hello", "world, and "bye!". A strong update
of the property would have been desirable, because we know that a can only point to
one of the two objects and therefore the result of a.prop in the log expression must
be the same value which was assigned to it a line prior, regardless to which object a
actually points.

Our analysis does not support this kind of strong update, but in the Future Work
section 7.1, we describe a possible solution for this kind of problem.

3.6 Assignment-site abstraction
Every time branching is involved, our analysis has to analyze all branches, except it
can prove that the condition for a branch is not met.

In the case that we have to analyze all branches, we can still learn something from
the conditions of the branches. Namely, that the condition was met for the branch
that we have to analyze, which is called path-sensitivity.
Consider the following code, for example.
var obj = {}
if (Math.random () > 0.5) {

obj.a = "Hello World"
}

if (obj.a) {
console .log(obj.a)

}

After the first if block, we know that a can be "Hello World" or undefined. When
we enter the then branch of the second if statement, however, we could have learned
from the condition, that obj.a can only be "Hello World" because the condition
demands it to be truthy, which undefined is not.
But how can we filter the possible values of obj.a when the if condition in the

data-flow analysis only gets handed its two actual values and every reference to their
origin is lost?
A simple solution would be for the readP node to return a reference to obj.a,

which is handled like a normal value, instead of the actual value of the property. This
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reference could, for example, encode the base object and the name of the property.
When such a reference is then used in the context of a branching condition, we can

filter the values of the property to which the reference points to only those values
that would meet the condition. Because we handle these references just like normal
values, this would even work over multiple writes to other variables or properties, as
the next slightly modified version of the previous example demonstrates.

var obj = {}
if (Math.random () > 0.5) {

obj.a = "Hello World"
}

var condition = obj.a

if ( condition ) {
console .log(obj.a)

}

Here, condition holds the reference to obj.a instead of the two actual values.
When it is then used in the branching condition we can still enact the filtering and
have effectively changed both variables.

The problem with this solution is when the property a reference points to is newly
assigned. This is illustrated in the following code.

var obj = {a: "Hello World" }

var condition = obj.a

obj.a = "Wrench"

console .log( condition )

When condition is printed, it still points to obj.a, which holds an entirely different
value than at the time condition was assigned.

To solve this, we introduce the assignment-site abstraction. The basic idea is to
use references like we discussed before, but instead of letting them simply point
to object properties, we have to let them point to a property at the specific time
it is read, so that the value to which the reference refers is not affected when the
property itself is changed. We can easily see that multiple consecutive reads of the
same property without updates in between refer to the same value. Therefore, our
reference has to point to the value which a specific update wrote into a property.

To summarize, a read of a property has to return a reference to the last update of
the property. When the property is changed afterwards, the reference still points to
the exact same update.
For this we introduce a new label a for every site in our symbolic interpretation

where a property is updated, which we call assignment site. Properties no longer hold
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values directly but via labels to assignment sites. Like objects, values of assignment
sites are stored in the heap via a partial map that assigns values to assignment sites.

The above example has two updates to obj.a: the initial initialization a: "Hello
World" (a1) and the later update obj.a = "Wrench" (a2).

When condition is assigned, the read of obj.a yields a new reference that points
to the site where the property was last assigned, which is a1. Later the property is
updated and holds a2, but condition still points to a1 and a1’s value is stored in the
heap and can be accessed when condition is printed.

Because properties might get joined when two control flow branches merge, every
property and every reference respectively, has to be capable of holding multiple
potential assignment sites.

3.7 Probes
One key capability of our analysis is the ability to analyze functions that are never
called. This is important, because Node.js packages often do not have a main function
that executes the package’s relevant code but rather export functions, which the
user can call.
When an uncalled function is analyzed, the first question we have to answer is

what we pass as parameters. We can not simply omit them (which is equal to
passing undefined in JavaScript) because that would lead to subsequent failures
in the analysis and we wouldn’t learn anything about the types of the parameter,
either.
Instead, we pass a hypothetical value, which we call probe. A probe behaves as

if it could be any JavaScript value. It is truthy and falsy at the same time, for
example. To distinguish between multiple probes, we assign each probe a label p ∈ P
dependent on the site P where we introduce the probe into the analysis. For example,
each parameter of every function has its own probe label, so when we analyze a
specific function, we know exactly which probes to pass as arguments.
When probes are used in the analysis, we add constraints to a global constraint

system, which we later use to extract type information about the probe and with
that about, the parameter.

function f(param) {
return param - 7

}

In the above code for example, the probe p1 that is created for param is used in
a subtraction. When we reach the binary node, which represents the subtraction,
we see that its left value contains the probe p1. Because we need a number on the
left side of a subtraction, p1 behaves as if it were a number, while we also add the
constraint that p1 has to be a number to the global constraint system.
Not only parameters, but some nodes can also introduce new probes themselves.

What is, for example, the result when we read a property prop on a probe p?
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We are definitively interested in constraints about that result and so we create a
new probe and add the constraint, that a p.prop must result in this new probe.

As the following example demonstrates, however, we can not simply create a new
probe for every property of every probe!

function f(param) {
while (Math.random () > 0.5) {

param = param.prop
}
return param.prop

}

Given that param contains the probe p1, we create a new probe p2 when we process
the property access param.prop and assign this new probe to param. The next time
we analyze the loop, param can be p1 and p2. For p1, we already know that a read
of prop will result in p2, but for the read on p2 we have to create a new probe p3.
Because we create more and more probes inside of the loop, we will not be able to
find a fixed-point for this loop.
We solve this by introducing a probe per node that reads a property. With this,

the read on param.prop will always result in the probe p2. Subsequently, we will add
the constraints that a read of prop must result in p2 for p1 as well as for p2.
Because probes are handled as if they were real values, we can even infer generic

type parameters when we generate the type definitions in the final step of Inferium.
The above code would result in the following type definition.

interface I<T> {
prop: I<T>

}

function f<T>( param: I<T>): I<T>

3.8 Lattice
In the following section we describe the lattice that models the execution states. An
abstract state at a node N models the possible states a JavaScript engine might
have after executing the given program until node N . Our lattice is similar to the
lattice of TAJS [5], which itself is similar to a lattice for constant propagation with
the addition that we support assignment sites and probes. We define a lattice for
values, a lattice for the heap, and finally a lattice for the whole execution state.

The V alue lattice supports JavaScript’s primitives and objects. Because Type-
Script supports string-literal types, which often appear in union types with other
string-literals, our lattice can keep track of multiple different concrete strings per
value.

For a graph G, we let N denote the set of nodes, L the set of object labels that
correspond to allocation sites, A the set of assignment labels that correspond to
assignment sites, P the set of probe labels referring to probe sites, and S the set of
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possible strings. To keep track of functions and recognize recursion in the state, each
function definition has its own label f ∈ F ⊆ L.
We define two different value lattices:

NormV alue = Undef ×Null ×Bool ×Num× String × P(L)× P(P )

V alue = NormV alue× P(Ref)

Ref = A

While NormV alue only models actual values, V alue can indirectly refer to actual
values via references, which have to be resolved using the heap. A reference is simply
an assignment site label.
The components of V alue and NormV alue are defined as follows:

undef

⊥
Undef =

null

⊥
Null =

bool

true false

⊥

Bool =

number

0...−52... ... 42 ...

⊥

Num = P(S)String =

In JavaScript objects are handled by references and not by value. We model this
by using object labels in the V alue lattice, and by providing an additional partial
mapping in the state lattice from object labels to object descriptors, which we call
the Heap lattice. Normally, each object label references its own allocation site, so
that all objects that could possibly be created at an allocation site will have the same
label. As we discussed before, this makes it hard to precisely handle the initialization
of objects and we therefore use the recency abstraction [8]. For every allocation site
we use two abstract objects and two labels. The label l@ ∈ L@ ⊆ L refers to the most
recent object and the label l∗ ∈ L∗ ⊆ L to the summary object, which represents all
non recent objects. Allocation nodes that create new objects will transform all most
recent object labels of the incoming state lattice into summary object labels.
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NormHeap = (L∗ ↪→ SumObjDesc)

MRHeap = (L@ ↪→MRObjDesc)

Assignments = (A ↪→ V alue)

Heap = NormHeap×MRHeap× Assignments

The Heap lattice describes the heap of an execution state. It contains two partial
mappings for objects – one for the most recent objects and one for the summary
objects. Additionally, it contains a partial mapping that assigns values to assignment
sites.

Objects are further described by a partial mapping from possible property names
to properties, and two additional components: A property that is used to handle
reads and writes to the object when we can not determine the concrete property
name, and a set of object labels that model the possible prototypes of the object.

Most recent objects have their own descriptor, because they can also hold references
in their properties, which the summary objects can not.
Those object labels, that describe the allocation site of a function, also have an

internal binding to a function descriptor. This descriptor can either be the starting
node of the function’s graph representation, a built-in function, or an imported
function for which we only know the type. More information on how this descriptor
is used can be found in section 3.13.

MRObjDesc = (S 7→MRProperty)×MRProperty × P(L)

SumObjDesc = (SProperty)× Property × P(L)

For every property, we precisely capture all attributes that JavaScript has for its
properties, including if they can be modified by Object.defineProperty (Configurable),
are iterated over in a for in loop (Enumerable), and if they are assignable by an
update expression (Writable).

We differ between properties for most recent objects and summary objects. While
summary objects only hold normalized values (values that do not contain references),
most recent objects use only assignment sites to model which values they are holding.
The component Absent also models if a property might be absent. Properties

of most recent objects do not have the Absent component. For them we model
potentially absent properties by pointing to a specific assignment site aabsent, called
absent site, that always holds the value ⊥ and is only used to indicate that a property
might be absent.
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MRProperty = P(A)× Configurable× Enumerable×Writeable

SumProperty = NormV alue×Configurable×Enumerable×Writeable×Absent

The components of the property definitions are defined as follows.

>

conf notConf

⊥

Configurable =

>

enum notEnum

⊥

Enumerable =

>

write notWrite

⊥

Writable =
maybeAbsent

⊥
Absent =

By default, MRObjDesc’s property mapping maps to ({aabsent},⊥,⊥,⊥).
Similarly, SumObjDecs maps to (⊥,⊥,⊥,⊥,maybeAbsent) by default.
The default values are needed for the join of property mappings. When two object

descriptors are joined, we do not want to loose the information, that one of their
properties was not assigned. The absent gets removed, when a strong update is
performed on a property of a most recent object. In that case the mapping will be
updated to a new property that is not absent.

We can now define the state lattice which models an execution state of a JavaScript
engine at a given time in the execution of a program. A state consists of a Heap, a
Stack, a This value, and a scope chain, that holds the current and the outer scope
objects.

State = Heap× Stack × This× ScopeChain

Stack = V alue∗

This = V alue

ScopeChain = P(L)∗
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Finally the AnalysisLattice describes the analysis by assigning abstract States to
each node. The assigned states are meant to model the state before the execution
of the node.

AnalysisLattice = V ×N → State

V is a set of version names that are used to differentiate between different call
contexts. We use V = (F,N)∗, a stack of pairs of function labels and call nodes.

3.8.1 A join for State

An integral part of a lattice is the definition of the join operator t. States, for
example, are joined at merge nodes, which occur at any point where control flow
from different nodes must flow into the same target node.

The join for Hasse diagrams, Cartesian product, tuples and (partial) maps are
defined as usual.

Because our complete lattice is made from these basic building blocks, we do not
need to define our own join as it follows from the usual definitions.

3.8.2 Normalizing values

We use references to model partial path sensitivity in our analysis. References are
handled like values but do not contain their actual value themselves, but point to
them via assignment sites. The actual values for each assignment site are stored in
the Heap.

In the transfer function of most nodes, we are not interested in the references but
in the value they point to. Because nodes get their arguments from the stack and the
Stack lattice is a list of V alue, we need a function to convert V alue to NormV alue,
which normalizes the references to actual values. For this we introduce normalize .
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normalize : V alue×Heap→ NormV alue

normalize is defined as the least solution to the following equation.

normalize((u, nl, b, n, s, o, refs), h) w(u, nl, b, n, s, o,⊥)
t

⊔
r∈refs

normalize(hAssignments(r), h)

3.8.3 Summarizing most recent objects
When a node allocates a new most recent object with label l@, it also has to bring
the information about of the most recent object with the same label in the incoming
state into the summary object l∗ of the new state. We call this summarizing. A most
recent object descriptor is summarized with the summarize function, which maps
the properties in the descriptor using the summarizeprop function, which is defined
as follows:

summarizeprop : MRProperty ×Heap→ SumProperty

summarizeprop((sites, c, e, w), h) = (value, c, e, w, isAbsent)
with

value = normalizeprop(
⊔

s∈sites

hAssignment(s), h)

isAbsent =

maybeAbsent if labsent ∈ sites,
⊥ otherwise

3.8.4 Lattice members to TypeScript types
For the probes’ constraints and eventually in the type generation phase we have to
extract TypeScript types from the NormV alue lattice members. toTS defines the
transformation from lattice member to TypeScript types. These types and their join
are defined by TypeScript. The transformation is simple as every lattice member
has a pedant in TypeScript. Only the probes are problematic as they are additional
constructs for the analysis. Nonetheless do we need them in the resulting types to
be able to process them in the final step of Inferium, where we generate the type
definitions. We therefore extend the TypeScript type system to contain probe types.
Every probe type %p contains the label p of the probe it was constructed from. They
behave like literal types in the lattice structure of the TypeScript type system.

toTSUndef (x) =

undefinedts if x = undef ,
neverts otherwise
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toTSNull(x) =

nullts if x = null,
neverts otherwise

toTSBool(x) =

booleants if x ∈ {bool, true, false},
neverts otherwise

toTSNum(x) =

numberts if x ∈ {number} t N,
neverts otherwise

toTSString(x) =

stringts if x = >String,⊔
s∈x ”s”ts otherwise

toTSAbsent(x) =

undefinedts if x = maybeAbsent,
neverts otherwise

Note that the properties of an object’s prototype are simply joined with that of
the object itself. This is to simplify the type conversion, because the prototype
mechanism is more powerful than the simple inheritance that TypeScript supports.

toTSObj(o, h) =toTSObj(proto, h)t⊔
s 7→(p,_,_,_,a)∈m

{s : toTSNormV alue(p, h) t toTSAbsent(a)}ts

with (m, dyn, proto) = hNormHeap(o)

toTSNormV alue((u, nl, b, n, s, os, ps, h)) =
toTSUndef (u)
t toTSNull(nl)
t toTSBool(b)
t toTSNum(n)
t toTSString(s)
t

⊔
o∈os

toTSObj(o, h)

t
⊔

p∈ps

%p
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3.9 Probe constraints
To extract information about parameters, we use probes. These lattice members
behave like if they could be any JavaScript value and additionally record how they
are used. For this recording, nodes add constraints to a global constraint system if
they encounter a probe. When we generate type definitions in the end, we can use
these constraints to extract information about the type of parameters and return
values. Because the constraints are global, we cannot use lattice members inside
of these constraints, because they each would need a heap to be meaningful. We
therefore use only TypeScript types and probe types in this constraint system. We
use the following constraints.

write(p, s, ty) A type ty was written to property s on p
read(p1, s, p2) p2 was the result of a read of s on p1

useAs(p, ty) p was used in a context where a type ty was reuqired
call(p1, tys, p2) p2 was the result of a call to p1 with arguments tys
new(p1, tys, p2) p1 was constructed with new and arguments tys returning p2

3.10 Predefined TypeScript types
Inferium will load existing TypeScript definitions for dependencies of target packages.
For that, we first have to download their existing type definitions. If a package
is called packagename, for example, the packages’ type definition are in a package
called @types/packagename. This package might not exist, but we try to install it
nevertheless and ignore any error that may occur during the installation.

After all type definitions of dependencies have been downloaded, Inferium generates
a TypeScript file that imports all dependencies and assigns them to variables. Then
it uses the TypeScript compile, to analyze this file and gathers type information
about the imported dependencies as well as about the global object.
This information is compressed into a json file and handed to the core analysis,

which in turn loads the types from the file.
When we create the initial heap state, the type of the global object is traversed

and built into real lattice objects.
With this additional knowledge, we wanted to improve the analysis’ results and

also improve performance by avoiding the need to analyze JavaScript code that had
already been typed. In the end, however, we realized that converting every type into
its own heap object was not a viable solution, because each object needs a allocation
site, the amount of which has to be finite or the analysis loses the ability to terminate
because a fixed-point no longer exists.
For the initial global object, this was not a problem as the initialization of the

types does not contain a loop and therefore the allocation labels that need to be
created in this step are finite by design.
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For function calls that return objects, however, this is not the case. In the end
we had to limit the use of the imported types to primitives, excluding objects and
generics.
A possible solution might be to add another lattice member that is handled like

object labels, but instead of storing its properties inside the heap its behavior on
reads and updates is determined by a TypeScript type, namely the type it was created
from on a return of a function. The introduction of those objects enables us to only
use one of these per function call, limiting the amount of labels introduced into the
analysis. This concept is currently not part of Inferium and has to be explored in
future work.

3.11 Transfer functions
When we perform the data-flow analysis on the graph, each node has by design
only one incoming edge — with the exception of merge nodes. When processed,
The incoming state is then transformed into a new state, which is passed to further
connected nodes. There are three special cases:

• merge nodes are the only node type that can have multiple incoming states.
They join these together and pass them to the succeeding nodes.

• cond nodes have two successor nodes (t1 and t2). When the condition for the
jump is truthy, only t1 will be analyzed. If it is falsy, only t2 will get control
flow. If the condition could be both, t1 as well as t2 are analyzed (For more
information on conditional jumps see 3.12).

• If the procession of a node results in an exception, the control flow is not
given to the next regular node, but instead to the node that is responsible for
handling exceptions.

As an example, we describe the transformation process of a writeP node for
a property name s ∈ S, with an assignment site a and an execution state e =
(stack, heap, this, lexFrames).

1. Take value v and value o from the stack of the incoming state so that v : o :
rest = stack. v will be the value we write into the property s on the objects
pointed to by o.

2. Let o′ = normalize(o).

3. Let ty = toTSNormV alue(o′).

4. Coerce o′ to a set of object labels O ⊆ L. The coercion for object labels in
o is trivial. For the primitive values we have special predefined objects that
model Boolean, Number, and String that we add to O if needed. All probes PS
as well as undef and null are ignored in this step.
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5. If o contains null or undef , throw an exception by passing the state e′ =
(exp, heap, this, lexFrames) with an exception object exp to the merge node
that is responsible for handling exceptions at this point.

6. If O and PS are both empty, stop processing and do not pass any control flow
to the next node.

7. If |O|+ |PS| = 1, set isStrongUpdate to true, and to false otherwise.

8. Let (h∗, h@, ass) = heap

9. For each l ∈ L

a) If l ∈ L@, let (sites, configurable, enumerable, writable) = h@(l)(s). If
writable w write update h@(l)(s) = (X, configurable, enumerable,
writable). Where X is {a} if isStrongUpdate is true and {a} t sites if
isStrongUpdate is false.

b) If l ∈ L∗, let (value, configurable, enumerable, writable, isAbsent) =
h∗(l)(s). If writable w write update h∗(l)(s) = (value t o′,
configurable, enumerable, writable, isAbsent).

10. For each probe p ∈ PS add the constraint write(p, s, ty) to the global constraint
system.

11. Update ass(a) = v

12. Use the updated versions of h@, h∗ and ass to build new heap heap′ =
(h∗, h@, ass).

13. Pass new execution state e′′ = (o : rest, heap′, this, lexFrames) to the next
node.

3.12 Assignment site filtering
Earlier, we introduced assignment sites, which enable us to filter values that have
been written to properties or local variables.
In the following section we will present the filtering algorithm. It is used when a

cond node is processed.
The cond node has two target nodes. t1 for the case that the condition c is truthy

and t2 for the case that the condition is falsy.
When we determine that the condition can be truthy as well as falsy, we have to

analyze both, t1 and t2. Instead of handing the exact same state to both nodes, we
filter all assignment sites that we can reach through the reference in condition c, so
that the remaining values in the reached assignment site have the expected value.
Figure 3.2 shows the pseudo code for the filtering of a value. expected would be

truthy for the then branch and falsy for the else branch.
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1 l e t marked_sites = {}
2
3 count_expected ( value , heap , expected )
4 count = 0
5 l e t (u , nl , b , n , s , os , ps , r e f s ) = value
6 f o r ( c ∈ {u , nl , b , n} ∪ s ∪ os ∪ ps ∪ r e f s )
7 i f ( c couldBeheap expected )
8 count += 1
9 return count

10
11 mark_site ( s i t e , heap , expected , v i s i t e d )
12 i f ( s i t e ∈ v i s i t e d )
13 return
14
15 l e t va lue = heapAssignment( s i t e )
16 i f ( mark_value ( value , heap , expected , v i s i t e d ∪ { s i t e }) )
17 marked_sites t= s i t e
18
19 mark_value ( value , heap , expected , v i s i t e d )
20 l e t n = count_expected ( value , heap , expected )
21 i f (n > 1)
22 return f a l s e
23
24 l e t (_,_,_,_,_,_,_, r e f s ) = value
25 f o r ( r e f ∈ r e f s ∧ r e f couldBeheap expected )
26 mark_site ( r e f , heap , expected , v i s i t e d )
27 return t rue
28
29 f i l t e r _ c o n d i t i o n ( value , heap , expected )
30 mark_value ( value , heap , expected , {})
31
32 f o r ( s ∈ marked_sites )
33 remove all elements from heapAssignment ( s ) that can not be expected

Figure 3.2: Algorithm for the filtering a condition.
filter_condition takes a value and filters all values that can not be expected. expected
is either truthy or falsy. If an assignment site can be expected because of multiple
V alue components, we can not conclude anything about the site. couldBeh checks
for a member of the V alue lattice if it might be truthy or falsy depending on expected.
References are resolved via heap h and recursively checked for their value.
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3.13 Function calls
In JavaScript, calls have a complex semantic, which we can model precisely with
our analysis. When a call node is processed, it pops a value o from the stack of
the incoming state, normalizes it, and filters it for object labels O ⊆ F , that have
an internal function descriptor attached. This descriptor decides how the function
object is processed.

Built-in functions Built-in functions are those that are defined by the core analysis’
code itself. The built-in function gets handed the arguments that the function
was called with and the heap of the incoming state. It performs its internal
functionality and returns a new heap and a return value, which are both used
in the execution state for the next node.
Currently the only built-in function that Inferium supports is require, a function
defined by the Node.js module system and which is used to load modules from
within another module.

Signature functions For externally loaded types of functions, we attach a signature
function descriptor to the function label. It holds the type of the function as
it was defined in the type definition. The idea was to transform the arguments
into TypeScript types and perform a full type inference with the function call.
The inferred return type could have then been converted into a lattice member
and used in the analysis. The full type inference algorithm of TypeScript was
out of scope for this project, though, and so we currently only perform a minor
type check and retire to any as return value if we encounter more complex
types.

Code-defined functions If the JavaScript code defines functions itself, their internal
code is also converted into the graph representation. Graphs for functions
always have an entry node that is the internal function descriptor of the
allocation site’s label. If the call node encounters such a label, it gets this entry
node and directs control flow the node. As said before, the AnalysisLattice
describes the state of the analysis as a whole by assigning a state to each node.
In fact, it assigns multiple states to each node, as a version name v ∈ V models
the call context of the state in the node. When we perform a function call with
the function label f at call node n where the incoming state was assigned in the
AnalysisLattice by v × n 7→ s, we do not pass control flow to the same v but
we add (f, n) to create a new version name. With this our analysis becomes
context-sensitive.
Now, recursion becomes a problem, because it might lead to an ever growing
call context. We counter this by checking if the called function f is already part
of the call context. If so, we have detected recursion at node n1 with version
name v where n2 is the call node that called f before. Instead of creating a
new version name, we pass control flow to the node that n2 passed control
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flow to when it called f . To have an execution state for the node after n1, we
simply take the outgoing state of n2.

Additionally, we have to handle probes that might be in o. The implication of
a probe in this context is that a user-given function was called. We record this
information by adding a call constraints to the global constraint system. For every
probe p ∈ o, with the to TypeScript types converted arguments tys, and the return
probe r, we add call(p, tys, r) to the global constraint system.

The return probe r exists once per call node and models the return value of the user
function, about which we know nothing. It enables the analysis to gather information
about the subsequent use of the return value. Because we bound it to the probes in
o with the call constraint, we can retrieve it later from the constraint system and
extract information about the return type of the probes in o.

3.14 Analyzing packages
After having described the data-flow analysis, in this section we will show how exactly
it is used in Inferium.

When analyzing a JavaScript package, one major information is missing: how the
package is used by the user. We therefore can not perform a whole program analysis
but have to analyze the module code and contained functions separately.

The first step Node.js performs when a JavaScript module is imported, is to execute
its top-level code. This code does initialization and especially populates the export
object. This is also the first step we perform.
We construct an initial heap that contains all the required objects and functions.

We do this partly manually and partly automatically. The global object, for example,
is solely constructed from the predefined types we imported, which was described in
section 3.10.

This newly constructed heap is then used in the first execution state for entry node
of the graph of the top-level module code. We run the analysis once and extract the
resulting heap, which contains the exports object, that holds all the exported objects.

After this step we should have achieved similar results to dts-gen [3]. No functions
have yet been analyzed, so we have no information about parameters and return
types.
The heap we extracted from this initial phase would go to the user code, about

which we know nothing. We call this heap the user heap. We expect, however, that
the user code will call a function the package exported, so we have to analyze these
functions.
To determine which functions we have to analyze, we examine the exports object

and extract all function objects we can reach from it by recursively traversing the
properties.

We then assign a probe to each parameter of the found functions and one by one
analyze the functions’ code with our analysis. As arguments we used the previously

39



3.14. ANALYZING PACKAGES

assigned probes and the user heap is used as heap in the execution state. After each
finished analysis, we join the resulting heap with the user heap to build the new user
heap for the next function.

Additionally, we examine the returned value for further functions. These functions
could again be called by the user and have to be analyzed.

Note that the top-level module code is only analyzed once, which models that it is
only executed by Node.js once the module is imported.
We repeat this process until we find a fixed-point for the user state. This means,

that none of the functions we have to analyze changes the user heap anymore.
We can now extract the type definitions from this user heap.

3.14.1 Termination
An important property of a data-flow analysis is that it terminates. The usual
requirement for this would be that the lattice is of finite height and the transfer
functions monotone. This, however, is not the case for our lattice as it contains
multiple power sets and mappings. Like TAJS [5], we argue informally that the
analysis terminates nonetheless because of the following observations.

• There are only a limited number of allocation sites and assignment sites if the
set of possible version names is finite. This limits the height of the power set
lattices for both site types as well as the height of the mapping lattices.

• Our analysis can handle an unlimited amount of different strings per value,
and strings are not limited like sites are. We argue that there is still a finite
number of strings for a given program, because each string has to be defined
in the code. With this argumentation, we have to make sure that there is
no operation in the analysis, that can combine strings into new ones. At the
moment, this could only happen in the transfer function of a binary + node, so
this operation has a check only to concatenate its two arguments if both are
specific strings. Otherwise, the result is the > element for strings.

• The ScopeChain is limited in size by the maximal nestedness of functions in
the program code as it is not possible to programmatically extend the scope
chain.

• The set of possible version names V must also be of finite size, because there
are only a limited number of nodes N and a limited number of functions F
and we prevent that the same f ∈ F can occur twice in the same version name
(see recursion in 3.13).

Together with the monotony of our transfer function, these observations ensure
that a fixed-point can be found and that our data-flow analysis terminates.
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Because the user heap is always joined with the resulting heaps of analyzing a
function, the user heap only gets greater. Because Heap has a finite height — as we
argued above — a fixed-point can be found as well and the whole analysis terminates.

3.15 Generating type definitions
After we found a fixed-point for the user heap, we enter the final phase of Inferium
and generate real TypeScript type definitions.

Because we are primarily interested in the type of the exports object, we can simply
use toTSObj to transform our lattice representation into a TypeScript type. The
printing of these types is trivial, but we also introduced the probe types, into which
toTSNormV alue converts probes.

These probe types can each be printed as its own generic type, but we also need an
object or a function type where we can declare the generic type variable on. There
we can also print out their upper bound, which is defined by constraints in the global
constraint system. A type %p for probe p with the constraint useAs(p, number) has
the upper bound number, while a constraint read(p, ”x”, p2) would upper-bound %p

to an object type with a property x which itself has the type %p2 .
Additionally, some of these generics are superfluous. In the following example, T is

not needed and could be replaced by its upper bound.

function test <T extends number >(p:T): void

The upper bound β(p) for the probe p, is extracted from the constraints with the
following rules.

write(p1, s, ty) 7→ β(p1) v {s? : ty}
read(p1, s, p2) 7→ β(p1) v {s : %p2}
useAs(p1, ty) 7→ β(p1) v ty

call(p1, tys, p2) 7→ β(p1) v tys→ %p2

new(p1, tys, p2) 7→ β(p1) v new(tys→ %p2)

Note that the write constraint forces β(p1) to accept a property s with type ty.
This is because β(p1) only needs to accept that its property s gets written. It does
not have to provide a value when s is read. The question mark indicates that, the
property is allowed to be absent.

Because we create a new probe for every node that performs a property read, we
have multiple probes per property name that have read constraints with the same
probe p. Take the following code, for example.
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function f(obj) {
return obj.prop - obj.prop

}

When obj has the probe p1, the left obj.prop results in p2 and the right obj.prop
in p3, then the following constraints are recorded.

read(p1, ”prop”, p2)

read(p1, ”prop”, p3)

useAs(p2, number)

useAs(p3, number)

Because of the definition of β, p2 and p3 get intersected in the TypeScript type
system. To reduce the number of probe types, we use a union-find algorithm to merge
all probe types p1, ..., pn that occur in the same intersection type p1 u ... u pn and
replace them with a new probe type pu. The upper bound of pu is the intersection
of all upper bounds from the original probe types: β(pu) = β(p1) u ... u β(pn)
Before we can print the type definitions, we have to determine which objects

and which functions are going to have which generic parameters. The probe types
essentially are the generic types but are currently unbound. In the last step we have
to find those objects and functions that bind these generic types.
We do this by recursively traversing all object types, beginning with the exports

object, and looking at which probe types are used in inner types. For object types, if a
probe type can be reached through two or more properties, we also bind the respective
generic type as generic parameter. For functions, we look into the parameters and
the return type. Additionally, we also bind those generic variables that are used in
direct types of parameters.
The following example demonstrates this.

function create () {
var store
return {

set: function(x) { store = x },
get: function () { return x }

}
}

After the analysis, we know that the probe type p, that was used as argument for
set, flows to store and then to the return of get. The resulting type definition with
the unbound p looks as follows.
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interface I {
set(x: p): undefined
get (): p

}

function create () : I

Now we look into I and see that p is used in get as well as in set. So we bind p
to I. Because I is used in create and create is a function, we also bind the variable
there. For T as generic type name for p, the result looks like follows.

interface I<T> {
set(x: T): undefined
get (): T

}

function create <T >() : I<T>

This procedure, however, does not work in some situations where probes flow into
internal variables that are further outside of the scope than they are exposed to the
API by. The following, slightly changed example shows the problem.

var store
function create () {

return {
set: function(x) { store = x },
get: function () { return x }

}
}

This example yields the exact same type definition, which is not correct. Because
store is a global variable, it can not be generically typed but must be set to its
upper bound, which is any.
A possible solution to this problem would be to save all probe types that are in

local variables of a function in the function’s type. When a function has a local
variable with a probe type the respective generic type must also be bound to the
function’s type.
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4 Implementation
Inferium employs a multi-stage process to generate type definitions for a given Node.js
package. Given the name of a target package we perform the following steps:

1. We use the Node.js’ package manager npm to download the target package
and its dependencies into a temporary directory. Existing type definitions for
these packages are downloaded too.

2. We generate a simple TypeScript file that imports all dependencies of the
target package. This file is then given to the TypeScript compiler who infers
types for the exports of all dependencies, that already have type definitions.
Afterwards we can use the API of the compiler to extract these type definitions
and print them into a single json file. The standard library of TypeScript
alone, which models the base JavaScript functions and the global object, yields
around 1,200 interface and function types.

3. The resulting json file is then read by the core program of Inferium and used
in the analysis of the target package. When a fixed-point is found for the
user state, the parameters and return values of all user-accessible functions are
analyzed for their types and printed into a type definition file. Both, analysis
and printing, are implemented in around 8,000 lines of Scala code.

In the following section, we will discuss the implementation of the Heap, which
has to store all existing objects and assignment site mappings.

4.1 Heap
One important component of the analysis is the execution state, which is modeled as
described in section 3.8. Stack, This, and ScopeChain have a low memory footprint
and are efficiently implemented using immutable shared data structures, which are
part of the Scala Standard Library [9].

In principle, the heap is nothing more than a map from allocation sites to object
descriptors and a map from assignment sites to values, which would predestine it for
an immutable map, which is already available in Scala. Unfortunately, we have to
join states at merge nodes, regularly. An operation that is costly, because the map
has no further information about which mappings have changed. With around 1,000
objects at the beginning of the analysis, this would result in a merge of thousands of
objects after every simple if statement.
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To improve the merging capabilities, we use a heap implementation that is based
on the observation that only those objects have to be merged which were updated
since the last common node.

var a = { p: "x" }
var b = { p: "y" }

if (Math.random ()) {
b.p = true

} else {
b.p = false

}

In the above code for example, we only have to merge the object b points to at
the merge node after the if statement. The object a points to has not been updated
since the branching.

Instead of using a single mapping of allocation-sites to objects as well as a single
mapping for the assignment sites, we use a chain of heap chain elements where each
element e has mappings for objects and assignment sites as well as a parent heap
chain element p1(e).

When we want to access a certain object objh(l) with the allocation site l in heap
h, we look if the object mapping me of the current chain element e = elem(h) is
defined for l. If a mapping exists, we use the mapped object. If not, we look into
the heap element’s parent p1(e) and so on until we find a mapping for l in the nth
parent pn(e).

objh(l) = obj(l, elem(h))

obj(l, e) =

me(l) if l is defined on me,
mp(e)(l) otherwise

If we want to update an object referred by l on a heap h, we use the same procedure
to get the abstract object o = objh(l), perform the update on o to get o′, update
the mapping m of e = elem(h) to get m′, where m′(l) = o′, and create a new heap
element e′ which has the same parent as e and use it in a new heap h′. This way we
get o′ when we try to access objh′(l).
Note that each heap chain element has not only two mappings for the abstract

objects, but another one for the assignment sites.
When we want to join two heap elements e1 and e2, we can simply find the most

recent common ancestor c(e1, e2) of e1 and e2. To perform the actual join we have to
transform both heap elements into new elements e′1 and e′2 so that p1(e′1) = p1(e′2).
This transformation is done by merging the mappings of a heap element with that of
its parents using squash until the next parent is the common ancestor.
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squash : (a ↪→ b) 7→ (a ↪→ b)→ (a ↪→ b)

squash(m,mp) = l 7→

m(l) if l is defined on m,
mp(l) otherwise

After we have calculated e′1 and e′2, we can join their mappings m′1 and m′2 to
create a new heap element et with mapping mt.

mt = l 7→ (obj(l, e1) t obj(l, e1))
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5 Evaluation
To our knowledge, Inferium is the only tool that can generates TypeScript type
definitions for real world Node.js packages and that generates more specific types
than dts-gen [3], which sets all parameter and return types to any.
Our goal was to generate TypeScript type definitions that are helpful to a pro-

grammer who uses a Node.js package that was not typed. The definition of helpful
is key to evaluate the performance of Inferium.

Because TypeScript type definitions are not meant to be fully correct, it becomes
even harder to define helpfulness. There are always constructs that can not fully be
typed even if TypeScript is continually updated to enable more fine tuned definitions.

The only point of reference are existing type definitions that were written by hand
with the intent to be helpful.

To evaluate Inferium, we analyzed npm packages that had already been typed by
hand and of which the type definitions were publicly available. We than compared
the results of Inferium with those hand written type definitions.
As Inferium currently prints type definitions in a strict clinical way, we are not

interested in the syntactical structure of the generated type definitions but rather in
the generated types themselves.
We use the following indicators to evaluate our generated type definitions.

Exported Properties The percentage of properties that are directly on the exports
object or transitively reachable from it. Here other tools ([4], [3]) reach usually
a high percentage, because they execute the Node.js package and examine the
resulting exports object instead of analyzing the top-level module code like
Inferium does.

Expected Properties The percentage of properties that are part of types on function
parameters. These are not easily obtainable by scanning the exports object,
because their existence is only given implicitly by the usage of the parameters.
Inferium uses probes to find them (3.7).

Provided Properties The percentage of properties that are part of function return
types. Like Expected Properties, these are only defined implicitly in the
JavaScript code and have to be found by analyzing functions.

Correct Types The percentage of property types that were correctly inferred by
Inferium.

49



Bloated Generics The percentage of functions that have overly extensive generic
type parameters. Inferium has the characteristic to generate too many type
parameters for certain functions. With this we want to count the severity of
this problem.

Internals The number of additional internal properties that have been found.

We used 12 small packages to apply our indicators. The results are shown in figure
5.3. Inferring types for the exports object works quite well, as the top-level module
code often only consist of populating the exports object.
For the types themselves, a lot of precision is lost in the type generation phase.

While the data-flow analysis was keeping the objects separate from each other, the
type generation has the task to merge them together to produce readable types. As
the merging algorithm that is currently used in Inferium uses a lot of approximation,
much information is lost.
On the other hand, a lot of internal properties are exposed by Inferium. Because

JavaScript does not know the concepts of private properties and we have no heuristic
to classify them, they appear in the type definition — here most notably in animation-
frame.
Most object types that where inferred for parameters (ExpP) where actually

supertypes of string or array. When forEach is called on a parameter, a type for
forEach is inferred, but there is no other hint, that the parameter’s type should
actually be array. We would need further heuristics to make this connection.
Three notable packages are bezier–easing, methods, and ski.
The definition for bezier–easing is shown in 5.1. The idea of the package is to

provide two coordinates and return a function, that eases between (0, 0) and (1, 1)
using a bezier-curve according to the provided coordinates. In the type definitions,
this is the interface I40, which correctly takes a number and returns a number. In the
case that the two provided coordinates are both on the line between (0, 0) and (1, 1),
however, a simple identity function, that models the linear function, is returned.
Inferium will infer different types for both functions and rightfully turn out with a
generic identity function as interface I41 is. Rightful as it may be, it is not helpful,
because it exposes implementation details to the package user.
methods has the same problem. It exports an array of strings, but Inferium exposes

the details of this array including the exact mapping of the 28 values.

For some packages like ski the dataflow approach works remarkably well and
gathers the correct constraints to correctly type the functions of the SKI calculus
[10] as shown in figure 5.2.
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interface I40 {
(x: number): number

}
interface I41 {

<T6 >(x: T6): T6
}
interface I39 {

(mX1: number , mY1: number , mX2: number , mY2: number): I40 |
I41

}
declare var expr: I39
export = expr

Figure 5.1: Type definitions for the package bezier–easing.

export declare function S<T, S, U>
(x: (z: U) => (y: S) => T, y: (z: U) => S, z: U): T;

export declare function K<T, S>(x: T): (y?: S) => T
export declare function I<T>(x: T): T;

a Original type definitions form DefinitivelyTyped

interface I13 <T1 , T4 > {
(_?: T4): T1

}
interface I12 <T1 , T4 , T8 > {

(_?: T8): I13 <T1 , T4 >
}
interface I14 <T4 , T8 > {

(_?: T8): T4
}
interface I15 <T9 > {

(): T9
}
interface I11 {

S<T1 , T4 , T8 >
(x: I12 <T1 , T4 , T8 >, y: I14 <T4 , T8 >, z: T8): T1

K<T9 >(x: T9): I15 <T9 >
I<T10 >(x: T10): T10

}
declare var expr: I11
export = expr

b Correctly generated type definitions

Figure 5.2: Type definitions for the package ski.
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Package ExpP ExpC PP CT BG I
absolute 0% (1) - - 0% (2) 0 0

animation-frame 0% (1) 0% (1) - 0% (1) 0 12
base64-js 100% (3) - - 100% (2) 0 0
bech32 100% (4) - 100% (2) 83% (12) 2 0

bezier–easing 100% (1) - 100% (1) 83% (6) 0 0
btoa 100% - - 100% (2) 1 0
exit 100% (1) - - 100% (2) 0 0
fresh 100% (1) - - 66% (3) 0 0

methods 100% (1) - - 0% (1) 0 0
pure-render-decorator 100% (1) - - 100% (1) 1 0

sanitize-filename 100 % (1) 100 % (1) 0% (1) 75% (4) 1 0
ski 100% (3) 100% (1) - 100% (8) 0 0

Figure 5.3: The results of the evaluation
From left to right: The package name (Package), Exported Properties (ExpP),
Expected Properties (ExcP), Provided Properties (PP), Correct Types (CT),

Bloated Generics (BG), Internals (I).
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6 Related Work
As JavaScript is a popular programming language some other projects have already
explored the possibility of statically analyzing JavaScript code.

With TAJS a framework for statically analyzing JavaScript code exists that is even
able to analyze large JavaScript libraries [5]. The project transforms JavaScript into
an assembler-like representation and performs a flow-sensitive, context-sensitive data
flow analysis. From the values that are found in variables and properties, simple
types can be inferred. However, this does only work for functions that are called
when analyzing the top-level module code.

No information is won about parameters and return types that are not reachable
in the call graph. Andreasen et al. [11] shows that even many complex JavaScript
idioms can be analyzed by static analysis.

Feldthaus et al. [12] introduce TSCHECK, a tool that takes existing type definitions
and checks if they apply to the targeted JavaScript implementation. For this, the
code is executed with a JavaScript engine and the resulting state of the engine is
compared to the type definition.

Next to the structural equality, which checks the existence of classes and functions,
TSCHECK also starts a deeper analysis of the code inside of the functions. Even
generic types are checked.

TSINFER [4] is another tool that tries to generate type definitions from JavaScript
programs.

It also uses a data flow analysis to compute the values of variables and properties,
but in a two step manner.
First, it starts a top-down analysis, to see which values flow into which variables.

Afterwards, it reverses the process and uses a bottom-up data-flow analysis to see
what type requirements different variables have. Their analysis is flow-insensitive
and only produces simple types. No generics are inferred.

Chandra et al. [13] presents a tool, that analyzes JavaScript programs and infers
types to compile the code into a static program. They are also able to compile
libraries that include uncalled functions.
To analyze these functions they construct a set of constraints from the abstract

syntax tree and solve it. Generic types are only available for handwritten types and
cannot be inferred.
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Originally, there were no explicit classes in JavaScript, and classes had to be
simulated by functions and the prototype chain.
Today JavaScript has a syntactical construct that mimics classes, even if the

underlying semantic still uses prototypes and functions.
To provide class information about code that doesn’t contain explicitly defined

classes, Eshkevari et al. [14] investigate ways to recognize classes and inheritance
relations from such code.

There are also other languages that support extensive type systems. Chaudhuri et
al. [15] present the type system of Flow. Similarly to TypeScript, Flow offers the
option to annotate variables with types. For the check, a module-wide constraint
graph is constructed and checked for violations of certain rules. Especially, type
narrowing is built in well. Types can change in contexts where they can only be
certain values, as the following example demonstrates.

function test(x: number | null) {
if (x)

// x cannot be null and was narrowed to number
return x - 3

return 0
}

At first glance, it also looks as if Flow could infer even generic types, but it cannot.
Also functions are handled context-insensitive in the constraint graph.
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7 Conclusion
Statically analyzing JavaScript is problem to begin with, but is even harder for
functions that are never called. Not knowing what values can occur, limits the ability
of the analysis.
With probes we showed that it is possible to extend the lattice of a data-flow

analysis to accommodate elements that model incoming values of arguments. We
were able to comprehend the flow of user input through the program and generate
even generic types for functions and interfaces.
With the introduction of assignment-site abstraction, we showed a way to model

path-sensitivity in a data-flow analysis that can handle updates of variables and
properties, even if the missing strong update capabilities of Inferium prevented the
concept from having any real impact on the results.
Working with TypeScript’s type system proofed to be very challenging. Because

TypeScript’s goal is to provide types for as many common JavaScript patterns as
possible, its type system is more extensive than that of other programming languages.
Union types, intersection types, and generics are a complex mix to handle and we
didn’t even consider the conditional types that were introduced by TypeScript 2.8
[16]. Bringing all these types into the analysis was a hard problem, and the approach
we chose of converting types into lattice members, produced more problems than it
solved.

We still believe that a data-flow analysis is the correct path to gather precise type
information for dynamic languages like JavaScript.

There is a long way to go until Inferium or any other tool will be able to generate
really helpful type definitions. Nevertheless, we believe that Inferium provides a good
basis to build upon for a JavaScript type inference.

7.1 Future Work
As the results show, Inferium has a lot of potential for improvement. The basic idea
is working, but the details have to be refined, before the results are anywhere near
helpful to programmers.
There are three major parts in Inferium that need improvement: the handling of

predefined types, the data-flow analysis itself, and the type generation.

For the predefined types, we chose an approach where we converted the types into
lattice members to bring them into the analysis. This worked fine for the initial
existing global object but failed when we tried to convert return types into lattice
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7.1. FUTURE WORK

members because objects are bound to allocation sites, of which only a finite number
are allowed to exist so that the analysis terminates. Future work has to find a
way to handle these types inside of the analysis. Maybe, a possibility would be to
introduce a new lattice member to NormV alue that represents objects that where
only defined as types. Because a join on of them would result in the join of the
underlying TypeScript types, no allocation sites would be needed.

For the data-flow analysis, the most important improvement that is needed, are
strong updates for more cases than what recency abstraction solves. In the following
code

var obj = Math.random () > 0.5? {} : {}
obj.prop = "Hello"
console .log(obj.prop)

Inferium fails to perform a strong update on obj.prop because it doesn’t know
exactly to which object obj refers. Even if it is ambiguous to which object obj points,
we know that after obj has been assigned, in subsequent usages it always refers to
the same object.
We see an opportunity in constructing the single static assignment form of the

program and insert proxy objects at assignments. These proxy objects would sum-
marize underlying objects but could handle strong updates.

With the introduction of the assignment-site abstraction we showed how to bring
path-sensitivity into our data-flow analysis. This idea is underdeveloped in Inferium
and there is a lot of room for improvement. The filtering of variables is a nice start,
but we imagine much more complex references, to handle filtering with expressions
that involve typeof or even function calls. It has to be determined if such references
are possible in a data-flow analysis.

A very important feature of TypeScript are overloaded functions. They provide
a facility to model dependencies between parameters and return types. To infer
them is a harder problem, because we would need precise information under which
conditions values can occur in variables and properties. We believe that assignment
sites are the right place to attach these conditions. How they are created, handled,
and later converted into types has to be determined.

Lastly, the handling of the TypeScript’s type system in Inferium has to be improved
to generate more exact and correct types. Especially, the conditions under which
types should be merged needs more investigation.

We have not found a way to use the TypeScript compiler for this purpose, because
of the additional probe types that we have to handle, but if there is a way, this would
free Inferium from keeping up with the ever growing type system of TypeScript.
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