
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Improved integer
conversion optimisation

and VHDL code generation
based on bit-width analysis

Bachelorarbeit von

Marcel Hollerbach

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: M.Sc. Andreas Fried

Bearbeitungszeit: 20. Juni 2018 – 10. Oktober 2018

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Zusammenfassung

Normal high level programming languages often just present standard data types
for 8, 16, 32 and 64 bit numbers. The whole bandwidth of those data types is often
not used at all. This thesis implements a analysis for getting a approximately close
range for how many bits are actually used. The evaluation of the analysis shows that
there is some bitwidth that can be saved. However, the applied optimizations are
not resulting in a big, noticeable improvement.

In high-level Programmiersprachen wie C gibt es vordefinierte Datentypen wie 8,
16, 32 & 64 bit Datentypen. Diese werden jedoch oft nicht so eingesetzt, dass
die größte Range an möglichen Zahlen erreicht wird. Die Analyse in dieser Arbeit
versucht jeder Variablen im Programmcode eine möglichst genaue Range an Zahlen
zuzuordnen. Die Evaluation der Analyse zeigt das dies auch gut funktioniert. Die
Optimierungen, welche auf dieser Analyse aufbauen erzielen jedoch keinen großen
Performance Vorteil.

Contents

1. Introduction 7

2. Basics 9
2.1. cparser / libfirm . 9
2.2. Software theory . 11

2.2.1. Lattice . 11
2.2.2. Fixed point iteration . 12
2.2.3. Worklist algorithm . 13

3. Design & Implementation 15
3.1. Bitwidth analysis . 15

3.1.1. Value prediction . 16
3.2. Stable Conversion nodes . 18
3.3. VHDL generation . 20
3.4. Value range vs. bitwidth . 20

4. Evaluation 23
4.1. General bitwidth . 23
4.2. Optimizations on assembler output 24
4.3. Optimization VHDL improvements 25

5. Conclusion 29
5.1. Assembler generation . 29
5.2. VHDL generation . 29
5.3. Further improvements . 29

5.3.1. Widening & Narrowing . 29
5.3.2. More conversion nodes . 30

A. Appendix 35
A.1. Table of node rules . 35
A.2. Evaluation C source code . 36

5

1. Introduction

Projects like libva have made the first step into the direction of hardware accelerated
video decoding on a computer system. These projects provide standardized access to
decoding video streams like MPEG-2, H.264/AVC, H.265/HEVC, VP8, VP9, VC-1.
The project itself handles the passing and messaging from a front end application
like a video player, to the driver itself. The driver itself then answers the calls from
the API. And the decoded picture goes back to the front end application. However,
the driver itself still needs to do the decoding on its side. Usually implemented in
hardware, since this is resulting in the best performance. The amount of work needed
for implementing such a decoder for MPEG-2 can be observed while reading [1].
Thus it would be nice if software that gets written in C, can also be adopted to work
directly on hardware. As an example, a C library which does decoding of MPEG-2
could just share its decoding code with a Hardware Description Language. There are
techniques for doing this. However, they suffer from a lag of performance. This thesis
tries to improve the speed of such code by reducing the used bits of the software.
The solution has two pieces, an analysis and a optimization. The initial idea of the
analysis is to annotate every operation with the bitwidth it requires. The following
C snippet is formated a bit unlikely in order to make it easier to annotate.
i n t a r r [4] ;

f o r (i n t i = 0 ; i < 4 ; i++) {
// i r e qu i r e s 3 b i t s
i n t x = i ∗ i ; //x r e qu i r e s 6 b i t s
i n t y = (i << 4) ; //y r e qu i r e s 7 b i t s
i n t r e s = x + y ; // r e s r e qu i r e s 8 b i t s
a r r [i] = r e s ;

}

Every operation has a bitwidth. The bitwidth is the number of bits that is used by
the operation, as maximum the modes amount of bits is used. The required bits per
operation are annotated as comment after the operation. How exactly the bitwidth
of a operation is calculated will be covered in the later chapters. The information
gathered from the analysis is then used for optimizing the compiler output. The
optimization here can happen at two layers. The compiler we use here can be used to
output a hardware description language called VHDL. This output will be optimized

7

to have a more compact memory layout. The other compiler output is assembler
output, which can also be optimized. If those optimizations are successful and really
safe up resources can be found in the later sections.

8

2. Basics

2.1. cparser / libfirm

Modern compilers are now developed for over half a century. Over the time a new
structure has evolved. Compilers are split into three parts. The first part is called
front end and handles everything related to the language specific parts. The second
part is called middle ware and handles the abstract notation of code execution. The
last part is called back end and does the translation into something like assembler or
java bytecode. As an example, cparser is handling the C specific tasks. The parsed c
code is then translated into a control flow graph from libFirm, which is the middle
ware. The libFirm middle ware then also acts as back end and translates the control
flow graph into assembler / java bytecode.

Control flow graph in libFirm The interaction between the front and middle ware
is based on a data structure similar to a control flow graph, it is called FIRM
graph. A FIRM graph is a directed graph. Each node is a operation. Nodes can
have operands. We say that a node always depends on another node, when there
is a edge from the node to the other node. The FIRM graphs are also the base
structure for analyzing the control flow of a software. Such a analysis is called control
flow analysis. The nodes of the FIRM graph can have be categorized in different
types: control flow, arithmetical operations, memory handing, constant expressing.
A node is additionally placed in a block. A node is executed if all its operands have
been executed. Or, if there are no operands, when its block is executed. Another
software that does the same thing is clang, where the back end is handled by llvm.
A more in detail explanation can be found in [2]. A more theoretical and abstracted
introduction to control flow graphs can be found in [3]

Confirm nodes in libFirm In libFirm there are several node types, one of them is
called "Confirm" node. A Confirm node does not have a hardware representation.
A confirm node has 2 operands. They are called value and bound, additionally
a Confirm node has a relation. As relations 6=, =, <, >, >=, <= are possible.
Written as prefix notation we can say that the Confirm node gives the assertion

9

2.1. CPARSER / LIBFIRM

Cmp

Cond

Proj Proj

true-block false-block

Figure 2.1.: The construct that is called a upper bound compare node

#inc lude <s t d l i b . h>
#inc lude <s td i o . h>

in t main (i n t argc , char const ∗argv []) {
p r i n t f (" He l l o Firm ! ") ;
r e turn 0 ;

}

Figure 2.2.: Sample source code

that τ(value, bound) is true, where τ is the relation. This is useful for control flow
analysis, as the Confirm nodes can indicate possible shortcuts with knowledge that
is gained from other analysis.

True / false Blocks A compare node in libFirm has always a relation, 2 operands
and 2 blocks. The compare node executes the true block, when the relation and
operands are evaluating to true. The false block is executed otherwise. The structure
is visualized in Figure 2.1

Interaction from front to back end As an example, we want to compile the
program code from Figure 2.2. First of all, the front end parses the given source
code. The parsed code then is transformed into a abstract syntax tree (AST). The
representation in the abstract syntax tree encodes the syntactical informations from
the software. File contents like curly are encoded in the structure, and are not
explicitly represented in the AST.
After that the AST is transformed into a FIRM graph.
At this point the front end handed the informations for creating a binary programm

10

2.2. SOFTWARE THEORY

value 7 6 5 4 3 2 1 0
5 0 0 0 0 0 1 0 1
-2 1 1 1 1 1 1 1 0

Figure 2.3.: Number representation

to the back end. However, the front end can now tell the back end to perform
optimizations on the FIRM graph. In terms of C, this is often controlled with the
-O1,2,3 flags.
After the optimizations have taken place, the binary files are written into a file, and
the compiler call is finished.

Number representation So-called modes are used in libFirm to categorize data
words. A mode specifies a length in bits. A data word can have a sort, this can be
integer, float, reference, data and boolean. For us, the only interesting type is the
integer type, since this is the only type where we can compute bitwidth for now.
Those integer-modes can be signed or unsigned. The length of the mode defines
the maximum number. If it is signed, then it also defines the minimum number.
Otherwise the minimum is just zero. The sign is encoded using two’s complement.
There are the following integer modes : int8, uint8, int16, uint16, int32, uint32, int64,
uint64,

As an example, in Figure 2.3 two numbers are displayed with its hardware repre-
sentation. The term mode is used to describe integer-modes for the rest of this
thesis.

2.2. Software theory

There are a few mathematical basics which are known to be useful for performing
compiler analysis. The first basic is the lattice. The second basic is the fixed point
iteration.

2.2.1. Lattice

A lattice is an algebraic structure. For a lattice L = (V,t,u), there are the following
rules:

11

2.2. SOFTWARE THEORY

• t : V × V → V returns the smallest element, that is bigger or equal than the
two operands

• u : V × V → V returns the biggest element, that is smaller or equal than the
two operands

• ∀u, v ∈ V : u t (u u v) = v ∧ u u (u t v) = v

Additionally we add te requirement of |V | 6=∞. This is not a requirement for lattices
in general. However, for fixed point iterations this requirement is precise enough.

The element, which is the least of all elements is called ⊥. The greatest of all is
called >. A lattice can also be written down as a Hesse diagram, which can be seen
in Figure 3.1

A more detailed introduction can be found in [4].

2.2.2. Fixed point iteration

Fixed point iteration is a method for finding a x̃ where we know that f(x̃) = x̃.
Given a none-empty set D, where |D| is finite. And f : D → D, where f is monotone.
And a x0 ∈ D which we call start point.

We define xi = f(xi−1) for every i > 0. Now we can say: ∃i ∈ N : xi = xi−1. For
further reading, please see [5].

Data flow analysis Data flow analysis are the connection of lattices, FIRM graphs,
and a fixed point iteration. As seen before, a FIRM graph consists of nodes. After
our data flow analysis finished we want to have a value from the lattice for each
node. So for the data flow analysis we need the following:

• A lattice called L

• fnode : L → L, which is the f from a fixed point iteration. Each function is
unique for each node, and also depends on the operands of the node.

In the beginning each node of the FIRM graph is associated with the ⊥ value from
the lattice. After that we call fnode of each function, the result of fnode is then
associated again with the particular node. We repeat this last step as long as the
results of some fnode are changing. At the point where no result changed, we can

12

2.2. SOFTWARE THEORY

know that the values that are associated with the nodes are useful and correct.
Additional readings for this can be found in [6].

2.2.3. Worklist algorithm

A implementation of a data flow analysis is called worklist algorithm. The base idea
of the algorithm is to only calculate those nodes, where a operand changed. This idea
is based on the fact, that the state of a node can only change when the state of its
operands are changing. A pseudocode implementation can be found in algorithm 1

worklist := CFG.Nodes;
while worklist not empty do

node := worklist.pop();
node_changed := recalc(node);
if node_changed then

foreach operand ∈ node.operands do
if !worklist.contains(operand) then

worklist.append(operand)
end

end
end

end
Algorithm 1: Worklist alogithm

The base idea is to maintain a worklist which contains all nodes that are dirty. A
node is considered dirty, when its operands have changed, but the node itself is
not yet recalculated. The node is not considered dirty after it was recalculated.
Additional information can be found at [7].

13

3. Design & Implementation

3.1. Bitwidth analysis

The analysis is implemented with the worklist algorithm. The analysis attaches an
(int, boolean) tuple to every meaningful node. A node is considered meaningful if
the node has an integer-mode. We will reference the first value as stable bits and the
second value as is positive.
What stable here means can be observed when looking at 2.3. For the first line of
the table we have five stable digits. The second line has 7 stable digits.
With the assumption that both numbers are defined as a signed int. The tuples
would be (4, true) and (6, false) for the two numbers from the table.
The whole algorithm is iterative, which means, we might want to address the current
tuple x of a node, while we have a new one calculated. Therefore we call x̂ the
currently associated value, and x the newly calculated one.

Bit representation The stable bits indicate how many bits are not used. The
second value of the tuple indicates if the value will ever reach negative numbers
or not, it is only meaningful for modes that allow signs. We note down the stable
bits of a node as stable_nodes(n), same for is_positive(n). Sometimes we don’t
want to have the used bits instead of the stable bits, in this case we note the result
as: used_bits(n) := mode_bits(n)− stable_bits(n) Where mode_bits expresses the
amount of bits per node.

Range representation There is also a second way of interpreting the two values.
The stable bits can define a minimum and maximum range. The maximum number
is reached if the stable bits are all zero, and the rest one. If the mode is signed and
the node is not positive, then the minimum number is reached by assuming all stable
bits are one, and the rest zero. Otherwise the minimum is 0. We can define the
following min max definitions for the ranges:

maxbitwidth(n) =
{

2used_bits(n)−1 − 1
2used_bits(n) − 1

mode.signed
Otherwise

15

3.1. BITWIDTH ANALYSIS

⊥ := (n, true)

(n− 1, true)

(1, true)

(0, true)

(n, false)

(n− 1, false)

(1, false)

> := (0, false)

Figure 3.1.: Hesse diagram of the lattice which is used in this analysis

minbitwidth(n) =
{
−2used_bits(n)−1

0
mode.signed ∧ ¬is_positive
Otherwise

Analysis The analysis works as a fixed point iteration, implemented with the work
list approach. You can find the used lattive in Figure 3.1. The values of the lattice
represent the tuples from the analysis.

As a first step, we iterate over every single node and initialize the node with ⊥ and
mark it as dirty. If the node is constant, we calculate its bitwidth. Nodes with the
opcodes Const, Size and Address are considered constant.

The second step consists of recalculating every dirty node in the graph. if the stable
bits of x are smaller than those from x̂, then the new value is memorized as x̂ of
the node. Also every successor of the node is marked as dirty. The used rules for
recalculating the nodes are described in section A.1.

3.1.1. Value prediction

In addition to the normal analysis results, the fixed point iteration can insert
additional confirm nodes. Those confirm nodes help making the analysis more
accurate. First of all we need a few definitions for easier understanding:

Definition: Upper bounds A compare node defines an upper bound if the relation
is < and the second operand is constant.
The definition also applies for compare nodes that can be transformed by swapping
the two operands and the relation accordingly.

16

3.1. BITWIDTH ANALYSIS

Const

ConstMul

Add

Sub := λ

Mul Mod

Figure 3.2.: A subgraph of a FIRM graph. The result of ξ(λ) is highlighted in red

Definition: Predecessor in a certain block In the detection described later, we
often need to find a predecessor that is placed in a certain block. Therefore we
define:

κ(a, b) := {X|X ← a ∧X.block = b}

It will return every node that is located in b and is a predecessor of a.

Definition: Constant dependencies While looking at C code we often see that
addition and multiplication nodes are used for calculating array addresses or addresses
for structure access. Therefore, one operand of the arithmetical operations is often
constant. An example for this can be found in Figure 3.2. We define ξ to explore the
whole tree of nodes with one constant and one none-constant operand, and returns
every node that was not constant.

ξ(a) :=
{
a ∪ ξ(c)
∅

, If there is only one not constant dependency c
, otherwise.

If a has only one none-constant operand c, then ξ returns the element a and ξ(c).
Otherwise it returns an empty set. In Figure 3.2 the highlighted nodes are part of
ξ(Y).

Upper bounds for block execution The values that are calculated in a node are
(even if the fixed point iteration is not stable yet) within the ranges for the later
stable result. The iteration starts at ⊥ and moves into the direction of >. We now
evaluate an upper bound compare node, every time the first operand changes. In the
beginning we can say that that with those possible values, each time the true-block
will be executed. However, if maxbitwidth(n) grows enough to get bigger than the

17

3.2. STABLE CONVERSION NODES

second operand or the compare node, then we can say, that we have found a upper
bound for the execution of the true-block. Which is maxbitwidth(n) in the current
state. Thus we can insert a confirm node between every node e ∈ κ(i, j) and i, where
i is the first operand and j is the true block.

Extended confirm insertion The confirm nodes that we have inserted in the
paragraph before can also be transported backwards.bot With ξ(i) we can get a
set of nodes, where the current state in the analysis is only depending on one node.
Thus we can say that the state of every node from ξ(i) will not change as long as
the topmost upper element in the tree structure does not change. Which means that
we can insert a confirm node between (e, g) for every e ∈ ξ(i) and g ∈ κ(e, j). Those
additional confirm nodes then must get there bound adjusted, so the confirm nodes
do make sense with the arithmetical operation between them.

3.2. Stable Conversion nodes

In libFirm a conversion node can be used to convert a value from one mode to
another. This type of node has one operand. A conversion like this can have one of
two effects. The value stays the same, or the value changes, due to the inability of
representing the value in a different mode. We call the first case stable conversion
node. A example for an unstable conversion node may look like (unsigned)((int)-10).
A stable conversion node may look like (unsigned)((int)10).

Finding stable conversion nodes Such stable conversion nodes can be found using
the bitwidth analysis. We compare the range of the operand with the range of the
conversion node itself. If the ranges are the same, then we know that the conversion
is stable.

Removing conversion nodes In case we found a stable conversion node, we can
say that this node only exists for syntax rules, there is no semantical value in it.
Removing those nodes also has the advantage of helping other analyses.
One example for this is the confirm insertion algorithm of libFirm, it searches for
assertions that can be made based on looking at compare nodes. This works quite
well. However, the example in Figure 3.3 does not work. The insertion code can
only insert a Confirm between the Compare and the conversion. However, this is
not useful for other analysis, therefore the Confirm node should be before the Conv
node. After removing the conversion node, the analysis can find an assertion based
on the compare node. Other examples where this can improve things is in the dead

18

3.2. STABLE CONVERSION NODES

Conv Const

Cmp

Cond

Figure 3.3.: A subgraph that falls into the definition of a conversion compare
construction

Const Conv

Add

Figure 3.4.: A subgraph where the arithmetical optimization can be performed.

code elimination, and the branch prediction. Next two paragraphs are explaining
two concrete optimizations for removing conversion nodes.

Compare-Conversion optimization The rule in libFirm is that two operands of
a compare node have to have the same mode. This means, when we remove the
conversion node, we also need to adjust the mode of the second operand. This is not
easily possible for a none-Constant node. Thus we confine for now that the operand
needs to be a Conversion node, and the second one a Constant node.
With this we can simple adjust its mode, and remove the conversion.

Arithmetical-Conversion optimization The situation of arithmetical nodes, with
one operation being constant, one being a conversion, can also be optimized. In this
case we move it through the arithmetical operation, and place it afterwards. At the
same time we change the mode of the constant and the arithmetical node to the not
converted mode. We do this in order to hope that we can remove it with a compare
conversion optimization after that. Such a construct might look like Figure 3.4 .
After we adjusted the mode of the constant we can move the conversion from the
operand of the arithmetical operation to the end.

19

3.3. VHDL GENERATION

i n t op (char i , char y) {
re turn (i n t) i + y ;

}
a Sample c code

node unoptimized optimized
node230 8 3
node231 32 6
node228 8 9
node229 32 9
node232 32 9

b VHDL defined variable sizes

Figure 3.5.: firm2vhdl example

3.3. VHDL generation

There is a libFirm tool called firm2vhdl. The tool takes the output from the cparser
compiler, and outputs the VHDL. Every node in the firm graph gets transformed into
a VHDL statement. This is done by transforming the operation of the nodes into
VHDL code. Each result of a node operation is assigned to a new variable, which
then can be used again later by the next operation. Each of those those variables are
represented in hardware, and thus have an certain amount of bits. The maximum
amount of bits that is needed, can be calculated by using the bitwidth analysis.

bitwidth in firm2vhdl The amount of bits per variable were previously just the
amount of bits the mode of a node needs. In VHDL this wastes a lot of space on the
FPGA chip later on. Minimizing the amount of bits used per variable here can be
important, since most of the variables used in C do not use the complete bitwidth.
The bitwidth information gathered from the analysis can help here, as it defines how
many bits of a node are used, and how many are not. Thus we can add code to the
transformation, for taking the bitwidth, instead of the number of bits in a mode.

As an example, the C code from 3.5a can be compiled with the tool. Without the
optimization the 5 created nodes will have the bit numbers from the first column in
3.5b. However, after we applied out bitwidth analysis, we have the bit usages from
the last column in 3.5b.

3.4. Value range vs. bitwidth

The analysis explained in 3.1 is using rules which are based on the bitwidth. The
same algorithm could use rules that are working on the range, and not the bitwidth.
The later is called value range propagation. The result of both analyses are similar.

20

3.4. VALUE RANGE VS. BITWIDTH

Const : 0

Phi Const : 1

Add

a Loop configuration where
no assertion is possible

Const : 0

Phi Const : 1

Add

Cmp less_equal

Cond

False True

b Loop configuration where
a assertion is possible

Figure 3.6.: Subgraphs that are highlighting two different kind of loops in libFirm

Add Add

Mul Const

Sub

Figure 3.7.: A arithmetical chain, where narrowing would be possible

However, a master thesis from MIT ([8]) claims that the value range propagation
is more accurate than the bitwidth analysis, and not only because of the rounding
up.

However, the thesis misses one essential fact. In case of a loop like 3.6a, where no
assertions can be made, both analyses share the same result: The nodes will use
their whole bitwidth / range. However, the difference between the two analysis here
is, that the VRP will need 2msb iterations, while the bitwidth analysis only takes msb
iterations, where msb expresses the number of the maximum bit. Thus the bitwidth
analysis produces the same result, while it’s a lot faster.

Another interesting situation is when a Confirm node can be inserted in a loop (See
3.6b). If this is the case, then the bitwidth analysis will return 2dlog2(bound)e while the
VRP would return log2(bound) as the biggest number required by the code. What
this shows is, that the VRP here is only more accurate, because the data structure
of the bitwidth info operates on bits, while the VRP operates on normal numbers.
The runtime here is the same.

21

3.4. VALUE RANGE VS. BITWIDTH

The only configuration where the VRP returns constantly a more accurate result,
is when arithmetical operations are not looping, but are rather used as some sort
of tree structure, like it is illustrated in 3.7. Here the VRP is more accurate, the
runtime is the same. However, this drawback can be fixed, and will be covered in a
later section.

22

4. Evaluation

For this thesis, libjpeg, libpng and libgif and zlib are evaluated. zlib is often use as a
general purpose lossless compression. The other libraries are used for decoding the
most used image formats.

For those projects we are measure two things. First we check how much bitwidth is
really used, compared to the full modes. Additionally, we check what impact this
has on our assembler generation. Second, we are checking if the saved bitwidth does
impact the VHDL outputting of firm2vhdl, this is done by compiling the generated
VHDL files with two different FPGA-IDEs.

4.1. General bitwidth

A node in libFirm uses an amount of bits, the maximum is defined by the mode. We
note down the bitwidth of a node as bitwidthirn(n). If we don’t perform our analysis,
then we need to assume the worst case, the node uses all the bits that are available
from its mode. If the analysis is performed, then we can say that the stable bits of
the analysis defines the bitwidth of a node. For comparing the functions directly, we
define:

bitwidthirg(irg) :=
∑

n∈irg.nodes
bitwidthirn(n)

|irg.nodes|

We divide the sum by the number of nodes, to be able to compare smaller graphs
with bigger ones.

Const nodes While evaluating the projects, it came up that a normal graph
consists of a lot of constant nodes, exact ratio can be found in the third column of
Figure 4.1.

The problem with a Constant node is that the bitwidth can be quite low, while
this does not improve the assembler generation, nor impact the overall usage of
registers.

23

4.2. OPTIMIZATIONS ON ASSEMBLER OUTPUT

Library Nodes Ratio of Const-Nodes
zlib 32,726 0.24
libjpeg 66,887 0.22
libpng 31,934 0.29
libgif 4,562 0.35
libtiff 51,683 0.3

Figure 4.1.: Node statistics of the project.

with Const without Const
Library mode usage(0) bitwidth usage(0) mode usage(1) bitwidth usage(1)
zlib 44.0928 21.7587 40.6729 31.4571
libjpeg 44.8540 19.5139 40.7650 27.8380
libpng 37.1493 16.7050 32.7320 23.5180
libgif 41.0484 17.6774 36.5323 27.7742
libtiff 41.1068 18.5768 37.1373 27.6623

Figure 4.2.: Bitwidth saving statistics from the project

Calculating how much bitwidth a constant takes is anyway only the matter of a
log2(...) call, which is not really interesting to evaluate, in order to see how good the
analysis works.

Summed up, Constant nodes are sophisticating the bitwidth of a function a lot. Thus
the statistics at 4.2 are divided into results with and without the constant values.

Project results In Figure 4.1 the second column shows the total number of nodes
that were created in order to compile the library. This can be used as some sort
of complexity metric. Figure 4.2 shows that all the libraries except libjpeg have a
similar amount of bitwidth that got saved. However, the amount of saved bitwidth
still does not really correlate with the complexity of the projects, since libgif is not
similar complex to zlib or libpng.
We can say that we save up about 9 bits in average per node.

4.2. Optimizations on assembler output

In this section we compare the shared object files of the library. The first run was
done with plain cparser, the second run was done with cparser + the patches created

24

4.3. OPTIMIZATION VHDL IMPROVEMENTS

for this thesis.
After that the disassemblies of the shared object files are compared. However,
comparing those two shared object files is quite hard, due to changes in addresses
and instruction order. Making the comparing easier was possible after removing the
address of every line and removing the arguments of the instructions. Loosing the
arguments of the instruction makes it hard to compare if something in the calling
of the function has changed. However, we can better study the raw changes on the
instructions. What follows is the explanation how the assembler output changes.

libgif There was not a single change, the two binary files are identical.

libjpeg The assembler output from after the optimization is about 30 instructions
longer. The functions don’t differ a lot. It looks most of the times like simple
reordering of instructions. The amount of additional instructions is probably caused
by loop unrolling.

libtiff The results here are similar to libjpeg. One difference is, the optimization
causes add instructions to be translated to lea instructions.

libpng libpng seems to be different here. The assembly file after the optimization
is shorter than before, by 10 instructions. Instructions that are removed are mainly
mov instructions.

zlib zlib is similar to libpng. The file gets 3 lines shorter, which is not much. The
rest of the binary differences are basically instruction order changes.

The complete repository with the releases and data and scripts can be found at 1.

4.3. Optimization VHDL improvements

We use the code at Figure A.1 for evaluating the VHDL generation improvements.
The saved bitwidth from the analysis can be observed in Figure 4.3. The unoptimized
VHDL code has a summed bitwidth usage of 928, while we drop this usage down to

1https://github.com/marcelhollerbach/bachelor-data

25

https://github.com/marcelhollerbach/bachelor-data

4.3. OPTIMIZATION VHDL IMPROVEMENTS

0 5 10 15 20 25 30 35
0

5

10

15

20

nu
m
be

r
of

no
de
s

Optimized
Unoptimized

Figure 4.3.: Comparison of bit usage before and after the optimization, for the code
in A.1

- No optimization Optimization Hand optimization
LUTs 108 112 109
Registers 20 21 21

Figure 4.4.: Statistics from the vivado projects

609 when optimized. This means on a average base unoptimized 25.1 and optimized
16.91.

After the C snipped was compiled into VHDL, the Xilinx Vivado 2018.2 IDE for
FPGA generation was used to compile the VHDL code into a bitstream. A second
try was done to compile the VHDL with Quartus. Quartus is a FPGA SDK from
Intel Altera.

Vivado In Vivado two projects of the same kind have been created, one with the
VHDL file without the improved ir2vhdl tool, one with them. Both projects have
been using the Kintex UltraScale+ xcku5p device. After the syntesis was running on
both projects we took the statistic table from the report. We compared the number
of LUTs and registers. In Figure 4.4 you can observe in the first two columns that
the unoptimized code has a much lower number of LUTs and registers. A quick
look at the optimized VHDL code shows that there are a lot of redundant resize
calls. After that observation the decision was made that the redundant calls can
be removed by hand right now, as from the beginning on we thought the VHDL
compiler would take care of removing those. The results of this third try can be
observed in the last column. All in all this was not improving the results at all.
A deeper look showed that redundant resize calls are not handled by this VHDL
compiler. Even after removing them, the amount of LUTs was still bigger than in

26

4.3. OPTIMIZATION VHDL IMPROVEMENTS

- No optimization Optimization
ALMs for LUT 54 54
ALMs for Registers 4 4

Figure 4.5.: Statistics from the quartus projects

the beginning.

Quartus As in Vivado two projects have been created. Both projects are using
the Board Intel Altera Cyclone V as their target device. After the "Compiling and
Fitting" build step, the two "Resource Usage Reports" have been compared. What
can be observed in Figure 4.5 is that the optimization does not impact the numbers
of ALMs used. The hand optimized code was resulting in the equal results as the
optimized VHDL output, and is not explicitly listed therefore. Quartus provides
an additional setting where the "Compiling and Fitting" steps are more focused on
performance or area usage. Tweaking those setting did not impact the differences
between the two generated VHDL files.

Overall we can see that it’s quite hard to measure the improvements the VHDL
optimization gives, due to the missing insight into the processes that are performed
in order to compile a VHDL file into a bitstream.

27

5. Conclusion

5.1. Assembler generation

The previous chapter showed that the optimizations are not that helpful on decoder
code. However, other projects like UIs or CLI implementations also could be evaluated,
since the patterns from decoding code are quite different to UI codes. Without
evaluating others, we can say, that the optimization for dropping conversion nodes
from the graph is not improving the overall assembler generation.

5.2. VHDL generation

Its similar to the assembler generation. There is no obvious improvement over the
not optimized VHDL code. However, its very hard to see real differences due to
the inability to understand the real differences in the bitstream. A open bitstream
standard would help here, since the projects then could be compared on the lowest
possible hardware layer.

5.3. Further improvements

5.3.1. Widening & Narrowing

Widening and Narrowing is a technique that tries to achieve the same or slightly worse
results while maintaining a better runtime. Here are a few things that could be done
in this analysis to achive this. However, the time was short and thus the following is
only thought about, but not yet implemented. Statistics from the projects

29

5.3. FURTHER IMPROVEMENTS

Widening not terminating loops There is the theoretical question of when we are
able to predict that a loop will terminate before the whole bitwidth is used or not.
The question for this analysis is quite simple, if there is a Compare node in the loop,
and it is defining an upper bound, then we might find an upper bound when we
insert the confirm node there as described in section 3.1.1. If there is no Confirm
or Compare node, then there is no chance for the loop to terminate. And thus we
might want to set our stable bits to 0.

Narrowing for arithmetical chains As explained in 3.4, the VRP returns a more
accurate result for arithmetical chains. An arithmetical chain can be defined as a
set of arithmetical nodes, where each node has a successor which is a arithmetical
node.

The problem with arithmetical operations within the bitwidth analysis is, is that we
need to calculate the worst case in terms of bit usage. As an example, two operands
with the ranges [0..2] and [0..4] will result in the range [0..6]. However, we are in a
bitwidth analysis here, which means the ranges here are always rounded up to the
next power of two. This means for our example, that the two operands will have the
same ranges, but the result of the addition will be [0..8]. In higher bit ranges, the
loss is even bigger.

The problem can be fixed by calculating the result for a arithmetical node as the
bitwidth information, as well as the exact range. The successor of the node can then
use the exact range instead of the bitwidth info for calculating its results. Thus
we end up in the same result as the VRP. However, we still would only do this for
arithmetical chains, thus we still would be faster when there is a loop, since the
bitwidth informations would be rounded up after the end of the chain.

5.3.2. More conversion nodes

In this thesis we looked at removing the conversion nodes where we can. However, in
some situations it might makes sense to insert more conversion nodes where most of
a mode is not used, and thus the reduction to a smaller mode is possible. A example
is a shift operation on 32bit system. Implementing a 64 bit shift on a 32 bit system
adds a overhead, which might not be required.

30

Bibliography

[1] K. Rosengren, “Modelling and implementation of an mpeg-2 video decoder using
a glas design path.”

[2] G. Lindenmaier, “libFIRM – a library for compiler optimization research imple-
menting FIRM,” Tech. Rep. 2002-5, Sept. 2002.

[3] F. E. Allen, “Control flow analysis,” SIGPLAN Not., vol. 5, pp. 1–19, July 1970.

[4] G. Birkhoff, Lattice Theory - Third edition. American Mathematical Society,
Colloquium Publications, 1995.

[5] O. Veblen, “Continuous increasing functions of finite and transfinite ordinals,”
Transactions of the American Mathematical Society, vol. 9, no. 3, pp. 280–292,
1908.

[6] U. Khedker, “Theoretical abstractions in data flow analysise.” Online handout,
2027.

[7] K. K. Keith D. Cooper, Timothy J. Harvey, “Iterative data-flow analysis, revis-
ited.”

[8] M. W. Stephens, “Bitwise:optimizing bitwidths using data-range propagat,” 2000.

31

Erklärung

Hiermit erkläre ich, Marcel Hollerbach, dass ich die vorliegende Bachelorarbeit selbst-
ständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis
beachtet habe.

Ort, Datum Unterschrift

33

A. Appendix

A.1. Table of node rules

A operation has operands, all of them are referred to as operands, the first is called
a, the second is called b. In the first column the formula for the new stable digits is
displayed. The second column is the formula for the is_positive flag. nstable is used
in the second column to refer to the value calculated in the first column.

op used bits is_positive
add max(min(astable, bstable)− 1, 0) apositive ∧ bpositive ∧ nstable > 0
minus max(astable − 1, 0) false
sub max(min(astable, bstable)− 1, 0) false
mul max(b−mode+ astable, 0) apositive ∧ bpositive ∧ nstable > 0

div
{
astable

max(astable − 1, 0)
,mode is signed
, otherwise. apositive ∧ bpositive ∧ nstable > 0

mod blog2(max(a))c apositive

shl astable − bstable

{
apositive

false
, nstable > 0
, otherwise.

shr astable + bstable true
shrs astable + bstable apositive

conv max(astable + (mode− old_mode), 0) apositive ∧ nstable > 0
max
phi
and
eor
or

min(operands) ∧(operandspositive)

35

A.1. TABLE OF NODE RULES

A.2. Evaluation C source code

uint32_t test_atom (uint32_t input0 , uint32_t input1) {
int16_t inp0 , inp1 , inp2 , inp3 ,
abs0 , abs1 , abs2 , abs3 ;
#de f i n e ABS(x) (x<0 ? −x : x)

inp0 = input0 ;
inp1 = input0 >> 16 ;
inp2 = input1 ;
inp3 = input1 >> 16 ;

abs0 = ABS(inp0) ;
abs1 = ABS(inp1) ;
abs2 = ABS(inp2) ;
abs3 = ABS(inp3) ;
r e turn abs0 + abs1 + abs2 + abs3 ;

}

Figure A.1.: Test code for measuring VHDL generation improvements

36

	Introduction
	Basics
	cparser / libfirm
	Software theory
	Lattice
	Fixed point iteration
	Worklist algorithm

	Design & Implementation
	Bitwidth analysis
	Value prediction

	Stable Conversion nodes
	VHDL generation
	Value range vs. bitwidth

	Evaluation
	General bitwidth
	Optimizations on assembler output
	Optimization VHDL improvements

	Conclusion
	Assembler generation
	VHDL generation
	Further improvements
	Widening & Narrowing
	More conversion nodes

	Appendix
	Table of node rules
	Evaluation C source code

