
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Formally Verified Insertion
of Reference Counting

Instructions

Bachelorarbeit von

Marc Huisinga

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: M. Sc. Sebastian Ullrich

Abgabedatum: 30. Oktober 2019

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Zusammenfassung

Ullrich und de Moura [IFL 2019, noch zu erscheinen] definieren eine formale funk-
tionale Programmiersprache für den Zwischencode des Lean 4 Theorembeweisers,
sowie einen Compiler, welcher Referenzzählungsinstruktionen in den Zwischenco-
de einfügt. In einem Appendix beschreiben Ullrich und de Moura außerdem eine
Korrektheitsbedingung für diesen Compiler in der Form eines linearen Typsystems,
und beweisen daraufhin, dass der Compiler immer wohl-getypten Code ausgibt. Wir
formalisieren die Zwischencode-Sprache, den Compiler, das lineare Typsystem und
einen Teil des Korrektheitsbeweises in Lean 3. Außerdem implementieren wir die
Listen-Funktion group by und beweisen einige Lemmata, um dessen Korrektheit zu
garantieren.

Ullrich and de Moura [IFL 2019, to appear] define a formal functional programming
language for the intermediate representation (IR) of the Lean 4 theorem prover, as
well as a compiler that inserts reference counting instructions into the IR. In an
appendix Ullrich and de Moura also provide a correctness condition for this compiler
in the form of a linear type system and then prove that the compiler always produces
well-typed output. We formalize the IR language, the compiler, the linear type
system and part of the proof of correctness in Lean 3. We also implement the list
function group by and prove some lemmas to ensure its correctness.

Contents
1 Introduction 7

2 Background 9
2.1 Garbage Collection in Pure Programming Languages 9
2.2 IR Language . 10
2.3 Linear Type Systems . 12
2.4 Insertion of RC Instructions . 15
2.5 Lean . 18
2.6 Related Work . 20

3 Formalized Definitions 21
3.1 Abstract Syntax of the IR . 21
3.2 Type System for RC-Correct Programs 25
3.3 Well-Formedness of the Pure IR . 27
3.4 Insertion of RC Instructions . 29

4 Formalized Proof 33
4.1 Free Variables . 33
4.2 Well-Formedness . 34
4.3 RC Insertion Correctness . 35

5 Formalized Group By 39
5.1 Group By on Lists . 39
5.2 Lifting Group By . 41

6 Conclusion 43

5

1 Introduction
Most high-level programming languages use some sort of garbage collection to prevent
errors induced by incorrect memory management. Functional programming languages
in particular often make use of this abstraction. One such functional programming
language is used in the meta-programming framework of the Lean theorem prover
[de Moura et al., 2015; Ebner et al., 2017].
The Lean theorem prover enables users to verify the correctness of proofs and

programs. To reduce the effort of formalizing programs, theorems and their corre-
sponding proofs, Lean provides a meta-programming framework for writing proof
and code automation. To implement these meta-programs, users write Lean code,
which is then compiled to an intermediate representation (IR) and executed in a
virtual machine.

In Lean 3, the performance of this meta-programming framework is not competitive
with proof automation implemented in programming languages with more efficient
compilers. One reason for this inefficiency is the use of a primitive reference counting
garbage collection algorithm in the virtual machine [Ullrich and de Moura, 2019a].
During the development of Lean 4, a new reference counting garbage collection

algorithm was designed to improve the performance of the IR [Ullrich and de Moura,
2019a]. This new algorithm reduces the amount of reference counting (RC) instruc-
tions by saving RC instructions associated with references that are guaranteed to be
kept alive by the caller of a function. To alleviate the burden on the user, a heuristic
is provided to infer whether a reference should be kept alive. Additionally, the
reference count is used to implement a heuristic for performing destructive updates.
This is especially beneficial to improving the performance and reducing the memory
footprint of pure functional programming languages like Lean [Férey and Shankar,
2016].

For theorem provers, it is of special interest that both the algorithms used in the
theorem prover and their associated proofs of correctness are without error. Ullrich
and de Moura [2019b] present a proof of correctness for the new garbage collection
algorithm of Lean 4. To ensure that the proof is faultless, this thesis implements a
formalization of most of the proof in Lean 3. Specifically, instructions related to the
destructive update optimization are not modeled, while the function application and
constructor cases are still missing from the proof. During the development of the
formalization, we implemented group by, which subdivides a list into its equivalence
classes. We did not end up using it, but believe that it provides a good example for
algorithm verification in Lean.
In chapter 2, we discuss different garbage collection techniques, provide some

formal background on linear type systems, explain the prior work of Ullrich and

7

de Moura [2019a] and present the basics of the Lean theorem prover. In chapter 3,
we formalize the IR, a linear type system to classify the correctness of reference
counting, restrict the IR to a well-formed subset and define a compiler that inserts
RC instructions. In chapter 4, we present the formalized proof of correctness. Finally,
in chapter 5, we describe an implementation of group by and several lemmas related
to it.

8

2 Background

2.1 Garbage Collection in Pure Programming
Languages

Garbage collection algorithms used in programming languages often fall into either
the category of tracing garbage collection or the category of reference counting.
Tracing garbage collection determines objects that are unreachable by reference

from a special set of root objects, which usually consists of objects on the stack
and global objects. When an unreachable object is detected, the object is freed.
Reference counting attaches a counter to every object that tracks the amount of
references to that object. When the counter reaches zero, the object is freed.
Naive reference counting exhibits a number of deficiencies:

• Circular references are never collected. Every object in the circle is being
referenced at least once by another object in the circle, even if the circle itself is
unreachable and could otherwise be freed [McBeth, 1963]. This is not an issue
in Lean due to the inability to create objects with circular references [Ullrich
and de Moura, 2019a].

• Every object also needs to store a reference count, which induces a constant
space overhead for all objects in memory.

• In multi-threaded environments, the reference count has to be updated atomi-
cally, which induces a significant runtime overhead for every counter update
[Choi et al., 2018].

• Pause times may be unbounded [Boehm, 2004].

Some of the listed deficiencies can be mitigated: updates need not be atomic if an
object is only accessed from a single thread and the amount of RC instructions can
be significantly reduced with heuristics that identify redundant RC instructions.
One such heuristic is provided by Ullrich and de Moura [2019a] for a pure and

functional language. Parameters to functions are marked as either borrowed or
owned. Borrowed parameters are guaranteed to be kept alive by the caller of the
function and as such the reference count of these parameters does not need to be
updated. Owned parameters behave like regular references and require updates to
the reference count.

The reference count can then be used for an optimization that is especially useful
in pure and functional languages. It is common that objects are freed right before

9

2.2. IR LANGUAGE

the creation of a new object of the same type, for instance when a pure function
performs the equivalent of a mutation on an object by reading from the object to
then create a similar object with updated parameters [Ullrich and de Moura, 2019a].
When the reference is marked as owned and the reference count is 1 right before its
last use, it can be guaranteed that the object in question will not be used anymore
after returning from the respective function. The memory of that object can then
be reused by a different object with the same type - an optimization known as a
destructive update.

2.2 IR Language
The target language of our formalization will be the purely functional intermediate
representation (IR) language introduced by Ullrich and de Moura [2019a]. Let us
first introduce an informal syntax to motivate the abstract syntax formalized in
section 3.1. The informal syntax is mostly the same as the one provided by Ullrich
and de Moura [2019a]. As an example, we will take a look at an implementation of a
map function and ignore reference counting for now.

map f xs = case xs of
(ret xs)
(let x = proj1 xs; let xs' = proj2 xs;
let fx = f x; let fxs' = map f xs';
let fxs = ctor2 fx fxs'; ret fxs)

The IR is untyped. For this example, we assume that there are two constructors
corresponding to the commonly used list constructors nil and cons, both encoded by
an index, where nil takes no parameters and cons takes the head and the tail of the
list as parameters.
case xs of (case1) (case2) executes case1 if the value of x has been created

with the first constructor, nil, and case2 if it has been created with the second
constructor, cons. ret xs returns the value of the variable xs, in this case the empty
list. let x = expr; binds the result of expr to the variable x. Expressions cannot
be nested, i.e. every let only contains a single operation. proji xs accesses the
i-th field of xs, for example the head of xs for i = 1 or the tail of xs for i = 2 if xs
is a cons cell. f x applies the variable x to the function stored in the variable f.
In let fxs' = map f s;, map is a constant, not a variable: constants are names
for functions that can be accessed globally. The mathematical function that maps
constants to their corresponding function is called a program and henceforth denoted
by δ. The third way to do function application is not shown in this example: it is
also possible to partially apply functions with let y = pap f x1 x2 ...;. If we
want to store a function f in a variable y, we can simply write let y = pap f;
Finally, ctori x1 x2 ... invokes the i-th constructor.

There are also two RC instructions not shown so far: inc x; and dec x;, where
inc increments the reference count of x and dec decrements it. The reference count

10

2.2. IR LANGUAGE

is modeled as a multi-set of tokens. Additionally, we do not use a global token
multi-set, but instead a token multi-set that is local to the function and only tracks a
local portion of the reference count. It turns out that this view of reference counting
is a lot easier to handle formally, since its correctness can be captured by a linear
type system, while considering the correctness of reference counting with a global
reference counter would require formalizing the heap. At the end of section 2.3 we
will see that programs which are correct in regards to reference counting with a
local token multi-set are also correct in regards to reference counting with a global
reference counter.

Tokens can be created and consumed: inc and let create new local tokens, while
ret, dec, as well as constant-, partial- and constructor application consume tokens
of their parameters. Every function receives one token for each of its parameters.
Intuitively, tokens are consumed when they are discarded via dec, encapsulated in a
constructor or passed to a different function that maintains the token. Meanwhile,
tokens are either created directly via inc, received from a different function or built
from a constructor.
To further explain the semantics of reference counting, we consider a few more

examples that have been introduced by Ullrich and de Moura [2019a]. Let us first
consider a function that does not require any RC instructions to be correct:

id x = ret x
id receives one token for x, which is then consumed by returning it immediately.
Next, let us consider a function that requires an inc instruction.

mkPairOf x = inc x; let p = ctor1 x x; ret p
mkPairOf receives one token for x. To create p, x is consumed twice, so an additional
token needs to be created with an inc instruction. Now we consider a function that
requires a dec instruction.

fst x y = dec y; ret r
y is never used, so the one token received as a parameter needs to be explicitly
discarded. Finally, we reconsider the map function shown earlier and insert RC
instructions to remark a small technicality.

map f xs = case xs of
(ret xs)
(let x = proj1 xs; inc x; let xs' = proj2 xs; inc xs';
let fx = f x; let fxs' = map f xs';
let fxs = ctor2 fx fxs'; ret fxs)

We need an additional inc instruction just to use x once: Instructions of the form let
x = proji y; are treated differently from let instructions with other expressions

and need to be incremented manually for reasons explained later, in section 2.3.
Ullrich and de Moura [2019a] also provide reset x; and let x = reuse y in

ctori z1 z2 ...; instructions to implement an optimization that uses the reference
count for destructive updates. We will not consider these instructions here for reasons

11

2.3. LINEAR TYPE SYSTEMS

explained in section 4.3.
We will not need the semantics of the IR, either. Ullrich and de Moura [2019a]

provide a full and formal description of the semantics.

2.3 Linear Type Systems

Ullrich and de Moura [2019b] use a linear type system to define the correctness of
token-based reference counting. Regular structural type systems usually implicitly
assume the Exchange, Weaken and Contract rules: Exchange changes the
order of elements in the type context, Weaken discards elements of the type context
and Contract duplicates elements of the type context. Henceforth Exchange
will be assumed implicitly by considering the type context as a multi-set instead of a
list, since preserving the order of elements in the type context will not prove to be
useful. Linear type systems disregard Weaken and Contract: by not assuming
Weaken and Contract, variables that are declared once can only be used exactly
once as well. This is useful when reasoning about resources: without Weaken
and Contract, we can use the type context to represent the multi-set of tokens.
Depending on the piece of IR code, we can then consume tokens from the type
context or create new tokens to add to the type context.
As mentioned in section 2.1, we might however want to opt-out of updating the

token multi-set when dealing with borrowed variables, as long as we can still guarantee
the correctness of reference counting. For this purpose, the type system given by
Ullrich and de Moura [2019b] provides two types (τ): O for owned variables that
behave linearly, and B for borrowed variables where we assume the Weaken and
Contract rules to be able to duplicate and discard tokens freely. Parameters are
marked as either owned or borrowed. We assume a function β that maps constants
to a list of types that correspond to the types of the parameters of that function.

We will now explain the typing rules introduced by Ullrich and de Moura [2019b]
so that we will later be able to discuss differences between this type system and
our Lean-formalized type system. The type system provides typing rules for several
objects: variables (x, y, z), expressions (e), function bodies (F), constants (c) and
programs (δ). We begin with Var, Weaken and Contract.

Var

x ∶ τ ⊩ x ∶ τ

Weaken
Γ ⊩ e ∶ τ

Γ, x ∶ B ⊩ e ∶ τ

Contract
Γ, x ∶ B, x ∶ B ⊩ e ∶ τ

Γ, x ∶ B ⊩ e ∶ τ

Contract-F
Γ, x ∶ B, x ∶ B ⊩ F ∶ O

Γ, x ∶ B ⊩ F ∶ O

The Var rule ensures that variables can only be typed if there is exactly one token
for that variable present in the type context. There is no Weaken rule for function
bodies since it is not needed in any of the proofs provided by Ullrich and de Moura
[2019b].

12

2.3. LINEAR TYPE SYSTEMS

Next, we consider rules for RC instructions.
Inc

Γ,x ∶ τ,x ∶ O ⊩ F ∶ O
Γ,x ∶ τ ⊩ inc x; F ∶ O

dec
Γ ⊩ F ∶ O

Γ,x ∶ τ ⊩ dec x; F ∶ O
Incrementing a variable always creates a new owned token, even if the variable is
borrowed. This means that if the variable is borrowed and we increment it, we still
need to ensure that the variable is consumed at least once. In the compiler defined
in section 2.4, this case will never occur, as we will never insert RC instructions
when a variable is borrowed. On the other hand, this ensures that as long as a
program is correct in regards to the type system, it does not matter which variables
end up being marked as borrowed: if a variable is marked as owned while it could
instead be borrowed, we merely insert redundant RC instructions, since our type
system guarantees that owned variables can always be used in the same contexts
that borrowed variables can be used in. If a variable is marked as borrowed while
it should instead be owned, the compiler will have to insert an inc instruction to
create an owned token so that borrowed variables can be used in an owned context.
Meanwhile, borrowed variables cannot be decremented.
We now introduce rules for ret and case.

Ret
Γ ⊩ x ∶ O

Γ ⊩ ret x ∶ O

Case
Γ,x ∶ τ ⊩ F ∶ O

Γ,x ∶ τ ⊩ case x of F ∶ O
The Ret rule enforces that ret can only be typed if the context contains exactly a
single token for the variable to return. In the expression rules for function application,
we will see that the return value of function application needs to be owned. Meanwhile,
case is typed by typing every single control path. Reading x to decide the control
path is a non-consuming operation.
Next, we consider the Let rule.

Let
Γ, x ∶ B ⊩ e ∶ O ∆, x ∶ O,z ∶ O ⊩ F ∶ O

Γ,∆, x ∶ O ⊩ let z = e; F ∶ O
When e is a saturated (full) constant application, some of the parameters can be
marked as borrowed. It is sound to locally mark some owned variables as borrowed,
as long as we can ensure that these variables are only borrowed in the scope of the
function application. This is similar to Wadler [1990]’s let! construct. We will now
see that the result of all expressions except for proj expressions need to be owned,
and hence e should be owned.
Let us now take a look at the rules for different expressions.

Const-App-Full
Γ ⊩ y ∶ β(c)
Γ ⊩ c y ∶ O

Const-App-Part
β(c) = O

y ∶ O ⊩ pap c y ∶ O
Var-App

x ∶ O,y ∶ O ⊩ x y ∶ O
Ctor-App

y ∶ O ⊩ ctori y ∶ O

13

2.3. LINEAR TYPE SYSTEMS

Parameters in Const-App-Full are typed according to β. The return value
needs to be owned: if functions were allowed to return borrowed variables, those
variables might escape the context in which they are guaranteed to be kept alive. To
understand that variables should never escape the context in which they are borrowed,
consider a function id that immediately returns its borrowed parameter and its use
in let y = id x; dec x; ret y, where x is owned and temporarily passed as a
borrowed variable to id. The single token for x is used up by decrementing it. Since
x and y are identical, y is decremented as well. If the dec call frees x, ret y will
be an instance of use-after-free, despite this piece of code being typeable if we allow
borrowed parameters to escape the context in which they are borrowed.

For Const-App-Part, parameters to pap c need to be owned: if a parameter is
borrowed and we return the resulting pap value, the parameters would again escape
the context in which they are borrowed. When fully applying this value later, we
cannot consider the value as borrowed, because it is not necessarily borrowed in this
new context. Neither can we just consider it to be owned, since we never paid a
token for it being an owned parameter.
Consequently, for Var-App, the parameter y in x y needs to be owned, since

functions can only be stored in variables by using pap, and pap parameters need to
be owned, so y should be owned as well. Meanwhile, since x may already contain
parameters that have been partially applied, x should be owned as well: the token
for x is created from the tokens of owned parameters that have been partially applied
to create x. Since those parameters are owned, we need to consume tokens for them,
which we can only do by consuming a token of x, and this is only possible if x is
owned.

Ctor-App is similar to Const-App-Part - the parameters to ctori need to be
owned. If we passed a borrowed variable to ctori and returned the resulting value,
the borrowed variable would escape the context in which it is marked as borrowed
and we would not be able to guarantee that the borrowed variable is still alive by
the time that it is accessed.
Lastly, projections are handled specially:

Proj-Bor
Γ,x ∶ B,y ∶ B ⊩ F ∶ O

Γ,x ∶ B ⊩ let y = proji x; F ∶ O

Proj-Own
Γ,x ∶ O,y ∶ O ⊩ F ∶ O

Γ,x ∶ O ⊩ let y = proji x; inc y; F ∶ O
Projected variables can be borrowed if the constructor that is being projected from
is borrowed as well. For this reason, let y = proji x; F does not provide a token
for y as in the other let rules. Meanwhile, owned constructors always project to
owned variables, and as such need an explicit inc instruction to create the owned
token explicitly. y cannot be borrowed, because it might outlive x and would thus
not be kept alive.

The type system of Ullrich and de Moura [2019b] provides a third type R, which
is used for variables that can be used for destructive updates, as well as more rules
to work with this type. In our shortened version of the type system, expressions and
function bodies are always owned, while the expressions of Ullrich and de Moura

14

2.4. INSERTION OF RC INSTRUCTIONS

[2019b] might be of type R as well. We will not consider that part of the type system
here.
Finally, constants are typed by typing the function body that belongs to the

constant in a specific program, while programs are typed by typing all constants of
the program.

Const
δ(c) = λy. F y ∶ β(c) ⊩ F

δ ⊩ c

Prog
∀c ∈ dom(δ). δ ⊩ c

⊩ δ

Ullrich and de Moura [2019a] define δ to be partial and require F in the Prog rule
to be well-formed. Due to the partiality, only constants in the domain of δ need
to be considered. We will later demand the well-formedness separately instead of
requiring it in Prog.
Now that we have defined rules that ensure the correctness of reference counting

with a local token multi-set, we might worry about the correctness of reference
counting with a global reference counter, which is how reference counting would
likely be implemented in practice. For this, Ullrich and de Moura [2019b] prove
a semantics preservation theorem. Informally, it states that it does not matter
whether we evaluate well-typed programs according to a formal semantics that
disregards reference counting, or whether we evaluate according to a formal semantics
that implements global reference counting. In order for the formal semantics that
implements global reference to evaluate to a value, the program needs to halt and
use-after-free may not occur. In this sense, the local type system guarantees that
use-after-free will never occur with a global reference counter for halting programs.
This does not yet prove that the type system implies freedom from memory leaks,
though Ullrich and de Moura [2019b] refer to Chirimar et al. [1996] where this
property is proved for a very similar type system and formal language. We will not
formalize either proof here.

2.4 Insertion of RC Instructions

In the compiler given by Ullrich and de Moura [2019a], RC instruction insertion is
provided as a mathematical function over the IR language introduced earlier. During
the compilation, we will need a map βl, initialized to [y↦ β(c), ...↦ O], that keeps
track of whether variables are borrowed or owned, where parameters of a function
λy. F belonging to an arbitrary constant c are initially tracked according to β, while
other entries default to being owned.

We begin by introducing the functions that prepend RC instructions to a specific

15

2.4. INSERTION OF RC INSTRUCTIONS

function body.

O+

x(V,F, βl) = F if βl(x) = O ∧ x ∉ V
O+

x(V,F, βl) = inc x; F otherwise

O−

x(F, βl) = dec x; F if βl(x) = O ∧ x ∉ FV(F)
O−

x(F, βl) = F otherwise

O−([],F, βl) = F
O−(xx’,F, βl) = O−(x’,O−

x(F, βl), βl)
O+

x is always applied right before a variable is used in an owned context that consumes
tokens. V represents the set of variables that are alive after incrementing x. Variables
are not incremented if they are owned and not used anymore. This way, the last
token of a variable is consumed on the last use of the variable. If the variable is
instead borrowed, it needs to be incremented in order for there to be an owned token
to use in the owned context. Meanwhile, variables are only decremented if they are
owned and dead so that there are always tokens for those variables before their last
use.
We will now consider the compilation of ret and case.

C(ret x, βl) = O+

x(∅,ret x, βl)
C(case x of F, βl) = case x of O−(y,C(F, βl), βl)

where {y} = FV(case x of F)

Borrowed variables are incremented before being returned. At the start of every case,
those owned variables that are not used in that specific case are decremented. To do
this constructively, the set FV(case x of F) needs to be sorted into a list by some
order. The compiler keeps the token count minimal; variables are only incremented
right before their use and will only be duplicated before function application, where
the duplicate tokens will immediately be used up. Because of this, we will only
always have a single token for every variable at our disposal in between instructions,
and that token is either consumed by passing it to some other function, returning it,
using a constructor or calling dec once.
proj is treated specially once more:

C(let y = proji x; F, βl) = let y = proji x; inc y; O−

x(C(F, βl), βl)
if βl(x) = O

C(let y = proji x; F, βl) = let y = proji x; C(F, βl[y↦ B])
if βl(x) = B

Since βl(y) = O by default, βl does not need to be updated in the case where
βl(x) = O.

16

2.4. INSERTION OF RC INSTRUCTIONS

To implement the compilation of the different expressions for function application,
an auxiliary function Capp is defined:

Capp([],[],let z = e; F, βl) = let z = e; F
Capp(y y′,O b,let z = e; F, βl) = O+

y(y′ ∪ FV(F),Capp(y′, b,let z = e; F, βl))
Capp(y y′,B b,let z = e; F, βl) = Capp(y′, b,let z = e; O−

y(F, βl), βl)
The second parameter designates the expected type of variables in the first parameter.
When the parameter is expected to be owned, the variable passed to that parameter
is incremented if it is borrowed or not used in the remaining parameter list or function
body. When the parameter is borrowed, the variable passed to that parameter is
decremented after the application, as long as it is owned and dead. In the case that
the parameter is owned, the variable does not need to be decremented, since its last
token would be consumed by the application.
Capp can now be used to implement the other cases:

C(let z = c y; F, βl) = Capp(y, β(c),let z = c y; C(F, βl), βl)
C(let z = pap c y; F, βl) = Capp(y, β(c),let z = pap c y; C(F, βl), βl)

C(let z = x y; F, βl) = Capp(xy,OO,let z = x y; C(F, βl), βl)
C(let z = ctori y; F, βl) = Capp(y,O,let z = ctori y; C(F, βl), βl)

Ullrich and de Moura [2019a] describe an important subtlety when passing in the
same parameter as both borrowed and owned, in that order:

β(c) = BO, βl = [y↦ O], F ′ = let z = c y y; F
If y is alive in F, then y is guaranteed to be kept alive over the course of the function
call. If y is however dead in F, we need to ensure that the second use of y does not
consume y entirely. c is not aware that its second parameter is the same as the first
one, and might decide to free the second parameter when it is no longer needed. This
will however also free the first parameter, which c assumes is kept alive by the caller.
Luckily, the compiler already prevents this issue. If y is dead in F, the variable is
decremented after the application. Then, the use of y in the second parameter is
no longer the last use of y in that function body, leading to y being incremented,
which ensures that y will be kept alive over the entirety of the call. Specifically, for
F = ret z, the full compilation process looks like this:

C(let z = c y y; ret z, βl)
= Capp(yy,BO,let z = c y y; C(ret z, βl), βl)
= Capp(yy,BO,let z = c y y; ret z, βl)
= Capp(y,O,let z = c y y; O−

y(ret z, βl), βl)
= Capp(y,O,let z = c y y; dec y; ret z, βl)
= O+

y({y,z},Capp([],[],let z = c y y; dec y; ret z, βl), βl)
= O+

y({y,z},let z = c y y; dec y; ret z, βl)
= inc y; let z = c y y; dec y; ret z

17

2.5. LEAN

Finally, a full program δ is compiled by compiling every constant and immediately
decrementing any parameter that is dead in the function body. The new program is
called δRC :

δRC(c) = λy. O−(y,C(F, βl)) where δ(c) = λy. F and βl = [y↦ β(c), ...↦ O]

2.5 Lean

Lean is an interactive theorem prover with dependent types, quotient types, support
for tactic-style proofs and a universe hierarchy with an impredicative and proof-
irrelevant Prop universe at the bottom of the hierarchy. Propositions are encoded
as inductive types in the Prop universe and then proved by constructing a term of
this type. Since Prop is proof-irrelevant, we can use classical mathematics for proofs
[de Moura et al., 2015].

We provide some examples to illustrate the syntax of Lean 3. To prevent confusion
with types already built-in into Lean 3, the names of the following types are indexed.
We can define simple inductive types using the inductive keyword:

inductive nat2 : Type
| zero : nat2
| succ : nat2 → nat2
#check nat2.succ (nat2.zero)

Inductive types can be parameterized. In the following example, α is fixed in list.
inductive list2 (α : Type) : Type
| nil : list2
| cons : α → list2 → list2
#check list2.cons 1 (list2.nil N)

Alternatively we could also explicitly name the parameters to cons. Type* is a
placeholder for Type u with an arbitrary universe u. We can have Lean infer the
type of list3 α by not stating it.

inductive list3 (α : Type*)
| nil : list3
| cons (val : α) (tail : list3) : list3

If a parameter can be inferred from context, we can tell Lean to infer it by replacing
the parameter with _.

#check list3.cons 1 (list3.nil _)
Inductive propositions can be defined similarly.

18

2.5. LEAN

inductive false2 : Prop

inductive true2 : Prop
| intro : true2

inductive and2 (a b : Prop) : Prop
| intro : a → b → and2

inductive or2 (a b : Prop) : Prop
| left : a → or2
| right : b → or2

Inductive types with a single constructor can be defined more succinctly with
structure. We can call the constructor of an inductive type with a single instructor
using ⟨/-...-/⟩. Should Lean not be able to infer a type from context, we can
always help it with type annotations.

structure and3 (a b : Prop) : Prop := (h1 : a) (h2 : b)
#check and3.mk (true2.intro) (true2.intro)
#check (⟨true2.intro, true2.intro⟩ : and3 true2 true2)
#check (⟨⟨⟩, ⟨⟩⟩ : and3 true2 true2)

Functions can be defined similarly to inductive types by pattern matching. Parameters
left to : are fixed for the recursion, while parameters right to : are recursed on.
Parameters can also always be marked to be left implicit with {/-...-/} if they
should be inferred from context by default. Here, α is left implicit and fixed for the
recursion, while we recurse on both list2 α parameters.

def append2 {α : Type} : list2 α → list2 α → list2 α
| (list2.nil _) ys := ys
| (list2.cons x xs') ys := list2.cons x (append2 xs' ys)
#reduce append2 (list2.cons 1 (list2.cons 2 (list2.nil _)))
(list2.cons 3 (list2.cons 4 (list2.nil _)))

We can still explicitly pass in parameters by prefixing the function with @.
#reduce @append2 N (list2.cons 1 (list2.cons 2 (list2.nil _)))
(list2.cons 3 (list2.cons 4 (list2.nil _)))

Types can be restricted via type classes by demanding a specific type class instance
using [/-...-/]. Lean will then infer a fitting instance in the context where the
respective function is called. We will only use type classes, not define them.

def add {α : Type} [has_add α] (a : α) (b : α) : α := a + b
For definitions over Prop, we use lemma and theorem. The implementation of a
lemma is the proof of the proposition designated by the type of the lemma.

19

2.6. RELATED WORK

lemma and_assoc2 {a b c : Prop}
: and2 (and2 a b) c → and2 a (and2 b c)

| ⟨⟨h_a, h_b⟩, h_c⟩ := ⟨h_a, ⟨h_b, h_c⟩⟩
We will make extensive use of Lean 3’s effective standard library, mathlib [Avigad

et al., 2019]. It provides basic data structures, definitions for many mathematical
objects, a plethora of lemmas for these objects and a number of tactics.

2.6 Related Work
Chirimar et al. [1996] provide the basis for using linear type systems to write formal
proofs related to reference counting. They prove that a local correctness predicate,
implemented by a linear type system, has all the desired properties for reference
counting with a global reference counter.
Moreau and Duprat [2001] implement a formal proof of correctness in the Coq

theorem prover [The Coq Development Team, 2019] for a distributed reference
counting algorithm. The algorithm is implemented by an abstract distributed
machine model and a distributed protocol, whereas we use a formal programming
language and a compiler. The correctness condition is global, while we use a local
condition described by a linear type system.

Different kinds of tracing garbage collection have been formalized numerous times
in multiple different interactive and automatic theorem provers [Burdy, 2001; Lin
et al., 2007; Hawblitzel and Petrank, 2009; Sandberg Ericsson et al., 2017; Zakowski,
2017; Havelund, 1999; Jackson, 1998].

20

3 Formalized Definitions

In this chapter, we first develop a formalization of the abstract syntax that represents
the IR. Then, we define what it means for a program with RC instructions to
be correct in regard to reference counting. Next, we restrict the IR to a specific
well-formed subset. Lastly, we implement the compiler that inserts RC instructions.

3.1 Abstract Syntax of the IR

For the formalization, we first define variables, constants and constructors as natural
numbers:

def var := N
def const := N
def cnstr := N

We choose natural numbers because we will later need decidable equality and a total
order on variables, constants and constructors. For the purpose of executing and
testing the compiler we might also define a pretty-printing procedure for the abstract
syntax, in which case it is also useful that Lean already provides a pretty-printing
procedure for natural numbers.
Next, we define the abstract syntax for expressions.
inductive expr : Type
| const_app_full (c : const) (ys : list var) : expr
| const_app_part (c : const) (ys : list var) : expr
| var_app (x : var) (y : var) : expr
| ctor (i : cnstr) (ys : list var) : expr
| proj (i : cnstr) (x : var) : expr

As in the informal syntax, expressions cannot be nested and will only be used in let
statements. Function and constructor parameters are modeled as lists, not vectors
with a size n dependent on c or i: it turns out that we will only need the arity of
functions rarely, and as such it is easier to demand arity-correctness in a separate
predicate instead of maintaining an invariant for the arity. Indeed, we will not need
the arity of constructors at all.
We now implement function bodies:

21

3.1. ABSTRACT SYNTAX OF THE IR

inductive fn_body : Type
| ret (x : var) : fn_body
| «let» (x : var) (e : expr) (F : fn_body) : fn_body
| case (x : var) (Fs : list fn_body) : fn_body
| inc (x : var) (F : fn_body) : fn_body
| dec (x : var) (F : fn_body) : fn_body

As with function and constructor application, cases are modeled as a list. Every
function body ends with a ret.

Function bodies are used in functions, which also contain the parameter list:
structure fn := (ys : list var) (F : fn_body)

Finally, we use a program type for mapping constants to functions so that
const_app_full and const_app_part applications reference the correct functions.

def program := const → fn

For convenience, we also define a sum type that represents either expr or fn_body.
inductive rc : Type
| expr (e : expr) : rc
| fn_body (F : fn_body) : rc

We define coercions from both expr and fn_body to rc so that they need not be
converted explicitly in contexts where rc is needed. rc will prove to be convenient
when defining the type system, which we will define over rc instead of expr and
fn_body separately.

Before we proceed, we implement some Lean-friendly notation for our abstract
syntax. In Lean, notation can be used both for writing prettier Lean code and
for prettifying the proof state displayed in an editor like Visual Studio Code. To
implement a notation, every parameter to the notation needs to be delimited by some
symbol to distinguish it from function application. This means that we cannot use
exactly the same notation as in the informal syntax mentioned earlier, since syntax
like let fxs′ = map f s; does not delimit the parameters map, f and s with symbols.
Additionally, let is already a reserved keyword in Lean. One alternative to notation
for syntax like f x is a coercion to a function type, where f is coerced to a function
var → expr via expr.var_app f. This approach has two key disadvantages: one
cannot pattern match on the coercion and the coercion does not show up in the
proof state. Instead, we choose the following notation:

notation c `J` ys `. . .` `K` := expr.const_app_full c ys
notation c `J` ys `. . .` `, ` `_` `K` := expr.const_app_part c ys
notation x `J` y `K` := expr.var_app x y
notation `⟪` ys `⟫` i := expr.ctor i ys
notation x `[` i `]` := expr.proj i x

22

3.1. ABSTRACT SYNTAX OF THE IR

notation x ` ∶= ` e `; ` F := fn_body.let x e F
notation `case ` x ` of ` Fs := fn_body.case x Fs
notation `inc ` x `; ` F := fn_body.inc x F
notation `dec ` x `; ` F := fn_body.dec x F

ret is the only constructor for which we do not define any notation, using it directly.
To provide an example of the new notation, we adapt the map example from before:

case xs of [
(ret xs),
(x ∶= xs[1]; inc x; xs′ ∶= xs[2]; inc xs′;
fx ∶= fJxK; fxs′ ∶= mapJ[f, xs′]. . .K;
fxs ∶= ⟪[fx, fxs′]⟫2; ret fxs)

]
In Lean, the full example with natural number encoding would look like this:

def map_body : fn_body := case 1 of [
(ret 1),
(3 ∶= 1[1]; inc 3; (4 ∶= 1[2]; inc 4;
(5 ∶= 2J3K; (6 ∶= 0J[2, 4]. . .K;
(7 ∶= ⟪[5, 6]⟫2; ret 7)))))

]
def map : fn := ⟨[0, 1], map_body⟩
def id : fn := ⟨[0], ret 0⟩
def map_prog : program := λ c, if c = 0 then map else id

Luckily, we will never have to write full programs in this syntax.

Next we need to implement some technical machinery to ensure that we can both
recurse over and use induction on values of type fn_body. Lean can automatically
prove the well-foundedness of structural recursion. When this fails, Lean uses the
assumption tactic, i. e. the fact that the object to recurse over is structurally smaller
than the initial object already needs to be present in the proof context. When
interacting with fn_body.case x Fs, we might however want to use higher-order
functions like map f Fs to recurse over F ∈ Fs in f. Lean cannot automatically prove
that this recursion is well-founded. Lean 3 also does not generate useful recursors
for nested inductive types like fn_body, where the inductive type is nested inside
of another type like list. Since we will only need map f Fs to write functions for
fn_body.case, as well as a recursor on fn_body, we only implement the necessary
machinery to prove the well-foundedness of recursive calls in f and a special recursor
for fn_body.case.

A new map function is defined that passes a proof that the size of each element is
smaller than the size of the list itself as a second parameter to the function being
mapped to every element. With this parameter, Lean can prove that recursion over
the element being mapped is well-founded.

23

3.1. ABSTRACT SYNTAX OF THE IR

def map_wf {α β : Type*} [has_sizeof α]
(xs : list α)
(f : Π (a : α), (sizeof a < 1 + sizeof xs) → β)
: list β

It is also proved that the new map_wf behaves exactly like map.
lemma map_wf_eq_map {α β : Type*} [has_sizeof α]
{xs : list α} {f : α → β}
: map_wf xs (λ a _, f a) = map f xs

Lastly, the new recursor is defined, which provides an induction hypothesis for all
F ∈ Fs.

def {l} fn_body.rec_wf (C : fn_body → Sort l)
(«ret» : Π (x : var), C (ret x))
(«let» : Π (x : var) (e : expr) (F : fn_body)
(F_ih : C F), C (x ∶= e; F))

(«case» : Π (x : var) (Fs : list fn_body)
(Fs_ih : ∀ F ∈ Fs, C F), C (case x of Fs))

(«inc» : Π (x : var) (F : fn_body)
(F_ih : C F), C (inc x; F))

(«dec» : Π (x : var) (F : fn_body)
(F_ih : C F), C (dec x; F))

: Π (x : fn_body), C x
map_wf, map_wf_eq_map and fn_body.rec_wf were provided by Sebastian Ullrich.

Finally, we can now use this new machinery to define the free variables of a function
body. To avoid duplicate variables, we use the finset type by Avigad et al. [2019]
to represent the set of free variables.

def FV_expr : expr → finset var
| (cJxs. . .K) := xs.to_finset
| (cJxs. . ., _K) := xs.to_finset
| (xJyK) := {x, y}
| (⟪xs⟫i) := xs.to_finset
| (x[i]) := {x}

def FV : fn_body → finset var
| (ret x) := {x}
| (x ∶= e; F) := FV_expr e ∪ ((FV F).erase x)
| (case x of Fs) := insert x (finset.join

(Fs.map_wf (λ F h, FV F)))
| (inc x; F) := insert x (FV F)
| (dec x; F) := insert x (FV F)

Since Avigad et al. [2019] do not yet provide a finset.join, we implement our own.

24

3.2. TYPE SYSTEM FOR RC-CORRECT PROGRAMS

def join {α : Type*} [decidable_eq α] (xs : list (finset α))
: finset α

We also prove an important lemma to work with join and add it to the set of lemmas
of the simp tactic.

@[simp] theorem mem_join {α : Type*} [decidable_eq α]
{x : α} {xs : list (finset α)}
: x ∈ join xs ↔ ∃ S ∈ xs, x ∈ S

3.2 Type System for RC-Correct Programs
We begin by implementing the types of our type system.

@[derive decidable_eq]
inductive lin_type : Type

| O | B

structure typed_rc := (c : rc) (ty : lin_type)

@[derive decidable_eq]
structure typed_var := (x : var) (ty : lin_type)

Next, we define some notation for typed variables and typed rc.
notation x ` ∶ `:2 τ := typed_var.mk x τ
notation xs ` [∶] `:2 τ := (list.map (λ x, (x ∶ τ)) xs
: multiset typed_var)

notation xs ` {∶} `:2 τ := multiset.map (λ x, (x ∶ τ)) xs
notation c ` ∶∶ `:2 τ := typed_rc.mk c τ

abbreviation type_context := multiset typed_var

The type context of our type system is a multi-set by Avigad et al. [2019], which
implicitly assumes the Exchange rule. Multi-sets still keep track of the count of
every element in the multi-set, so we can still disregard Weaken and Contract
for owned variables. As a quotient type over lists, they are also finite.

We will now introduce the formalized rules of the type system in the same order as
in section 2.3 and explain the differences. We define the type system as an inductive
type family that yields a proposition:

inductive linear (β : const → var → lin_type)
: type_context → typed_rc → Prop
notation Γ ` ⊩ `:1 t := linear Γ t

The notation is local, while β is fixed in both linear and the local notation. The
type system is defined over rc; we will later consider predicates for constants and
programs. In this type system, rc will always be owned. Despite that, we still

25

3.2. TYPE SYSTEM FOR RC-CORRECT PROGRAMS

use typed_rc to allow for the possibility of different types: if we decide to add the
reset and reuse instructions by Ullrich and de Moura [2019b] in the future, the
type system will not have to be changed significantly to account for the fact that
expressions can be of type R as well. Another important difference is that β is
not a function const → list lin_type, but instead const → var → lin_type.
In that sense, we assume that every variable has a type assigned by β, not just
those that are passed in as parameters. This will not prove to be an issue, since the
default type of those parameters in the list will never play a role - it will however
simplify several arguments, since we would otherwise need an extra hypothesis
that the parameter list has the same length as the one provided by β. Henceforth
we assume (Γ ∆ : type_context), (t : typed_rc), (x y z : var), (xs ys
: list var), (e : expr), (F : fn_body), (Fs : list fn_body), (c : const)
and (i : cnstr), using implicit parameters where possible.

Next, we implement weaken and contract rules:
| weaken (t_typed : Γ ⊩ t)

: (x ∶ B) :: Γ ⊩ t
| contract (x_B : (x ∶ B) ∈ Γ) (t_typed : (x ∶ B) :: Γ ⊩ t)
: Γ ⊩ t

There is no var rule: we inline all the occurrences of var into the respective rules.
For completeness, weaken and contract work for both expressions and function
bodies. The contract rule uses (x ∶ B) ∈ Γ. It is usually easier to prove that
something is a member of Γ than to prove that Γ can be written in a certain way,
since proving the latter often involves proving the former. Not every rule can be
changed in this way, but we will still use this where possible.

| inc_O (x_O : (x ∶ O) ∈ Γ) (F_O : (x ∶ O) :: Γ ⊩ F ∶∶ O)
: Γ ⊩ (inc x; F) ∶∶ O

| inc_B (x_B : (x ∶ B) ∈ Γ) (F_O : (x ∶ O) :: Γ ⊩ F ∶∶ O)
: Γ ⊩ (inc x; F) ∶∶ O

| «dec» (F_O : Γ ⊩ F ∶∶ O)
: (x ∶ O) :: Γ ⊩ (dec x; F) ∶∶ O

Instead of a single inc rule for a τ ∈ {O,B}, there are now two inc rules for separate
types, making it slightly easier to apply the rule.

| ret : (x ∶ O) :: 0 ⊩ (ret x) ∶∶ O
| case_O (x_O : (x ∶ O) ∈ Γ) (Fs_O : ∀ F ∈ Fs, Γ ⊩ ↑F ∶∶ O)
: Γ ⊩ (case x of Fs) ∶∶ O

| case_B (x_B : (x ∶ B) ∈ Γ) (Fs_O : ∀ F ∈ Fs, Γ ⊩ ↑F ∶∶ O)
: Γ ⊩ (case x of Fs) ∶∶ O

In ret, we inline the use of the var rule.

26

3.3. WELL-FORMEDNESS OF THE PURE IR

| const_app_full : list.map (λ y, y ∶ β c y) ys ⊩ cJys. . .K ∶∶ O
| const_app_part : ys [∶] O ⊩ cJys. . ., _K ∶∶ O
| var_app : (x ∶ O) :: (y ∶ O) :: 0 ⊩ xJyK ∶∶ O
| ctor_app : ys [∶] O ⊩ (⟪ys⟫i) ∶∶ O
| «let» (xs_O : (xs [∶] O) ⊆ ∆) (e_O : Γ + (xs [∶] B) ⊩ e ∶∶ O)
(F_O : (z ∶ O) :: ∆ ⊩ F ∶∶ O)
: Γ + ∆ ⊩ (z ∶= e; F) ∶∶ O

After inlining, it is obvious that all the application rules look the same: The type
context has to contain the parameter list and their types in order for the application
to be typed. Lastly, we define the rules for projection.

| proj_B (x_B : (x ∶ B) ∈ Γ) (F_O : (y ∶ B) :: Γ ⊩ F ∶∶ O)
: Γ ⊩ (y ∶= x[i]; F) ∶∶ O

| proj_O (x_O : (x ∶ O) ∈ Γ) (F_O : (y ∶ O) :: Γ ⊩ F ∶∶ O)
: Γ ⊩ (y ∶= x[i]; inc y; F) ∶∶ O

For readability, we also define a non-local notation.
notation β `; ` Γ ` ⊩ `:1 t := linear β Γ t

Finally, we define the predicates for typing constants and programs.
inductive linear_const (β : const → var → lin_type)
(δ : program)
: const → Prop
notation ` ⊩ `:1 c := linear_const c

| const (F_O : β; (δ c).ys.map (λ y, y ∶ β c y) ⊩ (δ c).F ∶∶ O)
: ⊩ c

notation β `; ` δ ` ⊩ `:1 c := linear_const β δ c

inductive linear_program
(β : const → var → lin_type)
: program → Prop
notation ` ⊩ `:1 δ := linear_program δ

| program {δ : program} (const_typed : ∀ c : const, (β; δ ⊩ c))
: ⊩ δ

notation β ` ⊩ `:1 δ := linear_program β δ

δ is now a total function as well.

3.3 Well-Formedness of the Pure IR
For some arguments, we will require the pure IR to follow a set of rules.

• Whenever a variable is used, it must have been defined beforehand.

27

3.3. WELL-FORMEDNESS OF THE PURE IR

• Variables that have been defined must be used later.

• Defined variables must be fresh.

• The length of the parameter list to a function must equal the arity of the
function.

• Parameters to functions that are used in a pap must be marked as owned in
β to guarantee that the owned variables partially applied to a constant can
eventually be used to fully apply the function.

We provide well-formedness introduction rules for all instructions except for inc and
dec: we will use the well-formedness predicate to restrict the input to our compiler
when proving it correct, and we assume that there are no RC instructions in the
input to the compiler. Otherwise, the compiler input might already be incorrect,
and we would not be able to prove the correctness of the output. Since there are
no well-formedness introduction rules for inc and dec, IR code that contains these
instructions is not well-formed by default. Ullrich and de Moura [2019b] handle this
differently: there are two separate function body structures, one with RC instructions
and one without. Henceforth we will call the portion without RC instructions pure
and enforce purity using our well-formedness predicate instead.

inductive fn_body_wf (β : const → var → lin_type) (δ : program)
: finset var → fn_body → Prop

We also define a notation for this predicate:
notation β `; ` δ `; ` Γ ` ⊢ `:1 F := fn_body_wf β δ Γ F

In our predicate, Γ represents the set of variables that have already been defined.
The rules of fn_body_wf are formalized exactly as defined by Ullrich and de Moura
[2019b], the only slight difference is that the well-formedness rule for let has
been inlined into the rules for the expression, i. e. instead of there being a let
and a const_app_full rule, there is a let_const_app_full rule. While this does
introduce some duplication when proving things about fn_body_wf, applying rules
of fn_body_wf directly yields all the assumptions for the respective expression.
Once again we define predicates for constants and programs. Constants are well-

formed if the function body of their corresponding function is well-formed and the
parameter list contains no duplicates. Programs are well-formed if all their constants
are well-formed.

inductive const_wf (β : const → var → lin_type) (δ : program)
: const → Prop

notation β `; ` δ ` ⊢ `:1 c := const_wf β δ c

28

3.4. INSERTION OF RC INSTRUCTIONS

inductive program_wf (β : const → var → lin_type)
: program → Prop

notation β ` ⊢ `:1 δ := program_wf β δ

The full definition of the well-formedness predicate can be found at https://github.
com/mhuisi/rc-correctness.

3.4 Insertion of RC Instructions
We will now implement the compiler. O+

x, O−

x and O− are implemented in the same
way as Ullrich and de Moura [2019a] implement them, with the exception that the
recursion in O− is replaced by a foldr.

def inc_O_var (x : var) (V : finset var) (F : fn_body)
(βl : var → lin_type) : fn_body :=

if βl x = O ∧ x ∉ V then F else inc x; F

def dec_O_var (x : var) (F : fn_body) (βl : var → lin_type)
: fn_body :=

if βl x = O ∧ x ∉ FV F then dec x; F else F

def dec_O (xs : list var) (F : fn_body) (βl : var → lin_type)
: fn_body :=

xs.foldr (λ x acc, dec_O_var x acc βl) F
dec_O is difficult to handle formally. While decrementing, FV F is changing all the
time because of the additional dec instructions, making it difficult to apply induction.
If xs does not contain duplicates, every variable for which we call dec_O_var will
not appear in any of the dec instructions already added prior in this dec_O call,
meaning that we can substitute the F in FV F with the F passed to dec_O. We do
this by defining a second variant of dec_O that inlines dec_O_var and substitutes
F:

def dec_O' (xs : list var) (F : fn_body) (βl : var → lin_type)
: fn_body :=

xs.foldr (λ x acc,
if βl x = O ∧ x ∉ FV F then dec x; acc else acc) F

We can then prove that dec_O and dec_O' are equal if xs does not contain duplicates:
lemma dec_O_eq_dec_O'_of_nodup {ys : list var} (F : fn_body) (βl

: var → lin_type)
(d : list.nodup ys) : dec_O ys F βl = dec_O' ys F βl

We will now use dec_O to define the compiler and only fall back to dec_O' in proofs.
We begin by defining the auxiliary function Capp.

29

https://github.com/mhuisi/rc-correctness
https://github.com/mhuisi/rc-correctness

3.4. INSERTION OF RC INSTRUCTIONS

def C_app : list (var × lin_type) → fn_body → (var → lin_type)
→ fn_body

| [] (z ∶= e; F) βl := z ∶= e; F
| ((y, t)::xs) (z ∶= e; F) βl :=

if t = O then
inc_O_var y ((xs.map prod.fst).to_finset ∪ FV F)
(C_app xs (z ∶= e; F) βl) βl

else
C_app xs (z ∶= e; dec_O_var y F βl) βl

| xs F βl := F
This definition uses another important design pattern: instead of taking two lists,
one for the parameter list and one for their expected borrow status, we take a list
over the product of both types. By construction, this ensures that both lists have
the same length. With two separate lists, the alternative would be to either pass
in a proof that the length of both lists is equal, or to use a dependent type that
stores the length of the list and parameterize both types with the same length. In
our definition of C, we will see that neither is needed, and we can construct the
list over the product of both types without needing to prove anything, essentially
guaranteeing that both lists have the same length by construction. C_app is also
defined as a total function, not a partial one, doing nothing in cases where it would
not be defined otherwise. Defining partial functions is possible in Lean, but requires
more formal overhead, especially when using the function in a context where we
would otherwise not have to worry about partiality. Since we will always ensure
that C_app is defined by using the well-formedness predicate, we do not bother with
defining C_app as a partial function.
We will now implement the function body compiler and consider ret and case

first.
def C (β : const → var → lin_type) : fn_body → (var → lin_type)

→ fn_body
| (ret x) βl := inc_O_var x finset.empty (ret x) βl

| (case x of Fs) βl :=
case x of Fs.map_wf (λ F h,
dec_O ((FV (case x of Fs)).sort var_le) (C F βl) βl)

In order to create a list from FV (case x of Fs), we sort the finset according to
the order induced by the natural numbers that back var. Next, we define the proj
rule.

| (y ∶= x[i]; F) βl :=
if βl x = O then

y ∶= x[i]; inc y; dec_O_var x (C F (βl[y ↦ O])) βl

else
y ∶= x[i]; C F (βl[y ↦ B])

Here, variables in βl do not default to being owned, but are instead marked as owned

30

3.4. INSERTION OF RC INSTRUCTIONS

whenever they are defined. This is not an issue, since we will never need to access the
borrow status of variables that have not been defined yet. However, due to the fact
that we do not need to keep track of which variables are owned by default and which
variables have been assigned their borrow status by β, this simplifies arguments
related to βl.

| (z ∶= cJys. . .K; F) βl :=
C_app (ys.map (λ y, ⟨y, β c y⟩))
(z ∶= cJys. . .K; C F (βl[z ↦ O])) βl

| (z ∶= cJys. . ., _K; F) βl :=
C_app (ys.map (λ y, ⟨y, β c y⟩))
(z ∶= cJys. . ., _K; C F (βl[z ↦ O])) βl

| (z ∶= xJyK; F) βl :=
C_app ([⟨x, O⟩, ⟨y, O⟩]) (z ∶= xJyK; C F (βl[z ↦ O])) βl

| (z ∶= ⟪ys⟫i; F) βl :=
C_app (ys.map (λ y, ⟨y, O⟩)) (z ∶= ⟪ys⟫i; C F (βl[z ↦ O])) βl

| F βl := F
Here, our definition of β as const → var → lin_type instead of const → list
lin_type enables us to ensure that the two lists passed to Capp are of the same

size by construction. Once again, we do nothing for cases where C is not defined, i.e.
cases where we would compile RC instructions.
Finally, we define the compilation of programs.
def C_prog (β : const → var → lin_type) (δ : program) (c : const)

: fn :=
let (βl, f) := (β c, δ c) in ⟨f.ys, dec_O f.ys (C β f.F βl) βl⟩

31

4 Formalized Proof
In this section, we provide a short overview of the proof that the compiler is correct
in regards to the type system formalized in section 3.2 and provide some insights
on technical decisions we made. Specifically, we formalize the proof of the following
theorem:

theorem rc_insertion_correctness
(β : const → var → lin_type) (δ : program) (wf : β ⊢ δ)
: β ⊩ C_prog β δ

The original paper proof is provided by Ullrich and de Moura [2019b]. For the
full formalization, we refer to https://github.com/mhuisi/rc-correctness. We
will henceforth assume (δ : program), (β : const → var → lin_type), (βl

: var → lin_type), (x z : var), (ys : list var), (Γ Γ' Γ'' V : finset
var), (e : expr), (F F1 F2 : fn_body), (r : rc) and (τ : lin_type), using
implicit parameters where possible. We begin by proving some lemmas about the
types we defined in chapter 3.

4.1 Free Variables
Our first lemma captures the intuition that function bodies can only be well-formed
if all its free variables have been defined beforehand:

theorem FV_sub_wf_context (h : β; δ; Γ ⊢ F)
: FV F ⊆ Γ

The proof is a straight forward induction on F with a generalized Γ. For this induction,
we use the new recursor rec_wf as well as the lemma map_wf_eq_map defined in
section 3.1, which we will need whenever working with C or FV. Henceforth, when we
say that we use induction on a function body F, we will always use rec_wf as the
recursor. We also use a pattern that is applied in all following proofs: instead of using
the simp tactic directly, we use the squeeze_simp tactic by Avigad et al. [2019] and
then call simp with the list of lemmas printed by squeeze_simp. This allows more
control over which lemmas are applied, since simp is occasionally simplifying terms
too much, leading to terms that are either hard to read or hard to use in proofs.
Additionally, it increases the stability of proofs: when simp is called somewhere in
the middle of a proof, the output of simp depends on the lemmas it applied. If the
global set of lemmas that simp can use changes, it may happen that proofs no longer
type-check due to a change in the term produced by simp. We have also found
that it significantly reduces the time it takes to check proofs in some cases. These

33

https://github.com/mhuisi/rc-correctness

4.2. WELL-FORMEDNESS

advantages come at a cost: simplification is now much more verbose.
Next, we want to prove that compiling a program does not change its free variables.
theorem FV_C_eq_FV : FV (C β F βl) = FV F

This theorem is more general than necessary, since βl and β are not required to be
related in any way. To show this lemma, we need lower and upper bounds on the set
of free variables over inc_O_var and dec_O:

lemma FV_inc_O_var_eq_FV (h : x ∈ FV F)
: FV (inc_O_var x V F βl) = FV F

lemma FV_sub_FV_dec_O : FV F ⊆ FV (dec_O ys F βl)

lemma FV_dec_O_filter : FV (dec_O ys F βl)
= ys.to_finset.filter (λ y, βl y = O ∧ y ∉ FV F) ∪ FV F

lemma FV_dec_O_sub_vars_FV
: FV (dec_O ys F βl) ⊆ ys.to_finset ∪ FV F

FV_dec_O_sub_vars_FV is a direct corollary of FV_dec_O_filter, which is proved
using FV_sub_FV_dec_O. We then show FV_C_eq_FV using these lemmas by induc-
tion on F and generalizing βl. The function application cases require an additional
lemma:

lemma FV_Capp_eq_FV {xs : list (var × lin_type)}
(heq : FV F1 = FV F2)
(h : ∀ xτ ∈ xs, xτ.1 ∈ FV (z ∶= e; F1))
: FV (C_app xs (z ∶= e; F1) βl) = FV (z ∶= e; F2)

In the proof of FV_C_eq_FV, we sometimes use explicit recursors. This is due to the
fact that the cases tactic in Lean 3 sometimes takes very long for relatively small
problems. When this happens, we use the explicit recursors instead to prevent the
code from taking too long to check.

4.2 Well-Formedness
In the proof of rc_insertion_correctness, we will often need to show the well-
formedness of a program that is structurally smaller than the one we induct on in
order to apply the induction hypothesis. To obtain a well-formedness predicate for
this structurally smaller program, we prove a lemma that we will henceforth refer to
as the “sandwich lemma”.

lemma wf_FV_sandwich (Γ'_low : FV F ⊆ Γ') (Γ'_high : Γ' ⊆ Γ)
(h : β; δ; Γ ⊢ F)
: β; δ; Γ' ⊢ F

As seen in FV_sub_wf_context, Γ at least needs to contain the free variables of F
in order to be the context of a well-formedness predicate. But Γ cannot get too

34

4.3. RC INSERTION CORRECTNESS

big either, since it must not contain variables that will be defined via let in F.
The sandwich lemma ensures that given some upper bound Γ which guarantees the
well-formedness of a function body F, all Γ' with FV F ⊆ Γ' ⊆ Γ also ensure the
well-formedness of F. We prove wf_FV_sandwich as a corollary of a more general
sandwich lemma and the fact that a context which only contains FV F already ensures
well-formedness for F.

lemma wf_sandwich (Γ_sub_Γ' : Γ ⊆ Γ') (Γ'_sub_Γ'' : Γ' ⊆ Γ'')
(hΓ : β; δ; Γ ⊢ F) (hΓ'' : β; δ; Γ'' ⊢ F)
: β; δ; Γ' ⊢ F

lemma FV_wf (h : β; δ; Γ ⊢ F)
: β; δ; FV F ⊢ F

We prove wf_sandwich by induction on F with generalized Γ, Γ' and Γ'', while we
show FV_wf by induction on h. To use the induction hypothesis in FV_wf, we again
need to use wf_sandwich, as well as FV_sub_wf_context. Due to the duplication
in the definition of ⊢, many of the arguments needed in order to prove wf_sandwich
and FV_wf are duplicated as well. We tame this duplication by using Lean’s tactic
combinators. Instead of proving every goal in order, we use the any_goals combinator
to close any goal that can be closed by the provided argument. If multiple goals can
be closed by the same argument, any_goals will close them all at once. This has the
advantage of massively reducing duplication, but it also reduces the readability of
the proof, since it is not immediately obvious which goals are solved by an argument.

4.3 RC Insertion Correctness

The actual induction for the proof of rc_insertion_correctness requires some
initial setup work. Many arguments will work differently depending on whether a
variable in the type context is owned or borrowed, so we split up the type context
into two parts: the owned part, and the borrowed part. Specifically, we define the
following:

let yO := filter (λ y, β c y = O) ys,
let yB := filter (λ y, β c y = B) ys,

We will later forget these definitions for a more general induction. Instead, we prove
a few facts about yO and yB which will provide all we need in the induction.

obtain ⟨yO_O, yB_B⟩
: (∀ y ∈ yO, β c y = O) ∧ (∀ y ∈ yB, β c y = B),

obtain ⟨yO_sub_ys, yB_sub_ys⟩ : (yO ⊆ ys ∧ yB ⊆ ys),
obtain ⟨nd_yO, nd_yB⟩ : multiset.nodup yO ∧ multiset.nodup yB,

nd_yO and nd_yB can be proved from the lack of duplicates in ys, which is ensured
by the well-formedness predicate. We then subdivide ys and Γ.

35

4.3. RC INSERTION CORRECTNESS

have ys_subdiv : ↑ys = yO + yB,
have Γ_subdiv : ↑(list.map (λ (y : var), y ∶ β c y) ys)
= (yO {∶} O) + (yB {∶} B),

The proofs for all these lemmas use filter_congr and map_congr to rewrite the
functions passed to filter and map. If we would instead rewrite normally, Lean 3
would also rewrite the inferred type class instances to match the rewritten term. It
then occasionally infers different type class instances than the ones created by the
rewrite, leading to errors that are difficult to debug, which can be mitigated by using
filter_congr and map_congr instead. We do not use the finset implemented
by Avigad et al. [2019] to carry around nd_yO and nd_yB, because we found that
proving and maintaining the nodup statements manually to be easier than using
functions for finset that maintain the invariant. For the most part, we do not want
to treat yO and yB as finsets, which means that most effort in maintaining the
invariant is wasted. We will also commonly need an upper bound on the set of owned
variables.

have yO_sub_FV : yO.to_finset
⊆ FV (dec_O ((δ c).ys) (C β ((δ c).F) (β c)) (β c)),

Our goal now looks like this:
β; yO {∶} O + yB {∶} B ⊩ ↑(dec_O ((δ c).ys) (C β ((δ c).F) (β c)

) (β c)) ∶∶ O
To inductively decrement (δ c).ys, we prove the following lemma using dec_O
_eq_dec_O'_of_nodup from section 3.4 by induction on ys while generalizing yO
and yB:

lemma inductive_dec {yO yB : multiset var}
(yO_sub_ys : yO ⊆ ↑ys) (ys_sub_vars : ↑ys ⊆ yO + yB)
(d : list.nodup ys)
(yO_O : ∀ y ∈ yO, βl y = O) (yB_B : ∀ y ∈ yB, βl y = B)
(nd_yO : nodup yO) (nd_yB : nodup yB)
(h : β; (filter (λy, y ∈ FV F) yO {∶} O) + (yB {∶} B) ⊩ F ∶∶ O)
: β; (yO {∶} O) + (yB {∶} B) ⊩ dec_O ys F βl ∶∶ O

We then prove the facts related to yO from before for yO' := filter (λ (y :
var), y ∈ FV (C β ((δ c).F) (β c))) yO, which is the set of owned variables
after inductively decrementing (δ c).ys. Using FV_C_eq_FV, FV_sub_wf_context
and wf_FV_sandwich, we also obtain yO'.to_finset ⊆ FV (δ c).F and (β; δ;
to_finset yO' ∪ to_finset yB ⊢ (δ c).F). We now forget the definition of
yO', rename it to yO and proceed to only use the lemmas we have proved about it,
while also renaming those lemmas accordingly.

Our goal is (yO {∶} O) + (yB {∶} B) ⊩ ↑(C β ((δ c).F) (β c)) ∶∶ O. Be-
fore we begin with our induction, we generalize further: (δ c).F is replaced by
an arbitrary F and β c is replaced by an arbitrary βl. Due to the fact that Lean
3’s generalizing keyword for induction only works on variables, not terms, we

36

4.3. RC INSERTION CORRECTNESS

generalize using the generalize tactic, rewrite and then forget the definition so it
does not show up in our induction hypothesis when using induction.

generalize h : β c = βl,
rw h at *,
clear h,
generalize h : (δ c).F = F,
rw h at *,
clear h,

Then, we begin the actual proof by induction on F while generalizing yO, yB and βl.
Right before the induction, our goal looks like this:

nd_yO : nodup yO,
nd_yB : nodup yB,
yO_O : ∀ (y : var), y ∈ yO → βl y = O,
yB_B : ∀ (y : var), y ∈ yB → βl y = B,
wf : β; δ; to_finset yO ∪ to_finset yB ⊢ F,
yO_sub_FV : ∀ {∣x : var∣}, x ∈ yO → x ∈ FV F
⊢ β; (yO {∶} O) + (yB {∶} B) ⊩ ↑(C β F βl) ∶∶ O

The ret case is proved using yO_sub_FV and nd_yO. Before closing the goal
using linear.ret, we need to remove yB {∶} B from the type context, which is
done using an extra lemma that is shown by multiset induction on yB {∶} B.

lemma inductive_weakening {ys : multiset typed_var}
{yB : multiset var}
(h : β; ys ⊩ r ∶∶ τ)
: β; ys + (yB {∶} B) ⊩ r ∶∶ τ

For let, we only prove the proj case; the other cases have yet to be shown. The
induction hypothesis for all instructions i that look like i; F is always the same:

∀ {yO yB : multiset var} (βl : var → lin_type),
nodup yO → nodup yB →
(∀ (y : var), y ∈ yO → βl y = O) →
(∀ (y : var), y ∈ yB → βl y = B) →
(β; δ; to_finset yO ∪ to_finset yB ⊢ F) →
(yO.to_finset ⊆ FV F) →
(β; (yO {∶} O) + (yB {∶} B) yB ⊩ ↑(C β F βl) ∶∶ O)

In order to apply this induction hypothesis, we typically need to make heavy use of our
well-formedness predicate, wf_FV_sandwich, FV_sub_wf_context and FV_C_eq_FV.
In fact, most of the work required to prove the proj case involves applying the induc-
tion hypothesis in different contexts and satisfying the conditions of the hypothesis.
The same is true for the case case: most of the proof works on satisfying the

induction hypothesis. Before the application of the induction hypothesis, we also
need to do some setup work with inductive_dec. inc and dec cannot be compiled,
which is ensured by the well-formedness predicate.

37

4.3. RC INSERTION CORRECTNESS

During the proof of this theorem, we found that the original well-formedness
predicate by Ullrich and de Moura [2019b] was insufficient to prove the correctness of
the reuse instruction. Specifically, it did not guarantee the linearity that their type
system demands, since we were allowed to reset the same variable x multiple times.
While a reset token for x was then guaranteed to exist, it was not guaranteed to be
unique, which would be required for linearity. Ullrich and de Moura [2019b] fix this
issue by demanding that both defined and reset variables are fresh in a separate linear
context ∆. We would now have to reconsider our theorems about well-formedness,
since theorems like FV_wf do not hold anymore. A possible solution would be to
consider two different sets of free variables, one for variables that appear in Γ, and
one for variables that appear in ∆, but we chose to instead disregard reset and
reuse for now.

38

5 Formalized Group By
In this chapter, we provide a short overview for an implementation of the group by
function and lemmas we have proved about this implementation. The full proofs can
be found at https://github.com/mhuisi/rc-correctness. Intuitively, group by
subdivides a list into equivalence classes according to some equivalence relation.
Originally, we intended to use group by to subdivide the type context in chapter 4,
but it did not end up being the right abstraction, with the concrete subdivision being
easier to handle than an application of group by. Despite that, we believe that it
provides a nice and simple example for algorithm verification in Lean.

5.1 Group By on Lists
We begin by defining the group function, which represents group by. We do not
explicitly pass the equivalence relation that we use to identify the groups to group, but
instead require α to be a setoid, which is a type with an equivalence relation. This
way, Lean’s type class resolution can implicitly look up an appropriate equivalence
relation for α.

def group {α : Type*} [p : setoid α] [decidable_rel p.r]
: list α → list (list α)

| [] := []
| (x :: xs) :=

have list.sizeof (filter (not ○ (≈ x)) xs) < 1 + list.sizeof xs,
from /- [...] -/,

(x :: filter (≈ x) xs) :: group (filter (not ○ (≈ x)) xs)

To help Lean with proving that group terminates, we prove that the filtered list is
smaller than the initial list. When proving things about group by induction, regular
induction on lists will not be sufficient, since group (filter (not ○ (≈ x)) xs)
may be significantly smaller than xs. To solve this issue, we define strong induction
for lists.

@[elab_as_eliminator] def strong_induction_on
{α : Type*} {p : list α → Sort*}
: ∀ xs : list α,
(∀ xs, (∀ ys, length ys < length xs → p ys) → p xs) → p xs

Our first lemma is that the equivalence classes of group xs contain exactly the
same elements as xs:

39

https://github.com/mhuisi/rc-correctness

5.1. GROUP BY ON LISTS

lemma join_group_perm
{α : Type*} [p : setoid α] [decidable_rel p.r] (xs : list α)
: join (group xs) ~ xs

To prove this, we need another lemma:
lemma filter_append_not_filter_perm {α : Type*}

(p : α → Prop) [decidable_pred p] (xs : list α)
: filter p xs ++ filter (not ○ p) xs ~ xs

Both lemmas are shown with strong induction on xs. We also employ a trick that we
will use for all proofs involving permutations: Avigad et al. [2019] provide a lemma
list.perm_iff_count that roughly states l1 ~ l2 ↔ ∀ (a : α), count a l1
= count a l2 as long as the equality on α is decidable. Using classical mathematics
in Lean, all propositions are decidable [Avigad et al., 2017, chapter 11.6], and we can
grab a decidablity instance for equality on α out of thin air using letI := classical
.dec_eq α, resulting in lemmas for group requiring the same hypotheses as group
itself. count a xs is considerably easier to handle than ~ due to the fact that we do
not need to explicitly construct permutations in order to prove l1 ~ l2. Henceforth
we will always assume (α : Type*), [p : setoid α], [decidable_rel p.r] and
(xs : list α) for every lemma, using implicit parameters where possible.

Next, we show that the elements of group xs are actually equivalence classes.
lemma group_equiv : ∀ g ∈ group xs, ∀ x y ∈ g, x ≈ y

We also prove that the elements of group xs are pairwise disjoint, even when using
equivalence instead of equality.

lemma pairwise_equiv_disjoint_group
: pairwise (λ g1 g2 : list α, ∀ x1 ∈ g1, ∀ x2 ∈ g2, ¬(x1 ≈ x2))
(group xs)

Since pairwise R xs ensures that R holds between elements at different indices in
xs, the proof of this lemma involves proving that group xs does not contain any
duplicates and that all g1 g2 ∈ group xs with g1 ≠ g2 are disjoint.

We also classify the groups of group xs in two different ways: every x ∈ xs has a
group assigned to it and every group g_hd :: g_tl can be written as filter (≈
g_hd) xs.

lemma filter_equiv_mem_group {x : α} (h : x ∈ xs)
: filter (≈ x) xs ∈ group xs

lemma cons_eq_filter_of_group {g_hd : α} {g_tl : list α}
(h : (g_hd :: g_tl : list α) ∈ group xs)
: (g_hd :: g_tl : list α) = filter (≈ g_hd) xs

cons_eq_filter_of_group can then be used to prove that finding two equivalent
elements in two separate groups is sufficient to ensure that the groups are already
equal.

40

5.2. LIFTING GROUP BY

lemma group_eq_of_mem_equiv {g1 g2 : list α}
(h1 : g1 ∈ group xs) (h2 : g2 ∈ group xs)
(h : ∃ x ∈ g1, ∃ y ∈ g2, x ≈ y)
: g1 = g2

5.2 Lifting Group By
Since the order of groups or elements in a group is rarely relevant, we want to lift
group to multiset by first forgetting the order of groups and the order of elements
in the group. After this, we forget the order of the input xs. To forget the order of
the output of group, we define group':

def group' {α : Type*} [p : setoid α] [decidable_rel p.r]
(xs : list α) : multiset (multiset α)

In order to forget the order of xs, we need to ensure that the order of the input does
not affect the output, i. e. that our definition is independent of representatives.

lemma group'_eq_of_perm (h : xs ~ ys) : group' xs = group' ys
To prove that the groups of group' are equal, we need to show that group' xs and
group' ys are permutations of each other. We do this using the list.perm_ext
lemma by Avigad et al. [2019], which states that l1 ~ l2 ↔ ∀ (a : α), a ∈ l1
↔ a ∈ l2 . This is only true if l1 and l2 do not contain duplicates, which we show
using a more general lemma:

lemma nodup_map_coe_of_perm_nodup (xs : list (list α))
(h : list.pairwise (λ a b, ¬(a ~ b)) xs
: list.nodup (list.map coe xs : list (multiset α))

We finish the proof of group'_eq_of_perm by using a lemma which states that
permuted inputs result in permuted groups.

lemma group_perm_of_perm (h : xs ~ ys)
: ∀ gx ∈ group xs, ∃ gy ∈ group ys, gx ~ gy

We prove group_perm_of_perm using join_group_perm, filter_equiv_mem_group
and cons_eq_filter_of_group.

Finally, we port the most relevant lemmas of group to group' and easily lift both
group' and its corresponding lemmas to multiset using Lean’s built-in quotient
types.

def group {α : Type*} [p : setoid α] [decidable_rel p.r]
(s : multiset α)
: multiset (multiset α)

41

6 Conclusion
We have implemented definitions and a part of the proof of correctness by Ullrich
and de Moura [2019a] in the Lean theorem prover and found an issue with the proof
of the reuse case. This work and our implementation and verification of group by
provide evidence that it is feasible to use Lean 3 for program verification, even when
working with complex correctness conditions.

The full IR language by Ullrich and de Moura [2019a] with reset and reuse
instructions has yet to be formalized, while the cases in the proof of correctness for
function application are still missing. One could also imagine an implementation of
the semantics preservation theorem by Ullrich and de Moura [2019b] in a theorem
prover or a formalization of a proof which ensures that the linear type system
guarantees freedom from memory leaks.

43

Bibliography
Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem Proving in
Lean, 2017. URL https://leanprover.github.io/theorem_proving_in_lean/
axioms_and_computation.html#the-law-of-the-excluded-middle. [Online,
accessed 12-October-2019].

Jeremy Avigad, Reid Barton, Mario Carneiro, Johan Commelin, Floris van Doorn,
Sébastien Gouëzel, Simon Hudon, Chris Hughes, Robert Y. Lewis, Patrick Mas-
sot, and Scott Morrison. Lean mathlib, 2019. URL https://github.com/
leanprover-community/mathlib. [Online, accessed 12-October-2019].

Hans-J. Boehm. The space cost of lazy reference counting. SIGPLAN Not., 39
(1):210–219, January 2004. ISSN 0362-1340. doi: 10.1145/982962.964019. URL
http://doi.acm.org/10.1145/982962.964019.

Lilian Burdy. B vs. Coq to prove a garbage collector. In the 14th International
Conference on Theorem Proving in Higher Order Logics: Supplemental Proceedings.
Citeseer, 2001.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Reference counting as a
computational interpretation of linear logic. Journal of Functional Programming,
6(2):195–244, 1996. doi: 10.1017/S0956796800001660.

Jiho Choi, Thomas Shull, and Josep Torrellas. Biased reference counting: Minimizing
atomic operations in garbage collection. In Proceedings of the 27th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’18, pages
35:1–35:12, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5986-3. doi: 10.
1145/3243176.3243195. URL http://doi.acm.org/10.1145/3243176.3243195.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob
von Raumer. The Lean theorem prover (system description). In Amy P. Felty
and Aart Middeldorp, editors, Automated Deduction - CADE-25, pages 378–388,
Cham, 2015. Springer International Publishing. ISBN 978-3-319-21401-6.

Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo
de Moura. A metaprogramming framework for formal verification. Proc. ACM
Program. Lang., 1(ICFP):34:1–34:29, August 2017. ISSN 2475-1421. doi: 10.1145/
3110278. URL http://doi.acm.org/10.1145/3110278.

45

https://leanprover.github.io/theorem_proving_in_lean/axioms_and_computation.html#the-law-of-the-excluded-middle
https://leanprover.github.io/theorem_proving_in_lean/axioms_and_computation.html#the-law-of-the-excluded-middle
https://github.com/leanprover-community/mathlib
https://github.com/leanprover-community/mathlib
http://doi.acm.org/10.1145/982962.964019
http://doi.acm.org/10.1145/3243176.3243195
http://doi.acm.org/10.1145/3110278

Bibliography

Gaspard Férey and Natarajan Shankar. Code generation using a formal model of
reference counting. In Sanjai Rayadurgam and Oksana Tkachuk, editors, NASA
Formal Methods, pages 150–165, Cham, 2016. Springer International Publishing.
ISBN 978-3-319-40648-0.

Klaus Havelund. Mechanical verification of a garbage collector. In International
Parallel Processing Symposium, pages 1258–1283. Springer, 1999.

Chris Hawblitzel and Erez Petrank. Automated verification of practical garbage
collectors. SIGPLAN Not., 44(1):441–453, January 2009. ISSN 0362-1340. doi: 10.
1145/1594834.1480935. URL http://doi.acm.org/10.1145/1594834.1480935.

Paul B. Jackson. Verifying a garbage collection algorithm. In Jim Grundy and
Malcolm Newey, editors, Theorem Proving in Higher Order Logics, pages 225–244,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN 978-3-540-49801-8.

Chun-Xiao Lin, Yi-Yun Chen, Long Li, and Bei Hua. Garbage collector verification
for proof-carrying code. Journal of Computer Science and Technology, 22(3):
426–437, May 2007. ISSN 1860-4749. doi: 10.1007/s11390-007-9049-z. URL
https://doi.org/10.1007/s11390-007-9049-z.

J. Harold McBeth. Letters to the editor: On the reference counter method. Commun.
ACM, 6(9):575–, September 1963. ISSN 0001-0782. doi: 10.1145/367593.367649.
URL http://doi.acm.org/10.1145/367593.367649.

Luc Moreau and Jean Duprat. A construction of distributed reference counting. Acta
Inf., 37(8):563–595, May 2001. ISSN 0001-5903. doi: 10.1007/PL00013315. URL
http://dx.doi.org/10.1007/PL00013315.

Adam Sandberg Ericsson, Magnus O. Myreen, and Johannes Åman Pohjola. A
verified generational garbage collector for CakeML. In Mauricio Ayala-Rincón
and César A. Muñoz, editors, Interactive Theorem Proving, pages 444–461, Cham,
2017. Springer International Publishing. ISBN 978-3-319-66107-0.

The Coq Development Team. The Coq proof assistant, version 8.10.0, October 2019.
URL https://doi.org/10.5281/zenodo.3476303.

Sebastian Ullrich and Leonardo de Moura. Counting immutable beans: Reference
counting optimized for purely functional programming, 2019a.

Sebastian Ullrich and Leonardo de Moura. Counting Immutable Beans - Appendix,
2019b. URL https://leanprover.github.io/papers/beans_appendix.pdf.
[Online, accessed 12-October-2019].

Philip Wadler. Linear types can change the world! In PROGRAMMING CONCEPTS
AND METHODS. North, 1990.

Yannick Zakowski. Verification of a Concurrent Garbage Collector. PhD thesis, 2017.

46

http://doi.acm.org/10.1145/1594834.1480935
https://doi.org/10.1007/s11390-007-9049-z
http://doi.acm.org/10.1145/367593.367649
http://dx.doi.org/10.1007/PL00013315
https://doi.org/10.5281/zenodo.3476303
https://leanprover.github.io/papers/beans_appendix.pdf

Erklärung

Hiermit erkläre ich, Marc Huisinga, dass ich die vorliegende Bachelorarbeit selbst-
ständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis
beachtet habe.

Ort, Datum Unterschrift

47

	Introduction
	Background
	Garbage Collection in Pure Programming Languages
	IR Language
	Linear Type Systems
	Insertion of RC Instructions
	Lean
	Related Work

	Formalized Definitions
	Abstract Syntax of the IR
	Type System for RC-Correct Programs
	Well-Formedness of the Pure IR
	Insertion of RC Instructions

	Formalized Proof
	Free Variables
	Well-Formedness
	RC Insertion Correctness

	Formalized Group By
	Group By on Lists
	Lifting Group By

	Conclusion

