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Abstract

Der Lean 4 Theorembeweiser, welcher auch als vollwertige Programmiersprache
verwendbar ist, implementiert eine auf Referenzzählung basierende Optimierung,
die das destruktive Mutieren von pur-funktionalen Werten ermöglicht: Wenn der
Referenzzähler eines Werts gleich 1 ist, dann kann dieser sicher an Ort und Stel-
le mutiert werden. Das Greifen dieser Optimierung ist insbesondere für Arrays
unabdingbar, da dort die einzige Alternative zu einer Mutation das vollständige
Kopieren des Arrays ist. Um das Greifen dieser Optimierung zu garantieren, mus-
tern wir den Entwurfsraum der substrukturellen Typtheorien und implementieren
eine eigene Uniqueness-Typtheorie für ein Modell einer Zwischenrepräsentation von
Lean 4. Unsere Typtheorie unterstützt Uniqueness-Typen, algebraische Datenty-
pen, gelöschte Typen, externe Deklarationen, Subtyping von Uniqueness-Attributen
und einen Borrowing-Mechanismus, welcher mittels einer Escape-Datenflussanalyse
implementiert ist.

The Lean 4 theorem prover and programming language implements an optimization
based on reference counting that allows for destructively updating purely functional
values: If the reference count of a value is equal to 1, it can be safely updated in-place.
Especially for arrays, where the only alternative to an in-place update is a full copy
of the array, it is essential that this optimization always applies. To ensure this, we
survey the design space of substructural type theory and implement a uniqueness type
theory of our own. Our type theory targets a model of an intermediate representation
for Lean 4. It supports uniqueness types, algebraic data types, erased types, external
declarations, subtyping for uniqueness attributes and a borrowing mechanism that is
implemented using an escape data-flow analysis.
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1 Introduction
The Lean 4 theorem prover and programming language [de Moura and Ullrich, 2021]
features an intermediate representation (IR) language that allows for efficiently
mutating values in a purely functional programming language [Ullrich and de Moura,
2020]. Garbage collection is implemented via reference counting (RC) and values
can be safely and efficiently updated in-place at runtime when the value is uniquely
referenced, i.e. the reference count is equal to 1, a technique known as “destructive
update”. This feature yields fewer memory allocations, faster updates and enables
the use of arrays in purely functional programming languages [Ullrich and de Moura,
2020].

However, for programmers it can be difficult to judge whether a value is always
uniquely referenced during program execution, leading to possibly huge disparities in
runtime when referential uniqueness is violated by accident. This issue is especially
significant when using arrays or array-derived types, where the fall-back when not
being able to update the array in-place is to copy the array in its entirety, bumping
the runtime for that specific function call from Θ(1) to Θ(n).

The obvious remedy for this issue is to use a type system which ensures that values
are uniquely referenced and issues an error when referential uniqueness is violated.
In addition to aiding debuggability, the information of successfully type-checking a
program can also be used for optimization purposes: If, at compile time, we know
that a value is always uniquely referenced, we can eliminate the instructions that
check the reference count at runtime and always directly perform the in-place update.

To guarantee referential uniqueness in this manner, we survey the design space
of substructural type theory and design and implement a uniqueness type system
[Marshall et al., 2022], a kind of type system pioneered by the Clean programming
language [Smetsers et al., 1994]. We implement our type checker in the Lean 4
programming language, targeting a model of Lean 4’s IR language.

In chapter 2, we revisit Lean 4, its IR language and the details related to using
reference counting to perform in-place updates, as well as explain and evaluate
different techniques for statically ensuring referential uniqueness. In chapter 3, we
explore the different facets and challenges of designing a uniqueness type system. In
chapter 4, we provide a formal description of our type theory, and in chapter 5, we
detail challenges and particularities affecting our implementation of a type checker
for our type system. Finally, in chapter 6, we describe possible future work, and in
chapter 7, we compare our approach to other similar type systems.
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2 Background

2.1 Lean 4 Theorem Prover
Lean 4 is a proof assistant and programming language developed primarily by
Leonardo de Moura at Microsoft Research and Sebastian Ullrich at KIT with
numerous open source contributions by many other authors.

Up to and including version 3, Lean served mostly only as a proof assistant,
i.e. an interactive tool where users can input proofs that are then checked by the
proof assistant. Many proof assistants also implement proof-generating automation,
so-called “tactic languages”, to make the task of writing a perfectly formal proof
by hand less tedious. Already in Lean 3, the previous version of Lean, the same
term language was used for proofs, theorem statements, definitions, programs, type
declarations, specifications, and implementing automation. We will go into some
detail on how Lean uses a single unified language for all of these things in Section 2.2.
For automation, the term language was also evaluated by a separate interpreter for
more efficient execution.

Unfortunately, evaluating the term language using a separate interpreter would still
yield inadequate performance, both for implementing more demanding automation
and for implementing real world programs, which meant that such demanding
programs were written in C++ instead and then made available to Lean using a
foreign-function interface [Ullrich and de Moura, 2020].

To improve on this, Lean 4 now implements its own self-hosted compiler toolchain
for both a C backend and a work-in-progress LLVM [Lattner and Adve, 2004] backend,
including its own IR, optimization pipeline and custom garbage collection algorithm.
Being almost entirely self-hosted, Lean 4 is now also well capable of being used as a
general purpose programming language.

Examples

Let us now consider some basic examples of Lean 4 code to get a feeling for the
language. It should be noted that all of the following can be expressed more succinctly,
but that we have chosen not to do so in order to make these snippets easier to grasp
for readers not familiar with Lean.

def List.map (f : α → β) : List α → List β
| [] => []
| x :: xs => f x :: map f xs

List.map is implemented by recursion on the second argument. The empty list
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2.1. LEAN 4 THEOREM PROVER

again yields the empty list. If the list is a cons cell, we map the head of the cons cell
using f, recurse on the tail and then build a new cons cell from the results of both.

def List.get? : List α → Nat → Option α
| [], _ => Option.none
| x :: _, 0 => Option.some x
| _ :: xs, n + 1 => List.get? xs n

List.get? is implemented by recursion both on the provided list and the index
provided in the second argument. It yields an Option α, i.e. either Option.some α
if the index is in the list, or Option.none otherwise.

def Array.groupBy (p : α → α → Ordering) (xs : Array α)
: RBMap α (Array α) p := Id.run do
let mut result : RBMap α (Array α) p := RBMap.empty
for x in xs do

let group := Option.getD (RBMap.find? p result x) #[]
result := RBMap.insert p result x (Array.push group x)

return result

Array.groupBy is implemented using an imperative domain-specific language
(DSL) based on do-notation [Ullrich and de Moura, 2022]. It takes a relation p
that yields an Ordering, i.e. whether the first argument is greater than, smaller
than or equal to the second argument, as well as the array to group the elements
of. It returns a red-black tree based map ordered by p, where the keys are arbitrary
representatives of the group and the values denote groups with type Array α of
p-equivalent values.

In order to use do-notation, we need to run the code in a monad. Since we do
not intend to accumulate any effects and only use do-notation for its imperative
domain-specific language, we use the Id monad, entering it using Id.run. First, we
initialize a mutable but empty red-black tree based map, denoting our result. Then,
we iterate over every element x in the provided array and look for a group in the
current result that is p-equivalent to x. If we find such a group, we store it in group.
Otherwise, we allocate a new empty group #[] for elements p-equivalent to x using
the call to Option.getD, which returns the first element if it was equal to some x
and otherwise returns the second element if it was equal to none. Then, we add x
itself to the group and re-insert it into our mutable result map. At the end, we
return the accumulated result map.

Imperative DSL

This piece of imperative code is implemented as a DSL, i.e. the imperative code is
translated to a functional equivalent.

One may reasonably wonder why one would ever use a purely functional language
to then write imperative code, translate it back to purely functional code, only to
then compile the result to imperative machine code. However, since Lean 4 is also
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an interactive theorem prover, the answer is simple: Imperative programming can
be convenient, but it is easier to use a purely functional programming language for
all the domains of proof, specification and writing programs at once, since all the
computational effects are already neatly packed away.

In fact, if we were to write a proof about Array.groupBy, the first thing we would
likely do is fold away the syntactical imperative layer in order to uncover the purely
functional term representing the program, without ever having to think about loop
invariants or state.

One may also wonder whether code written in this imperative manner is about as
efficient as real imperative code. Because of the mechanism that we will describe
in Section 2.4, this is indeed the case if the code in question is written in such a
way that every value is uniquely referenced, which is usually the case for the kind of
code that one would also write in an imperative language. Importantly, functional
code will benefit from this as well, which means that we can write compositional and
functional code that also updates values in-place instead of making new allocations
in every single combinator.

It must however be noted that our implementation of Array.groupBy is actually
an example of an imperative implementation that is unexpectedly inefficient. We
will resolve this inefficiency in Section 2.4 when it is instrumental to do so.

Lean as a functional language

For most of this thesis, we will not treat Lean 4 as a theorem prover, but instead as a
purely functional programming language that implements dependent type theory. For
more details on Lean 4 as a programming language, we refer to the book Functional
Programming in Lean by Christiansen [2023].

2.2 Dependent Type Theory
As described in Section 2.1, Lean uses a single language for programming and proving.
It accomplishes this by implementing dependent type theory (DTT), a type theory
powerful enough to declare mathematical objects, implement programs and write
specifications and proofs for both. What follows is only a very brief introduction
to some of the important details of Lean’s type theory. We recommend the book
Theorem Proving in Lean 4 by Avigad et al. [2022] for a proper introduction.

Core mechanisms

The central idea of DTT is that types are allowed to depend on terms. In most
type theories, terms and types are entirely different constructs, and while terms
have types, terms cannot be used in types. Removing this restriction blurs the line
between programs and their static specification.

There are several mechanisms required to make this work:
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1. In a quantified type ∀x. τ(x), the variable x is allowed to range over terms of
a type (e.g. x ≜ n ∶ N), not just types themselves as is the case in languages
that support polymorphic functions ∀α. τ(α).

2. Terms in types can be reduced with the usual reduction rules of lambda calculus,
e.g. (∀x. τ((λy. y) x))↝ (∀x. τ(x)).

3. Support for inductive type families, which are essentially algebraic data types
where each constructor creates a term in a type that can be parametrized by
other terms. For example, we might declare a type λα ∶ Type. λn ∶ N. Vec α n
for lists over a type α of size n with constructors nil ∶ Vec α 0 and cons ∶ ∀n ∶
N. α → Vec α n → Vec α (n + 1). Each inductive type family also yields a
recursion principle that allows for pattern matching and using recursion on the
value of a type to compute an accumulate value.

In addition to ∀x ∶ τ1. τ2(x), dependent type theories also support dependent
sigma types (x ∶ τ1) × τ2(x) and sum types τ1 + τ2.

Propositions

For convenience, Lean’s type theory also supports a separate type universe of
propositions P, the terms of which are types p ∶ P with proof terms h ∶ p witnessing the
truth of the proposition p. For example, if refl ∶ ∀x. x = x, we have (refl n) ∶ (n = n) ∶ P
and (refl n) ∶ (n + 1 − 1 = n) ∶ P for n ∶ N, as n + 1 − 1↝ n by reduction. Meanwhile,
there is no term h ∶ (n = n + 1) ∶ P. For less trivial propositions, we use the
recursion principles of inductive type families, which become induction principles if
the accumulated value is a proposition p ∶ P.

What distinguishes propositions p ∶ P from other types is that P is impredicative
and proof-irrelevant, i.e. whenever we quantify over a proposition p ∶ P s.t. ∀x. p,
the resulting type is again a proposition, and for proofs h1, h2 ∶ p, we have h1 = h2.
In other words, propositions are contained to P and all proofs of a proposition are
considered equal, i.e. only their existence is relevant, not the concrete content of the
proof. Hence, proofs are inherently non-computational; since the content of a proof
is irrelevant, it can be erased. Lean also introduces additional non-computational
classical axioms into its universe of propositions P, most prominently the law of the
excluded middle p ∨ ¬p.

Combined power

Putting all of these mechanisms together yields a type theory powerful enough to
declare types like Vec α n and all the usual objects that are used in mathematics,
as well as logical operators like ⋅ ∧ ⋅, ∃x. p(x), ⋅ = ⋅ and even well-founded recursion.
Additionally, the term language is strong enough to write arbitrary programs, as
well as classical proofs within P.

For a detailed formal description of Lean’s type theory, we refer to Carneiro [2019].
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2.3 Intermediate Representations for Lean 4

As outlined in Section 2.1, Lean 4 ultimately compiles to either C code or LLVM
IR code [Lattner and Adve, 2004], with the latter being work-in-progress. Once
compiled, much of the structure of the original Lean 4 program is lost, including
types and the global guarantee of purity. Hence, introducing additional intermediate
representations between Lean 4 and the resulting compiled program can help with
leveraging the additional structure in the original Lean 4 code for a first pass of
Lean-specific optimizations.

Pure IR

Since very early on in the development of Lean 4, the Lean compiler has compiled
to the intermediate representations described by Ullrich and de Moura [2020], with
optimizations like common subexpression elimination [Cocke, 1970], verified rewrite
rules [Jones et al., 2001], lambda lifting [Johnsson, 1985], erasure of computationally
irrelevant terms [Tejiščák, 2019], specialization [Augustsson, 1993] and inlining [Jones
and Marlow, 2002] being performed on Lean 4 expressions before compiling to the
IR. Instead, the IR is used to implement reference counting. Programs compile to
the untyped IR defined below, commonly called “the pure IR”:

x, y ∈ Varλ

i ∈ Ctorλ

j ∈ Projλ
c ∈ Constλ

e ∈ Exprλ ∶∶= c y ∣ pap c y ∣ x y ∣ ctori y ∣ projj y
F ∈ FnBodyλ ∶∶= ret x ∣ let x := e; F ∣ case x of F
f ∈ Fnλ ∶∶= λ y. F
δ ∈ Programλ = Constλ ⇀ Fnλ

y is a vector of variables y. Expressions are full applications c y, partial applica-
tions pap c y, variable applications x y of a variable y to a higher-order function x
created by pap, constructor applications ctori y for a constructor i or projections
projj y for a field j in y. Function bodies consist of ret x, let x := e; F and a
case-instruction case x of F that makes x denote the i-th constructor in Fi. All
functions are lifted out to a global map δ ∈ Programλ.
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Reference-counted IR

The Lean 4 compiler then inserts the following additional impure instructions into
code in pure IR form:

e ∈ Expr ∶∶= . . . ∣ reset x ∣ reuse x in ctori y
F ∈ FnBody ∶∶= . . . ∣ inc x; F ∣ dec x; F

The resulting IR is also commonly called “the reference-counted IR”. We will cover
reset x and reuse x in ctori y in detail in Section 2.4. inc x; F and dec x; F
increment and decrement the reference count of the value x respectively. When the
reference count reaches 0, the value in question is not referenced anymore and can
be freed safely. Since Lean 4 is a strict purely functional programming language,
there can be no reference cycles.

When compiling the pure IR to the reference-counted IR, the Lean compiler
performs additional optimizations: Parameters are sometimes inferred as “borrowed”,
which means that the caller is keeping these parameters alive, and so they need not
be reference-counted in the callee. We will encounter a similar but slightly different
notion of “borrowing” in Section 2.8, albeit both have in common that the caller is
managing a resource for a callee.

In addition to the instructions described by Ullrich and de Moura [2020], Lean’s
implementation of this IR also supports operations for boxing and unboxing of
scalar values [Henglein and Jørgensen, 1994], as well as join point declarations and
corresponding jump instructions that allow the re-joining of control flow branches
[Maurer et al., 2017]. In other words, Lean’s IR is implemented in A-normal form
as described by Maurer et al. [2017], where functions can only take variables as
arguments, nested expressions are factored out into let-expressions and join point
declarations are generated where possible.

We will henceforth ignore boxing as an implementation detail and briefly discuss
join points in Section 4.2 and Section 6.1.

LCNF

While the IRs defined above are well suited for implementing garbage collection and
optimizations associated with reference counting, they lack types and hence much
of the structure of the original Lean 4 program, which is why the current Lean 4
compiler performs other optimizations directly on Lean expressions.

In the current rewrite of the Lean 4 compiler toolchain that is still work-in-progress,
another IR, the Lean Compiler Normal Form (LCNF), is added to mitigate this issue.
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It is also stated in A-normal form and defined by the following grammar:

τ ∈ LeanType
D ∈ DeclNameLCNF

x, y ∈ VarLCNF

i ∈ CtorLCNF

j ∈ ProjLCNF

a ∈ ArgLCNF ∶∶= ∎ ∣ y ∣ τ

v ∈ LetValueLCNF ∶∶= ∎ ∣ D a ∣ y a ∣ D.projj y

c ∈ CaseLCNF ∶∶= ctori (y : τy) ⇒ K ∣ default ⇒ K
K ∈ CodeLCNF ∶∶= let (x : τ) := v; K

∣ ((def x (y : τy) := Kx) : τ); K

∣ ((jpdef x (y : τy) := Kx) : τ); K
∣ jmp x a
∣ ((D.case x of c) : τ)
∣ ret x

d ∈ DeclLCNF ∶∶= (λ(y : τy). K ∶ τ)
δ ∈ ProgramLCNF = DeclNameLCNF ⇀ DeclLCNF

We have omitted some technical details from Lean’s implementation of this gram-
mar that are not relevant to this thesis.

LeanType denotes arbitrary dependent types in the form of generic Lean expres-
sions. Declarations, variables, constructors and projections are all identified by names
in their respective syntactical category. Arguments to declarations can either be
erased (∎), variables or types. Let values can either be erased, an application of a
constant declaration D a, an application y a of arguments a to a variable y that may
contain a declaration or a function, or a projection D.projj y of a variable y that
stores a type with only a single constructor. Cases are either destructuring patterns
ctori (y : τy) ⇒ K that match against a constructor i and denote its fields using
variables y with types τy, or a default case.

Code instructions can either be let instructions, function definitions def of type
τ , join point declarations jpdef of type τ , jmp instructions that jump to a given join
point x with a given vector of arguments a, case or ret instructions.

After compiling Lean code to LCNF, the resulting LCNF code is simplified by
many of the same optimizations that are applied to Lean code in the current compiler
that works directly on Lean expressions. Near the end of the optimization phase, type
dependencies, computationally irrelevant terms and a few other types are heuristically
erased and the resulting LCNF code can be converted to the pure IR. In the future,
both the pure and the reference-counted IR will be replaced by a closely related
LCNF-equivalent as well.
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2.4 Destructive Updates

In Section 2.3, we saw that the Lean 4 compiler inserts instructions let x :=
reset y and let z := reuse x in ctori y when compiling the pure IR to the
reference-counted IR. These instructions are used to perform so-called destructive
updates: In a purely functional language, if a value is only referenced by a single
function, then that function can safely update the value in-place without the mutation
being observed by other functions, thus retaining both purity and efficiency. It is
obvious that if we are using reference counting for garbage collection, then we can
use the reference count for performing destructive updates by checking that the
reference count of the value is equal to 1.

Reset and reuse

One important question remains: In a purely functional language, what constitutes
an update? After all, there is no dedicated instruction that performs updates. To
answer this question, Ullrich and de Moura [2020] introduce what they call “the
resurrection hypothesis”: many values are used for the last time just before a value of
the same kind is created. This should be intuitive to most functional programmers,
as functions that would otherwise mutate a value in an imperative language will
instead create a new instance of the old value with the change applied to it in purely
functional languages.

As per Ullrich and de Moura [2020], the let x := reset y instruction is inserted
as early as possible when y is not used anymore for the remainder of the function
and a corresponding let z := ctori y call of the same kind as y exists later on
in the same function. let z := reuse x in ctori y is used to replace the latter
let z := ctori y call. Here, “of the same kind” means that both constructors
occupy the same amount of memory.

Semantically, let x := reset y checks the reference count of y and denotes in x
both y itself and whether y had a reference count equal to 1. Additionally, if the
reference count is equal to 1, reset y detaches the components of the soon-to-be-
freed y pre-emptively by decrementing the reference counts of the components of
y. reuse x in ctori y then checks x and either updates the referenced memory
in-place if the reference count was equal to 1 at the call to reset or allocates new
memory according to ctori y.

The fact that there are two separate instructions for checking the reference count,
detaching the components and performing the in-place update is crucial, as no
destructive updates can be performed on the components of a value as long as the
value itself is still alive. This is evidenced by the following example taken from
Ullrich and de Moura [2020]:
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2.4. DESTRUCTIVE UPDATES

map f xs = case xs of
(ret xs)
(let x = proj1 xs;
inc x;
let s = proj2 xs;
inc s;
let w = reset xs;
let y = f x;
let ys = map f s;
let r = reuse w in ctor2 y ys;
ret r)

If reuse was to check the reference count of xs, then s would have a reference
count of 2: one reference from s itself, and one from xs, thus preventing further
destructive updates in the recursive call to map.

Updating values within values

The optimization above usually works if the functional code in question is written
in a manner that is similar to clean imperative code, where old values are not used
after updating them and references are not duplicated in such a manner that a
mutation is observable in an entirely different part of the program. In fact, since
this optimization also applies to code written with functional combinators like map
or filter, even code that would otherwise be inefficient in imperative languages
because explicit copies are created to maintain local purity can be optimized to be as
fast as if it was written in an imperative manner. There are however some common
exceptions to this rule, one of which we have already seen in detail in Section 2.1:

def Array.groupBy (p : α → α → Ordering) (xs : Array α)
: RBMap α (Array α) p := Id.run do
let mut result : RBMap α (Array α) p := RBMap.empty
for x in xs do

let group := Option.getD (RBMap.find? p result x) #[]
result := RBMap.insert p result x (Array.push group x)

return result

Here, after executing the line containing RBMap.find? p result x, there can be
two references to the array in group: one from group itself, and one within the
red-black tree based map result. This precludes Lean from performing a destructive
update in Array.push group x, resulting in an expensive Θ(n)-complexity copy
of the whole array. Since this issue occurs every single loop iteration, our Array.
groupBy implementation is accidentally quadratic. Our imperative intuition lead us
astray: If Array.push group x was to update group in-place, then this mutation
would be observable in result, but since we never observe it and immediately replace
the reference to group in result using RBMap.insert p result x ..., we consider
the mutation safe.
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The common solution to this issue is to introduce a function similar to the following
for any type that can act as a container:

def RBMap.update (p : α → α → Ordering) (map : RBMap α β p)
(a : α) (f : β → β) : RBMap α β p :=
let x := RBMap.find? p map a
match x with
| Option.none => map
| Option.some b =>

let map := RBMap.erase p map a
RBMap.insert p map a (f b)

match x with uses pattern matching on x. After calling RBMap.find? p map a,
there are two references to the value in b. Using RBMap.erase p map a, the second
reference is erased and b can now be updated destructively in f. Afterwards, the
result is re-inserted. Using this function, we can now fix the performance bug in
Array.groupBy with the following implementation:

def Array.groupBy (p : α → α → Ordering) (xs : Array α)
: RBMap α (Array α) p := Id.run do
let mut result : RBMap α (Array α) p := RBMap.empty
for x in xs do

if ! RBMap.contains p result x then
result := RBMap.insert p result x #[]

else
result := RBMap.update p result x

(fun group => Array.push group x)
return result

(fun x => ...) denotes a lambda expression. As we are using RBMap.update,
the group corresponding to x is updated in-place, and now our implementation has
the time complexity that we would expect it to have.

Situations akin to this one can occur for other types as well. We will discuss
similar challenges related to containers that occur when statically ensuring referential
uniqueness in Section 2.8.

2.5 Linear Type Theory

Substructural rules

Type systems typically guarantee certain functional or extensional properties for a
given program e using a typing relation Γ ⊢ e ∶ τ , where Γ is a set of type judgements
x ∶ τ ′. The following Exchange, Weaken and Contract rules are usually
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assumed implicitly:

Exchange
Γ1, y ∶ τ2, x ∶ τ1, Γ2 ⊢ e ∶ τ
Γ1, x ∶ τ1, y ∶ τ2, Γ2 ⊢ e ∶ τ

Weaken
Γ ⊢ e ∶ τ

Γ, x ∶ τ ′ ⊢ e ∶ τ

Contract
Γ, x ∶ τ ′, x ∶ τ ′ ⊢ e ∶ τ

Γ, x ∶ τ ′ ⊢ e ∶ τ

In other words, judgements in the context can be reordered, discarded and dupli-
cated freely.

In the formal descriptions of dependent type theories, like the one described in
Section 2.2, Exchange is inhibited, because τ2 may depend on x, which induces an
order of declaration on variables in the context. However, if we want to guarantee only
extensional properties for e, Weaken and Contract can always be freely assumed,
as there is nothing to gain from retaining the exact count of every judgement in the
context.

However, if we wish to guarantee non-functional or intensional properties for a
given program, then discarding the Weaken and Contract rules can be useful.
And indeed doing just that constitutes the core idea of substructural type theories:
By retaining the exact amount of each judgement in the context, we can use typing
rules to count objects in our program to ensure various kinds of intensional properties.

Beginnings of linear type theory

In most substructural type theories, the extra detail in the context is used to count
variable uses. Girard [1987] was the first to notice that not assuming Weaken
and Contract allows one to define so-called linear logics with dualities that allow
reasoning about resource usage, and Wadler [1990] transports this idea to form a
linear type theory with a set of entirely separate linear and non-linear types, even
on the term level. Both Girard [1987] and Wadler [1990] use the ⊸ operator to
denote the type of linear functions or implications that take exactly one instance of
an argument and produce exactly one instance of a return value. See Figure 2.1 for
Wadler’s original linear type system.

Properly linear or invariably unique

Wadler [1991] then goes on to define the Dereliction and Promotion rules listed
below that allow coercing a non-linear type to a linear type and promoting a linear
type to a nonlinear one if it only depends on nonlinear types, as well as a “steadfast”
type system where there is no coercion between linear and non-linear types, but
both use the same term language. Especially in the former, non-linear types can be
understood as having an unlimited quantity of something, whereas linear types can
be understood as having exactly one of something.

Dereliction
Γ, x ∶ τ1 ⊢ e ∶ τ2

Γ, x ∶ !τ1 ⊢ e ∶ τ2

Promotion
!Γ ⊢ e ∶ τ
!Γ ⊢ e ∶ !τ
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Here, !τ is a nonlinear type and !Γ refers to every type in the context Γ being
non-linear. The motivation for including Dereliction is that ! can be understood
as having an unlimited quantity of something, and if one has an unlimited quantity
of something, one also has one of something. Promotion is justified because any
single resource that can be created from resources of unlimited quantity can also be
created in unlimited quantity by repeating the process.

With Dereliction and Promotion, linear types make a guarantee for the
future: As it could have been coerced from non-linear type, we do not know whether
this variable has always been linear, but now that it is, we guarantee that it will be
used exactly once. Meanwhile, in Wadler’s “steadfast” version of the type system, as
there is no coercion from non-linear to linear types, a linear variable has and will
always be used exactly once.

In a type system with Dereliction, linearity is unsuited to guarantee the
referential uniqueness of a variable, as it may have been duplicated in the past,
an issue that is acknowledged by Wadler [1991]. For linear type systems where
linearity is guaranteed from construction onwards, Chirimar et al. [1996] prove that
the linearity of a variable implies the uniqueness of the associated reference.

Future linear type systems [Odersky, 1992] [Atkey, 2018] [Bernardy et al., 2018]
[Brady, 2021] [Choudhury et al., 2021] [Li et al., 2022] [Spiwack et al., 2022] always
adopt one of these two approaches and either allow for a non-linear to linear coercion,
or no coercion at all, thus cementing the idea of “linearity” referring to either “always
uniquely referenced” or “used linearly from this point onwards”. The latter can be
made to act like the former by guaranteeing referential uniqueness through other
means, e.g. by making every constructor of a certain type return a value of linear
type, effectively turning referential uniqueness into a library design decision.

To make the distinction between the two kinds of linear type systems clear, we
will henceforth refer to linear type systems without any coercion between linear and
non-linear values as “invariably unique” and type systems adopting Dereliction
and Promotion as “properly linear”, but still use the term “linear” to group the two
of them together, as is often done in the literature since Wadler’s first papers. See
Figure 2.2 for Wadler’s properly linear type system and Figure 2.3 for his invariably
unique type system.

Affinity

One common refinement of linear type theory is to allow the use of Weaken, but
not Contract, specifically when the type theory only wants to guarantee that a
reference is unique, but not that it is used. These type theories are also knows as
“affine” [Tov and Pucella, 2011], though the term is often conflated with “linear”.

Applications

The various applications of linear type theory include the following:
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• Threading a functional program and enforcing an execution order to replace
the use of monads for I/O in functional languages with a linear equivalent
[de Vries, 2009] [Bernardy et al., 2018] [Brady, 2021]

• Ensuring resource- and memory-safety so that resources and memory cannot
be freed multiple times [Weiss et al., 2021]

• Performing efficient in-place updates and enabling the use of arrays in functional
languages [de Vries, 2009] [Bernardy et al., 2018]

• Specifying usage protocols for types [Brady, 2021]

• Guiding program synthesis [Brady, 2021]

• Inverting the computation of functions [Matsuda and Wang, 2020]
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Var

x ∶ τ ⊢ x ∶ τ

⊸-Intro
Γ, x ∶ τ1 ⊢ e ∶ τ2

Γ ⊢ (1 λx ∶ τ1. e) ∶ τ1⊸ τ2

⊸-Elim
Γ1 ⊢ e1 ∶ τ1⊸ τ2 Γ2 ⊢ e2 ∶ τ1

Γ1, Γ2 ⊢ (1 e1 e2) ∶ τ2

Weaken
Γ ⊢ e ∶ τ τ ′ nonlinear

Γ, x ∶ τ ′ ⊢ e ∶ τ

Contract
Γ, x ∶ τ ′, x ∶ τ ′ ⊢ e ∶ τ τ ′ nonlinear

Γ, x ∶ τ ′ ⊢ e ∶ τ
→-Intro
Γ, x ∶ τ1 ⊢ e ∶ τ2 Γ nonlinear

Γ ⊢ (! λx ∶ τ1. e) ∶ τ1 → τ2

→-Elim
Γ1 ⊢ e1 ∶ τ1 → τ2 Γ2 ⊢ e2 ∶ τ1

Γ1, Γ2 ⊢ (! e1 e2) ∶ τ2

Figure 2.1: Original linear type system from Wadler [1990] with separate linear
and non-linear terms and types. 1 denotes linear terms, ! denotes
non-linear terms. “nonlinear” demands that the full type or context
consists only of non-linear →-types.

Weaken
Γ ⊢ e ∶ τ

Γ, x ∶ !τ ′ ⊢ e ∶ τ

Contract
Γ, x ∶ !τ ′, x ∶ !τ ′ ⊢ e ∶ τ

Γ, x ∶ !τ ′ ⊢ e ∶ τ

Dereliction
Γ, x ∶ τ1 ⊢ e ∶ τ2

Γ, x ∶ !τ1 ⊢ e ∶ τ2

Promotion
!Γ ⊢ e ∶ τ
!Γ ⊢ e ∶ !τ

Var

x ∶ τ ⊢ x ∶ τ

⊸-Intro
Γ, x ∶ τ1 ⊢ e ∶ τ2

Γ ⊢ λx ∶ τ1. e ∶ τ1⊸ τ2

⊸-Elim
Γ1 ⊢ e1 ∶ τ1⊸ τ2 Γ2 ⊢ e2 ∶ τ1

Γ1, Γ2 ⊢ e1 e2 ∶ τ2

⊗-Intro
Γ1 ⊢ e1 ∶ τ1 Γ2 ⊢ e2 ∶ τ2

Γ1, Γ2 ⊢ (e1, e2) ∶ τ1 ⊗ τ2

⊗-Elim
Γ1 ⊢ e1 ∶ τ1 ⊗ τ2 Γ2, x ∶ τ1, y ∶ τ2 ⊢ e2 ∶ τ3

Γ1, Γ2 ⊢ case e1 of (x, y)⇒ e2 ∶ τ3

⊕-Intro-Left
Γ ⊢ e ∶ τ1

Γ ⊢ left e ∶ τ1 ⊕ τ2

⊕-Intro-Right
Γ ⊢ e ∶ τ2

Γ ⊢ right e ∶ τ1 ⊕ τ2

⊕-Elim
Γ1 ⊢ e1 ∶ τ1 ⊕ τ2 Γ2, x ∶ τ1 ⊢ e2 ∶ τ3 Γ2, y ∶ τ2 ⊢ e3 ∶ τ3

Γ1, Γ2 ⊢ case e1 of left x⇒ e2; right y⇒ e3 ∶ τ3

Figure 2.2: Properly linear type system from Wadler [1991] with support for
multiplicative product types (⊗) and multiplicative sum types (⊕).
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Weaken
Γ ⊢ e ∶ τ

Γ, x ∶ !τ ′ ⊢ e ∶ τ

Contract
Γ, x ∶ !τ ′, x ∶ !τ ′ ⊢ e ∶ τ

Γ, x ∶ !τ ′ ⊢ e ∶ τ

Var

x ∶ τ ⊢ x ∶ τ

⊸-Intro
Γ, x ∶ τ1 ⊢ e ∶ τ2

Γ ⊢ λx ∶ τ1. e ∶ τ1⊸ τ2

⊸-Elim
Γ1 ⊢ e1 ∶ τ1⊸ τ2 Γ2 ⊢ e2 ∶ τ1

Γ1, Γ2 ⊢ e1 e2 ∶ τ2

⊗-Intro
Γ1 ⊢ e1 ∶ τ1 Γ2 ⊢ e2 ∶ τ2

Γ1, Γ2 ⊢ (e1, e2) ∶ τ1 ⊗ τ2

⊗-Elim
Γ1 ⊢ e1 ∶ τ1 ⊗ τ2 Γ2, x ∶ τ1, y ∶ τ2 ⊢ e2 ∶ τ3

Γ1, Γ2 ⊢ case e1 of (x, y)⇒ e2 ∶ τ3

⊕-Intro-Left
Γ ⊢ e ∶ τ1

Γ ⊢ left e ∶ τ1 ⊕ τ2

⊕-Intro-Right
Γ ⊢ e ∶ τ2

Γ ⊢ right e ∶ τ1 ⊕ τ2

⊕-Elim
Γ1 ⊢ e1 ∶ τ1 ⊕ τ2 Γ2, x ∶ τ1 ⊢ e2 ∶ τ3 Γ2, y ∶ τ2 ⊢ e3 ∶ τ3

Γ1, Γ2 ⊢ case e1 of left x⇒ e2; right y⇒ e3 ∶ τ3

!-⊸-Intro
!Γ, x ∶ τ1 ⊢ e ∶ τ2

!Γ ⊢ λx ∶ τ1. e ∶ !(τ1⊸ τ2)

!-⊸-Elim
Γ1 ⊢ e1 ∶ !(τ1⊸ τ2) Γ2 ⊢ e2 ∶ τ1

Γ1, Γ2 ⊢ e1 e2 ∶ τ2

!-⊗-Intro
Γ1 ⊢ e1 ∶ !τ1 Γ2 ⊢ e2 ∶ !τ2

Γ1, Γ2 ⊢ (e1, e2) ∶ !(!τ1⊗ !τ2)

!-⊗-Elim
Γ1 ⊢ e1 ∶ !(!τ1⊗ !τ2) Γ2, x ∶ !τ1, y ∶ !τ2 ⊢ e2 ∶ τ3

Γ1, Γ2 ⊢ case e1 of (x, y)⇒ e2 ∶ τ3

!-⊕-Intro-Left
Γ ⊢ e ∶ !τ1

Γ ⊢ left e ∶ !(!τ1⊕ !τ2)

!-⊕-Intro-Right
Γ ⊢ e ∶ !τ2

Γ ⊢ right e ∶ !(!τ1⊕ !τ2)
!-⊕-Elim
Γ1 ⊢ e1 ∶ !(!τ1⊕ !τ2) Γ2, x ∶ !τ1 ⊢ e2 ∶ τ3 Γ2, y ∶ !τ2 ⊢ e3 ∶ τ3

Γ1, Γ2 ⊢ case e1 of left x⇒ e2; right y⇒ e3 ∶ τ3

Figure 2.3: Invariably unique type system from Wadler [1991].
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2.6 Quantitative Type Theory
Quantitative type theory (QTT) applies the idea of properly linear type theory to
dependent type theory.

Context-distribution problem

In linear type theories, the App rule is typically stated in a manner similar to the
following in order to distribute the needed amount of judgements to both expressions:

App
Γ1 ⊢ e1 ∶ τ1⊸ τ2 Γ2 ⊢ e2 ∶ τ1

Γ1, Γ2 ⊢ e1 e2 ∶ τ2

When omitting the Exchange rule in dependent type theory, it is not clear that
splitting the context into Γ1 and Γ2 is always possible, since types in Γ2 may depend
on variables in Γ1. This seemingly technical issue induces a semantic problem as
well: Which occurrences of a variable constitute a use? For example, what about
occurrences in types?

Erasure

After this issue was left unsolved for a long time, McBride [2016] resolved it by
introducing a third kind of type to linear type theory, resulting in the three kinds
of type “linear” (denoted as 1), “non-linear” (denoted as ω) and “erased” (denoted
as 0). “Erased” specifies that a type or a term within DTT is not computationally
relevant and will be erased by the compiler.

Erased terms or types can only be used in other erased terms or types, and types
are always erased. Since an erased term is not computationally relevant, we also do
not need to count variable uses in erased terms. Finally, when a linear variable is
used, it becomes erased, which justifies the use of 1 to denote linear types and 0 to
denote erased types.

Exchange is still omitted, but variables in the context that act as dependencies
for other variables in the context are always guaranteed to be erased. In App, since
we do not need to count the uses of variables of type 0, we can freely distribute
variables of type 1 and ω to either Γ1 or Γ2, but duplicate all variables of type 0 in
their given order to Γ1 and Γ2. In other words, both the technical and the semantic
issue are resolved at once.

Quantities instead of types

The implementations of QTT by McBride [2016] and Atkey [2018] use an additional
trick to make the description of the type theory more compact.

While linear type theories usually denote linearity on the type τ , quantitative type
theory instead denotes it on the binder “∶” in x ∶ τ , which leads to 0, 1 and ω not
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simply being kinds of types, but “quantities” on the binders x ∶q τ for q ∈ {0, 1, ω} in
the context. There are only linear types, and the quantity on the binder determines
the substructural restrictions on the variable.

The typing judgement Γ ⊢ e ∶σ τ is quantified as well to track whether e is being
checked in a computationally relevant or irrelevant context, and σ is restricted to
{0, 1} to ensure admissibility of substitution [Atkey, 2018].

With these tools, τ1 ⊸ τ2 is encoded as (x ∶1 τ1)→ τ2 and τ1 ⊗ τ2 from Figure 2.2
in Section 2.5 is encoded as (x ∶1 τ1) ⊗ (y ∶1 τ2) ⊗ 1. With a dependent type-level
if-then-else construct, we can also encode τ1 ⊕ τ2 ∶= (b ∶1 B) ⊗ (if b then τ1 else τ2)
[Grenrus, 2020].

Both McBride [2016] and Atkey [2018] specify a generic framework for adding
additional quantities to the type theory, allowing, for example, the additional intro-
duction of a ≤1 quantity representing affinity, or more accurate accounting of uses
n > 1.

The typing rules for quantitative type theory as described by Svoboda [2021] and
inspired by Atkey [2018] can be found in figure 2.4.

Demand-based consumption

Finally, note that by denoting the linear quantity on the binder in (x ∶1 τ1) → τ2,
we cannot specify a quantity for τ2 anymore, as we could in linear type theory by
using either a linear or non-linear type for the return type. Instead, when checking
an application f (g e) ∶1 τ3 for f ∶1 (x ∶q τ2) → τ3, g ∶1 (x ∶1 τ1) → τ2 and e ∶1 τ1, we
demand q instances of the resources Γ required to check g e ∶1 τ2.

In other words, if we need q instances of a return value that requires Γ resources
to produce, we instead demand q ⋅ Γ resources in our context, pretending that we
applied the function q times to obtain q instances of the return value. This way,
quantities need not be specified on return values, and the resources for the arguments
are consumed based on the required amount of the return value. The Promotion
rule from section 2.5 is integrated into the rules for other types.

This trick is not inherent to quantitative types and can be applied to linear type
systems of any kind by taking f ∶ τ1⊸ τ2 to mean “f consumes one of τ1 for every
instance of τ2 that is required”, e.g. as in Linear Haskell [Bernardy et al., 2018] or in
Ghica and Smith [2014].

However, it is not entirely for free: If one wishes to both use a linear or quantitative
type system with Dereliction, as well as guarantee referential uniqueness, then the
lack of an annotation on the return type of functions means that we cannot simply
annotate every constructor to return a linear type in order to ensure referential
uniqueness, as described in section 2.5. Instead, both quantitative and linear type
theories that use this trick and want to guarantee referential uniqueness define
constructors in a continuation passing manner; e.g. mkArray ∶ N ⊸ α ⊸ Array α
becomes mkArray ∶ N⊸ α⊸ (Array α⊸ !τ)⊸ !τ [Bernardy et al., 2018].
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Applications

Quantitative type theory combines the benefits of linear type theory and dependent
type theory, leading to far greater capabilities when specifying protocols for types
[Brady, 2021]. The introduction of an erasure quantity to combine the two type the-
ories also allows for finer-grained specification of terms that are not computationally
relevant but would otherwise be expensive to compute [Brady, 2021].
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Γ ⊢
Empty

∅ ⊢

Extend
Γ ⊢ 0Γ ⊢ S ∶0 U

Γ, x ∶q S ⊢

Γ ⊢M ∶σ S

Var
0Γ1, x ∶σ S, 0Γ2 ⊢

0Γ1, x ∶σ S, 0Γ2 ⊢ x ∶σ S

Universe
0Γ ⊢

0Γ ⊢ U ∶0 U
Conversion
Γ ⊢M ∶σ S 0Γ ⊢ S ∶0 U 0Γ ⊢ T ∶0 U S ↝ U ↝T

Γ ⊢M ∶σ T

→-Formation
0Γ ⊢ S ∶0 U 0Γ, x ∶0 S ⊢ T ∶0 U

0Γ ⊢ (x ∶q S)→ T ∶0 U

→-Intro
Γ, x ∶σq S ⊢M ∶σ T

Γ ⊢ (λx ∶q S. M) ∶σ (x ∶q S)→ T

→-Elim1
Γ1 ⊢M ∶σ (x ∶q S)→ T Γ2 ⊢ N ∶1 S

Γ1 + σqΓ2 ⊢M N ∶σ T

→-Elim0
Γ ⊢M ∶σ (x ∶q S)→ T
σq = 0 0Γ ⊢ N ∶0 S

Γ ⊢M N ∶σ T

⊗-Formation
0Γ ⊢ S ∶0 U 0Γ, x ∶0 S ⊢ T ∶0 U

0Γ ⊢ (x ∶q S)⊗ T ∶0 U

⊗-Intro1
Γ1 ⊢M ∶1 S Γ2 ⊢ N ∶σ T [M/x]
σqΓ1 + Γ2 ⊢ (M, N) ∶σ (x ∶q S)⊗ T

⊗-Intro0
σq = 0 0Γ ⊢M ∶0 S Γ ⊢ N ∶σ T [M/x]

Γ ⊢ (M, N) ∶σ (x ∶q S)⊗ T

⊗-Elim
Γ1 ⊢M ∶σ (x ∶q S)⊗ T

0Γ1, z ∶0 (x ∶q S)⊗ T ⊢ U ∶0 U Γ2, x ∶σq S, y ∶σ T ⊢ N ∶σ U[(x, y)/z]
Γ1 + Γ2 ⊢ let(x ∶q S)⊗T z@(x, y) =M inU N ∶σ U[M/z]

1-Formation
0Γ ⊢

0Γ ⊢ 1 ∶0 U

1-Intro
0Γ ⊢

0Γ ⊢ () ∶σ 1

1-Elim
Γ1 ⊢M ∶σ 1

0Γ1, x ∶0 1 ⊢ S ∶0 U Γ2 ⊢ N ∶σ S[()/x]
Γ1 + Γ2 ⊢ let1 x@() =M inS N ∶σ S[M/x]

Figure 2.4: Quantitative type theory as described by Svoboda [2021] and inspired
by Atkey [2018]. Features a single type universe U . ↝ denotes
reduction. Quantities q ∈ {0, 1, ω} satisfy p + q = q + p, 0 + q = q,
ω + q = ω, 1 + 1 = ω, pq = qp, 0q = 0, 1q = q and ωω = ω.
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2.7 Uniqueness Type Theory

Smetsers et al. [1994] and Barendsen and Smetsers [1996] introduce a type system for
the Clean programming language with the goal of guaranteeing referential uniqueness
to enable many of the applications described in section 2.5. The core idea is to use
the linear and non-linear types of linear type systems, but instead of keeping them
entirely separate or allowing for a coercion from non-linear types to linear types, the
coercion is inverted, allowing for the conversion of linear types to non-linear types.

The motivation for this idea is that both properly linear type systems that
guarantee referential uniqueness through careful library design and invariably unique
type systems are too restrictive: For some use-cases of referential uniqueness, like
destructive updates, it is perfectly acceptable to discard the uniqueness guarantee at
some point, because the lack of a static uniqueness guarantee can still be mitigated
through other means, as for example in section 2.4, or because it is simply not needed
for the remainder of the program.

As long as there is a coercion from linear types to non-linear types, uniqueness
type systems refer to linear types as “unique” (tagged with ∗ in the type system)
and non-linear types as “non-unique” or “shared” (tagged with ! in the type system).
The temporal guarantee becomes inverted: While linear types ensure that a variable
is always used exactly once in the future, uniqueness types ensure that a variable
has always been used exactly once in the past [de Vries, 2009] [Marshall et al., 2022].

Shallow-Cast-Left
Γ, x ∶ !τ ⊢ e ∶ τ ′

Γ, x ∶ ∗τ ⊢ e ∶ τ ′

Shallow-Cast-Right
Γ ⊢ e ∶ ∗τ

Γ ⊢ e ∶ !τ

Uniqueness types by library design

Implementations like the one in Linear Haskell [Bernardy et al., 2018] acknowledge
the over-restrictiveness of linear type theory and make the coercion from linear to
non-linear types a part of their library design as well: If MArray represents an array
that is always guaranteed to be linear because its constructor has type newMArray ∶
!N⊸ (MArray α⊸ !β)⊸ !β, then the coercion is freeze ∶ MArray α⊸ !(Array α).

Note that since this coercion requires switching out the entire type of the array,
coercing nested arrays in constant time becomes problematic. A recent approach
by Spiwack et al. [2022] attempts to mitigate this issue by introducing a system of
linear capabilities on top of the linear type system, so that read-only and read+write
capabilities are managed and passed around implicitly, freeze turns a read+write
MArray into a read-only MArray and reading from a read-only MArray again yields
read-only values. The capability-based freeze idea is described in Spiwack [2023].
We will go into some more detail on this approach in section 2.8.
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Lambda calculus and uniqueness types

Unfortunately, the original type system of Clean was formulated in terms of graph
rewriting and not lambda calculus, which meant that advances by the rest of the
type theory research community were difficult to transfer over to uniqueness typing,
a deficit that was only resolved much later by de Vries [2009]. In his thesis, de
Vries first provides a uniqueness type system based on lambda calculus resembling
that of Clean and then iteratively refines it with the goal of introducing higher-rank
polymorphism [Jones et al., 2007].

Challenges

In uniqueness type systems, there are a number of challenges that do not appear in
linear type systems.

Unique types within shared types The first is that types are inherently less
composable. In properly linear type theory, non-linear and linear types can be mixed
freely, as long as the provided resources are present to create them. For example,
!(τ1 ⊗ τ2) is just a non-linear product, whereas (!τ1)⊗ τ2 is a linear product where
the first type is non-linear.

If, on the other hand, the type system is invariably unique and τ1 is linear, then the
former example !(τ1 ⊗ τ2) is malformed, as deconstructing the product and obtaining
the linear τ1 will not actually yield us a guarantee that the corresponding value has
not been shared in the past, as e.g. the product could have been shared.

Hence, we must enforce that non-linear or non-unique types cannot contain linear
or unique types. In invariably unique type systems, e.g. Wadler’s steadfast linear
types from Wadler [1991], the answer is usually to enforce this invariant when
constructing a value. For example, constructing !(τ1 ⊗ τ2) becomes possible only
when both τ1 and τ2 are non-linear.

With uniqueness types, the situation is unfortunately more complicated: If it is
possible to discard the uniqueness of a value, then the invariant that non-unique
types cannot contain unique types does not just need to be enforced at construction,
but after discarding the uniqueness of a value as well.

Clean in particular resolves the issue by enforcing the invariant both at construction
and at deconstruction; if the type of a value is malformed, then deconstructing it is
not allowed. Note that an alternative solution would be that deconstructing it is
allowed, but the contained values will again be non-unique.

Higher-order functions Second, both in uniqueness type systems and invariably
unique type systems, there is a question of what to do about function closures. When
forming λx. e ∶ !(τ1⊸ τ2), the closure of the function is data that is dragged around
by the resulting function. As such, the same considerations as for types τ1 ⊗ τ2 apply,
i.e. that values of non-linear type (the function) cannot be allowed to contain values
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of linear types (anything implicitly contained in the function closure), lest we could
duplicate the function value and with that its closure.

In an invariably unique type system without Promotion and Dereliction, this
is somewhat easy to resolve: For example, Wadler’s steadfast types require that every
type in the closure of a function must be non-linear when forming the abstraction.

In a uniqueness type system, this situation is again much more complicated because
unique functions can lose their uniqueness. Unlike types τ1 ⊗ τ2, we cannot simply
resolve it by checking whether a non-unique function contains a unique type in its
closure after the uniqueness guarantee has been discarded, as the uniqueness of the
elements in the closure is not part of the function type. Resolving this is a difficult
challenge and we will delay the discussion of possible solutions to chapter 3.

Uniqueness is not a quantity Finally, it is worth pointing out that uniqueness
types cannot simply be added as a quantity to existing quantitative type theories.

The trick described at the end of section 2.6 that allows for specifying whether a
value is linear or non-linear only on binders rests on the fact that there is a coercion
from non-linear to linear values, so that a function f ∶ τ1 ⊸ !τ2 can be coerced to
f ∶ τ1⊸ τ2, after which the amount of required τ1 is scaled up by the amount of τ2
resources needed. In other words, uniqueness types are not “quantitative” in the
sense that the intuitions for reasoning about amounts of resources do not apply to
them.

Instead, one approach to combine uniqueness types with dependent type theory is
Graded Modal Dependent Type Theory (GRTT) [Moon et al., 2021], a dependent
type theory with a linearly typed substructural base that allows attaching generic
modalities to types. Marshall et al. [2022] integrate uniqueness types into Granule
[Orchard et al., 2019], a non-dependently-typed precursor to GRTT. Unfortunately,
their type system does not allow the use of unique types within other unique types,
only within linear types. The uniqueness fragment of the type system can be found
in figure 2.5.
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Var

!Γ, x ∶ τ ⊢ x ∶ τ

⊸-Intro
Γ, x ∶ τ1 ⊢ e ∶ τ2

Γ ⊢ λx. e ∶ τ1⊸ τ2

⊸-Elim
Γ1, e1 ∶ τ1⊸ τ2 Γ2 ⊢ e2 ∶ τ1

Γ1, Γ2 ⊢ e1 e2 ∶ τ2

Contract
Γ, x ∶ !τ ′, x ∶ !τ ′ ⊢ e ∶ τ

Γ, x ∶ !τ ′ ⊢ e ∶ τ

1-Intro

!Γ ⊢ () ∶ 1

1-Elim
Γ1 ⊢ e1 ∶ 1 Γ2 ⊢ e2 ∶ τ

Γ1, Γ2 ⊢ let () = e1 in e2 ∶ τ
⊗-Intro
Γ1 ⊢ e1 ∶ τ1 Γ2 ⊢ e2 ∶ τ2

Γ1, Γ2 ⊢ (e1, e2) ∶ τ1 ⊗ τ2

⊗-Elim
Γ1 ⊢ e1 ∶ τ1 ⊗ τ2 Γ2, x ∶ τ1, y ∶ τ2 ⊢ e2 ∶ τ3

Γ1, Γ2 ⊢ let (x, y) = e1 in e2 ∶ τ3

Dereliction
Γ, x ∶ τ1 ⊢ e ∶ τ2

Γ, x ∶ !τ1 ⊢ e ∶ τ2

Promotion
!Γ ⊢ e ∶ τ

!Γ ⊢ !e ∶ !τ

!-Elim
Γ1 ⊢ e1 ∶ !τ1 Γ2, x ∶ !τ1 ⊢ e2 ∶ τ2

Γ1, Γ2 ⊢ let !x = e1 in e2 ∶ τ2

Shallow-Cast
Γ ⊢ e ∶ ∗τ

Γ ⊢ &e ∶ !τ

Copy
Γ1 ⊢ e1 ∶ !τ1 Γ2, x ∶ ∗τ1 ⊢ e2 ∶ !τ2

Γ1, Γ2 ⊢ copy e1 as x in e2 ∶ !τ2

Necessitation
∅ ⊢ e ∶ τ

!Γ ⊢ ∗e ∶ ∗τ

Figure 2.5: Properly linear type system of Marshall et al. [2022] that includes
a uniqueness modality. Unique values cannot be contained within
unique values, as Shallow-Cast would allow duplicating the inner
unique values. As a result, all the built-in container types are linear.
Copy allows copying unique values; the non-linearity of τ2 makes ∗
act as a relative monad [Altenkirch et al., 2015] over !. Weaken is
integrated within Var, 1-Intro and Necessitation.
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2.8 Borrowing
Linear type theory, quantitative type theory and uniqueness type theory all have
one inconvenience in common: Every function consumes all of its arguments, and so
a function that only reads from a linear or unique argument will lose the reference
in the process. As we are working in the context of pure functional programming
languages, a reference being “read-only” in a function refers to the fact that the
reference does not escape the function.

In most basic formulations of linear and uniqueness type theory, this is resolved
by adjusting the encoding of linear and unique functions to manually thread the
read-only reference through the program: The function f ∶ τ1⊸ τ2⊸ τ3, where the
second argument does not escape in the return value, becomes f ∶ τ1⊸ τ2⊸ τ2 ⊗ τ3.
Unfortunately, while this encoding can always be used, it is inconvenient and affects
both the type-level encoding and the term-level usage of most functions.

In order to alleviate this issue, many linear type theories implement a notion of
“borrowing”, i.e. the non-consumption of arguments for which all components are
guaranteed not to escape.

Implementations

There are essentially three classes of implementations of borrowing:

1. Applying syntactical restrictions on the types that can be borrowed [Wadler,
1990]

2. Integrating an escape analysis with the type theory [Odersky, 1992] [Kobayashi,
1999] [Aspinall and Hofmann, 2002]

3. Using type-level mechanisms to hide the explicit threading [Spiwack et al.,
2022]

Wadler [1990] proposes the notion of a strict let! (x) y = u in v expression to
borrow a variable x in u, where u is evaluated strictly and none of the components
of the type of x occur in the type of u. If these conditions are fulfilled, then the type
system guarantees that x cannot be contained in the result of u. Unfortunately, this
is already quite restrictive, and when polymorphic or erased types come into play,
borrowing very rarely works when one wants it to work.

Odersky [1992] implements so-called “observer types”, which witness that the
variable corresponding to the observer type has been borrowed. Then, upon leaving
the scope of the borrow, the implementation checks whether the type of the resulting
expression contains any observer types to ensure that none of the borrowed variables
escape. Aspinall and Hofmann [2002] and Kobayashi [1999] implement similar ideas.

Spiwack et al. [2022] use a system of linear constraints akin to type classes that
can be consumed and returned implicitly by functions in order to remove the explicit
threading from the term language of Linear Haskell. These constraints need to be
freed manually and explicitly by the user, much like regular Linear Haskell types.
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Types subject to these constraints are tagged with an additional variable in order
to connect constraints with regular types, and when returning a fresh constraint,
an existential quantifier must be used to summon a variable to tag the constraint
with. There are constraints for hiding the continuation-passing style when creating
functions, constraints for reading and writing arrays, as well as constraints for slices
of arrays.

We think that constraint systems are an interesting approach, but that as formu-
lated by Spiwack et al. [2022], there is unfortunately still a large amount of syntactical
overhead in the term language, as constraints have to be unpacked explicitly.

Complex borrowing

Finally, linear references may not just get lost when passed as function arguments
themselves, but when stored within a function argument as well. For example, in
fst ∶ τ1 ⊗ τ2 ⊸ τ1, τ1 escapes, but τ2 is lost. Unfortunately, this issue is much more
difficult to resolve, as we cannot retain our unique reference to τ2 without also
retaining our unique reference to τ1 ⊗ τ2, with which we will also retain our unique
reference to τ1, a reference that is not unique anymore after application of fst.

Inspired by Rust [Weiss et al., 2021], Spiwack et al. [2022] suggest introducing
primitive “lending” functions that grant temporary read access into a type, for
example as follows for a linear type MArray that is allowed to contain other linear
types:

lend : MArray α ⊸ !N ⊸ (!α ⊸ β) ⊸ Array α ⊗ β

Here, the unique reference to the array is consumed by lend and hence unavailable
in the continuation of type !α ⊸ β. !α provides read-only access to the array
value indexed by the argument of type !N. The constraint mechanism additionally
ensures that the argument of type !α cannot escape in β, as well as that the explicit
threading of Array α becomes implicit.

For MArray, Spiwack et al. [2022] define another complex borrowing mechanism
inspired by Rust: A function split allows slicing an array a at an index i, consuming
the original array in the process and producing two linear slices x := a[0:i) and
y := a[i:len(a)), plus a token which witnesses that x and y are slices of a. Then, a
function join can efficiently put two such slices with an associated witness token back
together. Using continuations, we could also again define a lending primitive similar
to the following and separately ensure that both arguments of type !(Array α) do
not escape in β:

lendSlices : Array α ⊸ !N ⊸ (!(Array α) ⊸ !(Array α) ⊸ β)
⊸ Array α ⊗ β

Primitive dedicated borrowing operations can be defined for many other types
as well. We will not touch on this form of borrowing in this thesis and will instead
focus on the simpler notion of borrowing function arguments themselves.
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Updating values within values

In section 2.4, we saw that performing destructive updates on values within containers
can be problematic for Lean’s destructive update mechanism as well. So far, we have
only discussed approaches that grant read access to values within containers, but
what about write access?

It turns out that granting write access to single elements is rather straight-forward
and can be implemented in a similar manner as we did in section 2.4. For arrays
and a linear type α, we could define a primitive function swap : Array α ⊸ !N
⊸ α ⊸ Array α ⊗ α that swaps out an element in the array with another and
will hence retain the linearity of both. Using this primitive, we can define update :
Array α ⊸ α ⊸ !N ⊸ (α ⊸ α) ⊸ Array α, where the second argument is

a default value that is swapped into the array while the function of type (α ⊸ α)
is applied. On the other hand, implementing an efficient slicing primitive that allows
writing to slices as in Spiwack et al. [2022] would be more difficult, since there is no
guarantee that two sub-arrays can be efficiently rejoined without a token witnessing
this. The Lean 4 destructive update mechanism struggles with this issue, too.
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3 Design Space Exploration
In this chapter, we will explore possible design decisions with the goal of guaranteeing
efficient in-place updates. First, we will evaluate linear type theory, quantitative type
theory and uniqueness type theory, and argue why we decide for the latter. Second,
we will discuss the dimensions in the design space of uniqueness type systems.

3.1 Substructural Framework
Let us first briefly repeat some of the important points from Section 2.5, Section 2.6
and Section 2.7 that are relevant to this section:

1. Properly linear types make a guarantee for the usage of a variable in the future,
but not the past.

2. Uniqueness type theory makes a guarantee for the usage of a variable in the
past, but not the future.

3. Invariably unique types are always unique and can never discard their unique-
ness.

4. Properly linear types can make a guarantee for the past on particular types if
all constructors of the type return linear values.

5. Properly linear types can discard the linearity of particular types with special
library functions, but are typically not capable of doing so in constant time for
nested linear types.

6. Quantitative type theory introduces an “erasure” quantity to specify compu-
tationally irrelevant terms in dependent types and count only those in the
substructural portion of the type system.

7. Quantitative type theory inherits the properties of proper linearity.

8. Both quantitative and properly linear type theories can use linear functions that
return values of linear type to produce values of non-linear type by demanding
inputs of non-linear type to the function.

9. Having linear functions consume resources based on demand forces constructors
of unique types to be formulated in continuation-passing style.
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Properly linear types

Because of 1. and despite 4. and 5., we believe that properly linear types are simply
not the right tool for ensuring uniqueness for destructive updates.

Although they can be made to ensure uniqueness with careful library design, the
tricks involved often seem to work against the grain of the initial decision to allow for
a coercion from non-linear to linear types and are never without sizeable limitations,
like the discarding of linearity only being available for a couple of types and nesting
of such unique types being complicated.

While Spiwack et al. [2022] manage to remove some of these limitations, they also
add an entirely separate system of linear capabilities on top of the linear type system.

Invariably unique types

Meanwhile, due to 3., we think that invariably unique types are too restrictive for
safe destructive updates.

We would like our type system to be fairly non-invasive, so as not to bother users
when the type system is too weak to enforce the desired property. Hence, since the
reference counting system described in Section 2.4 is already suitable to implement
safe destructive updates at runtime, we think that it is absolutely crucial that users
can fall back to this manual type-less mode of ensuring uniqueness if they cannot get
the type system to guarantee the invariants that they need. This is especially pressing
because we intend to add a substructural type system to the existing eco-system of
Lean, where none of the code is annotated with linearity or uniqueness annotations.
As per 2., uniqueness type theory has the desired property.

Term language

Finally, we must decide what the term language of our type system will be.
Due to 7., 8. and 9., existing formulations of quantitative type theory are not

readily suited for uniqueness. Graded modal dependent type theory [Moon et al.,
2021] is still an active area of research and implementing something along these lines
would be far beyond the scope of this thesis. Transferring the core idea of QTT
from 6. and removing all the components that make QTT “quantitative” may be
possible, but would both increase the complexity of the resulting system due to the
extra erasure attribute and require additional adjustments to the existing compiler
toolchain to respect erasure.

Because of this, we decide against combining dependent type theory with uniqueness
type theory. Instead, we target a derivate of the LCNF language described in
Section 2.3 in the later stages of the compiler toolchain when type dependencies
have been erased. Type erasure will lose us some analysis precision, but in turn
integrating the resulting type system with the Lean compiler toolchain should be
much easier.
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3.2 Uniqueness Type Systems
In Section 2.7 and Section 2.8, we described two key challenges that come up when
designing a uniqueness type system. The first is that non-unique values, including
closures of non-unique functions, cannot be allowed to contain unique values. The
second is that functions which use an argument in a read-only manner still consume
it, thus losing the reference in the process.

3.2.1 Higher-Order Functions
As discussed in Section 2.7, invariably unique type systems ensure that shared
containers cannot contain unique values during the construction of a value, whereas
Clean ensures it during the deconstruction of a value by disallowing the deconstruction
of a shared value if it contains unique values. Higher-order functions complicate
this matter because function types typically do not reveal the types of the values in
their closure and because implementations usually commit to one particular function
pointer when the higher order function is created.

To see why this is an issue, consider a function f ∶ ∗(∗α → ∗(!β → ∗α)), using
the notation introduced in Section 2.7 where ∗ represents a unique type and !
represents a non-unique type. There are two ways in which the uniqueness of the
first argument can be leveraged: In the construction of the return value of type
∗α, and in the resulting code for the function f where the first argument may get
updated destructively. If we partially apply the first argument, the type becomes
f a ∶ ∗(!β → ∗α)) and the information that the first argument was unique is lost,
despite a being in the closure of f a. Now, if we discard the uniqueness of f and
apply it twice, then the return type may incorrectly suggest that the return value is
unique, and we may even accidentally destructively update the first argument to the
function, despite the fact that it is shared between the two function invocations.

There are several possible solutions to this problem, most of which have previously
been covered by de Vries [2009].

“Necessarily unique”

The first is to take the approach that Clean uses and disallow discarding the unique-
ness of function types altogether. Clean ensures this by introducing another kind
of type into its type system, so called “necessarily unique” types. In practice, “nec-
essarily unique” is the same thing that we have been calling “invariably unique”
so far: the value is unique when it has been constructed and can never lose its
uniqueness. Unfortunately, having support for “necessarily unique” values only in
functions creates two additional problems.

First, in a type system with polymorphic types, the fact that functions in par-
ticular can be invariably unique also precludes type variables from discarding their
uniqueness, as they could be substituted for functions.
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And second, if an invariably unique function is stored in a unique container that
then discards its uniqueness, we must make the function unavailable during the
deconstruction of the value, lest it could have been shared. As argued in Section 2.7,
for other unique values in non-unique containers, we do not have to be this restrictive
and could instead also discard the uniqueness of the contained unique values during
deconstruction.

Furthermore, a perspective put forward by Marshall et al. [2022] is that Clean’s
“necessarily unique” is too restrictive: For functions with unique values in their
closure, we typically do not care about the uniqueness of the function itself, just that
the function does not duplicate values in its closure. Hence, functions could really
be properly linear, not invariably unique, allowing for some greater flexibility when
joining two code paths where one yields a function with a unique value in its closure,
whereas the other does not.

Closure typing

The second solution is what de Vries calls “closure typing”—instead of disallowing
the discarding of uniqueness of a function altogether, an additional attribute is added
to every function type that denotes whether the function contains a unique value in
its closure. As a result, when applying the function, the information of whether the
closure contains a unique value is not lost, and applying a shared function with a
unique value in its closure becomes disallowed.

Higher-rank polymorphism

The third solution outlined by de Vries is to attempt to do away with the coercion
altogether and replace it with careful library design, though of another nature than
the freeze function in Linear Haskell.

First, de Vries argues that constructors of functions should leverage polymorphism
in order to create values of polymorphic kind, e.g. mkArray ∶ !N→ ∗Array α becomes
mkArray ∶ ∀u. !N → u(Array α), where u ∈ {∗, !}. However, this is not equivalent
to the approach with the coercion, as we must commit to a concrete u when
constructing the array, and two code paths cannot use the same array in two separate
ways anymore.

To mitigate this, de Vries suggests using higher-rank types so that the constructor
is typed as mkArray ∶ !N → (∀u. u(Array α)) and two different code paths can
instantiate (∀u. u(Array α)) in two separate ways. Unfortunately, this is still not
equivalent to being able to discard uniqueness: Two code paths can now instantiate
the array in two separate ways, but after they instantiate it as needed, they cannot
be joined anymore, as the concrete instantiations ∗Array α and !Array α are not
compatible.
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Deleveraging uniqueness

Finally, the fourth solution outlined by de Vries, originally due to Harrington [2006],
is to allow the application of shared functions with a unique value in their closure,
but to degrade the return type of the function to non-unique instead.

As de Vries correctly points out, if this idea is used in a programming language, then
ways of leveraging the uniqueness of the function argument other than the uniqueness
of the return value must be addressed as well, e.g. the presence of destructive updates
in the function. For destructive updates in particular, when creating a higher-order
function, one possible implementation is to yield two function pointers for the higher-
order function: one for if the function remains unique in which destructive updates
are used, and another for if the function becomes non-unique in which no destructive
updates are used. Then, when the unique function is forced to discard its uniqueness,
the function pointer with destructive updates can be swapped out for a function
pointer without destructive updates, and the now violated uniqueness of the function
argument cannot be leveraged anymore.

Since Clean uses uniqueness not just for destructive updates, but for threading I/O
as well, de Vries argues that the approach is inadequate, as side-effecting functions
like closeFile ∶ ∗File → !B cannot be prevented from leveraging the uniqueness of
the ∗File argument, and closing a file twice will always be an error. However, we
believe that uniqueness types are simply the wrong tool to handle I/O, as it is never
desirable to make I/O values shared, and that Clean should instead use invariably
unique types for I/O. Uniqueness types are better suited for situations in which the
sharedness of a value is still admissible, like destructive updates in memory, where
we can always copy a value if it is shared.

Conclusion

We feel that the first approach is overkill. If one introduces linearity into a uniqueness
type system for functions, then one should also introduce linearity for all other types,
so that linear functions can be nested in linear structures. This is essentially the
approach of Marshall et al. [2022], though as stated in Section 2.7, their type system
does not support nesting of unique types. This creates lots of extra work for users,
and it seems excessive if all we want to do is guarantee safe destructive updates and
handle higher-order functions correctly.

The second approach of closure typing also adds plenty of notational overhead to
the type theory, as functions now have two separate type annotations, and the idea
of not being able to apply a function that is present in the context seems unintuitive
to us.

We think that the third approach introduces a lot of complexity in requiring
higher-rank types to work, and even then, it does not fully replace the notion of
discarding uniqueness.

Despite de Vries’ criticism of it, we think that the last approach is the most viable
if all we care about are destructive updates of values in memory. However, this
approach would require a hefty change to the runtime of Lean, as every unique
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higher-order function needs to carry two function pointers around, so that we can
switch to the one without destructive updates when the function becomes shared.
Because of this, we decided not to implement this approach yet, and will instead
require all higher-order functions and the types within them to be non-unique. As this
precludes us from making guarantees for monadic code, type classes and idioms using
higher-order functions like the one in Section 2.4, this is a considerable limitation
that we hope to resolve in the future.

3.2.2 Implicit Coercion
In most descriptions of linear and uniqueness type theory discussed so far, the
coercion between non-linear/non-unique and linear/unique types has usually been
implicit, e.g. passing a unique value to a shared parameter works, but will discard the
uniqueness in the process. For linear type theories this is not an issue, as the coercion
from non-linear types to linear types adds structure. However, for uniqueness type
theories, the coercion from unique to shared discards the guarantee that the value is
unique, and so the user may not want it to happen implicitly.

Additionally, there is a question of when unique types are implicitly coerced. In
Clean, this is only possible at function boundaries, and if one wishes to share a
variable, then one must choose the respective parameter type accordingly. An explicit
coercion operator would give users greater control over when coercion happens.

While the type theory that we will describe in Chapter 4 also uses an implicit
coercion, we think it is best to make it explicit when integrating the type theory
with Lean 4.

3.2.3 Uniqueness Propagation
As discussed in Section 3.2.1, shared containers cannot be allowed to contain unique
values. We have already explored possible approaches for how to ensure this for
higher-order functions, but we are still lacking a more general framework for other
types.

Subtyping

In Clean, a shared product is allowed to contain unique values, but upon deconstruc-
tion or projection, the type system checks that the projected values cannot be unique
if the outer value is shared. In other words, if we discard the uniqueness of a product,
then we cannot access its fields anymore. This is rather limiting, because we could
instead also discard the uniqueness of the fields when we attempt to access them.

Relatedly, there is a question of how deep the subtyping relation induced by the
coercion from unique to non-unique types is. In Clean, it is very shallow and only
allows discarding the uniqueness of the outer layer, i.e. we cannot pass a value of type
∗(∗α × ∗β) to a parameter of type !(!α × !β), only a parameter of type !(∗α × ∗β),
the fields of which cannot be accessed anymore. Similarly, passing a value of type
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∗(∗α × ∗β) to a parameter of type ∗(!α × ∗β) is not possible either, though doing so
is sound. A less shallow subtyping relation would resolve these issues.

If we make the subtyping relation less shallow, then coercions should also propagate
the change in the outer attribute to the values contained within, so that !(∗α × ∗β)
and !(!α × !β) are not differently annotated but equivalent types, and !(∗α × ∗β)
becomes unrepresentable. For types like ∗(∗α×∗β), where the attributes are floated
out into type arguments, this is straight-forward, as we can propagate the outer
sharedness annotation to the inner components of the type.

Algebraic data types

For algebraic data types (ADTs), this is not as straight-forward, as there is a question
of what to do with the attributes associated with fields of the ADT. One possibility
would be to float out every attribute within the ADT, so that fields use an attribute
variable m to refer to a concrete attribute passed to the ADT, after which ! can be
propagated directly in the arguments of the ADT, much like in ∗(∗α×∗β). However,
for large ADTs, this will very quickly accumulate dozens of attribute arguments,
leading to a huge notational overhead.

Instead, for our type system that will be described in Chapter 4, we decide that
fields with a ∗ attribute are “unique if the outer value is unique”. In other words, for
the uniqueness annotations within ADTs, sharedness is not propagated directly, only
when deconstructing the value and accessing the fields. Since these attributes are
not floated out, delaying the propagation does not make us end up with differently
annotated types that are equivalent, like it would be the case for ∗(∗α × ∗β).

3.2.4 Borrowing
As discussed in Section 2.8, most implementations of borrowing use a form of type-
driven escape analysis. We believe that introducing extra attributes like observer-
types into the type system that users need to keep accurate track of in order to be
able to access borrowing is too much of an annotational burden.

Instead, we will make use of the fact that escape analyses are very local in nature;
whether a variable escapes or not can be approximated by following the data flow of
the variable from the start of the function to the return value. Hence, we implement
a data flow analysis [Allen and Cocke, 1976] in Section 4.4. Due to the inherent
locality of the analysis, we will not need any type information to run it.

While we will not touch on it further, it is worth pointing out that adding extra
annotations describing whether a function parameter is borrowed may still be a good
idea for maintenance purposes, despite the fact that we can compute this information.
When integrating our type system with Lean 4, it may hence be a good idea to add
these annotations as well.
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4 Formal Specification

In this chapter, we will provide a formal description of our type theory and all
the associated mechanisms required to make it work. Section 4.1 introduces the
syntactical material for our types and declares a number of commonly useful utility
functions. Section 4.2 defines the syntax of the IR. In Section 4.3, we specify an
escape data flow analysis in order to implement the borrowing mechanism described
in Section 4.4. Finally, Section 4.5 provides the rules of our type theory.

4.1 Types

In all of the following sections, we use [x] to denote a vector of elements x, otherwise
commonly written as x. We will often lift these brackets over an operation; e.g. the
functional code map(⊕, zip([x], [y])) is written as [x⊕ y] for vectors [x] and [y]. In
derivation rules, we also use [x] for x ∈ B to mean ∀x ∈ [x]. x.

4.1.1 Syntax

x, y, z ∈ Var
i ∈ Ctor
j ∈ Proj
c ∈ Const

m ∈ Attr ∶∶= ! ∣ ∗
a ∈ ADT ∶∶= µ xκ

adt. [[τfield(xκ
adt, [yτ ])]→ ∗xκ

adt]
A ∈ ADTConst
γ ∈ ADTDecls = ADTConst⇀ ADT
τ ∈ AttrType ∶∶= m xκ ∣ xτ ∣ m ∎ ∣ m A [τarg] ∣ ! [τparam]→ τret

δτ ∈ FunTypes = Const⇀ [AttrType] ×AttrType

Ctor and Proj denote the constructors and fields within a constructor, respectively.
Const designates function names. Attr contains the attributes that are the main
subject of our type theory; shared (!) and unique (∗).
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ADTs

Since the Lean 4 compiler erases type dependencies, we will limit ourselves to types
that look like potentially recursive algebraic data types.

In µ xκ
adt. [[τfield(xκ

adt, [yτ ])] → ∗xκ
adt], xκ

adt is the variable we use to refer back
to the ADT itself, [[τfield(xκ

adt, [yτ ])] → ∗xκ
adt] is a vector of constructors and

[τfield(xκ
adt, [yτ ])] denotes the types of the fields of the constructor, where τfield

is parametrized by the variable xκ
adt representing the ADT itself, as well as a vector

[yτ ] of type parameters of the ADT.
Constructors, projections and type parameters are assumed to be enumerated by

intervals [0, n), and so we use the following notation:

(µ xκ
adt. [[τfield(xκ

adt, [yτ ])]→ ∗xκ
adt])i ∶= [[τfield(xκ

adt, [yτ ])]→ ∗xκ
adt]i

([τfield(xκ
adt, [yτ ])]→ ∗xκ

adt)j ∶= [τfield(xκ
adt, [yτ ])]j

[yτ ]x ∶= x

As Lean 4 code commonly interacts with external types and external code via
its foreign function interface (FFI), we cannot assume that we can access an ADT
declaration for every type. To cope with this, ADTs are instead identified by an
ADTConst, the mapping of which is maintained in a global and partial function
γ ∈ ADTDecls. ADTConsts A ∉ dom(γ) that appear in the program are regarded
as external. Lastly, we demand that all A ∈ dom(γ) are fully propagated, i.e. that
∀i j. propagate(γ(A)ij) = γ(A)ij for the definition of propagate below.

AttrType

AttrType contains our types. m xκ and xτ are the two kinds of variables that can
occur only within an ADT; self-referring variables xκ have an associated (fixed)
attribute and the variable only represents the parameterless portion of a type, while
variables xτ can denote any type parameter τ ∈ AttrType.

m ∎ is an erased type, m A [τarg] is an ADT (or external type) A parametrized
by type arguments [τarg], and ! [τparam → τret] denotes the type of a higher-order
function.

Finally, δτ provides the parameter and return types for all functions in the program,
including external ones. This is a reasonable assumption because we can simply assign
a type [! κparam] → ! κret for Lean 4 functions with an unattributed function type
[κparam]→ κret. For δτ(c) = ([τparam], τret), we also demand that all the types are fully
propagated, i.e. ∀τparam ∈ [τparam]. propagate(τparam) = τparam ∧ propagate(τret) = τret
for the definition of propagate below.

Throughout this thesis, we assume that functions c have already been type-checked
without annotations pre-erasure by the Lean type checker.
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4.1.2 Propagation
A function weaken makes types shared and propagates sharedness inwards through
the type:

weaken ∶ AttrType→ AttrType
weaken(m xκ) = ! xκ

weaken(xτ) = xτ

weaken(m ∎) = ! ∎
weaken(m A [τarg]) = ! A [weaken(τarg)]
weaken(! [τparam]→ τret)
= ! [weaken(τparam)]→ weaken(τret)

We will henceforth denote applications of weaken using !τ ∶= weaken(τ). We will
need this function whenever we have to make a type shared and we will avoid using
it for the types of fields that have not been substituted yet.

propagate ∶ AttrType→ AttrType
propagate(m xκ) =m xκ

propagate(xτ) = xτ

propagate(m ∎) =m ∎
propagate(∗ A [τarg]) = ∗ A [propagate(τarg)]
propagate(! A [τarg]) = ! A [!τarg]
propagate(! [τparam]→ τret)
= ! [!τparam]→ !τret

Using propagate, we ensure that unique types are made shared if they are contained
within a shared type, since a value within another value cannot be guaranteed to be
unique if the outer value is already shared.

We use the following notation for substitution in a = µ xκ
adt. [[τfield(xκ

adt, [yτ ])]→
∗xκ

adt]:

a{A, [τ]} ∶= µ xκ
adt. [[propagate(τfield[A [τ]/xκ

adt][[τ]/[yτ ]])]→ ∗xκ
adt]

4.1.3 Definitional Nuances
It is worth pointing out a number of semantic nuances in both the definitions of our
types and the function propagate above:

• If we know that a type is unique, we can always throw away this guarantee
and make it shared, as described in Section 2.7.
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• In m ∎, ∎ could be any other type, potentially parametrized by any other
attributed type if ∎ used to be A [τarg]. We must ensure that our type theory
can deal with this kind of erasure.

• We must always ensure that types remain fully propagated.

• Within an ADT declaration a, we do not know how to propagate xτ , as it
depends on the concrete type argument. Instead, we ensure that types become
fully propagated when substituting type variables for type arguments using
our definition of a{A, [τ]}.

• While we can propagate within a given ADT field or within any other given
type, we cannot propagate from ! A [τarg] into the fields within γ(A), as not
all the attributes in γ(A) are floated out to arguments in ! A [τarg], only those
in the type arguments [τarg]. To alleviate this issue, we take an attribute ∗ in
a field within γ(A) to mean “unique if the outer value is unique” and enforce
this property in our type rules for projection on m A [τarg].

• Higher-order functions are always shared, so we do not need to worry about
covariance or contravariance. This is a considerable limitation: Lean 4 code
uses higher-order functions very liberally to encode type classes, monads, as
well as some performance idioms related to the Counting Immutable Beans
optimization described in Section 2.4. See Section 3.2.1 for possible approaches
to alleviate this issue in future work.

• Since external types have no associated declaration, if we want to gather
information about the type, we must rely on auxiliary information provided by
users at the FFI. We will need this kind of auxiliary information in Section 4.3
and Section 4.4.

4.1.4 Utilities
We will now proceed to declare some convenient auxiliary functions.

weakenInner ∶ AttrType→ AttrType
weakenInner(m xκ) =m xκ

weakenInner(xτ) = xτ

weakenInner(m ∎) =m ∎
weakenInner(m A [τarg]) =m A [!τarg]
weakenInner(! [τparam]→ τret) = ! [τparam]→ τret

With weakenInner, we leave the outer attribute intact but weaken every inner
type. This will be useful when dealing with erased types m ∎: When casting m ∎ to
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another type τ , we want τ to retain the outer attribute m, but we cannot make any
guarantees for the inner attributes, and so we weaken them. We will avoid using it
for the types of fields that have not been substituted yet.

strengthen ∶ AttrType→ AttrType
strengthen(m xκ) = ∗ xκ

strengthen(xτ) = xτ

strengthen(m ∎) = ∗ ∎
strengthen(m A [τarg]) = ∗ A [strengthen(τarg)]
strengthen(! [τparam]→ τret) = ! [τparam]→ τret

Strengthening makes every attribute within a type unique that can be made unique.
We will use strengthen for inferring the type arguments of m A [τarg] at construction:
If a type parameter variable is not assigned by any constructor argument, we can
strengthen it. We will also avoid using it for the types of fields that have not been
substituted yet.

attr ∶ AttrType⇀ Attr
attr(m xκ) =m

attr(m ∎) =m

attr(m A [τarg]) =m

attr(! [τparam]→ τret) = !

The function attr simply yields the outer attribute of any τ ≠ xτ .

4.1.5 Subtyping
Finally, whenever we pass a type τ1 to a type τ2, we must ask ourselves whether
τ1 can be applied to τ2. The type structure must be the same, but it should be
possible to throw away the uniqueness attribute of types within τ1. Hence, we use
m1 ≽m m2 ∶⇔m1 = ∗ ∨m2 = ! to denote attribute subtyping and define a subtyping
relation ≽ for fully propagated types τ1 and τ2 as follows:

τ1 ≽ τ2
m1 ≽m m2

m1 ∎ ≽m2 ∎
m1 ≽m m2

m1 xκ ≽m2 xκ xτ ≽ xτ

! [τparam]→ τret ≽ ! [τparam]→ τret

m1 ≽m m2 [τarg1 ≽ τarg2]
m1 A [τarg1] ≽m2 A [τarg2]

Note that if higher-order functions could be unique, we would have to account for
covariance and contravariance in this definition.
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4.2 Intermediate Representation
For our model of the IR, we use a mixture of the IR described by Ullrich and
de Moura [2020] and the newly implemented LCNF, both detailed in Section 2.3.

4.2.1 Syntax

e ∈ Expr ∶∶= c [y] ∣ pap c [y] ∣ x y ∣ (A [τ?]).ctori [y]
∣ A.projij y

F ∈ FnBody ∶∶= ret x ∣ let x := e; F ∣ case x of [F]
∣ A.case’ x of [ctori [y] ⇒ F]

f ∈ Fn ∶∶= λ [y]. F
δ ∈ Program = Const⇀ Fn

Expr and FnBody are similar to Lean’s IR, except for our definition of proj and
ctor, as well as the addition of a new instruction case’. As in Lean’s IR, a global
and partial δ ∈ Program assigns function declarations to constants. All c ∉ dom(δ)
that occur in the program are assumed to be external functions.

Projection

proj is provided not just with the projection j as in Lean’s IR, but also the constructor
i. As the code generation ensures that proj calls always occur after case within the
same function if the type has multiple constructors or on its own if the type only has
a single constructor, we can easily compute i by walking back from the projj y call
either to the start of the function to set i = 0 or to a case x of [...] instruction,
where we choose i as the index of the branch that we are walking back from.

Construction

ctor takes an additional vector of explicit attributed type arguments [τ?], where ?
refers to each explicit argument being optional.

Since users do not provide them, Lean can provide us with type arguments [κ] for
the constructor call, but not any of the attributes, and so we must infer them from
the types of arguments provided in [y]. But since there may be type arguments to
A that occur only in the other constructors for A, we cannot infer all of them, and so
they must be provided explicitly. However, type arguments that do not occur in [y]
are also not subject to any uniqueness constraints, and so we can instantiate them
as strongly as possible.

Subsequently, the attributes in [τ?] can be chosen arbitrarily: If the type argument
occurs in [y], we can infer the type together with its attributes, and if it does not
occur in [y], the type τe must be provided in [τ?], but the corresponding attributes
can be chosen as given by strengthen(τe).
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Deconstruction

The case and proj combination turns out to be unwieldy for substructural type
systems: When we use let z := A.projij y; F on a unique value to obtain another
unique value, the contained value now exists both in z and in y, i.e. uniqueness is
violated. The solution to this issue would be that A.projij y consumes our unique
value y so that it is not available in F anymore.

However, it is very common that we would like to access multiple fields of y in
succession, which we will not be able to do now that y is consumed. So, instead,
the typical solution to this issue in substructural type systems is not to access fields
via projections, but using a single destructuring pattern match that yields all fields
of the type in one go and consumes the variable associated with the type. This is
exactly what case’ does as well, and while the instruction does not exist in Lean’s
IR, it does exist in Lean 4’s LCNF.

Regardless, even in LCNF, structures are still accessed via projections and not
using a destructuring pattern match. To alleviate this final issue, we implement a
compromise in Section 4.5 which ensures that we can use multiple projections on y,
but not use it in any other manner.

Omissions

Finally, there are a number of omissions from our IR compared to the IR implemented
in Lean. Most notably, there are instructions to work with join points, which we
could implement as functions in our IR. However, it is worth noting that join points,
like auxiliary functions c generated by the Lean compiler, do not necessarily have an
associated user-provided type δγ(c). We will not provide a general type inference
mechanism in this thesis, but will briefly discuss the topic in Section 6.1.

4.3 Escape Analysis
As described in Section 2.8, borrowing in functional languages is closely related to
escape analysis; if nothing within a shared parameter escapes, then we do not have
to make a unique argument to that parameter shared, as the caller is guaranteed to
still hold the only reference to the value in question when the called function returns.
Instead of unloading this additional burden of tracking the data flow of variables
and fields to the user, we implement a data flow analysis.

4.3.1 Syntax

n, m ∈ N
s, t, v ∈ Tag ∶∶= #const c ∣ #case i ∣ #app ∣ #param n

q ∈ Escapee ∶∶= x[ij]@[t]?
δqe ∈ ExternFunEscapees = Const⇀ 2Escapee
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Escapees are the subject of our escape analysis and represent the elements of
the sets that we compute, i.e. sets of escapees denote the elements of the lattice
underlying our data flow analysis. Each escapee has an associated variable x, a
field index [ij] represented by a vector of Ctor ×Proj tuples and an optional vector
of tags that describes the path to the parameter an escapee was spawned from, if
the escapee came from a function call. The need for the vector of tags will become
obvious later, and until then it can just be understood as an identifier that identifies
the location in the code where escapees from function calls were spawned. We write
x[ij] for escapees without a tag, x[ij]@[t] for escapees with a tag and x[ij]@[t]? for
escapees that either have a tag attached or do not have a tag attached.

Since external funtions do not have a function body that we can analyze, a global
and partial function δqe allows specifying the set of all escapees for these functions.
For external functions c ∉ dom(δqe) we will assume all parameters and all fields
thereof to escape.

4.3.2 Computing Escapees
Using abstract interpretation [Cousot and Cousot, 1977], we compute a fixed point
of the following mutually recursive equations J⋅KQ (⋅) and δQ, which we will explain
in detail along the way. The first parameter of J⋅KQ (⋅) is the portion of the function
body that we want to compute the escapees for and the second parameter denotes the
vector of tags thus far from the start of the function to this portion of the function
body.

Escapees of function bodies

J⋅KQ (⋅) ∶ FnBody × [Tag]→ 2Escapee

Jret xKQ ([t]) = {x[]}
Jcase x of [F]KQ ([t]) = ⋃

n
J[F]nKQ (#case n ∶∶ [t])

JA.case’ x of [ctori [y] ⇒ F]KQ ([t]) = ⋃
n

J[F]nKQ (t′)

∪{xnm∶∶[kj]@[s]? ∣ ([y]m)[kj]@[s]? ∈ J[F]nKQ (t′) ∧m ∈ [0, ∣[y]∣)}
where t′ ∶= case n ∶∶ [t]

Jlet x = c [y]; FKQ ([t]) = QF

∪

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Q ∃[nm]. x[nm]@[v]? ∈ QF ∧ c ∈ dom(δQ)
{y[] ∣ y ∈ [y]} ∃[nm]. x[nm]@[v]? ∈ QF ∧ c ∉ dom(δQ) ∧ c ∉ dom(δ)
∅ ∃[nm]. x[nm]@[v]? ∈ QF ∧ c ∉ dom(δQ) ∧ c ∈ dom(δ)
∅ ∀[nm]. x[nm]@[v]? ∉ QF

where Q ∶= {([y]z)[ij]@(#param z ∶∶ [t]) ∣ z[ij]@[s]? ∈ δQ(c)}
and QF ∶= JFKQ (#app ∶∶ [t])
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Jlet x = pap c [y]; FKQ ([t]) = JFKQ ([t])

∪
⎧⎪⎪⎨⎪⎪⎩

{y[] ∣ y ∈ [y]} ∃[nm]. x[nm]@[v]? ∈ JFKQ ([t])
∅ ∀[nm]. x[nm]@[v]? ∉ JFKQ ([t])

Jlet x = y z; FKQ ([t]) = JFKQ ([t])

∪
⎧⎪⎪⎨⎪⎪⎩

{y[], z[]} ∃[nm]. x[nm]@[v]? ∈ JFKQ ([t])
∅ ∀[nm]. x[nm]@[v]? ∉ JFKQ ([t])

Jlet x = (A [τ?]).ctori [y]; FKQ ([t]) = JFKQ ([t])

∪
⎧⎪⎪⎨⎪⎪⎩

{y[] ∣ y ∈ [y]} x[]@[v]? ∈ JFKQ ([t])
{([y]j)[nm]@[s]? ∣ xij∶∶[nm]@[s]? ∈ JFKQ ([t])} x[]@[v]? ∉ JFKQ ([t])

Jlet x = A.projij y; FKQ ([t]) = JF KQ ([t])

∪
⎧⎪⎪⎨⎪⎪⎩

{yij∶∶[kl]@[s]? ∣ x[kl]@[s]? ∈ JFKQ ([t])} ∃[nm]. x[nm]@[v]? ∈ JFKQ ([t])
∅ ∀[nm]. x[nm]@[v]? ∉ JFKQ ([t])

In ret x, only x itself escapes. For case x of [F], we determine the escapees of
each F ∈ [F] and compute the resulting union of all escapees. In A.case’ x of [
ctori [y] ⇒ F], we use the same idea as for case, but must also transfer escapees
concerning [y] over to x: Each escapee ([y]m)[kj]@[s]? in branch n corresponding
to constructor n is converted to an escapee xnm∶∶[kj]@[s]?.

For all let x = e; F function bodies, we will always have a case stating that if x
does not escape in F, then we need not generate any additional escapees for e.

Application let x = c [y]; F is the most tricky since it is where our analysis
recurses with escapees for c. If we have already computed escapees for c or they
are specified in δqe , i.e. c ∈ dom(δQ), we take all escapees z[ij]@[s]? for parameters z
from δQ and rename them to the corresponding arguments [y]z. If c ∉ dom(δqe) is
external, all [y] are assumed to escape. Finally, if we have not already computed
the escapees for c but are expected to do so in the future because c is not external,
we yield the bottom element of our lattice � = ∅.

When creating a higher-order function using pap c [y], we assume that all [y]
escape if the resulting higher-order function escapes. The same is true for higher-
order function application y z: if the result escapes, then so may y and z. Note that
creating an escapee for y, i.e. the higher-order function itself, is important, because
if the higher-order function containing all the previously-applied arguments or the
return value of the function escapes, we need to know that the previously-applied
arguments may escape too, and so we propagate this bit of information backwards
using the escapee for y.

(A [τ?]).ctori [y] and A.projij y are once again fairly straight-forward. If the
ADT resulting from a constructor call escapes, then so do all of its fields, and if only
particular fields of constructor i escape, then the respective escapees xij∶∶[nm]@[s]?
must be translated to escapees for [y]j by removing the ij field. Other escapees
xkj∶∶[nm]@[s]? for k ≠ i do not need to be translated. For A.projij y, we use the
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same idea as for case’ and translate the escapees for the projection to ones for y.

Post-processing

Next, we will define a couple of post-processing functions to make our application of
abstract interpretation to the mutually recursive J⋅KQ (⋅) and δQ terminate.

fd ∶ [Var] × 2Escapee → 2Escapee

fd([y], Q) = {x[ij]@[t]? ∣ x[ij]@[t]? ∈ Q ∧ x ∈ [y])}

With fd, we remove all dead escapees for a function by keeping only those that
correspond to function parameters [y]. This is mainly useful for performance because
J⋅KQ (⋅) accumulates escapees for all variables in a function, even local ones.

fs ∶ 2Escapee → 2Escapee

fs(Q) = {q ∣ q ∈ Q ∧ ¬∃q′ ∈ Q. q ≠ q′ ∧ q′ ⊂ q}

Here, x[i1j1]@[t1]? ⊂ x[i1j1]++[i2j2]@[t2]? asserts that x[i1j1]@[t1]? subsumes
x[i1j1]++[i2j2]@[t2]?. Hence, fs removes all escapees which are subsumed by another
escapee.

≡t∶ Escapee ×Escapee→ B

x[ij]@[s]? ≡t y[kl]@[v]? ∶⇔ [s]? = [v]?

collapse ∶ Escapee ×Escapee⇀ Escapee
collapse(x[i1j1]@[t]?, x[i2j2]@[t]?) = xlcp([i1j1],[i2j2])@[t]?

ct ∶ 2Escapee ⇀ 2Escapee

ct(Q) = {fold(collapse, [x[ij]@[s]]) ∣ [x[ij]@[s]] ∈ Q/≡t}

The function ct is the main tool that makes our escape analysis terminate and
finally uses the tags that we have been keeping track of in J⋅KQ (⋅). The key idea
is that we take escapees with the same vector of tags, i.e. equivalence classes in
[x[ij]@[s]] ∈ Q/≡t, and collapse them so that we get an escapee with a field that is
the longest common prefix (lcp) of all the fields of escapees in an equivalence class.
Note that in such an equivalence class, as all escapees have been created from the
same parameter at the same call site, all these escapees must use the same variable.

Without ct, the corresponding lattice over 2Escapee does not have finite height: In
an escapee x[ij]@[t]?, we can bound x by all the variables that are possible in the
program and [t]? by every single call site in the program, but the field [ij] may
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diverge, e.g. when attempting to run the escape analysis on a recursive function
with a List-type, in which case we will keep prepending fields to the respective
escapee, and they will not subsume one another. For example, consider the following
function List.get? for an ADT γ(List) = µ List. ∗ List ∣ [α,∗List] → ∗List:

def List.get? : List α → Nat → Option α
| [], _ => Option.none
| x :: _, 0 => Option.some x
| _ :: xs, n + 1 => List.get? xs n

If we were to apply our escape analysis without ct, we would obtain an infinite set
of escapees {xs[10],xs[11,10],xs[11,11,10], . . .}, where 10 denotes the head of the cons
constructor, and 11 denotes the tail of the cons constructor.

Collapsing the escapees with the same tag effectively bounds the lattice: Since
there are only finitely many call sites, if the escape analysis is executed on a program
where it would otherwise diverge, it must necessarily eventually visit the same call
site twice and yield an escapee with the same variable but a different field. Collapsing
all these escapees from the same call site thus computes a more general escapee
that subsumes all the previous escapees from that call site, ensuring that we can
iteratively reduce the field in which we were diverging up to a bound of [], where
we are guaranteed to terminate. This is a form of widening [Blanchet, 2002] where
both the previous and the current fixed-point iteration are part of our set and get
widened together post-hoc.

In Section 5.3, we will see that this form of widening is too aggressive when
analyzing the escapees of a recursive function on a recursive type.

Escapees of functions

δQ ∶ Const⇀ 2Escapee

δQ(c) =
⎧⎪⎪⎨⎪⎪⎩

fd([y], fs(ct(JFKQ ([#const c])))) c ∈ dom(δ) ∧ δ(c) = λ [y]. F
δqe(c) c ∉ dom(δ) ∧ c ∈ dom(δqe)

Finally, δQ computes the escapees of every function in the program and uses δqe to
obtain escapees for some external functions.

4.4 Borrowing
When checking whether a parameter can be borrowed, we do not need to check
whether all fields escape, only fields that are unique in an argument that is
applied to the parameter. For example, if we are borrowing a value of type
∗Triple [∗Array [∗Array [! ∎]],∗Array [! ∎], ! ∎] to a parameter of type
!Triple [!Array [!Array [! ∎]], !Array [! ∎], ! ∎], it is acceptable if values within any
of the fields typed by ! ∎ escape. The same is true for fields that are always shared
regardless of a type parameter in the declaration of an ADT. In this section, we will
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define a function B⋅(⋅, ⋅) that tells us which parameters of a function can be borrowed
when the function is applied. Henceforth, we will use [x] ≤+ [y] to denote that [x] is
a prefix of [y].

4.4.1 Syntax

r∗e ∈ ExternUniqueFieldResult ∶∶= ∗r ∣ !r ∣ ?r xτ [ij]
f∗e ∈ ExternUniqueField ∶∶= [ij](xτ)?
γ∗e ∈ ExternUniqueFields = ADTConst⇀ 2ExternUniqueField

For external types A ∉ dom(γ), we cannot compute which fields are unique if
their outer value is unique. Obtaining this information even for external types is
useful because it allows us to specify which escapees are the relevant ones for a given
external type and automatically check the adherence to this specification for the
escapees provided for external functions, as well as handle fields for which uniqueness
depends on a type parameter.

Elements of ExternUniqueFieldResult denote the result for queries that ask whether
a specific field is unique: it can be unique (∗r), shared (!r) or its uniqueness can
depend on a type parameter xτ (?r xτ [ij]). We will see what the auxiliary [ij] is
used for in the definition of eu below.

ExternUniqueField is used to specify that a specific field [ij] is unique, with the
caveat that its uniqueness may depend on a type parameter xτ . We write [ij] when
the uniqueness of a unique field does not depend on a type parameter, [ij](xτ) when
uniqueness does depend on a type parameter and [ij](xτ)? when uniqueness may or
may not depend on a type parameter.

Finally, a global and partial function γ∗e specifies the full and nonempty tree of
unique fields for a given ADTConst by its leafs, i.e. there are no [ij](xτ)?, [kl](yτ)? ∈
γ∗e(A) s.t. [ij] ≠ [kl] but [ij] ≤+ [kl] or [kl] ≤+ [ij]. The tree must include the
unique fields of all dependencies. For external types A ∉ dom(γ∗e), we assume that
all fields are unique.

4.4.2 Unique Fields
External uniqueness

eu ∶ ADTConst × [Ctor ×Proj]⇀ ExternUniqueFieldResult
eu(A, p) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

?r xτ [kl] A ∈ dom(γ∗e) ∧ ∃[ij](xτ) ∈ γ∗e(A). ∃[kl]. [ij]++[kl] = p

∗r A ∈ dom(γ∗e) ∧ ∃[ij](xτ) ∈ γ∗e(A). p ≤+ [ij] ∧ p ≠ [ij]
∗r A ∈ dom(γ∗e) ∧ ∃[ij] ∈ γ∗e(A). p ≤+ [ij] ∨ [ij] ≤+ p

!r A ∈ dom(γ∗e) ∧ ¬∃[ij](xτ)? ∈ γ∗e(A). p ≤+ [ij] ∨ [ij] ≤+ p

∗r A ∉ dom(γ∗e)
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eu (“external unique”) computes the ExternUniqueFieldResult for a given external
type and a path p to a field. If the field is somewhere on the interior of the tree
induced by γ∗e , we assume that the field is unique. Otherwise, if the field is a leaf or
points to a field within a leaf, there are two cases: Either the uniqueness of the field
depends on a type parameter, in which case we yield ?r xτ [kl] with [kl] being the
remaining path within the leaf, or it does not, in which case we return that the field
is unique. Only if the field is not within the tree or within one of the leafs do we
return that the field is shared.

Internal uniqueness

isUnique ∶ AttrType × [Ctor ×Proj]⇀ B

isUnique(∗ ∎, path) = ⊺
isUnique(∗ A [τarg], []) = ⊺
isUnique(∗ A [τarg], path@((i, j) ∶∶ rest)) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

isUnique(γ(A){A, [τarg]}ij, rest) A ∈ dom(γ)
⊺ A ∉ dom(γ) ∧ eu(A, path) = ∗r

� A ∉ dom(γ) ∧ eu(A, path) = !r
isUnique([τarg]xτ , [kl]) A ∉ dom(γ) ∧ eu(A, path) = ?r xτ [kl]

isUnique(! ∎, path) = �
isUnique(! A [τarg], path) = �
isUnique(! [τparam]→ τret, path) = �

With isUnique, we compute whether a given field is unique in a given type. If the
path points into an erased type, we assume that it is always unique, as we do not
know anything about the type in question. Otherwise, if an attribute is shared, then
every field within the type in question must also be shared. Finally, for ADTDecls
A there are several cases: If A is an ADT, we can proceed with the field denoted
in the path after substitution eliminates variables in the ADT. If it is an external
type, we use the information by eu and proceed with [kl] in [τarg]xτ if the result is
?r xτ [kl], bouncing back and forth between external types and type arguments.

γ∗ ∶ ADTConst × [AttrType]→ 2[Ctor×Proj]

γ∗(A, [τarg]) = {p ∣ isUnique(∗ A [τarg], p) = ⊺}

In γ∗, we accumulate all the unique fields of a given type with a given vector of
type arguments.
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4.4.3 Borrowed Parameters

BQ(x, τarg, τparam) ∶ 2Escapee ×Var ×AttrType ×AttrType→ B

BQ(x,∗ A [τarg], ! A [τ ′arg]) = ∀x[ij]@[t]? ∈ Q. [ij] ∉ γ∗(A, [τarg])
BQ(x,∗ A [τarg], ! ∎) = ∀x[ij]@[t]? ∈ Q. [ij] ∉ γ∗(A, [τarg])
BQ(x,∗ ∎, ! A [τ ′arg]) = ∀x[ij]@[t]? ∈ Q. [ij] ∉ γ∗(A, [strengthen(τ ′arg)])
BQ(x,∗ ∎, ! ∎) = ∀[ij]. x[ij]@[t]? ∉ Q

BQ(x, τarg, τparam) = � otherwise

BQ(x, τarg, τparam) combines our escape analysis and the information we have
gathered about unique fields in order to check whether a function parameter can
be borrowed. Q denotes the set of escapees belonging to the function parameter
x for which we want to check whether it is borrowed. τarg denotes the type of the
argument that is supplied by the caller and τparam denotes the type of the function
parameter. We need the type of the supplied argument because the uniqueness of a
field can depend on the concrete attributes for type arguments that are set in the
caller.

When the argument to the function is an ADT of type ∗ A [τarg], we check that the
parameter x itself does not escape and that none of its unique fields escape. In doing
so, we use [τarg], not [τ ′arg], since fields that are unique because the corresponding
type argument is unique cannot be allowed to escape.

If the type in the argument provided by the caller has been erased to ∗ ∎, there
are two cases, depending on whether the type of the function parameter has been
erased as well. If it has not been erased, we have no information about the attributes
in the type arguments of the erased function argument type and must hence assume
all of them to be unique, which is why we strengthen the shared type arguments
[τ ′arg] of the function parameter type. If it has been erased, then we do not even
know the name of the ADT at hand and must resort to checking whether any field
whatsoever escapes.

B⋅(⋅, ⋅) ∶ Const ×Var ×AttrType→ B

Bc(x, τarg) =
⎧⎪⎪⎨⎪⎪⎩

BδQ(c)x(x, τarg, [τparam]x) c ∈ dom(δQ)
∅ c ∉ dom(δQ)

where δτ(c) = ([τparam], τret)
and δQ(c)x ∶= {y[ij]@[t]? ∣ y[ij]@[t]? ∈ δQ(c) ∧ y = x}

With B⋅(⋅, ⋅), we obtain a total function that tells us which parameters can be
borrowed when applied with a type τarg for each function in the program. If we have
no escape information for a function, then no parameter can be borrowed.
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4.5 Type-Checking
In this section we will finally define the rules of our type theory.

4.5.1 Syntax

Z ∈ ZeroedFields = Var ×Ctor ×Proj→ B

Γ ∈ Context ∶∶= [] ∣ Γ, x ∶ τ

ZeroedFields will be used for the mechanism described in the discussion of the
case’ instruction in Section 4.2. As we want to enable the use of multiple projections
on the same variable within a function, we must track which fields have already
been projected, disallow repeated projections of the same field and disallow using the
variable in any way other than projecting from it. Z ∈ ZeroedFields will be used to
track this information. For convenience we also declare the following functions that
check whether a variable has no zeroed fields and zero a field if the corresponding
inner attribute is unique.

nz ∶ ZeroedFields ×Var→ B

nz(Z, x) = ¬∃i j. Z(x, i, j) = ⊺

zero ∶ ZeroedFields ×Attr ×Var ×Ctor ×Proj→ ZeroedFields

zero(Z, m, x, i, j) =
⎧⎪⎪⎨⎪⎪⎩

Z[(x, i, j)↦ ⊺] m = ∗
Z m = !

We assume Γ to be a multiset, i.e. we track duplicate judgements, but not the
order of the context. Note that the latter would be required in dependent type
theory, as the order of type dependencies must be retained.

4.5.2 Type Theory
In the following, we will progressively introduce the rules of our type theory and
explain them along the way. Whenever a variable x is used in any meaningful way
other than projection, we demand nz(Z,x) so that it cannot be used if any field has
been projected in the past.

Programs

⊢ δτ

Program
∀c ∈ dom(δτ) ∩ dom(δ) s.t. δ(c) = λ [y]. F ∧ δτ(c) = ([τparam], τret).

∅; [y ∶ τparam] ⊢ F ∶ τret

⊢ δτ
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The Program rule states that in order to check a program δτ , we check that each
function c ∈ dom(δ) adheres to its function type.

Substructurality

Z; Γ ⊢ F ∶ τ

Duplicate
Z; Γ,x ∶ !τ,x ∶ !τ ⊢ F ∶ τret’

Z; Γ,x ∶ !τ ⊢ F ∶ τret’

Forget
Z; Γ ⊢ F ∶ τret’

Z; Γ,x ∶ !τ ⊢ F ∶ τret’

Cast
τ ≽ τ ′ nz(Z,x) Z; Γ,x ∶ τ ′ ⊢ F ∶ τret’

Z; Γ,x ∶ τ ⊢ F ∶ τret’

Duplicate and Forget allow manipulating variables of shared type in the
context as if the context was a set and structural. Note that !τ is an application
of the weaken function defined in Section 4.1 and that unique variables cannot be
manipulated in this manner; their exact amount in the context needs to be tracked.
The Cast rule allows applying the subtyping relation also defined in Section 4.1.

Erasure
∎-Cast
Z; Γ,x ∶ weakenInner(τ) ⊢ F ∶ τret’

Z; Γ,x ∶ attr(τ) ∎ ⊢ F ∶ τret’

∎-Erase
Z; Γ,x ∶ attr(τ) ∎ ⊢ F ∶ τret’

Z; Γ,x ∶ τ ⊢ F ∶ τret’

∎-Cast and ∎-Erase enable us to work with erased types: We can cast to and
from any type while retaining the outer attribute, but have to make all the inner
attributes shared in the process.

Control flow
Ret

nz(Z,x)
Z; Γ,x ∶ τret’ ⊢ ret x ∶ τret’

Case
nz(Z,x) [Z; Γ,x ∶ τ ⊢ F ∶ τret’]
Z; Γ,x ∶ τ ⊢ case x of [F] ∶ τret’

The Ret and Case rules are straight-forward: For Ret, we need a matching
variable with a matching type in our context, and for Case, we check every branch.
It is worth pointing out that in Ret, there is no issue with throwing away the rest of
the context Γ, as all variables can always be made shared and then discarded using
Weaken, and that in Case, x does not need to be consumed as case is read-only.

Case’-!
nz(Z,x) A ∈ dom(γ)

γ(A){A, [τarg]} = µ xκ
adt. [[τfield]→ ∗xκ

adt] [Z; Γ, [y ∶ !τfield] ⊢ F ∶ τret’]
Z; Γ,x ∶ ! A [τarg] ⊢ A.case’ x of [ctori [y] ⇒ F] ∶ τret’
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Case’-∗
nz(Z,x) A ∈ dom(γ)

γ(A){A, [τarg]} = µ xκ
adt. [[τfield]→ ∗xκ

adt] [Z; Γ, [y ∶ τfield] ⊢ F ∶ τret’]
Z; Γ,x ∶ ∗ A [τarg] ⊢ A.case’ x of [ctori [y] ⇒ F] ∶ τret’

The Case’-rules work similar to case, except that the variable that is being
matched on is consumed and that we need to add the variables associated with the
constructor in a specific branch to the context. If the value we are matching on is
shared, then the newly created variables must be shared as well. This is the essence
of ∗ in ADTs meaning “unique if the outer value is unique”.

Application
Let-App

[nz(Z, y)] δτ(c) = ([τ ′param], τret)
∀x s.t. Bc(x, [τparam]x) = ⊺. ![τparam]x ↝∎ [τ ′param]x
∀x s.t. Bc(x, [τparam]x) = �. [τparam]x ↝∎ [τ ′param]x

Z; Γ,{[y ∶ τparam]x ∣ Bc(x, [τparam]x) = ⊺}, z ∶ τret ⊢ F ∶ τret’

Z; Γ, [y ∶ τparam] ⊢ let z := c [y]; F ∶ τret’

In Let-App, our argument types need to match the parameter types: Borrowed
arguments are allowed to have arbitrary attributes, while non-borrowed arguments
need to match exactly. Since Bc benefits from having more type information available,
we allow the application of the erasure rules within Let-App instead of requiring its
application beforehand, using the relation ↝∎:

Equal

τ ↝∎ τ

Erase
attr(τ) =m

τ ↝∎ m ∎

Cast
attr(τ) =m

m ∎↝∎ weakenInner(τ)

We obtain the result of the function call in our new context. Non-borrowed
arguments are consumed, borrowed ones are retained.

Let-Pap-Full
[nz(Z, y)] δτ(c) = ([τparam], τret) ∣[y]∣ = ∣[τparam]∣ Z; Γ, z ∶ !τret ⊢ F ∶ τret’

Z; Γ, [y ∶ !τparam] ⊢ let z := pap c [y]; F ∶ τret’

Let-Pap-Part
[nz(Z, y)] δτ(c) = ([τparam], τret) ∣[y]∣ = ∣[τparam1]∣ < ∣[τparam]∣
[τparam1]++[τparam2] = [τparam] Z; Γ, z ∶ ! [τparam2]→ τret ⊢ F ∶ τret’

Z; Γ, [y ∶ !τparam1] ⊢ let z := pap c [y]; F ∶ τret’

For pap, there are two separate rules, one for a pap call that is effectively a full
application, and one for a proper partial application. As our higher-order functions
are always shared, our context needs to contain matching shared arguments that are
consumed in the process. Depending on the rule, we either obtain a new higher-order
function or the shared return value of the function. Note that when leveraging
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uniqueness for destructive updates in an implementation, we need to ensure that the
function yielded by pap c [y] does not rely on the uniqueness of its arguments and
must generate a variant of c that does not rely on uniqueness instead.

Let-VarApp-Full
nz(Z, y) Z; Γ, z ∶ !τret ⊢ F ∶ τret’

Z; Γ,x ∶ ! τparam → τret, y ∶ !τparam ⊢ let z := x y; F ∶ τret’

Let-VarApp-Part
nz(Z, y) ∣[τparam’]∣ ≥ 1 Z; Γ, z ∶ ! [τparam’]→ τret ⊢ F ∶ τret’

Z; Γ,x ∶ ! (τparam ∶∶ [τparam’])→ τret, y ∶ !τparam ⊢ let z := x y; F ∶ τret’

For Let-VarApp, there is a similar split as for Let-Pap: Depending on whether
we have applied all the arguments of a higher-order function, we either get a new
higher-order function with the argument applied or the shared return value of the
function.

Construction and projection
Let-Ctor-∗
[nz(Z, y)] γ(A){A, [τ ′arg]}i = [τ]→ ∗xκ

adt Z; Γ, z ∶ ∗ A [τ ′arg] ⊢ F ∶ τret’

Z; Γ, [y ∶ τ] ⊢ let x = (A [τarg?]).ctori [y]; F ∶ τret’

Let-Ctor-!
[nz(Z, y)] γ(A){A, [!τ ′arg]}i = [τ]→ ∗xκ

adt Z; Γ, z ∶ ! A [!τ ′arg] ⊢ F ∶ τret’

Z; Γ, [y ∶ !τ] ⊢ let x = (A [τarg?]).ctori [y]; F ∶ τret’

Let-Ctor-∗ and Let-Ctor-! create a unique and shared value respectively.
Let-Ctor-! is needed because for a value that is only used in a shared manner,
we do not need to demand unique constructor arguments. Note that in these rules,
[τarg?] is ignored, it is not clear how we must choose [τ ′arg] and whether we should
apply Let-Ctor-∗ or Let-Ctor-! for typing to succeed. We will resolve this in
Section 5.2.

Let-Proj-∗
Z(y, i, j) = � τfield = γ(A){A, [τarg]}ij

zero(Z, attr(τfield), y, i, j); Γ, y ∶ ∗ A [τarg], z ∶ τfield ⊢ F ∶ τret’

Z; Γ, y ∶ ∗ A [τarg] ⊢ let z = A.projij y; F ∶ τret’

Let-Proj-!
Z(y, i, j) = � Z; Γ, y ∶ ! A [τarg], z ∶ !γ(A){A, [τarg]}ij ⊢ F ∶ τret’

Z; Γ, y ∶ ! A [τarg] ⊢ let z = A.projij y; F ∶ τret’

Finally, our Let-Proj rules are only applicable if the specific field has not been
projected yet and retain the variable that we project from. We also obtain the field
in our new context. If the ADT is shared, then we need to make the new field shared
as well, but do not have to zero the projected field, whereas otherwise, we obtain the
field with its actual attribute, but have to zero it.
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⊢ δτ

Program
∀c ∈ dom(δτ) ∩ dom(δ) s.t. δ(c) = λ [y]. F ∧ δτ(c) = ([τparam], τret).

∅; [y ∶ τparam] ⊢ F ∶ τret

⊢ δτ

Z; Γ ⊢ F ∶ τ

Duplicate
Z; Γ,x ∶ !τ,x ∶ !τ ⊢ F ∶ τret’

Z; Γ,x ∶ !τ ⊢ F ∶ τret’

Forget
Z; Γ ⊢ F ∶ τret’

Z; Γ,x ∶ !τ ⊢ F ∶ τret’

Cast
τ ≽ τ ′ nz(Z,x)
Z; Γ,x ∶ τ ′ ⊢ F ∶ τret’

Z; Γ,x ∶ τ ⊢ F ∶ τret’

∎-Cast
Z; Γ,x ∶ weakenInner(τ) ⊢ F ∶ τret’

Z; Γ,x ∶ attr(τ) ∎ ⊢ F ∶ τret’

∎-Erase
Z; Γ,x ∶ attr(τ) ∎ ⊢ F ∶ τret’

Z; Γ,x ∶ τ ⊢ F ∶ τret’

Ret
nz(Z,x)

Z; Γ,x ∶ τret’ ⊢ ret x ∶ τret’

Case
nz(Z,x) [Z; Γ,x ∶ τ ⊢ F ∶ τret’]
Z; Γ,x ∶ τ ⊢ case x of [F] ∶ τret’

Case’-!
nz(Z,x) A ∈ dom(γ)

γ(A){A, [τarg]} = µ xκ
adt. [[τfield]→ ∗xκ

adt] [Z; Γ, [y ∶ !τfield] ⊢ F ∶ τret’]
Z; Γ,x ∶ ! A [τarg] ⊢ A.case’ x of [ctori [y] ⇒ F] ∶ τret’

Case’-∗
nz(Z,x) A ∈ dom(γ)

γ(A){A, [τarg]} = µ xκ
adt. [[τfield]→ ∗xκ

adt] [Z; Γ, [y ∶ τfield] ⊢ F ∶ τret’]
Z; Γ,x ∶ ∗ A [τarg] ⊢ A.case’ x of [ctori [y] ⇒ F] ∶ τret’

Let-App
[nz(Z, y)] δτ(c) = ([τ ′param], τret)

∀x s.t. Bc(x, [τparam]x) = ⊺. ![τparam]x ↝∎ [τ ′param]x
∀x s.t. Bc(x, [τparam]x) = �. [τparam]x ↝∎ [τ ′param]x

Z; Γ,{[y ∶ τparam]x ∣ Bc(x, [τparam]x) = ⊺}, z ∶ τret ⊢ F ∶ τret’

Z; Γ, [y ∶ τparam] ⊢ let z := c [y]; F ∶ τret’

Let-Pap-Full
[nz(Z, y)]

δτ(c) = ([τparam], τret) ∣[y]∣ = ∣[τparam]∣ Z; Γ, z ∶ !τret ⊢ F ∶ τret’

Z; Γ, [y ∶ !τparam] ⊢ let z := pap c [y]; F ∶ τret’
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Let-Pap-Part
[nz(Z, y)] δτ(c) = ([τparam], τret) ∣[y]∣ = ∣[τparam1]∣ < ∣[τparam]∣
[τparam1]++[τparam2] = [τparam] Z; Γ, z ∶ ! [τparam2]→ τret ⊢ F ∶ τret’

Z; Γ, [y ∶ !τparam1] ⊢ let z := pap c [y]; F ∶ τret’

Let-VarApp-Full
nz(Z, y) Z; Γ, z ∶ !τret ⊢ F ∶ τret’

Z; Γ,x ∶ ! τparam → τret, y ∶ !τparam ⊢ let z := x y; F ∶ τret’

Let-VarApp-Part
nz(Z, y) ∣[τparam’]∣ ≥ 1 Z; Γ, z ∶ ! [τparam’]→ τret ⊢ F ∶ τret’

Z; Γ,x ∶ ! (τparam ∶∶ [τparam’])→ τret, y ∶ !τparam ⊢ let z := x y; F ∶ τret’

Let-Ctor-∗
[nz(Z, y)] γ(A){A, [τ ′arg]}i = [τ]→ ∗xκ

adt Z; Γ, z ∶ ∗ A [τ ′arg] ⊢ F ∶ τret’

Z; Γ, [y ∶ τ] ⊢ let x = (A [τarg?]).ctori [y]; F ∶ τret’

Let-Ctor-!
[nz(Z, y)] γ(A){A, [!τ ′arg]}i = [τ]→ ∗xκ

adt Z; Γ, z ∶ ! A [!τ ′arg] ⊢ F ∶ τret’

Z; Γ, [y ∶ !τ] ⊢ let x = (A [τarg?]).ctori [y]; F ∶ τret’

Let-Proj-∗
Z(y, i, j) = � τfield = γ(A){A, [τarg]}ij

zero(Z, attr(τfield), y, i, j); Γ, y ∶ ∗ A [τarg], z ∶ τfield ⊢ F ∶ τret’

Z; Γ, y ∶ ∗ A [τarg] ⊢ let z = A.projij y; F ∶ τret’

Let-Proj-!
Z(y, i, j) = � Z; Γ, y ∶ ! A [τarg], z ∶ !γ(A){A, [τarg]}ij ⊢ F ∶ τret’

Z; Γ, y ∶ ! A [τarg] ⊢ let z = A.projij y; F ∶ τret’

Figure 4.1: All typing rules of our type system at a glance.
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5 Implementation
We have implemented a type checker for the type theory described in Chapter 4
using Lean 4 at https://github.com/mhuisi/Uniq, targeting the model IR from
Section 4.2. Note that we have not yet integrated our checker into Lean 4 itself.
Unless otherwise stated below, our implementation follows the formal description in
Chapter 4.

5.1 Deviations From Specification
To represent the global and partial functions γ, δτ , δ, δqe , γ∗e , as well as δQ, we use
a map type based on red-black trees. On the other hand, the function γ∗ that yields
unique fields is not represented at all because the codomain is usually infinite, and
instead we use isUnique for every escapee in isBorrowed directly.

In order to perform the data flow analysis in Section 4.3, we use Kosaraju’s
algorithm [Sharir, 1981] to compute strongly connected components in the call
graph of functions c ∈ dom(δ), traverse the resulting graph of strongly-connected
components in reverse topological sort and then iteratively compute δQ(c) within each
strongly connected component of mutually recursive functions until we reach a fixed
point. Kosaraju’s algorithm seems to be more suited to compute strongly-connected
components in a functional language because it needs to maintain less state than
Tarjan’s algorithm [Tarjan, 1972].

We implement the type checker for the type theory in Section 4.5 as follows:

• Z ∈ ZeroedFields is implemented as a red-black tree based set and Γ as a
red-black tree based map from Var to AttrType, not a multiset. Since we
know that variables are either unique or shared, all variables in Γ can either
be duplicated and forgotten freely, or there is only one of them in the context.
Hence, we do not need to track the exact amount of each variable in the context,
only whether it is unique or shared.

• The type rules are implemented by matching on the program and applying the
corresponding unique rule.

• When checking whether a type τ1 is applicable to a type τ2 in any rule, we do
not check for equality, but instead a relation τ1 ↝ τ2 that determines whether
τ1 can be made equal to τ2 after applying the Cast, ∎-Cast and ∎-Erase
rules.
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• When using Cast, ∎-Cast and ∎-Erase, it is important that we replace
the old type with the new one, lest we could retain a unique attribute in our
context after it has already been made shared. Hence, after checking whether
τ1 ↝ τ2 for x ∶ τ1 ∈ Γ in a rule, we set Γ[x ↦ τ2] to update the context. This
can be understood as applying Cast, ∎-Cast and ∎-Erase as needed just
before the application of the rule.

• When encountering an erased type in one of the Case’ or Let-Proj rules
where we have no expected type to convert to using τ1 ↝ τ2, we use the
ADT designated in the instruction and propagate the erasedness to the type
arguments of the ADT. Additionally, we assume each type parameter to be
shared, so as to correctly implement the ∎-Cast rule.

• To eliminate Duplicate and Forget, we integrate their application carefully
into the other rules by not consuming shared variables in rules that would
otherwise consume them.

• We infer the constructor type arguments and the constructor return type
to decide how to apply Let-Ctor-∗ and Let-Ctor-! according to our
description below in Section 5.2.

• When applying a vector of arguments with types [τ1] to parameters of types
[τ2] for [x ∶ τ1] ⊆ Γ, we apply Cast, ∎-Cast and ∎-Erase while consuming
unique variables and updating the context iteratively, so that e.g. c x x fails
for x ∶ ∗ ∎ and c ∶ ∗ ∎→ ∗ ∎→ ... or c ∶ ! ∎→ ∗ ∎→ ....

5.2 Constructor Type Inference
In this section, we will discuss methods of inference in order to decide how and
when to apply the Let-Ctor-∗ and Let-Ctor-! rules in Section 4.5. All methods
discussed here are approximations, i.e. the Let-Ctor-∗ and Let-Ctor-! rules
defined here using inference can lead to a type error when the corresponding rules in
Section 4.5 will not. However, errors of this kind should be easy to understand and
easy to resolve locally in user code.

Type arguments

As discussed briefly in the description of the ctor instruction in Section 4.2, we must
infer the attributes in a (A [τ?]).ctori [y] call since Lean cannot provide them
and because we need them to decide how to apply the Let-Ctor-∗ and Let-Ctor-!
rules in Section 4.5.2.

We will do so in two steps: First, we assign types to type variables based on the
types of the arguments provided in the context Γ for [y]. Then, we use the explicit
type arguments provided by the user in [τ?] to fill the remaining variables that
could not be inferred and choose their attributes as strongly as possible, since type
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arguments that could not be inferred from the types of [y] are also not assigned by
the types of [y].

Together, this ensures that no attributes for type arguments must be provided
explicitly by the user, as they can either be inferred or chosen as strongly as possible.

f ⊔ g ∶ (M ⇀ N) × (M ⇀ N)⇀ (dom(f) ∪ dom(g)⇀ N)

(f ⊔ g)(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(x) x ∈ dom(f) ∧ x ∉ dom(g)
g(x) x ∉ dom(f) ∧ x ∈ dom(g)
f(x) x ∈ dom(f) ∩ dom(g) ∧ f(x) = g(x)

Note that (f, g) ∉ dom(⋅ ⊔ ⋅) if ∃x ∈ dom(f) ∩ dom(g). f(x) ≠ g(x).

inferVars′ ∶ AttrType ×AttrType⇀ (Var⇀ AttrType)
inferVars′(m xκ, τ) = ∅
inferVars′(xτ , τ) = {xτ ↦ τ}
inferVars′(m1 ∎, m2 ∎) = ∅
inferVars′(m1 A [τarg1], m2 A [τarg2]) =⊔

i

inferVars′([τarg1]i, [τarg2]i)

inferVars′(! [τparam1]→ τret1 , ! [τparam2]→ τret2) =
⊔
i

inferVars′([τparam1]i, [τparam2]i) ⊔ inferVars′(τret1 , τret2)

inferVars ∶ [AttrType] × [AttrType]⇀ (Var⇀ AttrType)
inferVars([], []) = ∅
inferVars(τ1 ∶∶ rest1, τ2 ∶∶ rest2) = inferVars′(τ1, τ2) ⊔ inferVars(rest1, rest2)

The function inferVars’ takes an expected type with type variables and a provided
type and computes an assignment of types to variables s.t. the first type becomes the
second after substitution. In doing so, it ignores self-variables m xκ and uniqueness
attributes. As a result, inferVars’ yielding an assignment by itself cannot guarantee
that the first type is equal to the second one after substitution, and we must perform
another check after substituting all the variables to obtain this guarantee.

Note that if there is a conflicting assignment for any variable in inferVars′(τ1, τ2) or
inferVars([τ1], [τ2]), then ⋅ ⊔ ⋅ propagates its partiality to inferVars’ and subequently
to inferVars, i.e. (τ1, τ2) ∉ dom(inferVars′) and ([τ1], [τ2]) ∉ dom(inferVars).

pickTypes ∶ [AttrType?] × [AttrType?]⇀ [AttrType]
pickTypes([], []) = []
pickTypes(τe? ∶∶ reste, τi ∶∶ resti) = τi ∶∶ pickTypes(reste, resti)
pickTypes(τe ∶∶ reste,− ∶∶ resti) = strengthen(τe) ∶∶ pickTypes(reste, resti)

69



5.2. CONSTRUCTOR TYPE INFERENCE

Here, we use − to denote that an optional AttrType is not present. With pickTypes,
we implement the mechanism that inferred types are preferred if they exist, and
otherwise an explicit type is used and strengthened. Note that if ∃i. [τ1]i = [τ2]i = −,
then ([τ1], [τ2]) ∉ dom(pickTypes).

inferTypeArgs ∶ ADT ×Ctor × [AttrType] × [AttrType?]⇀ [AttrType]
inferTypeArgs(a, i, [τarg], [τe?]) = pickTypes([τe?], [inferred(yτ)])

where ai = [τfield(xκ
adt, [yτ ])]→ ∗xκ

adt

and inferred = inferVars([τfield(xκ
adt, [yτ ])], [τarg]])

Lastly, using inferTypeArgs, we infer type arguments for a constructor i in an
ADT a with types [τarg] for some vector of arguments [y] from a context Γ and user-
provided explicit argument types [τe?]. Once again, both inferVars and pickTypes
propagate their partiality to inferTypeAgs.

Return types

Furthermore, we must infer whether the result of a (A [τ?]).ctori [y] call is used
uniquely. If it is, we want the resulting type to be unique, and otherwise, it can
be shared. This is important because we do not need to demand unique types for
arguments [y] if the ADT created by a ctor call is used only in a shared manner.

uu ∶ FnBody ×AttrType→ 2Var

uu(ret x, τret) =
⎧⎪⎪⎨⎪⎪⎩

{x} attr(τret) = ∗
∅ attr(τret) = !

uu(case x of [F], τret) =⋃
i

uu([F]i, τret)

uu(A.case’ x of [ctori [y] ⇒ F], τret) =⋃
i

uu([F]i, τret)

∪
⎧⎪⎪⎨⎪⎪⎩

{x} ∃y ∈ [y]. y ∈ uu([F]i, τret)
∅ ¬∃y ∈ [y]. y ∈ uu([F]i, τret)

uu(let x = c [y]; F, τret) = uu(F, τret)
∪{[y]i ∣ attr([τparam]i) = ∗ ∧ δτ(c) = ([τparam], τ ′ret)}

uu(let x = pap c [y]; F, τret) = uu(F, τret)
uu(let x = y z; F, τret) = uu(F, τret)
uu(let x = (A [τ?]).ctori [y]; F, τret) = uu(F, τret)

∪
⎧⎪⎪⎨⎪⎪⎩

{[y]j ∣ ∃xτ . γ(A)ij = xτ ∨ attr(γ(A)ij) = ∗} x ∈ uu(F, τret)
∅ x ∉ uu(F, τret)

uu(let x = A.projij y; F, τret) = uu(F, τret) ∪
⎧⎪⎪⎨⎪⎪⎩

{y} x ∈ uu(F, τret)
∅ x ∉ uu(F, τret)
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In the A.case’ x of ... case, we denote x as being used uniquely if any of its
fields are used uniquely in any of the branches. Arguments to a constructor ctori
are regarded as being used uniquely if the constructor itself is used uniquely and
the argument type is either unique or a type variable, in which case we assume the
argument as being used uniquely. Note that it would be possible to infer this more
accurately by inferring which type the type variable will be assigned to from an
expected type. If a projection A.projij x is used uniquely, then x is used uniquely
as well.

Adjusted constructor rules

Using these inference mechanisms, we can define Let-Ctor-∗ and Let-Ctor-!
rules that make it clear which one of the two is applicable and how [τ ′arg] are chosen:

Let-Ctor-∗
[nz(Z, y)] (γ(A), i, [τ], [τarg?]) ∈ dom(inferTypeArgs)

[τ ′arg] = inferTypeArgs(γ(A), i, [τ], [τarg?])
γ(A){A, [τ ′arg]}i = [τ]→ ∗xκ

adt x ∈ uu(F, τret’) Z; Γ, z ∶ ∗ A [τ ′arg] ⊢ F ∶ τret’

Z; Γ, [y ∶ τ] ⊢ let x = (A [τarg?]).ctori [y]; F ∶ τret’

Let-Ctor-!
[nz(Z, y)] (γ(A), i, [!τ], [τarg?]) ∈ dom(inferTypeArgs)

[τ ′arg] = inferTypeArgs(γ(A), i, [!τ], [τarg?])
γ(A){A, [τ ′arg]}i = [τ]→ ∗xκ

adt x ∉ uu(F, τret’) Z; Γ, z ∶ ! A [!τ ′arg] ⊢ F ∶ τret’

Z; Γ, [y ∶ !τ] ⊢ let x = (A [τarg?]).ctori [y]; F ∶ τret’

Let-Ctor-∗ is applicable if x is used in a unique manner. After inferring the
type arguments using inferTypeArgs, we substitute them in γ(A) and check whether
the resulting types for the fields match those of our initial arguments that we used
for inference. This is because while (γ(A), i, [τ], [τarg?]) ∈ dom(inferTypeArgs) is
always true if a type τ is applicable to the corresponding constructor argument, it
may still be true if τ is not applicable to the constructor argument, as inferTypeArgs
is ignoring attributes and self-variables xκ

adt in γ(A). When applying the rule, we
consume the arguments and gain a new unique instance of the ADT type in return.

Let-Ctor-! is similar and applicable if x is not used in a unique manner, in
which case the new instance of the ADT is created as shared and we only need to
demand the arguments [y] to be shared.

5.3 Examples
In this section, we will cover the implementations of a few Lean functions, some of
which we have seen previously, and demonstrate features of our type checker using
them as examples.
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List.map

Recall our implementation of List.map from Section 2.1, augmented with uniqueness
annotations where we want types to be unique:

def List.map (f : α → β) : *List α → *List β
| [] => []
| x :: xs => f x :: map f xs

List.map translates to the following IR code:
List.map f xs = List.case’ xs of

ctor0 ⇒
let nil := (List [! ∎]).ctor0;
ret nil

ctor1 hd tl ⇒
let hd’ := f hd;
let tl’ := List.map f tl;
let r := (List [! ∎]).ctor1 hd’ tl’;
ret r

We have the following global context:

γ = {List↦ µ List. ∗ List ∣ [α,∗List]→ ∗List}
δτ = {List.map↦ ([!(! ∎→ ! ∎),∗List [! ∎]]→ ∗List [! ∎])}

γ∗e = ∅
δqe = ∅

Given this context, we can check ⊢ δτ . Since List.map creates a new list, we can
also type it using any combination of outer List attributes. The inner input attribute
can be made unique, but we cannot retain the uniqueness through the application
of the function of type !(! ∎ → ! ∎), which is why the inner output attribute must
always be shared.

Our escape analysis produces the following output:

δQ(List.map) = {f[], f[]@[t1],xs[10],xs[11]@[t2]}
where t1 = [#param 0, #app, #case 1, #const List.map]

and t2 = [#param 1, #app, #case 1, #const List.map]

Hence, even if the outer input List attribute was shared, we would not be able
to borrow the argument: Our escape analysis approximates that the tail of xs can
escape, which would be unique if we were to borrow a unique List to xs.

List.get?

We will now cover our implementation of List.get? from Section 2.1 to demonstrate
constructor argument type inference and an issue with our implementation of bor-
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rowing, augmented with uniqueness annotations where we want types to be unique:
def List.get? : List α → Nat → *Option α

| [], _ => Option.none
| x :: _, 0 => Option.some x
| _ :: xs, n + 1 => List.get? xs n

It translates to the following IR code:
List.get? xs i = List.case’ of

ctor0 ⇒
let none := (Option [! ∎]).ctor0;
ret none

ctor1 hd tl ⇒
let zero := Nat.zero;
let ieqzero := Nat.eq i zero;
case ieqzero of

true ⇒
let predi := Nat.pred i;
let r := List.get? tl predi;
ret r

false ⇒
let some := (Option [-]).ctor1 hd;
ret some

Our types are as follows:

γ = {
List↦ µ List. ∗List ∣ [α,∗List]→ ∗List

Option ↦ µ Option. ∗Option ∣ α → ∗Option
}

δτ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

List.get?↦ [!List [! ∎], !Nat []] → ∗Option [! ∎]
Nat.zero↦ [] → !Nat []

Nat.eq↦ [!Nat [], !Nat []] → !Bool []
Nat.pred↦ [!Nat []] → !Nat []

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
For simplicity, we assume that Nat and Bool are external types. Furthermore, we

provide no escapee information, using both γ∗e = ∅ and δqe = ∅.
With these declarations, we can check ⊢ δτ . Note that the type for the Option.some

call can be inferred. Our escape analysis computes the following information:

δQ(List.get?) = {xs[10],xs[11]@[t]} for some t

This means that a unique argument that is passed to xs cannot be borrowed, as
one of its unique fields xs[11] is approximated to escape by our escape analysis. Our
method of widening is too aggressive because the underlying lattice lacks expressivity

— if we could widen the escapees xs[11,10] and xs[10] to something like xs[∗,10] or
xs[(11)∗,10] instead, where ∗ represents any path in the former and a Kleene star in
the latter, then we could exclude xs[11] as an escapee. We will briefly revisit this
idea in Section 6.3.
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Array.transpose

Finally, we will cover a more complex example that shows off nested uniqueness
attributes and external types. We intend to check the following function that
transposes a two-dimensional square matrix:

def Array.T! (xs : *Array (*Array α)) (i j : Nat)
: *Array (*Array α) :=
let n := Array.size xs
if i >= n then

xs
else if j >= n then

Array.T! xs (i + 1) (i + 2)
else

let (xs, xs_i) := Array.swap xs i #[]
let (xs, xs_j) := Array.swap xs j #[]
let x := Array.get! xs_i j
let x’ := Array.get! xs_j i
let xs_i := Array.set! xs_i j x’
let xs_j := Array.set! xs_j i x
let xs := Array.set’! xs i xs_i
let xs := Array.set’! xs j xs_j
Array.T! xs i (j + 1)

We assume that Array.T! is always called with a square matrix using i = 0 and
j = 1 at the start. For brevity, we omit the equivalent IR code.

We have the following algebraic data types:

γ = {
Bool ↦ µ Bool. ∗Bool ∣ ∗Bool

Tuple↦ µ Tuple. [α, β]→ ∗Tuple
}

The types we assign to constants in the program in the Array namespace are as
follows:

δτ(Array.*) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T! ↦ [∗Array [∗Array [! ∎]], !Nat [], !Nat []]
→ ∗Array [∗Array [! ∎]]

size↦ [!Array [! ∎]]→ !Nat []
empty↦ []→ ∗Array [∗ ∎]
swap↦ [∗Array [∗Array [! ∎]], !Nat [],∗Array [! ∎]]

→ ∗Tuple [∗Array [∗Array [! ∎]],∗Array [! ∎]]
get!↦ [!Array [! ∎], !Nat []]→ ! ∎
set!↦ [∗Array [! ∎], !Nat [], ! ∎]→ ∗Array [! ∎]

set’!↦ [∗Array [∗ ∎], !Nat [],∗ ∎]→ ∗Array [∗ ∎]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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For operations on natural numbers, we have:

δτ(Nat.*) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

one↦ [] → !Nat []
two↦ [] → !Nat []
geq↦ [!Nat [], !Nat []] → !Bool []
add↦ [!Nat [], !Nat []] → !Nat []

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Array and Nat are external types. For Array, size and get! we provide the

following escape information:

γ∗e = {Array ↦ [00](α)}
δqe = {Array.size↦ ∅, Array.get!↦ {xs[00]}}

Here, α denotes the first type parameter of Array and xs denotes the first parameter
of Array.get!.

Using these definitions, we can check ⊢ δτ . The following aspects are noteworthy
about this example:

• xs is successfully borrowed in the applications of Array.size and Array.get!.
Without borrowing, this definition would not type-check, as xs would be
consumed on application of these functions.

• The Array.swap function ensures that the inner uniqueness is retained by
swapping in a unique value that takes the place of the value in the array. When
using the Array.swap function, we must be careful to maintain i ≠ j, as we
would otherwise access the same index twice.

• Since we lack polymorphism, we have two separate Array.set! functions,
depending on whether the inner attribute is shared or unique.
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6 Future Work
In this chapter, we will briefly cover work that is still left to be done in order to
integrate our type theory with Lean 4, as well as work that would greatly improve
the user-experience of working with our type theory.

6.1 Type Inference
We have not covered the topic of type inference at all thus far, but some amount
of type inference is necessary to integrate our type theory with Lean 4. During the
compilation process, the Lean 4 compiler toolchain may create additional auxiliary
functions that users cannot provide type annotations for:

• In monadic control flow, Lean may create join points and other auxiliary
functions to represent complex control flow (break, continue, early return,
if blocks).

• As argued in Section 4.2, functions that act as join points may get replaced by
dedicated join point instructions that callers can directly jump to.

• If a function does not use all of its parameters, then an auxiliary function using
only live parameters is created. Note that this may occur often because of
LCNF’s type erasure step.

Fortunately, in all of these cases, we have access to plenty of surrounding context to
determine what the respective uniqueness attributes for an auxiliary function should
be.

Nonetheless, it would be nice to have some amount of type inference for the
uniqueness attributes of user-written functions as well. Generally, we want parameters
that can be borrowed in the sense of Section 4.4 to be shared. On the other hand,
for parameters that escape, there is no principal type: Depending on whether callers
have a unique or shared value at hand, they would want the parameter type to match
the given attribute that they have available.

Hence, without polymorphism, one possible approach would be to infer the strongest
possible type for a given function and then automatically create auxiliary functions
that represent possible weakenings of this strongest possible type, the most obvious
weakening being a function where all parameters are shared and the return type is
shared as well.

With polymorphism, principal types may again become available and could directly
be inferred if the inference algorithm is sufficiently sophisticated.
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6.2 Integration With Lean 4
In Chapter 5, we implement a type checker for our type theory and a model imple-
mentation of the IR described in Section 4.2, but do not integrate it with Lean 4
itself. In the future, the following steps need to be taken to finish the integration:

1. A form of type inference that can deal with the kinds of auxiliary functions
described in Section 6.1 needs to be implemented.

2. A notation to provide uniqueness annotations in types needs to be implemented.
Types annotated with ∗ are unique, types without an annotation are shared.
The notation should set the mdata field of Lean 4’s Expr, which can be used
to store auxiliary data.

3. The mdata field needs to be handled correctly in the compiler toolchain so that
it is preserved until our type checker runs at the end of the pipeline. As of the
writing of this thesis, the function that converts Lean types to LCNF types
erases expressions annotated with mdata.

4. The functions δqe from Section 4.3 and γ∗e from Section 4.4 need to be pro-
vided using a custom annotation in Lean 4’s annotation mechanism, where
declarations, including stubs for external functions and types, can be provided
with auxiliary data by users.

5. Lean’s LCNF must be translated to our model IR and our model type system
while preserving information about the mapping.

6. Our type checker must be adjusted to produce reasonable error codes. As of
now, it only yields a boolean indicating whether a given environment type-
checks. Then, if there is a uniqueness type error, using the aforementioned
mapping, the error for our model IR must be translated to a corresponding
LCNF error.

7. In addition to checking whether a given environment type-checks, our type
checker should accumulate information about the scope in which a variable is
unique. After translating this information back to LCNF, it can be used in
subsequent optimizations, for example eliminating the reference count check
described in Section 2.4.

6.3 Borrowing
In Section 2.8, we saw that implementing more powerful borrowing mechanisms
would be useful. In Section 5.3, we found that our escape analysis is of limited utility
when working with recursive types. Hence, in order to implement a user-friendly
uniqueness type theory, it is essential that the topic of borrowing is re-visited in the
future.
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Spiwack et al. [2022] and Weiss et al. [2021] may provide some guidance for
implementing a borrowing mechanism that handles more cases than the one described
in this thesis.

Another possible approach would be to augment the escapees in Section 4.3 with
a Kleene star and a union operator, or an “any path“-operator, and have B⋅(⋅, ⋅, ⋅)
from Section 4.4 generate patterns that describe the uniqueness of the fields of an
algebraic data type. Then, checking whether any unique fields escape amounts to
checking whether the intersection of these patterns is nonempty.

6.4 Higher-Order Functions
We have discussed the topic of higher-order functions in uniqueness type systems at
length in Section 2.7 and Section 3.2.1, but chose to disregard uniqueness of functions
for now in Section 4.1 by assuming every higher-order function as shared.

This situation is far from optimal because Lean code uses higher-order functions
for type classes, for monadic code, as well as for tricks that guarantee uniqueness
for unique values within other unique values, like the update trick discussed in
Section 2.4.

As described in Section 3.2.1, we believe that the approach that deleverages the
uniqueness of values in a function closure is the most viable, though it requires a
change to the runtime in that higher-order functions need to store two function
pointers as opposed to just one. Additionally, several other components in Chapter 4
must be adjusted as well, since subtyping must now account for co- and contravariant
type parameters and propagation must be capable of propagating through higher-
order functions. Similarly, borrowing most be adjusted with unique functions in
mind.

6.5 Polymorphism
Another topic we have not touched on at all is attribute polymorphism. Part of
the reason for this is that polymorphism results in somewhat unintuitive behaviour
if the coercion between unique and shared values is implicit, as in our system in
Chapter 4, since polymorphic functions may both silently cast to a shared value
and then propagate the sharedness through the rest of the code. In this case, using
different function names would unveil the mistake early on.

However, if the coercion is made explicit, then mistakes would always be spotted
early on, as a unique value can never be passed to a shared parameter unless users
acknowledge it with an explicit instruction. Then, shared and unique functions would
not need to be named differently, and polymorphism would be a useful thing to have.

What follows are some brief and incomplete thoughts on what would be required
to make polymorphism work:

• In order to be substitutable for both a unique and a shared attribute, variables
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that are polymorphic in their attribute can only be passed to polymorphic
parameters, but must otherwise be used uniquely.

• Variables polymorphic in their attribute cannot be updated destructively.

• Borrowed parameters should always be shared, not polymorphic, since both
shared and unique values can be passed to the parameter, while it is still
allowed to share the borrowed parameter within the function body as long as
it does not escape.

• There needs to be a mechanism to connect the uniqueness of two attribute
variables and state that “this component of the return type can be unique if this
parameter is unique”, similar to Clean’s ≤ operator or the boolean connectives
discussed by de Vries [2009].

• Uniqueness attributes in ADTs should propagate the attribute variable of the
outer value when the respective field is accessed.

• Ideally, the fact that shared types cannot contain unique ones should not have
to be explicitly reflected everywhere in the type annotation of a function; it
should be assumed implicitly, or at least the annotational clutter that is present
in de Vries’ implementations of polymorphism should somehow be reduced.

An alternative to polymorphism would be to provide facilities that generate function
declarations for all valid attribute annotations after type erasure. Since there are
only two attributes and users likely do not care much about the concrete uniqueness
annotations except that they should make their code type-check, generating functions
for all possible annotations may be a worthwhile compromise, especially as systems
that support attribute polymorphism tend to produce fairly complex annotations.

6.6 Proof of Soundness
In all of the previous sections, we have only argued informally about the soundness
of our type system, i.e. that variables of unique type are indeed referenced uniquely.
A formal proof of soundness of our system is future work.
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7 Related Work
In this chapter, we will briefly cover other approaches that are similar to ours.

Linear Haskell is a lazy functional language with support for properly linear types,
but no borrowing. It supports an MArray type with efficient destructive updates
and a function freeze that can convert a linear MArray to a non-linear Array. As
described in Section 2.6, MArray constructors use continuation passing. Additionally,
an MArray itself is not allowed to contain linear values. Linear Haskell also has
experimental support for multiplicity polymorphism and multiplicity inference.

Spiwack et al. [2022] resolve some of these shortcomings by introducing a language
of linear capabilities on top of Linear Haskell. The uniqueness of a type is still a
library design decision, but constructors do not need to be stated in continuation-
passing style anymore. Arrays are allowed to contain other unique types and there is
a borrowing mechanism both for unique types within unique types and for unique
types that are used in a read-only manner in functions.

Unfortunately, linear constraints still have to be unpacked explicitly in the term
language and the resulting system is quite complex. We do however think that the
general idea of decoupling values from their linear capabilities and enabling libraries
to provide complex capabilities of their own may prove to be a fruitful avenue of
research.

Idris 2 [Brady, 2021] is a dependently typed functional language with support
for quantitative type theory. As such, its substructural type system has the same
properties as that of Linear Haskell, but also supports an erasure quantity. Dependent
type theory enables some additional applications, like specifying linear usage protocols
and simulating session types [Honda, 1993].

Idris, the precursor to Idris 2, has support for what the authors call “uniqueness
types” as well [Brady, 2017]. Idris’ “uniqueness types” are what we call “invariably
unique types” in Section 2.5, though Idris’ linear types need not be consumed and
are hence affine. Compound data types are either declared to be inherently unique or
non-unique, and there is no coercion between the two. It also supports a restrictive
notion of borrowing that allows pattern matching on borrowed values, but no further
inspection of the values. Due to the lack of an erasure quantity, the combination of
dependent and linear types is limited.

ATS [Shi and Xi, 2013] is a dependently typed language with support for an
extensive foreign function interface and invariably unique types to ensure safe resource-
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usage. Pointers to resources consist of two components: the reference to the resource,
as well as a linear value which witnesses that the resource has not been freed yet.

There does not appear to be a safe borrowing mechanism or a safe coercion
between unique and shared types, but library functions can assert that a reference
is not consumed by a function. There also seems to be support for syntactic sugar
that reduces the amount of explicit linear values being passed around by implicitly
managing a context of linear values, similar in spirit to the approach of Spiwack
et al. [2022].

Clean [Smetsers et al., 1994] is the functional language that introduced the
concept of uniqueness typing. It supports uniqueness types, polymorphism for
uniqueness attributes, as well as type inference. de Vries [2009] provides a type-
theoretical description for Clean that uses lambda calculus as its term language.

As previously discussed in Chapter 3, Clean uses invariably unique types for higher-
order functions. Its borrowing mechanism follows Wadler [1990] and only allows
borrowing in expressions that produce primitive types, so that borrowed variables
are guaranteed not to escape. Clean uses uniqueness for destructive updates, as well
as safe I/O.

Cogent [O’Connor et al., 2021] is a non-recursive functional language designed
for systems programming with extensive FFI capabilities, delegating I/O and re-
cursive programs to C. It features a certifying compiler that produces proofs that
the generated program is a refinement of the original Cogent program using an
Isabelle/HOL [Nipkow et al., 2002] embedding. With these certificates, it is possible
to prove Cogent programs correct within Isabelle/HOL.

It also features invariably unique types to ensure safe resource usage and enable
destructive updates, as well as a borrowing mechanism based on observer types
[Odersky, 1992], polymorphism and type inference. Since it uses uniqueness to ensure
safe resource use, there is no coercion from unique to non-unique types. Higher-order
functions are always fully applied and cannot capture variables in their closure.

Granule [Orchard et al., 2019] is a functional programming language that acts as
a framework for linear types, indexed types and graded modal types. Marshall et al.
[2022] add uniqueness types to Granule as a separate modality and use them for
efficient destructive updates. Their type system does not support nested uniqueness
types, borrowing, type inference or uniqueness polymorphism. Higher-order functions
are implemented using properly linear types.

Futhark [Henriksen et al., 2017] is a functional data-parallel language intended
for GPU code. It uses an alias analysis in order to support efficient in-place updates
on arrays only: If an array has been aliased in the past, then all of its aliases may
not be used after the in-place update. This allows for some greater flexibility, where
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arrays can become temporarily aliased. Across function boundaries, invariably unique
types are used to ensure the uniqueness of arrays, not the full aliasing information.

There are dedicated type system rules for common array operations and variable
uses are classified as “consuming” or “observing”. This allows Futhark to implement
a form of borrowing where observing and consuming operations are used in an
alternating manner, so that an array can only be observed arbitrarily often before it
is consumed, after which it cannot be observed or consumed anymore.

There is no notion of uniqueness polymorphism or type inference. There is also
no support for letting users implement custom consumers of higher-order functions.
The built-in higher-order operators always fully apply the higher-order functions
that they are passed and arrays in the closure of the higher-order function are not
allowed to be consumed within it.

Affe [Radanne et al., 2020] is an impure functional language with support for
properly linear and affine types, borrowing, polymorphism and type inference. Higher-
order functions that contain linear values in their closure are again linear.

It supports the notion of an “explicit borrow” where the borrowee is allowed to
update the borrowed value, but is still forced to use it linearly. This is necessary
because Affe is impure; in a purely functional language, we would instead just return
the updated value regardless of whether we are using a substructural type system or
not.

For a detailed comparison of Affe with other ML-like languages that support linear
types, such as System F° [Mazurak et al., 2010], Alms [Tov and Pucella, 2011],
Quill [Morris, 2016] and Mezzo [Balabonski et al., 2016], as well as the imperative
programming languages Rust [Weiss et al., 2021], Vault [DeLine and Fähndrich,
2001] and Plaid [Garcia et al., 2014], we refer to Radanne et al. [2020].

Linear Dafny [Li et al., 2022] is an imperative language with invariably unique
types and support for an SMT backend [Barrett and Tinelli, 2018] that is leveraged
to reason about general program properties and aliasing when the linear type system
cannot provide the required guarantees.

It supports a traditional borrowing mechanism in the style of observer types
[Odersky, 1992] where observation propagates outwards, as well as arbitrarily mixing
unique and shared types, the latter of which is ensured to be safe by delegating an
aliasing proof obligation to the SMT backend.

Since Lean is also a general proof language, we consider the approach of Linear
Dafny very relevant to Lean as well. In order to implement something similar for
Lean, uniqueness types would have to be made compatible with Lean’s dependent
type theory and we would have to embed a model of Lean that allows reasoning
about the aliasing of Lean values within Lean itself. Niu et al. [2022] may provide
some guidance for augmenting dependently typed languages with cost functions.
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8 Conclusion
We have provided an overview for the design space of substructural type theory
with the goal of ensuring destructive updates in the Lean 4 theorem prover and
evaluated existing approaches, concluding that uniqueness type theory is most suited
for ensuring destructive updates.

Using our evaluation, we have designed a uniqueness type theory of our own
and implemented a type checker for it using the Lean 4 programming language at
https://github.com/mhuisi/Uniq. Our type theory targets a combined model of
Lean 4’s intermediate representations. It supports uniqueness types, algebraic data
types, erased types, external declarations, non-shallow subtyping for uniqueness
attributes and a notion of borrowing. To implement the latter, we have designed
and implemented an escape data flow analysis that computes an over-approximation
of both parameters and fields of parameters that escape in a given function.

Our type theory lacks support for uniqueness attributes in higher-order functions,
type inference, as well as support for attribute polymorphism. Our escape analysis
produces non-satisfactory results on recursive functions over recursive types, inhibiting
the borrowing of arguments to such functions. Integrating our type theory with the
Lean 4 compiler is future work. We have not formally evaluated the soundness of
our type theory.

For higher-order functions, we have evaluated all existing approaches known to
us and made a recommendation for an approach that we think is the most suitable
one to implement in the future. For borrowing, we have made suggestions to
improve the implementation provided in this thesis. For the topics of type inference,
polymorphism and Lean 4 integration, we have outlined steps that need to be taken
in order to complete the implementation thereof.
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