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Zusammenfassung

Wir erweitern die mathematische Bibliothek des interaktiven Theorembeweisers
Lean um Definitionen und erste Resultate über abelsche Kategorien. Insbesondere
formalisieren wir die Theorie der Pseudoelemente, welche die Beweistechnik der
Diagrammjagd in einem allgemeinen kategoriellen Kontext zugänglich macht. Wir
nutzen die in Lean verfügbaren Methoden der Metaprogrammierung zur Entwicklung
einer interaktiven Taktik, die Exaktheitsaussagen in abelschen Kategorien durch
Diagrammjagd mit Pseudoelementen halbautomatisch beweisen kann. Mithilfe dieser
Automatisierung geben wir den ersten formal verifizierten Beweis des Schlangenlem-
mas, einem wichtigen Werkzeug der homologischen Algebra, das aufgrund seiner
Rolle in der Konstruktion der langen exakten Sequenz in Kohomologie in vielen
Bereichen der reinen Mathematik und darüber hinaus Anwendung findet.

We extend the mathematical library of the Lean interactive theorem prover
with basic definitions and results about abelian categories. Within this theory, we
formalize the notion of pseudoelement, which generalizes the notion of element
in an abelian group to a general arrow-theoretic setting and gives access to the
proof technique of diagram chasing. Using the metaprogramming framework of the
Lean theorem prover, we develop tactics that semiautomatically synthesize proofs of
statements about commutative diagrams in abelian categories using pseudoelements.
Using this, we give the first formally verified proof of the snake lemma, an important
tool in homological algebra with ample applications in pure mathematics and beyond.
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Introduction

Studying complex mathematical objects directly can be immensely difficult due
to their rich and intricate structure. For this reason, it is often beneficial to associate
to a complex object a simpler object that can be more readily studied while still
allowing for something to be learned about the original object.

One kind of simple object we can use is given by the (very general) concept
of cohomology: First, we choose a collection (Ci)i∈Z of algebraic objects such as
abelian groups that in some way encode the structure of the object we are interested
in. We also choose homomorphisms δi : Ci → Ci+1 such that δi+1 ◦ δi = 0. The
i-th cohomology group is now defined as Hi := Ker δi/ Im δi−1.

This general recipe can be used to study a wide range of mathematical objects:
We just have to find good definitions for Ci and δi.

Cohomology was originally defined in the 1940s as an algebraic invariant of
topological spaces. Since then, this notion has spread to a wide variety of mathemat-
ical disciplines and is now ubiquitous in many areas of modern pure mathematics.
Cohomology has been a key tool in many recent advances in mathematics such as
Wiles’ resolution of Fermat’s conjecture [28] or the development of modern algebraic
geometry by Grothendieck and his collaborators.

The mathematical discipline called homological algebra studies the properties
of the construction mentioned above, without referencing the concrete definitions
of Ci and δi. In this way, homological algebra provides tools that are useful for
working with all kinds of cohomology theories that appear in mathematics.

Some of the most fundamental tools of homological algebra are the so-called
diagram lemmas, which allow us to derive properties of morphisms from properties
of morphisms we already know, provided they somehow relate to the morphism
we are interested in. The proof technique commonly employed for these lemmas is
called diagram chasing. Here is what Paolo Aluffi has to say about the proof of one
of the diagram lemmas, called the snake lemma:

Proving the snake lemma is something that should not be done
in public, and it is notoriously useless to write down the details
of the verification for others to read: the details are all essentially
obvious, but they lead quickly to a notational quagmire. Such
proofs are collectively known as the sport of diagram chase,
best executed by pointing several fingers at different parts of a
diagram on a blackboard, while enunciating the elements one is
manipulating and stating their fate. [1, p. 180]

This seems like an almost perfect match for some kind of automated proof.
Indeed, a common claim about proofs by diagram chase is that at any point, there
is really only one possible next step in the proof. If that is true, it should even be
possible for a computer to perform a complete search over the possible proofs and
find the desired proof.

The natural setting to study this question in is interactive theorem proving. In
an interactive theorem prover one can state definitions and theorems and then give
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6 INTRODUCTION

proofs of these theorems by providing hints to the system on how to construct a proof
of the claim in the system’s underlying logic. These systems are general-purpose
and allow for the formal development of entire mathematical theories. Since these
lemmas are really tools rather than interesting statements in their own right, this is
clearly a desirable feature: We will be able to build the tools of homological algebra
and then also apply them where they are needed.

In this thesis, we present a formalization of the technique of diagram chasing
in a general mathematical setting. To be able to state the diagram lemmas at the
correct level of generality, we have developed the theory of abelian categories and
have formalized the tools that are necessary to perform proofs by diagram chasing
in general abelian categories. Furthermore, we have implemented proof automation
to perform these proofs semi-automatically.

The thesis is structured as follows. In Chapter 1, we give an overview over the
mathematical prerequisites that are needed in this thesis. We also describe Lean,
the interactive theorem prover we have used. Chapters 2 and 3 contain our results.
Chapter 2 describes our formal theory of abelian categories and in Chapter 3 we
describe the tactic for semi-automatic diagram chasing that we have developed as
well as some of the results we were able to show using it.

This thesis only contains a subset of the results we have formalized. Many
results, and almost all proofs, have been omitted for reasons of brevity. For the
full formalization, we refer to the source code. This thesis corresponds to revision
125b4b1d of the source code repository, which may be accessed at
https://github.com/TwoFX/lean-homological-algebra/tree/125b4b1dabdf7

df88f517954ace6a6aa9f7054c8.
It is based on revision 0567b7fa of the Lean mathematical library.

https://github.com/TwoFX/lean-homological-algebra/tree/125b4b1dabdf7df88f517954ace6a6aa9f7054c8
https://github.com/TwoFX/lean-homological-algebra/tree/125b4b1dabdf7df88f517954ace6a6aa9f7054c8


CHAPTER 1

Background

1. Mathematical preliminaries

We will assume results present in a typical introductory course on linear algebra.
In particular, it will be useful to know what the kernel of a linear map between
vector spaces is. For a refresher, we recommand any textbook on (linear) algebra,
for example the textbook by Aluffi [1], which also contains much of the mathematics
touched upon in the rest of this thesis.

1.1. Diagrams of modules.

Definition. Let R be a ring. An (additive) abelian group M together with a
map • : R×M →M is called a left R-module if it satisfies the following properties:

i) ∀m ∈M : 1 •m = m,
ii) ∀r, s ∈ R, m ∈M : rs •m = r • (s •m),
iii) ∀r, s ∈ R, m ∈M : (r + s) •m = r •m + s •m,
iv) ∀r ∈ R, m, n,∈M : r • (m + n) = r •m + r • n.

The operation • is called scalar multiplication. If M and N are R-modules, a map
f : M → N is called R-linear if

∀r, s ∈ R, m, n ∈M : f(r •m + s • n) = r • f(m) + s • f(n).
We denote the set of R-linear maps from M to N by Hom(M, N).

Remark. The definition of a module is exactly equal to the definition of a
vector space, except that we do not require R to be a field. It turns out that the
theory of modules is in many way much more intricate than the study of vector
spaces. One key reason is that not every module has a basis.

We shall use terms known from linear algebra, such as kernel and image of
linear maps. A submodule is defined in the same way as a subspace. A quotient
module is defined in the same way as a quotient space.

Remark. Every additive abelian group G becomes a Z-module in a unique way:
Indeed, assume that G has been equipped with a scalar multiplication making it into a
Z-module and let g ∈ G. We have 1•g = g. Furthermore, 0•g = (0+0)•g = 0•g+0•g,
which implies that 0•g = 0. Finally, we compute 0 = 0•g = (1−1)•g = 1•g+(−1)•g,
which implies (−1) • g = −(1 • g) = −g. These identities together with the third
axiom determine the module structure completely: It is given by n • g = g + · · ·+ g,
where there are n summands. It is easy to see that a Z-module structure can always
be defined in this way.

Using this observation, module theory can be viewed as a generalization of the
theory of abelian groups. Indeed, many interesting results about abelian groups
generalize nicely to modules. For example, the classification of finitely generated
abelian groups (cf. [1, Corollary IV.6.5]) is a special case of the classification of
finitely generated modules over a principal ideal domain.

Definition. Let R be a ring and M be a set of R-modules. A commutative
diagram of R-modules is a directed multigraph G = (V, E) together with a function
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8 1. BACKGROUND

M : V →M and a function f : E →
⋃︁

M,N∈M Hom(M, N) satisfying the following
properties:

i) If e ∈ E is an edge from u to v, then f(e) ∈ Hom(M(v), M(v)),
ii) If (e1, e2, . . . , en) and (ê1, . . . , êm) are paths in G from u to v, then

f(en) ◦ f(en−1) ◦ · · · ◦ f(e1) = f(êm) ◦ · · · ◦ f(ê1).

Example. Using the language of commutative diagrams, the statement “Let
A, B, C, D be R-modules and f : A → B, g : C → D, α : A → C, β : B → D be
R-linear maps satisfying β ◦ f = g ◦α.” can be rephrased as “Consider the following
commutative diagram of R-modules:

A B

C D”.

f

α β

g

Definition. Let R be a ring, and let

M0 M1 M2 . . . Mn
f0 f1 f2 fn−1

be a sequence of modules and R-linear maps. We say that the sequence is exact at
Mi if Ker fi = Im fi−1. In this case, we may also call (fi−1, fi) an exact pair. We say
that the sequence M is exact if it is exact at M1, . . . , Mn−1. This also generalizes
to infinite sequences.

A short exact sequence is an exact sequence of the form

0 A B C 0,ι π

where 0 is the trivial module 0 := {0}. The reader is encouraged to think about
why the maps might be called ι and π.

A long exact sequence is an infinite sequence (Mi)i∈Z, (fi : Mi → Mi+1)i∈Z,
which is exact everywhere.

Example. It should by now be obvious what is meant when we say that the
following commutative diagram has exact rows.

0 A B C 0

0 A′ B′ C ′ 0

ι

α

π

β γ

ι′ π′

1.2. A very short primer on algebraic topology. This section is an at-
tempt to provide some form of motivation as to why the rather abstract algebraic
objects considered in this thesis might be interesting, and how the seemingly arbi-
trary statements of the diagram lemmas appear in applications. We will not need
any information from this section in the remainder of this thesis, so a reader who
is not interested in applications may skip this section. The definitions and results
mentioned here can be found in any introductory textbook on algebraic topology,
for example the book by May [17]. We will attempt to convey a general picture and
will not give precise definitions or proofs.

Algebraic topology attempts to classify spaces up to deformation. By “spaces”
we mean topological spaces, which provide a general framework in which the concept
of “continuity” can be studied. The fundamental question is “Given two spaces X



1. MATHEMATICAL PRELIMINARIES 9

and Y , are they the same?”, where by “the same” we mean homotopy equivalent,
which roughly means that we can continuously transform one space into the other
by “squishing”, but not by “tearing”.

Our method of tackling this question is by assigning to every space algebraic
objects which are invariant under homotopy equivalence. If two spaces have different
invariants, then they are not homotopy equivalent.

Among these algebraic invariants are the (reduced singular) homology modules
Hn(X; R) and the (reduced singular) cohomology modules Hn(X; R) associated
to a space X, one for each n ∈ N0. The n-th (co)homology module somehow
encodes the n-dimensional structure of the space X. For example, if n > 0 and
Sn = {x ∈ Rn+1 | ∥x∥ = 1} is the n-sphere, then we have Hi(Sn;Z) = Z for i = n
and Hi(Sn;Z) = 0 otherwise.

The definition of the homology modules requires some machinery, which makes
it difficult to directly compute the (co)homology of complicated spaces. The solution
is to compute the homology of simple spaces (such as the space consisting of a single
point, or spheres) and prove theorems that allow us to compute the homology of
spaces which are assembled from simpler spaces whose homology we already know.
For example, the torus T 2 can be written as the cartesian product T 2 = S1 × S1 of
two circles. So if we know the homology of the circle, and we know how to compute
the homology of cartesian products, then we also know the homology of the torus.
Similar considerations hold for cohomology.

An example of one of these tools is the so-called Meyer-Vietoris sequence in
reduced homology. Let X be a topological space, and let A and B be subspaces of
X such that the union of the interiors of A and B is X (for example, if X is the
sphere, then we could choose A as a little more than the northern hemisphere of the
sphere, and B as a little more than the southern hemisphere of the sphere). The
Meyer-Vietoris sequence is a long exact sequence of the form

. . .→ Hn+1(A ∩B)→ Hn+1(A)⊕Hn+1(B)→ Hn+1(X)→ Hn(A ∩B)→
Hn(A)⊕Hn(B)→ Hn(X)→ Hn−1(A ∩B)→ . . .→ H0(X)→ 0→ 0→ . . .

In many cases, this lets us compute the homology of X if we already know the
homology of A and B. For example, if we were able to choose A and B such
that A ∩ B satisfies Hn(A ∩ B) = 0 for all n ≥ 0, then exactness implies that
Hn(X) ∼= Hn(A)⊕Hn(B) for all n ≥ 0.

Another important tool for calculating invariants of spaces are induced maps.
Constructions like (co)homology are often functorial: If f : X → Y is a continuous
map of topological spaces, then we get a well-behaved map Hn(f) : Hn(X)→ Hn(Y )
for every n.

To demonstrate why this is useful, we sketch a proof of Brouwer’s fixed point
theorem in dimension 2. Let

D2 = {x ∈ R2 | ∥x∥ ≤ 1}

be the 2-dimensional disk. We can squish the disk to a point, so the disk and the
point are homotopy equivalent. Using this, we hope the reader thrusts us that it
is easy to compute directly using the definition that H1(D2) = 0. We have noted
earlier that H1(S1) = Z.

Theorem. Let h : D2 → D2 be a continuous map. Then there is some x ∈ D2

such that h(x) = x.

Proof. Assume the contrary. Let x ∈ D2. Consider the ray starting at h(x)
going through x. Let r(x) be the point in S1 where this ray leaves D2 (cf. Figure 1).
It is easy to see that this gives a continuous map r : D2 → S1 which satisfies r(x) = x
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h(x)
r(x)

x

Figure 1. Illustration of the definition of r in the proof of the
Brouwer fixed point theorem.

for every x ∈ S1. Let i : S1 → D2 be the inclusion. Then r ◦ i is the identity on S1

as we just noted. By functoriality of H1(−;Z), this means that the composite

H1(S1;Z) H1(D2;Z) H1(S1;Z)
H1(i;Z) H1(r;Z)

is the identity on H1(S1;Z), but this is of course absurd: Since H1(D2;Z) = 0, the
composite is actually the zero map. □

Amazingly, tools like the Meyer-Vietoris sequence interact nicely with induced
morphisms: Let (X, A, B) and (Y, A′, B′) be triples of spaces that fulfill the require-
ments of Meyer-Vietoris. If f : X → Y is a continuous map such that f(A) ⊆ A′

and f(B) ⊆ B′, then we get an infinite commutative diagram with exact rows

. . . Hn(A)⊕Hn(B) Hn(X) Hn−1(A ∩B) . . .

. . . Hn(A′)⊕Hn(B′) Hn(Y ) Hn−1(A′ ∩B′) . . . ,

where the vertical maps are all induced by f . A common situation that arises when
computing homology using such a long exact sequence is that we already know that
f induces isomorphisms Hn(f) : Hn(A)→ Hn(A′), Hn(f) : Hn(B)→ Hn(B′) and
Hn(f) : Hn(A ∩ B)→ Hn(A′ ∩ B′). In other words, the subspaces that X and Y
are assembled from have the same homology. A natural question now is: Does this
already imply that X and Y have the same homology? Indeed, this is the case.
Perhaps surprisingly, the reason for this is purely algebraic: It directly follows from
the five lemma, which is one of the diagram lemmas we will discuss now.

1.3. Diagram chasing in the category of modules.

Lemma (Five lemma). Consider the following commutative diagram of R-
modules with exact rows:

A B C D E

A′ B′ C ′ D′ E′

f

α

g

β

h

γ

i

δ ε

f ′ g′
h′ i′

If α, β, δ and ε are isomorphisms, then so is γ.

The five lemma is a corollary of the two four lemmas.
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Lemma (Four lemma, version 1). Consider the following commutative diagram
of R-modules with exact rows:

A B C D

A′ B′ C ′ D′

f

α

g

β

h

γ δ

f ′ g′
h′

If α is surjective and β and δ are injective, then γ is injective.
This is one of the classic results where the reader really should come up with

the proof themselves. Since the four lemma will serve as a running example for the
rest of this document, we will give a proof anyway. However, we will defer this until
Section 3.2, so that we can give a formally verified proof.

Here is the second four lemma:
Lemma. If α and γ are surjective and δ is injective, then β is surjective.
The proof of the second four lemma is similar in style to the proof of the first

four lemma, and once again, the reader is encouraged to fill it in themselves1. We
will not give a proof here.

It turns out that these diagrammatic situations appear in a wide range of
contexts, and many very important appliations of this theory do not live in the
world of modules. For this reason, we will develop our theory in a more general
context: Abelian categories. We give a quick summary of the categorical notions
that will be important to us.

1.4. The bare necessities of category theory. The material in this section
can be found in any textbook on basic category theory, such as the first volume of
Borceux [4].

1.4.1. Categories.
Definition. A category C consists of
• a collection of objects Ob(C),
• for every pair of objects X, Y a collection of morphisms Hom(X, Y ), and
• for every triple of objects X, Y , Z a binary operation

≫ : Hom(X, Y )×Hom(Y, Z)→ Hom(X, Z)
such that

• ≫ is associative, and
• for every object X there is some morphism 1X ∈ Hom(X, X) such that for

every object Y and morphisms f ∈ Hom(X, Y ), g ∈ Hom(Y, X) we have
1X ≫ f = f and g ≫ 1X = g.

We will write X ∈ C for X ∈ Ob(C) and f : X → Y for f ∈ Hom(X, Y ).
Remark. Most authors follow a different notation and write g ◦ f instead of

f ≫ g. We adopt the rather unusual notation f ≫ g, which is sometimes called
“diagrammatic order”, in order to be consistent with the formal library of category
theory we will build upon (see Section 3).

Definition. Let f : X → Y be a morphism in a category C.
a) We call f a monomorphism if for all g, h : Z → X we have the implication

g ≫ f = h ≫ f =⇒ g = h. In diagrams, we will sometimes write a
monomorphism as f : X ↪→ Y . It is useful (but not always accurate) to
think of monomorphisms as a generalization of injective functions.

1Here is a hint: It will be beneficial to use the additive structure of modules.
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b) We call f an epimorphism if for all g, h : Y → Z we have the implication
f ≫ g = f ≫ h =⇒ g = h. In diagrams, we will sometimes write an
epimorphism as f : X ↠ Y . It is useful (but not always accurate) to think
of epimorphisms as a generalization of surjective functions.

c) We call f an isomorphism if there is some g : Y → X such that g ≫ f = 1Y

and f ≫ g = 1X . We write f−1 := g.

Remark. f−1 is well-defined, since if g′ has the same properties as g, then
g = 1Y ≫ g = g′ ≫ f ≫ g = g′ ≫ 1X = g′.

It is obvious that an isomorphism is both a monomorphism and an epimorphism.
The converse is false in general, but it is true for abelian categories, which we will
define later.

1.4.2. Universal properties. A central notion in algebra and category theory is
that of a universal property. The concept of universal property is best illustrated
by example.

Definition. Let C be a category and let X, Y ∈ C. We call an object P ∈ C
together with morphisms π1 : P → X and π2 : P → Y a product of X and Y if for
every T ∈ C and f1 : T → X, f2 : T → Y there is a unique morphism (f1, f2) : T → P
making the following diagram commute:

X

T P

Y

f1

f2

(f1, f2)

π1

π2

Example. If X and Y are sets, then the cartesian product X×Y is a categorical
product of X and Y .

Lemma. If (P, π1, π2) and (P ′, π′
1, π′

2) are products of X and Y , then there is
an isomorphism i : P → P ′.

Proof. By the universal property of P , there is a unique morphism i : P ′ → P
such that i≫ π1 = π′

1 and i≫ π2 = π′
2. Similarly, by the universal property of P ′,

we find a unique j : P → P ′ such that j ≫ π′
1 = π1 and j ≫ π′

2 = π2. Now we may
calculate j ≫ i≫ π1 = j ≫ π′

1 = π1 and analogously j ≫ i≫ π2 = π2.
By the universal property of P , there is a unique morphism k : P → P such

that k ≫ π1 = π1 and k ≫ π2 = π2. We have just seen that j ≫ i has this property,
so by uniqueness j ≫ i = k. On the other hand, 1P also has this property, so by
uniqueness, 1P = k, and we conclude j ≫ i = 1P .

By the same argument, i ≫ j = 1P ′ . Therefore, i is an isomorphism as
required. □

Remark. The previous definition and proof are part of a larger story: Limits.
Defining limits requires a bit of machinery, but since we will make heavy use of
limits in Chapter 2, we give the definition here. For a much more detailed and
leisurely exposition of this material, we refer to Chapter 2 of Borceux [4].

Definition. Let J and C be categories.
a) A functor F : J → C assigns to every object J ∈ J an object FJ ∈ C

and to every morphism j : J → J ′ a morphism Fj : FJ → FJ ′ such that
F1J = 1F J for every J ∈ J and F (j ≫ j′) = Fj ≫ Fj′ for every pair
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of composable morphisms j and j′. A functor F : J → C is also called a
diagram in C of shape J.

b) If F : J → C is a diagram in C, then a cone c on F is an object X ∈ C
together with morphisms cJ : X → FJ for every J ∈ J such that for all
j : J → J ′ we have cJ ≫ Fj = cJ′ . The object X is called the vertex of c.

c) If F : J→ C is a diagram in C and c is a cone on F with vertex X, then
we call c a limit cone if for every cone d on F with vertex X ′ there is a
unique morphism t : X ′ → X such that t≫ cJ = dJ for every J ∈ J.

d) If F : J → C is a diagram in C, then a cocone of F is an object X ∈ C
together with morphisms cJ : FJ → X for every J ∈ J, such that for all
j : J → J ′ we have Fj ≫ cJ′ = cJ . The object X is called the vertex of c.

e) If F : J→ C is a diagram in C and c is a cocone on F with vertex X, then
we call c a colimit cocone if for every cocone d on F with vertex X there
is a unique morphism t : X → X ′ such that cJ ≫ t = dJ for every J ∈ J.

Remark. Not every diagram admits a limit cone. If a limit cone exists, then
it is unique in the following sense: If c and d are two limit cones with vertices X
and X ′ over F : J → F, then there is a unique isomorphism t : X → X ′ satisfying
t ≫ cJ = dJ for every J ∈ J. The proof of this statement works exactly like the
proof of uniqueness of products that we gave earlier.

Notation. We will use small diagrams for writing the index category J, where
bullets denote objects and arrows denote morphisms. For example, the notation
J = • → • ← •means that that J has three objects X, Y and Z, and two non-identity
morphisms, f : X → Y , and g : Z → Y .

Definition.
a) A limit of shape J, where J is the empty category, is called an initial object.

A colimit of shape J, where J is the empty category, is called a terminal
object.

b) A limit of shape • • is called a product. The product of two objects X
and Y is written X × Y or X Π Y , or, more correctly, (

∏︁
J∈J FJ, (πJ )J∈J),

since the limit really consists of the vertex and the morphisms comprising
the cone. There is an easy generalization to products larger families of
objects.

In the case of binary products, if f and g are morphisms with a
common domain Z and codomain X × Y , we will write (f, g) for the
unique morphism (f, g) : Z → X × Y satisfying f = (f, g) ≫ πX and
g = (f, g)≫ πY

2.
c) A colimit of shape • • is called a coproduct. The coproduct of two objects

X and Y is written X ⨿ Y .
d) A limit of shape •⇒ • is called an equalizer.
e) A colimit of shape •⇒ • is called a coequalizer.
f) A limit of shape • → • ← • is called a pullback.
g) A colimit of shape • ← • → • is called a pushout.

Definition. An object 0 ∈ C of a category C is called a zero object if it is both
initial and terminal.

Definition. We say that a category C has zero morphisms if for all P, Q ∈ C
the collection Hom(P, Q) is a pointed set containing a special morphism 0: P → Q
such that 0≫ f = 0 and g ≫ 0 = 0 for all composable f and g.

2Note the abuse of notation: In the subscript of π, we have used objects of C instead of
objects of J.
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Definition. If C is a category with zero morphisms, then an equalizer of
f : X → Y and 0: X → Y is called a kernel of f . A coequalizer of f and 0 is called
a cokernel of f .

Important Remark. Recall that due to the definition of a limit, a kernel of a
morphism f : X → Y is really a cone, which consists of a vertex V ∈ C as well as
two morphisms ι1 : V → X and ι2 : V → Y making the following diagram commute.

V

X Y

ι1
ι2

f

0
Note that ι2 = ι1 ≫ 0 = 0. We write ker f := ι1 and Ker f := V . Note that

this notation is dangerous: Ker f and ker f are only defined up to unique preferred
isomorphism. Many authors will regularly abuse this fact and write g = ker f and
h = ker f despite the fact that g ̸= h.

In this thesis, we adopt a different convention. For us, ker f will always refer to
a fixed morphism, which we also refer to as “the” kernel of f . If we have some other
morphism g that has the universal property of the kernel of f , then we will say that
g is “a” kernel of f .

2. The Lean interactive theorem prover

Mathematics can be formalized in a number of available systems which differ
in aspects such as the underlying theory, the style in which proofs are written
down, the amount of automation that is available, the amount of mathematics and
computer science that have been formalized and comfort-of-life aspects such as
available tooling and syntax.

In this thesis, we use version 3.8.0 of the community-maintained fork of the
Lean theorem prover [19, 20]. Lean is a relatively new theorem prover developed by
Leonardo de Moura at Microsoft Research.

The underlying theory of Lean is a dependent type theory called the calculus of
inductive constructions3 [20, 23] with proof irrelevance. Lean has native support for
quotient types.

Lean makes heavy use of the so-called Curry-Howard isomorphism. Roughly
speaking, we identify a mathematical statement with the collection of its proofs.
In particular, a false statement is identified with the empty set and, in our proof-
irrelevant theory, a true statement is identified with the one-element set. Under this
identification, we should think of a proof of an implication P =⇒ Q as a function
that takes a proof of P and produces a proof of Q. For example, here is a (not very
idiomatic) proof of the statement P ∧Q =⇒ Q ∧ P in Lean.
lemma and_comm {P Q : Prop} (proof_of_P_and_Q : P ∧ Q) : Q ∧ P :=
match proof_of_P_and_Q with
| ⟨proof_of_P, proof_of_Q⟩ := ⟨proof_of_Q, proof_of_P⟩
end

Here is how this code should be read: We declare a function called and_comm,
which takes three arguments4, the statements P and Q and a proof of P ∧Q, and
produces a proof of Q∧P . It does this by deconstructing the proof of P ∧Q, which
is really just a tuple of a proof of P and a proof of Q into its components and

3Notably, unlike in some other interactive theorem provers, the underlying theory is not some
variant of Zermelo-Fraenkel set theory.

4Note that we use type theory, and type theorists use the symbol : for membership rather
than ∈.
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rearranging them into a tuple of a proof of Q and a proof of P , that is, a proof of
Q ∧ P .

In this way, Lean is really just a functional programming language with a rather
powerful type system. One could even think about actually executing proofs, but
we will not dwell on that idea. Instead, we will go in the opposite direction and
assume a very powerful version of the axiom of choice.
axiom choice {α : Sort u} : nonempty α → α

choice takes a proof that a type is nonempty and produces an element of said
type. This destroys all dreams of doing computation (our theory ceases to be
constructive), but it allows us to make arguments such as making a case distinction
over an arbitrary statement and other types of arguments which mathematicians
will generally take for granted.

2.1. Interactive proofs. Constructing proofs by using Lean like a program-
ming language can become rather tedious when proofs get larger, so Lean has a
mode for constructing proofs semi-automatically, called tactic mode. A proof in
tactic mode is a sequence of steps similar to how a mathematician might formulate a
proof. When writing a tactic-mode proof, the current state of the proof is displayed
to the user, so a user can write the proof step by step and use the feedback provided
by Lean to figure out what to do next in order to progress in the proof. This mode
is what makes Lean an interactive theorem prover.

As an example for such an interactive proof, consider the following problem
from an early problem sheet of an introductory course on algebra:

Problem. Let M be a semigroup (that is, a set M with an associative binary
operation ·). Assume that there is an element e ∈ M satisfying the following
conditions:

1. ∀m ∈M : e ·m = m
2. ∀m ∈M ∃m′ ∈M : m′ ·m = e

Prove the following statements.
1. ∀m ∈M : m · e = m
2. ∀m ∈M ∃m′ ∈M : m ·m′ = e = m′ ·m

The hypotheses of the example can be expressed in Lean in the following way (we
suggest the reader ignores the different types of parentheses around the arguments
for now):
variables {M : Type∗} [semigroup M]
variables {e : M} (left_neutral : ∀ m, e ∗ m = m)
variables {inv : M → M} (left_inv : ∀ m, (inv m) ∗ m = e)

Specifically, we declare a semigroup M , and an element e ∈M . Furthermore, we let
left_neutral refer to a proof of ∀m ∈M : e ·m = m. We also assert the existence of
a function (of sets) inv from M to M , and a proof called let_inv of the statement
∀m ∈M, inv m ·m = e. We direct the reader’s attention to the function application
syntax used by Lean: To apply the argument m to the function inv, we write inv m
instead of inv(m). Similarly, if we had a function f to which we wish to apply two
parameters a and b, then we would write f a b.

Let us first state and prove the second claim.
theorem right_inv : ∀ m, m ∗ (inv m) = e :=

Proof. We enter an interactice proof by saying begin.
begin
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If we move the cursor after the begin, Lean will notice that we are inside an
interactive proof and show us the current state of the proof. In our case, it looks
like this:
1 goal
M : Type u_1,
e : M,
left_neutral : ∀ (m : M), e ∗ m = m,
inv : M → M,
left_inv : ∀ (m : M), inv m ∗ m = e
⊢ ∀ (m : M), m ∗ inv m = e

The state of the proof consists of a list of so-called goals. A goal consists of a
list of hypothesis and a statement we have to prove using the hypotheses. Now, we
can use tactics to manipulate one or more goals.

The first tactic we will use is called intro. It is the Lean equivalent of saying
“Let m be. . . ” in a mathematical proof. If we write
intro m,

then our state becomes
1 goal
M : Type u_1,
e : M,
left_neutral : ∀ (m : M), e ∗ m = m,
inv : M → M,
left_inv : ∀ (m : M), inv m ∗ m = e,
m : M
⊢ m ∗ inv m = e

As we can see, the ∀ (m : M) has been eliminated. Instead, m is now part of the
hypotheses, and it remains to show m · inv m = e for this specific m.

Now how do we prove the statement? Most tactics let us manipulate the goal,
allowing us to work backwards from the goal. If we have managed to change the
goal to something trivial like a = a, then we have finished the proof.

In many cases, it is also helpful to work forwards from the hypotheses. This
can be done by manipulating hypotheses directly or by proving new hypotheses. In
our case, it will be helpful to know that m · inv m = m · inv m ·m · inv m. If we say
have double_m_inv : m ∗ (inv m) = m ∗ (inv m) ∗ m ∗ (inv m),

then the goal state will change to
2 goals
M : Type u_1,
e : M,
left_neutral : ∀ (m : M), e ∗ m = m,
inv : M → M,
left_inv : ∀ (m : M), inv m ∗ m = e,
m : M
⊢ m ∗ inv m = m ∗ inv m ∗ m ∗ inv m

M : Type u_1,
e : M,
left_neutral : ∀ (m : M), e ∗ m = m,
inv : M → M,
left_inv : ∀ (m : M), inv m ∗ m = e,
m : M,
double_m_inv : m ∗ inv m = m ∗ inv m ∗ m ∗ inv m
⊢ m ∗ inv m = e
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In other words, by saying have name : type we introduce a new goal where we have
to prove type, and in our original goal we get a new hypothesis name : type. In this
way, saying have is like saying “Let us first show that. . . ”.

For reasons of brevity, let us skip the proof of the first goal5 and look at the
proof of the second goal. Since we will be working backwards from the goal from
now, we will only show the proof obligation part of the goal state, i.e., the line
including ⊢.

The first thing we say is
rw ←left_inv (m ∗ (inv m))

This tells lean to search for a place where it can apply the equality
inv(m · inv m) ·m · inv m = e

in the backwards direction. Since there is only one occurrence of e in the goal, the
goal becomes
⊢ m ∗ inv m = inv (m ∗ inv m) ∗ (m ∗ inv m)

Next, we want to use the identity double_m_inv that we proved earlier on the
very right of the goal. Since the term m · inv m occurs multiple times in the goal,
we use some special syntax to apply it only in the correct position.
conv { for (m ∗ inv m) [3] { rw double_m_inv } }

This, plus some reassociating that we omit here, changes the goal into
m ∗ inv m = inv (m ∗ inv m) ∗ (m ∗ inv m) ∗ m ∗ inv m

Now we are almost done. We tell Lean to apply the left inverse property
rw left_inv,

and are left with the goal
⊢ m ∗ inv m = e ∗ m ∗ inv m

But now all that remains is to use that e is left neutral:
rw left_neutral,

After this, the goal would become
⊢ m ∗ inv m = m ∗ inv m

but Lean notices that this is tautological, so it closes the goal and says
goals accomplished

and we can close the proof by saying
end

For reference, here is the full proof:
begin

intro m,
have double_m_inv : m ∗ (inv m) = m ∗ (inv m) ∗ m ∗ (inv m),
{ conv_lhs { rw [←left_neutral (inv m), ←left_inv m,
←mul_assoc, ←mul_assoc], }, },

rw ←left_inv (m ∗ (inv m)),
conv { for (m ∗ inv m) [3] { rw double_m_inv } },
simp only [←mul_assoc],
conv_rhs { congr, congr, rw mul_assoc, },
rw left_inv,
rw left_neutral,

end □

5Here is the pen-and-paper proof: m · inv m = m · (e · inv m) = m · inv m · m · inv m.
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The first claim of the exercise is an easy corollary of the second claim, and we
encourage the reader to try it out themselves.

The examples given here barely scratch the surface of Lean syntax. For a more
complete introduction, we refer to the official introduction to Lean [2].

3. The Lean mathematical library

What sets Lean apart from many other theorem provers is that it has been used to
formalize modern mathematics6. Indeed, the last few years have seen formalizations
in Lean of Hensel’s Lemma [15], schemes [11], and even the definition of a perfectoid
space [7]. These results are of significance because they demonstrate that interactive
theorem provers are capable of coping with the complex definitions appearing in
modern mathematics. This is orthogonal to other major breakthroughs in interactive
theorem provers like the formal proof of the Feit-Thompson theorem [13], which deal
with long proofs about very simple objects rather than very complex definitions.

There is a community-maintained repository of formalized mathematical theories
called mathlib [8]. It contains a large number of sections, including basic mathe-
matical objects, analysis, algebra, measure theory, theoretical computer science and
much more. Of particular interest to us are the sections containing linear algebra
and category theory.

3.1. Limits. We will give a quick overview over a section of the Lean category
theory that we will make heavy use of: the limits library.

A cone over a diagram F : J→ C is defined as a natural transformation from a
constant functor to F . We shall not be concerned with what this means precisely,
except for the fact that it is equivalent to the definition we gave above while allowing
to reuse some existing machinery.
structure cone (F : J ⇒ C) :=
(X : C)
(π : (const J).obj X −→ F)

If s : cone F, then we can access the vertex of s by saying s.X. The morphisms
sJ appearing in our definition of a cone are accessed using s.π.app J.

The definition of a limit cone coincides with our definition:
structure is_limit (t : cone F) :=
(lift : Π (s : cone F), s.X −→ t.X)
(fac : ∀ (s : cone F) (j : J), lift s ≫ t.π.app j = s.π.app j)
(uniq : ∀ (s : cone F) (m : s.X −→ t.X) (w : ∀ j : J, m ≫ t.π.app j = s.π.app j),

m = lift s)

Note that there are two common use cases for limits: Sometimes we want to
assert that some specific cone is a limit cone, and sometimes we simply need access
to some limit cone for a certain diagram (i.e., we only care about the existence of a
limit cone). The first use case is covered by the previous definition. For the second
use case, there is a class that asserts that some limit exists:
class has_limit (F : J ⇒ C) :=
(cone : cone F)
(is_limit : is_limit cone)

6Of course, “modern mathematics” is an ill-defined notion and there is an ongoing debate
about which terms to use for “mainstream mathematicians” and the work they do. For us, “modern
mathematics” will mean things like algebraic geometry, algebraic number theory, topology, category
theory, functional analysis, measure theory and so on, but not things like higher topos theory,
mathematical logic or theoretical computer science.
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If we write limit F, then type class resolution will search for a limit cone c of F
and return its vertex. If we write limit.π F J, then type class resolution will return
cJ for the same c.

In addition, the limits library defines the various shapes of diagrams mentioned
above. Most importantly for us, parallel_pair f g is the diagram

X Y,
f

g

and kernel f 0 means limit (parallel_pair f 0), or, using the notation introduced
above, Ker f . Similarly, kernel.ι f is the same as ker f . Dually, cokernel f is Coker f
and cokernel.π f is coker f . In this way, Lean adopts the same convention as us:
kernel.ι f refers to a specific morphism. If we want to express that g is a kernel of
f , then we have to say is_limit (kernel_fork.of_ι g _).

3.2. A formal proof of the four lemma. As promised, we will give a formal
proof of the four lemma for modules. Recall that the four lemma discusses the
following commutative diagram of R-modules with exact rows:

A B C D

A′ B′ C ′ D′

f

α

g

β

h

γ δ

f ′ g′
h′

Let us first formalize the data contained in the commutative diagram.
variables {R : Type∗} [ring R]
variables {A : Type∗} {B : Type∗} {C : Type∗} {D : Type∗}
variables [add_comm_group A] [add_comm_group B]
variables [add_comm_group C] [add_comm_group D]
variables [module R A] [module R B] [module R C] [module R D]
variables {A′ : Type∗} {B′ : Type∗} {C′ : Type∗} {D′ : Type∗}
variables [add_comm_group A′] [add_comm_group B′]
variables [add_comm_group C′] [add_comm_group D′]
variables [module R A′] [module R B′] [module R C′] [module R D′]
variables {f : A →l[R] B} {g : B →l[R] C} {h : C →l[R] D}
variables {f′ : A′ →l[R] B′} {g′ : B′ →l[R] C′} {h′ : C′ →l[R] D′}
variables {α : A →l[R] A′} {β : B →l[R] B′} {γ : C →l[R] C′} {δ : D →l[R] D′}
variables (fg : f.range = g.ker) (gh : g.range = h.ker)
variables (fg′ : f′.range = g′.ker) (gh′ : g′.range = h′.ker)
variables (comm1 : f′ ◦ α = β ◦ f) (comm2 : g′ ◦ β = γ ◦ g) (comm3 : h′ ◦ γ = δ ◦ h)

As we can see, to introduce a module A, we have to include three statements:
A : Type∗, which should be thought of as the underlying set of A, add_comm_group A,
which asserts that A has been equipped with an abelian group structure, and
module R A, which asserts that A has been equipped with an R-module structure.
The square brackets indicate that an argument should be determined using type
class inference, effectively telling Lean to automatically search for the structure. As
an example, if we want to apply a lemma about abelian groups, this lets us apply
this lemma with argument Z (the set7!), and Lean will automatically figure out that
we meant Z together with its usual abelian group structure. This saves a lot of
typing, at the expense of performance and potential headaches if we (on purpose or,
even worse, by accident) defined multiple abelian group structures on the same set8.

Now we can give a formal statement and proof of the four lemma.

7actually, the type
8Z is actually one of the worst offenders in this regard. Z is a Z-module, since every ring is a

module over itself, but Z is also a Z-module, since it is an abelian group, and every abelian group
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Lemma (Four lemma, version 1). If α is surjective and β and δ are injective,
then γ is injective.
lemma four (hα : α.range = ⊤) (hβ : β.ker = ⊥) (hδ : δ.ker = ⊥) : γ.ker = ⊥ :=

Proof. Let c ∈ C such that γ(c) = 0. We have to show that c = 0.
ker_eq_bot′.2 $ assume (c : C) (hc : γ c = 0), show c = 0, from

Let us first observe that c is in the kernel of h.
have c ∈ ker h, from

Since δ is injective, it suffices to show that δ(h(c)) = 0,
suffices (δ ◦ h) c = 0, from mem_ker.2 $ ker_eq_bot′.1 hδ (h c) this,

which is true by commutativity.
calc δ (h c) = h′ (γ c) : congr_fun comm3.symm c

. . . = h′ 0 : congr_arg h′ hc

. . . = 0 : map_zero h′,

By exactness, this gives us a preimage b of c under g.
exists.elim (gh.symm ▷ this : c ∈ range g) $ assume (b : B) ⟨_, (hb : g b = c)⟩,

Now we claim that g′(β(b)) = 0,
have β b ∈ ker g′, from mem_ker.2 $

which is true by commutativity.
calc g′ (β b) = γ (g b) : congr_fun comm2 b

. . . = γ c : congr_arg γ hb

. . . = 0 : hc,

Again by exactness, we have a preimage a′ of β(b) under f ′. . .
exists.elim (fg′.symm ▷ this : β b ∈ range f′) $ assume (a′ : A′) ⟨_, (ha′ : f′ a′ = β

b)⟩,

. . . which in turn, by surjectivity of α, has a preimage a.
exists.elim (range_eq_top.1 hα a′) $ assume (a : A) (ha : α a = a′),

We claim that f(a) = b.
have f a = b, from

By injectivity of β, we might as well check that β(f(a)) = β(b),
suffices β (f a) = β b, from ker_eq_bot.1 hβ this,

which is true by commutativity.
calc β (f a) = f′ (α a) : congr_fun comm1.symm a

. . . = f′ a′ : congr_arg f′ ha

. . . = β b : ha′,

But now we are done, since going two steps in an exact sequence is zero.
calc c = g b : hb.symm

. . . = g (f a) : congr_arg g this.symm

. . . = 0 : mem_ker.1 $ fg ▷ submodule.mem_map_of_mem trivial □

is a Z-module, as we have shown in Section 1.1. Of course, these two Z-module structures are
equal, but they are not definitionally equal, which is enough to cause problems.



CHAPTER 2

Pseudoelements in abelian categories

The formal proof of the four lemma was carried out in the category of R-modules
for some ring R. It is possible to state and prove this result in the much more
general context of abelian categories. A formalization of this development will be
presented in this chapter.

Most of the mathematics in this chapter, in particular the proofs we have
formalized, can be found in volume 2 of Borceux [5, Chapter 1]. An exception is
Section 2.4, where the “technical result” was contributed by us, and the proof of the
main result (which is omitted) is taken from Aluffi [1, Lemma IX.2.3]. In addition,
the mathematical content of Sections 3 and 4 is original (but not very deep).

The formalization work described in this chapter is original, unless otherwise
indicated.

In the entire chapter, let C be a category.
variables {C : Type u} [C : category.{v} C]

1. Preadditive categories and biproducts

1.1. Preadditive categories. A preadditive category C is a category such
that for every two objects X, Y ∈ C the set Hom(X, Y ) has the structure of an
abelian group. Furthermore, we require the composition map

≫ : Hom(X, Y )×Hom(Y, Z)→ Hom(X, Z)
to be linear in both variables (cf. [5, Def. 1.2.1]).

This is the “pedestrian” version of the definition. It is also possible to define
preadditive categories as categories enriched over the category of abelian groups (cf.
[5, Def. 6.2.1]). Developing enriched categories instead of preadditive categories is
much more general, but it has significant overhead compared to the direct definition,
with no real benefit if the only aim is to define abelian categories. Morrison
and Buzzard are currently developing monoidal and enriched categories for the
Lean mathematical library1, and we expect that their work will work as a drop-in
replacement for the naive implementation presented here once it is ready.

For now, here is the direct definition:
class preadditive :=
(hom_group : Π P Q : C, add_comm_group (P −→ Q))
(distrib_left′ : Π P Q R : C, ∀ (f f′ : P −→ Q) (g : Q −→ R),

(f + f′) ≫ g = f ≫ g + f′ ≫ g . obviously)
(distrib_right′ : Π P Q R : C, ∀ (f : P −→ Q) (g g′ : Q −→ R),

f ≫ (g + g′) = f ≫ g + f ≫ g′ . obviously)

Note the obviously in the declaration. This is a so-called auto_param. When
creating an instance of preadditive, it is possible to leave out the proof of a field
marked with an auto_param. In this case, Lean will automatically attempt to apply
the tactic obviously to the goal given by the omitted parameter. If the tactic

1see, for example, the discussion at https://leanprover-community.github.io/archive/1
16395maths/72916longexactsequenceofcohomology.html.
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successfully dispatches the goal, the structure is created with the generated proof.
Otherwise, an error is generated. The tactic obviously is currently a synonym for
tidy. The tactic tidy attempts to execute a variety of conservative tactics—such as
invoking the simplifier or eliminating universal quantifiers in the goal—in sequence
until it makes no further progress [8]. In practice, it is particularly good at proving
trivial facts such as easy instances of naturality or proving facts involving finite
categories by breaking up a goal into all its cases and then dispatching all cases
using simp or refl.

In this particular case, obviously is useful for deriving the distributive properties
for categories that are built out of other categories. For example, if C is a preadditive
category, then the category of chain complexes over C is again preadditive, and
obviously will be able to prove the distributive properties. However, for concrete
categories, the automation will likely struggle to dispatch the goal, since the goal
will not be in the correct form for the relevant simp lemmas to fire.

Another important consideration is runtime. It is sometimes undesirable to rely
on this sort of heavy automation even if it works, since it can take many seconds to
succeed, where a manual proof is elaborated in a few milliseconds. This can quickly
add up in larger files, so in some cases in the category theory library proofs are
carried out manually purely for performance reasons.

Since an auto_param is part of the type of the structure field, using the projections
that are automatically generated by Lean is undesirable, as there is an extra step
involved to strip the auto param declaration to recover the actual type of the field.
For this reason, mathlib defines a command called restate_axiom which generates
lemmas which are identical to the automatically generated projections, but with
the auto_param stripped off.

restate_axiom preadditive.distrib_left′

restate_axiom preadditive.distrib_right′

Now that we have defined preadditive categories, we are interested in basic
properties such as

(1) (f − f ′)≫ g = f ≫ g − f ′ ≫ g.

Of course, we could prove these properties by hand, but it is much more efficient to
utilize the fact that by fixing one argument of composition and varying the other
we obtain homomorphisms of abelian groups:

def hom_right {P Q : C} (R : C) (f : P −→ Q) : (Q −→ R) →+ (P −→ R) :=
mk′ (λ g, f ≫ g) $ preadditive.distrib_right C P Q R f

def hom_left (P : C) {Q R : C} (g : Q −→ R) : (P −→ Q) →+ (P −→ R) :=
mk′ (λ f, f ≫ g) $ λ f f′, preadditive.distrib_left C P Q R f f′ g

Now we can express the desired properties using these homomorphisms. For
example, the proof of property (1) is now significantly shorter than its statement:

@[simp] lemma sub_distrib_left {P Q R : C} (f f′ : P −→ Q) (g : Q −→ R) :
(f − f′) ≫ g = f ≫ g − f′ ≫ g :=

map_sub (hom_left _ _) _ _

This is because we have access to map_sub, which states that if φ : G→ H is a
homomorphism of abelian groups, then for all g, g′ ∈ G it is φ(g−g′) = φ(g)−φ(g′).

Finally, we note that a preadditive category with kernels already has all equal-
izers. Mathematically, this is obvious: Of course the kernel of f − g is an equalizer
of f and g. The formal proof of this directly translates the universal property of
the equalizer of f − g and 0 into the universal property of the equalizer of f and g.
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1.2. Biproducts. Let C be a preadditive category and X, Y ∈ C. A biproduct
of X and Y is an object P together with morphisms π1 : P → X, π2 : P → Y ,
ι1 : X → P , ι2 : Y → P such that

• ι1 ≫ π1 = 1X ,
• ι2 ≫ π2 = 1Y ,
• ι1 ≫ π2 = 0,
• ι2 ≫ π1 = 0 and
• π1 ≫ ι1 + π2 ≫ ι2 = 1P .

To make this definition smooth to use in Lean, we follow a two-step approach in
the formalization. First, we define a structure that captures the fact that an object
is a biproduct of some given objects.
class is_biproduct (X Y P : C) :=
(fst : P −→ X)
(snd : P −→ Y)
(inl : X −→ P)
(inr : Y −→ P)
(inl_fst′ : inl ≫ fst = 1 X . obviously)
(inr_snd′ : inr ≫ snd = 1 Y . obviously)
(inr_fst′ : inr ≫ fst = 0 . obviously)
(inl_snd′ : inl ≫ snd = 0 . obviously)
(total′ : fst ≫ inl + snd ≫ inr = 1 P . obviously)

After some omitted invocations of restate_axiom and attribute [simp], we can
then define a class that expresses the fact that a biproduct of two objects exists.
class has_biproduct (X Y : C) :=
(P : C)
(is_biproduct : is_biproduct.{v} X Y P)

attribute [instance] has_biproduct.is_biproduct

Using this definition, code can require that the biproduct exists by assuming an
instance of has_biproduct X Y and then access the biproduct using has_biproduct.P
X Y. Since this is a bit verbose and this formulation has a tendency to run into
universe resolution failures, we provide shorthands:
variables (X Y)
abbreviation biproduct := has_biproduct.P.{v} X Y

notation X ‵ ⊞ ‵:20 Y:20 := biproduct X Y

Unfortunately, the symbol ⊕, which is the usual notation for biproducts, is
already in use by the Lean mathematical library, so we resort to using ⊞ instead.

We verify that the biproduct has the universal properties of both the product
and coproduct. In particular, this gives us access to a very important property of the
biproduct: Two morphisms f, g : T → X⊞Y are equal if and only if f ≫ πi = g ≫ πi

for i = 1, 2.
lemma biproduct.ext_lift {T : C} (f g : T −→ X ⊞ Y)

(h1 : f ≫ biproduct.fst = g ≫ biproduct.fst)
(h2 : f ≫ biproduct.snd = g ≫ biproduct.snd) : f = g :=

is_limit.hom_ext (biproduct.cone_is_limit X Y) $
λ j, by { cases j, exact h1, exact h2 }

We also prove the (equally important) dual statement.
Finally, an important question is how to construct biproducts. The answer is

simple: In a preadditive category, a product (and a coproduct, for that matter, but
we do not need that) is already a biproduct:
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def biproduct.of_prod (X Y : C) [has_limit.{v} (pair X Y)] : has_biproduct.{v} X Y :=
{ P := X × Y,

is_biproduct :=
{ fst := prod.fst,

snd := prod.snd,
inl := prod.lift (1 X) 0,

inr := prod.lift 0 (1 Y) } }

Here we see a nice example of the automation Lean provides: All of the five
properties that a biproduct must satisfy are checked by Lean automatically. Thanks
to obviously, we do not even have to mention them in the instantiation.

2. Abelian categories

2.1. The definition. A preadditive category C is called abelian if it has a
zero object, binary products and coproducts, all kernels and cokernels and if every
monomorphism is the kernel of some morphism and every epimorphism is the
cokernel of some morphism.
class abelian extends preadditive.{v} C :=
(has_zero_object : has_zero_object.{v} C)
(has_binary_products : has_binary_products.{v} C)
(has_binary_coproducts : has_binary_coproducts.{v} C)
(has_kernels : has_kernels.{v} C)
(has_cokernels : has_cokernels.{v} C)
(mono_is_kernel : Π {X Y : C} (f : X −→ Y) [mono f], normal_mono.{v} f)
(epi_is_cokernel : Π {X Y : C} (f : X −→ Y) [epi f], normal_epi.{v} f)

There are numerous equivalent definitions of abelian category. We chose to use
the present definition because it is reasonably easy to verify for concrete categories
while still allowing quick proofs of the statements we are interested in. In particular,
it must be noted that, if we remove “preadditive” from the definition of an abelian
category, nothing changes: We can construct a preadditive structure on C purely
from the limit-colimit structure dictated by the other properties, and it is even
possible to show that this preadditive structure is unique up to isomorphism2. This
result, while amazing, is essentially irrelevant in practice, because all interesting
examples of abelian categories come with a natural preadditive structure.

2.2. Image factorization. One of the defining features of abelian categories
is the existence of image factorizations. In its full form, the theorem about image
factorizations in abelian categories states that every morphism f : P → Q factors as

P Coker ker f Ker coker f Q,
p h i

where p is the canonical morphism into the cokernel, which is an epimorphism,
h is a unique isomorphism and i is the canonical morphism from the kernel, which
is a monomorphism. The proof of this statement consists of several steps (cf. [5,
Proposition 1.5.5]):

1. Using the universal property of the cokernel, show that f factors as

P Coker ker f Q.
p i′

2. Show that i′ is a monomorphism.
3. Using the universal property of the kernel, show that f factors as

P Ker coker f Q.
p′

i

2This statement must be made more precise to make sense, but we will not go into that here.
We refer the interested reader to Proposition 1.2.7 and Section 1.6 of Borceux [5].
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4. Show that p′ is an epimorphism.
5. Use a general theorem about strong epi-mono factorizations to derive the

existence of a unique isomorphism h making the diagram

P Coker ker f Q

P Ker coker f Q

p

1P

i′

h 1Q

p′
i

commute.
We have formalized the entire proof, including the definitions and relevant

theorems about strong epimorphisms and strong epi-mono factorizations3. Steps one
and two are very similar to steps three and four. We will present the formal proof
of steps three and four here. Let f : P → Q. The morphism i : Ker coker f → Q is
just the canonical map of the kernel of the cokernel. In Lean, it is called kernel.ι
(cokernel.π f). The map p : P → Ker coker f now comes from the universal property
of the kernel. For a morphism u to factor through the kernel of v, we must show
that u ≫ v = 0. But in our case this amounts to showing that f ≫ coker f = 0,
which is true by definition of the cokernel, and so we get our morphism p.
def factor_thru_image : P −→ kernel (cokernel.π f) :=
kernel.lift (cokernel.π f) f $ cokernel.condition f

The fact that p≫ i = f is now true by construction:
lemma image.fac : factor_thru_image f ≫ kernel.ι (cokernel.π f) = f :=
by erw limit.lift_π; refl

We are already done with the third step. It remains to show that p (that is,
factor_thru_image f) is an epimorphism.
instance : epi (factor_thru_image f) :=

Proof. Let us first introduce the shorthands we have already been using to
Lean to improve readability.
let I := kernel (cokernel.π f), p := factor_thru_image f,

i := kernel.ι (cokernel.π f) in

There is an easy theorem about preadditive categories that states that p is an
epimorphism if and only if for every composable g satisfying p ≫ g = 0 we have
g = 0. We will use this characterization in our proof.
(cancel_zero_iff_epi _).2 $ λ R (g : I −→ R) (hpg : p ≫ g = 0),
begin

We refer to the following diagram.

Ker g

P I Q Z

R Coker f

ker g u
t

p

g

s

i h

coker f
ℓ

3see https://github.com/leanprover-community/mathlib/commit/0567b7faba5783ac4c272
c3b6265a4513f69c47d.

https://github.com/leanprover-community/mathlib/commit/0567b7faba5783ac4c272c3b6265a4513f69c47d
https://github.com/leanprover-community/mathlib/commit/0567b7faba5783ac4c272c3b6265a4513f69c47d
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We define u := ker g ≫ i. Since i and ker g are both monomorphisms, so is u.
Since C is abelian, u is the kernel of some morphism h.

let u := kernel.ι g ≫ i,
haveI : mono u := mono_comp _ _
have hu := abelian.mono_is_kernel u,
let h := hu.g,

Since p≫ g = 0, p factors through ker g via some morphism t : P → Ker g.
obtain ⟨t, ht⟩ := kernel.lift′ g p hpg,

Now we can calculate that f ≫ h = 0.
have fh : f ≫ h = 0, calc

f ≫ h = (p ≫ i) ≫ h : (image.fac f).symm ▷ rfl
. . . = ((t ≫ kernel.ι g) ≫ i) ≫ h : ht ▷ rfl
. . . = t ≫ u ≫ h : by simp only [category.assoc]; conv_lhs { congr, skip, rw ←
category.assoc }
. . . = t ≫ 0 : hu.w ▷ rfl
. . . = 0 : has_zero_morphisms.comp_zero _ _,

But this means that h factors through coker f via some ℓ : Coker f → Z,
obtain ⟨l, hl⟩ := cokernel.desc′ f h fh,

and we can use this to show that i≫ h = 0.
have hih : i ≫ h = 0, calc

i ≫ h = i ≫ cokernel.π f ≫ l : hl ▷ rfl
. . . = 0 ≫ l : by rw [←category.assoc, kernel.condition]
. . . = 0 : has_zero_morphisms.zero_comp _ _ _,

We recall that u was the kernel of h. This means that i factors through u via
some morphism s : I → Ker g.

obtain ⟨s, hs⟩ := normal_mono.lift′ u i hih,

But then s ≫ ker g ≫ i = s ≫ u = i, but since i is a monomorphism,
s≫ ker g = 1I . In particular, this means that ker g is an epimorphism.

have hs′ : (s ≫ kernel.ι g) ≫ i = 1 I ≫ i,
by rw [category.assoc, hs, category.id_comp],

have : epi (kernel.ι g) := epi_of_epi_fac ((cancel_mono _).1 hs′),

But then ker g ≫ g = 0 = ker g ≫ 0, and since ker g is an epimorphism, g = 0
as required.

exact (cancel_zero_iff_epi _).1 this _ _ (kernel.condition g)
end □

This was an example of a typical proof using abelian categories: Keep invoking
universal properties of kernels and cokernels until the result becomes apparent.

2.3. An epimorphism is the cokernel of its kernel. There is a theorem
that mathematicians like to succinctly state as follows: “In an abelian category,
an epimorphism is the cokernel of its kernel,” see for example Proposition 1.5.7 in
Borceux [5] or Lemma IX.1.8 in Aluffi [1]. One might be tempted to attempt to
formalize this statement in the following way.
lemma epi_is_cokernel_of_kernel [epi f] : f = cokernel.π (kernel.ι f)

The problem with this statement is that it is not always true. The reason is
that limits are only unique up to isomorphism, and so we may have to compose
the right hand side of the equation with an isomorphism for the lemma to become
correct.

This is not an inaccuracy in the mathematical formulation. Limits are not only
unique up to isomorphism, but they are unique up to unique cone isomorphism, or,
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put differently, unique up to a unique preferred isomorphism that has certain nice
properties, as laid out in Section 1.4.2 of the first chapter. So when a mathematician
talks about the kernel, there is no confusion about which kernel they mean: It is
always possible to translate statements about one kernel into statements about
another kernel using the preferred isomorphism.

However, to formalize a statement like this, we have to be a bit more precise.
An immediate fix would be to assert that there is some isomorphism i that can be
composed with coker ker f so that the statement becomes true. This would not be
a useful way to state the lemma for two reasons.

First, what we care about is usually not the precise morphism, but its universal
property: If ker f ≫ g = 0 for some g, we want g to uniquely factor through f . The
statement of this lemma should make this property easy to use.

Second, there is another unique-up-to-isomorphism problem hiding in the state-
ment: The morphism ker f is also only unique up to preferred isomorphism! So
maybe we do not care about a situation where ker f ≫ g = 0, but h≫ g = 0, where
h is some morphism with the universal property of the kernel of f . In this way, the
lemma as originally stated was actually too weak.

Putting these two factors together, we arrive at the following way to state the
lemma.
def epi_is_cokernel_of_kernel [epi f] (s : fork f 0) (h : is_limit s) :

is_colimit (cokernel_cofork.of_π f (kernel_fork.condition s))

The input is any morphism fork.ι s satisfying the universal property of the
kernel of f , and the output is the statement “f has the universal property of the
cokernel of fork.ι s.”

2.4. The pullback of an epimorphism. Consider the diagram

P X

Y Z,

j

i f

g

where (P, i, j) are obtained by taking the pullback of f and g. If f is a monomorphism,
then i is also a monomorphism. This is true without any assumptions on the category
C (except, of course, that the pullback of f and g exists). There is a simple proof
using the existensionality property of limits that we have contributed to the Lean
category theory library4.

If f is instead an epimorphism, then i will not be an epimorphism in general,
but the result becomes true again if we require C to be abelian. This fact will be
central to our definition of pseudoelements in Section 5.

Before we can state the proof, we require a slightly technical result about the
diagram in Figure 1, where p := j ≫ ι1 + i≫ ι2 and d := π1 ≫ f − π2 ≫ g. In the
proof that i is an epimorphism if f is we will need to know that d is a cokernel of p.
To show that, we use the fact that an epimorphism is the cokernel of its kernel (if f
is an epimorphism, then so is d), so it suffices to show that p is a kernel of d.

Using the definitions of p and d as well as the properties of biproducts and the
fact that the diagram is a pullback it is straightforward to verify that p≫ d = 0.
def pullback_to_biproduct_fork : fork (biproduct.desc f (−g)) 0 :=
kernel_fork.of_ι (pullback_to_biproduct f g) $

by rw [biproduct.lift_desc, neg_right, pullback.condition, add_right_neg]

4see https://github.com/leanprover-community/mathlib/commit/e8ad2e385d1546535a3ba
dea6dedaf7b85c116a9.

https://github.com/leanprover-community/mathlib/commit/e8ad2e385d1546535a3badea6dedaf7b85c116a9
https://github.com/leanprover-community/mathlib/commit/e8ad2e385d1546535a3badea6dedaf7b85c116a9
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P X

X ⊞ Y

Y Z,

j

i

p ι1

f

π1

π2

dι2

g

Figure 1. Commutative diagram illustrating the interaction be-
tween pullbacks and biproducts.

Next, we have to prove that every morphism t : T → X ⊞Y satisfying t≫ d = 0
factors uniquely through P . The proof is standard: We translate the universal
property of being a kernel of d into the universal property of being a pullback of
f and g, which allows us to construct the lift. To show uniqueness, we use the
existensionality lemma for pullbacks.

When formalizing this proof, an interesting issue arises. From the definition
of an abelian category, the only limits we know exist are the initial object, kernels
and binary products. We also have the dual colimits: A terminal object, cokernels
and binary coproducts. We have already seen that this implies that an abelian
category also has all equalizers and coequalizers. It can be shown that a category
with equalizers, binary products and a terminal object has all finite limits. However,
this fact is not fully available in mathlib. The missing piece is constructing finite
products from binary products and a terminal objects. The idea of the construction
is very simple, but implementing it in Lean is more intricate than it looks. The
result has been formalized in Lean by Nawrocki as part of the Topos project [18],
but during development of the theory of abelian categories we decided against using
this result. Instead, we directly constructed pullbacks from equalizers and binary
products using a very simple method and contributed the construction to mathlib5.

When we switched to using this construction, the proof that p is a kernel of d
ceased to compile. The reason was due to implementation details of the construction
leaking into the proof. Lean provides the ext tactic that automatically searches
for applicable existensionality lemmas and applies them as long as it finds more
applicable lemmas. When the complicated construction of pullbacks in abelian
categories is used, then Lean correctly finds and applies the existensionality lemma
for pullbacks when calling ext. However, when the direct construction, which
constructs a pullback as an equalizer of a product, is used, then Lean notices6 that
it can apply the existensionality lemma for equalizers. After applying that, it even
notices that it can apply the existensionality lemma for products. But after applying
these lemmas, the existensionality lemma for pullbacks is not applicable any more,
and the rest of the proof fails.

There are two ways to fix this: Instead of using ext, we could instead apply
pullback.ext directly. The other option, and the one we elected to use, is to tell Lean

5see https://github.com/leanprover-community/mathlib/commit/c240fcb38cfdbe15b790f
8f62dae391e194277bd.

6The fact that Lean is able to look into the construction of the pullback is rather remarkable.
Starting from our instantiation of has_pullbacks, we construct the pullback of a diagram that is
naturally isomorphic to the diagram we are interested in, and transport the limit property over to
the correct diagram via this natural isomorphism. This makes implementation easier, but adds
multiple layers of indirection for Lean to sift through. Lean, however, seems to have no problem
with that.

https://github.com/leanprover-community/mathlib/commit/c240fcb38cfdbe15b790f8f62dae391e194277bd
https://github.com/leanprover-community/mathlib/commit/c240fcb38cfdbe15b790f8f62dae391e194277bd
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not to unfold the construction of the pullback by locally marking the corresponding
definition as irreducible:
local attribute [irreducible]

has_limit_cospan_of_has_limit_pair_of_has_limit_parallel_pair

From an engineering perspective, there is a strong argument to be made for
constructions like this to be irreducible by default so that there is no way for
these implementation details to leak (or, even worse, to actually be used in a
proof). However, the trend in the Lean mathematical library is rather the opposite:
Mathematicians love to rely on implementation details, and formal proofs that
attempt to be independent of implementation details can be significantly harder to
write, so a great deal of effort is spent in making sure constructions have nice and
usable definitional properties. From this perspective, our requirements in this proof
are the exception instead of the rule.

Finally, we can state our desired property of pullbacks.
instance epi_pullback_of_epi_f [epi f] : epi (pullback.snd : pullback f g −→ Y)

The proof is similar in style to the portion of the proof of image factorization
we presented in detail, so we will omit it here, except for mentioning that at this
point we need the full power of the statement that epimorphisms are cokernels of
their kernels as discussed in Section 2.3.

3. Exact sequences

As we have already seen, exactness plays a major role in homological algebra, so
we are naturally interested in defining it in the general context of abelian categories.

Recall that in the category of R-modules, we called the sequence

P Q R
f g

of linear maps exact if the kernel of g coincides with the image of f . This definition
cannot be directly transferred to general abelian categories, again due to the fact
that kernels are not unique. There are several ways to fix this problem. Borceux [5]
defines exactness of f and g to mean that ker coker f has the universal property
of ker g. Another way is to assert that the canonical map Ker coker f → Ker g is
an isomorphism. This slightly stronger sounding statement is in fact equivalent to
the one before. We have chosen to adopt yet another equivalent definition, used by
Aluffi [1]:
def exact {P Q R : C} (f : P −→ Q) (g : Q −→ R) : Prop :=
f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0

We chose this definition because it is very easy to write down and because it is
very easy to verify both in abstract situations, but importantly also for concrete
abelian categories. At the same time, it is easy to show that it is equivalent to
the definitions mentioned before. Note however that we can freely move between
equivalent definitions, so the exact definition does not matter7.

We prove that our definition implies the first definition above. For this, we
first have to show that ker coker f ≫ g = 0, which is true because the map
P → Ker coker g is an epimorphism as shown in Section 2.1.
def exact_fork {P Q R : C} (f : P −→ Q) (g : Q −→ R) (e : exact f g) :

kernel_fork g :=
kernel_fork.of_ι (kernel.ι (cokernel.π f)) $

(preadditive.cancel_zero_iff_epi (factor_thru_image f)).1
(by apply_instance) _ (kernel.ι (cokernel.π f) ≫ g) $

7That is, as long as we assume classical logic. Otherwise, it will make a difference whether
our definition is a Prop, like the definition we chose, or carries data like the other definitions.
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by rw [←category.assoc, image.fac f, e.1]

Then we can verify that ker coker f has the universal property of ker g.
def exact_ker {P Q R : C} (f : P −→ Q) (g : Q −→ R) (e : exact f g) :

is_limit $ exact_fork f g e

We also give the well-known characterization of mono and epi in terms of exact
sequences: A morphism f is a monomorphism if and only if (0, f) is an exact
sequence, where 0 is any zero morphism.
lemma exact_zero_of_mono (P : C) {Q R : C} (f : Q −→ R) [mono f] :

exact (0 : P −→ Q) f

lemma mono_of_exact_zero (P : C) {Q R : C} (f : Q −→ R) (h : exact (0 : P −→ Q) f) :
mono f

Finally, we show that if (f, g) is an exact sequence and f is a monomorphism,
then f has the universal property of ker g.
def kernel_of_mono_exact {P Q R : C} (f : P −→ Q) [mono f] (g : Q −→ R)

(h : exact f g) : is_limit $ kernel_fork.of_ι f h.1

This is a direct consequence of the fact that ker coker f has the universal property
of ker g, because if f is mono, then so is the map P → Ker coker f from image
factorization. But since that map is also epi, it is an isomorphism, so the maps f
and ker coker g differ only by an isomorphism8.

The reason why the last result is so interesting is because it naturally occurs
in short exact sequences, which abound in homological algebra. We will see an
application of this result in Section 6.

4. Another look at the category of modules

In order to be able to use the theory we are developing, it is necessary to connect
it to the existing mathematical infrastructure in the Lean mathematical library.
Specifically, we have to show that the categories we are interested in are in fact
abelian and that our categorical characterization of exactness matches with the
concrete notion of exactness.

Motivated by the examples we have seen in the introduction, we have performed
this verification work for the category of R-modules9.

Unlike in the preceding and the following sections, in this section, we will use the
symbols Ker f and ker f for the kernel of a linear map f : M → N of modules, and we
will use the symbols Coker f and coker f for the projection coker f : N →M/ Im f .

4.1. First results. Recall that for a category to be abelian, we need preaddi-
tivity, a zero object, kernels and cokernels, binary products and coproducts, and
the fact that every monomorphism is a kernel and every epimorphism is a cokernel.

Preadditivity is very easy to verify. It is also clear what the zero object is: The
trivial module. Lean provides a standard type with one member called punit for
which countless instances have been defined. Among these is a module structure, so
we can use punit as our zero object.

8Or, put differently, a monomorphism is the kernel of its cokernel. We already know that!
9Ideally, we would like to say that this also immediately implies that the category of abelian

groups is also abelian—after all, the category of Z-modules is “equal” to the category of abelian
groups. The Lean mathematical library contains a proof of the fact that Ab and ModZ are
equivalent, but the machinery to transfer properties along equivalences does not exist yet. In
particular, the Lean mathematical library develops the theory of modules and the theory of abelian
groups independently, and for the transferred instance to have definitonally nice properties, it
would be necessary to somehow connect the two different notions of kernels and quotients for
abelian groups and modules.
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For kernels, cokernels, products and coproducts, we want to reuse the existing
theory developed in the linear algebra section of the Lean mathematical library.
This works essentially as expected, but there is some friction due to the fact that this
work appears at the intersection of two “languages”: The language of modules and
the language of categories. Even though the expressions f ≫ g and g.comp f (this
is composition of linear maps) are definitionally equal (as they should be), if the
wrong form of the expression is present in the goal, the simplifier may fail to apply a
lemma. This is especially painful for arguments where lemmas from category-world
and lemmas from algebra-world must be used in alternating fashion. In these proofs,
we have made much use of the erw tactic, which—sometimes—manages to apply
lemmas even if the goal is stated in the wrong form. This is much less verbose than
making heavy use of the change tactic to bring the goal in the correct form. We also
use the following helper definition, which promotes a linear map to a morphism in
the category of modules:
def up (g : A →l[R] B) : (of R A) −→ (of R B) := g

It is used in cases where Lean expects a morphism in the category of R-modules.
Sometimes, supplying a linear map for this morphism works, but in many cases,
it produces an error. The definition up can be used to fix the error. One might
conjecture that writing (g : (of R A) −→ (of R B)), i.e., inserting a type annotation,
should work just as well as up g, but we have found several examples of cases where
the explicit type specification does not help.

4.2. Monomorphisms and epimorphisms. A prerequisite to showing that
every monomorphism is a kernel is knowing that in the category of R-modules,
monomorphisms are precisely injective linear maps and epimorphisms are precisely
surjective linear maps.

To see why a monomorphism f : M → N of R-modules is injective, consider the
diagram

Ker f M N.
ker f

0
f

Recall that in this section Ker f is the kernel of f as a submodule of M and
ker f is the inclusion of Ker f into M . Since ker f ≫ f = 0 = 0≫ f and since f is
a monomorphism, we have ker f = 0 (i.e., the inclusion of the kernel of f into M is
the zero map). But this implies Ker f = Im ker f = Im 0 = 0 (i.e., the kernel of f is
the trivial module), and we are done since injective linear maps are precisely the
linear maps with trivial kernel.
lemma ker_eq_bot_of_mono [mono f] : f.ker = ⊥

For the other direction, we simply have to notice that the usual definition of
injectivity of functions tells us that f(u(x)) = f(v(x)) implies u(x) = v(x). But by
functional extensionality, this means that f is a monomorphism.
lemma mono_of_ker_eq_bot (hf : f.ker = ⊥) : mono f

Dual arguments and characterizations hold for f an epimorphism.

4.3. Monomorphisms are normal. Let f : M → N be a monomorphism
of R-modules, i.e., by the preceding section, an injective linear map. We have to
show that there is some morphism g such that f has the universal property of the
kernel of g. There is an obvious choice for g: We choose g to be the quotient map
N → N/ Im f . Since we are in the category of modules, it is non-trivial to verify
the universal property directly, because the only ways of constructing maps that are
available to us are inclusions of subtypes and lifting via quotients, but with just an
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injective linear map available, we have to get a bit creative. Consider the following
diagram.

M N N/ Im f

M/ Ker f Ker g

f

p

g

h

i

Here, p is is the projection, and i is the inclusion. Our goal is to construct h
such that the diagram commutes and p and h are isomorphisms. Since we have
instantiated our categorical kernels in the category of modules to be the inclusion of
the kernel and i is just that, Lean already knows that i has the universal property
of the kernel of g. Then we can use a categorical result that allows us to transport
the universal property of i along the isomorphism p≫ h to f .

It is obvious that p is an isomorphism: Ker f is the trivial submodule! How do
we construct h? Mathematically, this is easy: The first isomorphism theorem for
modules gives an isomorphism M/ Ker f ∼= Im f , but by construction, Ker g = Im f ,
and we are done.

If we try to formalize this intuition in Lean, we run into a problem: The
equality Ker g = Im f is not definitional. In practice, this means that the first
isomorphism theorem, which is part of the Lean mathematical library, gives a map
M/ Ker f → Im f , but what what we actually want is a map M/ Ker f → Ker coker f ,
where by coker f we mean the projection onto the quotient N/ Im f . While we can
use Lean’s rewriting mechanism to change Im f into Ker coker f or vice versa, this
will make it impossible to verify that the diagram is commutative due to how the
rewriting engine manipulates terms.

In the category theory library, there is a mechanism called eq_to_iso which
is designed to deal with this kind of problem. If X and Y are two objects in a
category, eq_to_iso takes a proof of X = Y and outputs an isomorphism X ∼= Y
which is just the identity on X. In some cases, this mechanism can be used to deal
with problems involving non-definitional equality. However, in our case it is not
applicable, once again because it prevents checking commutativity of the diagram.

The path we have chosen to solve this issue is to restate and reprove the
isomorphism theorem in a form that yields a map M/ Ker f → Ker coker f directly.
Very few modifications to the proof are necessary to achieve this goal. Remarkably,
after doing this, commutativity of the diagram is pointwise definitional (i.e., the
proof is ext, refl). This is a result of Lean’s native support for quotient types.

Using this, we can complete the proof that every monomorphism has the
universal property of the kernel of some morphism. The proof that every epimorphism
is the cokernel of some morphism works dually. This concludes the proof that the
category of modules is abelian.

4.4. Exact sequences. Finally, it remains to show that the notion of exact
sequence we have defined in abelian categories coincides with the notion of exact
sequence for modules that we have seen in the introduction.

We rely on two lemmas about modules10.
lemma range_le_ker_iff {f : M1 →l[R] M2} {g : M2 →l[R] M3} :

range f ≤ ker g ↔ g.comp f = 0

lemma ker_le_range_iff {f : M1 →l[R] M2} {g : M2 →l[R] M3} :
ker g ≤ range f ↔ f.range.mkq.comp g.ker.subtype = 0

10see https://github.com/leanprover-community/mathlib/commit/b50443020d530379735
7d82f121810a9917e269b.

https://github.com/leanprover-community/mathlib/commit/b50443020d5303797357d82f121810a9917e269b
https://github.com/leanprover-community/mathlib/commit/b50443020d5303797357d82f121810a9917e269b
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The first lemma states that Im f ⊆ Ker g if and only if g ◦ f = 0, while the second
states that Ker g ⊆ Im f if and only if the composition Ker g → M2 → M2/ Im f
vanishes.

Both lemmas are mathematically obvious and allow very quick proofs using
the tools provided by the Lean mathematical library for manipulating submodules.
Now, our characterization of exactness becomes a mere matter of restating the above
lemmas in a slightly different way, owed to the fact that the categorical kernels and
cokernels we have defined for the category of modules are definitionally equal to the
maps that appear in the second lemma of the previous listing.
lemma exact_is_exact : exact f g ↔ f.range = g.ker :=
⟨λ h, le_antisymm (range_le_ker_iff.2 h.1) (ker_le_range_iff.2 h.2),
λ h, ⟨range_le_ker_iff.1 $ le_of_eq h, ker_le_range_iff.1 $ le_of_eq h.symm⟩⟩

5. Pseudoelements

Recall that the proof of the four lemma in the category of modules heavily relies
on studying how elements of the modules are manipulated by linear maps. Using
only what we have seen so far, this proof does not naturally generalize to abelian
categories: In general, objects in abelian categories are not going to be sets with
some additional structure as in the category of modules or the category of abelian
groups, and hence there is no notion of “element”.

Instead, a priori, we have to use arrow-theoretic proofs, like the proofs seen in
Section 2. These proofs can be difficult both to write and to comprehend (consider,
for example, the arrow-theoretic proof of the four lemma given by Kashiwara [14,
Lemma 8.3.13]), so we are interested in a simpler way of proving theorems about
abelian categories.

From a mathemathical perspective, there is a simple answer to this problem. It
is called the Freyd-Mitchell embedding theorem [12]. We will not give the precise
statement here, but in effect, it says the following: When proving a statement about
a diagram in an abelian category C, without loss of generality we may assume that
C is the category of R-modules for some (not necessarily commutative) ring R. So
when we proved the four lemma for modules, we really already proved it for general
abelian categories.

The downside to this theorem is that its proof is rather involved and giving a
formal proof would be a somewhat monumental effort, so at the current time, this
approach is impractical.

Pseudoelements are a method of formally assigning a set of “elements” to each
object of an abelian category so that morphisms can be applied to them in a way
that behaves similarly to elements in the category of abelian groups. In particular,
there are very natural characterizations of properties such as being monic or epic
and exactness in terms of pseudoelements.

In this way, the use of pseudoelements provides an alternative to the Freyd-
Mitchell embedding theorem, but unlike the embedding theorem, the properties of
pseudoelements are easy to prove, even formally. The downside is that there are some
desirable properties of elements in the category of abelian groups that are not true for
pseudoelements. For example, it is in general not true that two morphisms are equal
if they act in the same way on pseudoelements (i.e., there is no funext for morphisms
in abelian categories). This also means that we cannot construct morphisms in
abelian categories by dictating their action on pseudoelements. Another disadvantage
is that the pseudoelements of an object do not form an abelian group, so we cannot
add or subtract them. There is a very limited construction on pseudoelements that
in some ways behaves like subtraction, but it lacks some very important properties
that we are used to from the category of abelian groups.
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We will now describe our formalization of the therory of pseudoelements. There
are various slightly different ways to construct pseudoelements [3, 5, 16]. Our
formalization follows Borceux [5].

5.1. Defining pseudoelements. The pseudoelements of an object P ∈ C will
be equivalence classes of arrows with codomain P . We will use Lean’s quotient
types, so we first collect the morphisms with codomain P in a type. This is easy
using Lean’s sigma types.
def with_codomain (P : C) := Σ Q, Q −→ P

Next, we have to define when two arrows are equivalent. We call two arrows
f : X → P and g : Y → P pseudo-equal if there is some object R and epimorphisms
p : R→ X and q : R→ Y such that p≫ f = q ≫ g.
def pseudo_equal (P : C) (f g : with_codomain P) : Prop :=
∃ (R : C) (p : R −→ f.1) (q : R −→ g.1) [epi p] [epi q], p ≫ f.2 = q ≫ g.2

Note the use of f.1 and f.2 in the definition. Members of the type with_codomain
P are really tuples of an object in C and a morphism from that object to P .

Let us show that pseudo-equality is an equivalence relation. Reflexivity and
symmetry are apparent from the definition.
lemma pseudo_equal_refl {P : C} : reflexive (pseudo_equal P) :=
λ f, ⟨f.1, 1 f.1, 1 f.1, by apply_instance, by apply_instance, by simp⟩

lemma pseudo_equal_symm {P : C} : symmetric (pseudo_equal P) :=
λ f g ⟨R, p, q, ep, eq, comm⟩, ⟨R, q, p, eq, ep, comm.symm⟩

Transitivity is not much harder. Assume that f, g, h are arrows with codomain
P and that f and g as well as g and h are pseudo-equal. This means that we have
the following commutative diagram (so far, without the dotted arrows).

•

• •

• • •

P

k ℓ

p q p′ q′

f
g h

If we now take the pullback of q and p′ we obtain the dotted arrows k and ℓ
making the diagram commute. But by our final result in Section 2.4, these arrows
are epimorphisms. Then so are k ≫ p and l ≫ q′, and it is easily verified that
k ≫ p≫ f = ℓ≫ q′ ≫ h, so f and h are pseudo-equal as required.
lemma pseudo_equal_trans {P : C} : transitive (pseudo_equal P) :=
λ f g h ⟨R, p, q, ep, eq, comm⟩ ⟨R′, p′, q′, ep′, eq′, comm′⟩,
begin

refine ⟨pullback q p′, pullback.fst ≫ p, pullback.snd ≫ q′, _, _, _⟩,
{ resetI, exact epi_comp _ _ },
{ resetI, exact epi_comp _ _ }
{ rw [category.assoc, comm, ←category.assoc, pullback.condition,

category.assoc, comm′, category.assoc] }



5. PSEUDOELEMENTS 35

end

Now we are ready to define the pseudoelements of P as the quotient of
with_codomain P by being pseudo-equal.
lemma pseudo_equal_equiv {P : C} : equivalence (pseudo_equal P) :=
⟨pseudo_equal_refl, pseudo_equal_symm, pseudo_equal_trans⟩

def pseudoelements.setoid (P : C) : setoid (with_codomain P) :=
{ r := pseudo_equal P,

iseqv := pseudo_equal_equiv }

local attribute [instance] pseudoelements.setoid

def pseudoelements (P : C) : Type (max u v) := quotient (pseudoelements.setoid P)

Next, we use Lean’s coercion mechanism to allow us to write P instead of
pseudoelements P in places where Lean is able to infer what we mean.
def object_to_sort : has_coe_to_sort C :=
{ S := Type (max u v),

coe := λ P, pseudoelements P }

This, together with a similar mechanism for morphisms, will make proofs using
pseudoelements look almost identical to proofs using actual elements in a concrete
category.

5.2. The action of a morphism on pseudoelements. A morphism f : P →
Q transforms an arrow a : • → P with codomain P into an arrow a ≫ f : • → Q
with codomain Q by composition.
def app {P Q : C} (f : P −→ Q) (a : with_codomain P) : with_codomain Q :=
⟨a.1, a.2 ≫ f⟩

Composing with the projection to the quotient yields a mapping with_codomain
P → pseudoelements Q. Our goal is to lift this mapping to a function pseudoelements
P → pseudoelements Q. The rules of quotient types tell us that such a lift exists if
two pseudo-equal arrows map to the same pseudoelement. But this is a simple
consequence of the associativity rule for composition.
lemma pseudo_apply_aux {P Q : C} (f : P −→ Q) (a b : with_codomain P) :

a ≈ b → [app f a] = [app f b] :=
λ ⟨R, p, q, ep, eq, comm⟩, quotient.sound ⟨R, p, q, ep, eq,

show p ≫ a.2 ≫ f = q ≫ b.2 ≫ f,
by rw [←category.assoc, comm, category.assoc]⟩

Using this, we can define our lift.
def pseudo_apply {P Q : C} (f : P −→ Q) : P → Q :=
quotient.lift (λ (g : with_codomain P), [app f g]) (pseudo_apply_aux f)

Note the different types of arrows in the previous listing. P −→ Q is the type
of morphisms in the category C. On the other hand, the P → Q is the type of
functions between the types P and Q. But P and Q are not types. Instead, they
are objects in C, so Lean looks for ways to interpret P and Q as types, and it
finds the coercion we set up earlier. Therefore P → Q is actually shorthand for
pseudoelements P → pseudoelements Q.

Now we tell Lean that it can regard a morphism f : P → Q as a function from
the pseudoelements of P to the pseudoelements of Q. This allows us to use Lean’s
function application syntax for morphisms and pseudoelements.
def hom_to_fun {P Q : C} : has_coe_to_fun (P −→ Q) := ⟨_, pseudo_apply⟩
local attribute [instance] hom_to_fun
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The first property of morphisms and pseudoelements that we will show is that
function composition is the same as composition of morphisms with regard to the
action on pseudoelements.
theorem comp_apply {P Q R : C} (f : P −→ Q) (g : Q −→ R) (a : P) :

(f ≫ g) a = g (f a) :=
quotient.induction_on a $ λ x, quotient.sound $ by unfold app; rw category.assoc

The proof demonstrates a typical approach to proving statements about quo-
tients. Elements of a quotient type are opaque objects, since support for quotients is
provided by the Lean kernel. It is possible to prove properties of quotients by using
quotient.induction_on, which turns goals of the form Pa, where P is some statement
and a is a member of a quotient type into goals of the form P [a], where a is now a
member of the base type of the quotient and [a] is its equivalence class inside the
quotient. In other words, quotient.induction_on is a convenient way to argue using
surjectivity of the quotient map. It uses type inference to automatically transform
the goal. If the goal is then of the form [a] = [b], we can use quotient.sound to
transform the goal into a ∼ b, where ∼ is the equivalence relation that we quotiented
out. Now we have removed all mention of quotient types from our goal and can
write our proof.

5.3. The zero pseudoelement. We already mentioned at the beginning of
this section that there is no abelian group structure on the pseudoelements of
P . However, there is a distinguished pseudoelement for every object P : It is an
equivalence class that contains precisely all the zero morphisms with codomain P .
The existence of this pseudoelement is asserted by the following lemma, which states
that for some fixed zero arrow with codomain P , an arrow f is pseudo-equal to this
arrow if and only if f is also a zero arrow.
lemma pseudo_zero_aux {P : C} (Q : C) (f : with_codomain P) :

f ≈ (0 : Q −→ P) ↔ f.2 = 0 :=
⟨λ ⟨R, p, q, ep, eq, comm⟩, (preadditive.cancel_zero_iff_epi p).1 ep _ f.snd $

by erw [comm, has_zero_morphisms.comp_zero],
λ hf, ⟨biproduct f.1 Q, biproduct.fst, biproduct.snd, by apply_instance,

by apply_instance,
by erw [hf, has_zero_morphisms.comp_zero, has_zero_morphisms.comp_zero]⟩⟩

It is sensible to call this equivalance class the zero pseudoelement. We tell Lean
to associate the symbol 0 with this pseudoelement.
def pseudo_zero {P : C} : P := [(0 : P −→ P)]
instance {P : C} : has_zero P := ⟨pseudo_zero⟩

The zero pseudoelement behaves like one would expect: A morphism maps the
zero pseudoelement to the zero pseudoelement and a zero morphism sends every
pseudoelement to the zero pseudoelement.
theorem apply_zero {P Q : C} (f : P −→ Q) : f 0 = 0 :=
by erw [pseudo_apply_bar, has_zero_morphisms.zero_comp]; exact zero_eq_zero

theorem zero_apply {P Q : C} (a : P) : (0 : P −→ Q) a = 0 :=
quotient.induction_on a $ λ a′,

by erw [pseudo_apply_bar, has_zero_morphisms.comp_zero]; exact zero_eq_zero

5.4. Characterizations in terms of pseudoelements. So far, we have
developed a theory of pseudoelements, but we have not demonstrated why this
theory is useful at all. In this section, we give characterizations of interesting
properties of morphisms in an abelian category in terms of pseudoelements. In the
next section, we will see how these characterizations can be used to prove theorems.
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The first characterization is a special case of the existensionality principle: A
morphism is the zero morphism if (and, as we already know, only if) it maps every
pseudoelement to the zero pseudoelement.
theorem zero_morphism_ext {P Q : C} (f : P −→ Q) : (∀ a, f a = 0) → f = 0 :=
λ h, by { rw ←category.id_comp _ f,

apply (pseudo_zero_iff ((1 P ≫ f) : with_codomain Q)).1,
exact h (1 P) }

Next, we show that the known charactization of injectivity for modules, namely
that a linear map is injective if and only if its kernel is trivial, extends to pseudoele-
ments:
theorem pseudo_injective_of_mono {P Q : C} (f : P −→ Q) :

mono f → function.injective f

lemma zero_of_map_zero_of_pseudo_injective {P Q : C} (f : P −→ Q) :
function.injective f → (∀ a, f a = 0 → a = 0)

theorem mono_of_zero_of_map_zero {P Q : C} (f : P −→ Q) :
(∀ a, f a = 0 → a = 0) → mono f

Similarly, an epimorphism is precisely a morphism that is surjective on pseu-
doelements:
theorem pseudo_surjective_of_epi {P Q : C} (f : P −→ Q) :

epi f → function.surjective f

theorem epi_of_pseudo_surjective {P Q : C} (f : P −→ Q) :
function.surjective f → epi f

Generalizing this, we provide characterizations of exactness that match the
situation known from abelian groups.
theorem pseudo_exact_of_exact {P Q R : C} {f : P −→ Q} {g : Q −→ R} :

exact f g → (∀ a, g (f a) = 0) ∧ (∀ b, g b = 0 → ∃ a, f a = b)

theorem exact_of_pseudo_exact {P Q R : C} (f : P −→ Q) (g : Q −→ R) :
(∀ a, g (f a) = 0) ∧ (∀ b, g b = 0 → ∃ a, f a = b) → exact f g

Next, we construct a very weak form of subtraction of pseudoelements: If f
is a morphism and x, y are pseudoelements satisfying f(x) = f(y), then we find
some pseudoelement z such that f(z) = 0 and for every other morphism g such that
g(y) = 0 we have g(x) = g(z).
theorem sub_of_eq_image {P Q : C} (f : P −→ Q) (x y : P) : f x = f y →
∃ z, f z = 0 ∧ ∀ (R : C) (g : P −→ R), (g : P −→ R) y = 0 → g z = g x

Finally, we provide a computational tool that is not directly inspired from
proofs in the category of abelian groups, but is nonetheless useful. It states that
the categorical pullback behaves with regards to pseudoelements like it would with
regards to elements of abelian groups.
theorem pseudo_pullback {P Q R : C} {f : P −→ R} {g : Q −→ R} {p : P} {q : Q} :

f p = g q → ∃ (s : pullback f g), pullback.fst s = p ∧ pullback.snd s = q

Borceux [5, Proposition 1.9.5] additionally asserts that the pseudoelement s is
unique. However, his proof of uniqueness is very brief and we were not able to turn
his sketch into a full pen-and-paper proof, so we have not formalized this claim.

The proofs of these characterizations range from very easy to somewhat involved.
As an example, we present the proof of one of the more difficult characterizations:
If a pair of morphisms is exact on pseudoelements, then it is exact.
theorem exact_of_pseudo_exact {P Q R : C} (f : P −→ Q) (g : Q −→ R) :

(∀ a, g (f a) = 0) ∧ (∀ b, g b = 0 → ∃ a, f a = b) → exact f g :=
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Proof. We have to show that f ≫ g = 0 and ker g ≫ coker f = 0. The first
claim follows directly from the hypothesis using the existensionality lemma for the
zero morphism, and it remains to show the second claim.

λ ⟨h1, h2⟩, ⟨zero_morphism_ext _ $ λ a, by rw [comp_apply, h1 a],
begin

We refer to the following diagram.

• P Coker f R

Ker coker f Q

T Ker g

Z

a

p f

i

g

k

j

ker gr

q

An easy calculation shows that if we apply g to the pseudoelement induced by
ker g, we get the zero pseudoelement.

have : g (kernel.ι g) = 0 := comp_zero _ _ (kernel.condition _),

This means that we get a preimage a : • → P satisfying f [a] = [ker g], which
means that there is some Z and epimorphisms r and q such that r ≫ a≫ f = q ≫
ker g.

obtain ⟨a′, ha⟩ := h2 _ this,
obtain ⟨a, ha′⟩ := quotient.exists_rep a′,
rw ←ha′ at ha,
obtain ⟨Z, r, q, er, eq, comm⟩ := quotient.exact ha,

Let T be the pullback of i and ker g, where f = p≫ i is the image factorization
of f . Then r ≫ a≫ p and q factor through the pullback.

obtain ⟨z, hz1, hz2⟩ := pullback.lift′ (kernel.ι (cokernel.π f)) (kernel.ι g)
(r ≫ a.2 ≫ factor_thru_image f) q (by simp only [category.assoc, image.fac];

exact comm),
let j : pullback (kernel.ι (cokernel.π f)) (kernel.ι g) −→ kernel g :=

pullback.snd,

Now j is a monomorphism, because i is, and an epimorphism, because q is. But
in an abelian category, a monomorphism that is an epimorphism is an isomorphism.

have pe : epi j, by resetI; exact epi_of_epi_fac hz2,
have pm : mono j := by apply_instance,
haveI : is_iso j := @mono_epi_iso _ _ _ _ _ _ pm pe,

But then we can write ker g ≫ coker f as j−1 ≫ k ≫ i ≫ coker f , with
i = ker coker f , so ker g ≫ coker f = 0 as required.

rw (iso.eq_inv_comp (as_iso j)).2 pullback.condition.symm,
simp only [category.assoc, kernel.condition, has_zero_morphisms.comp_zero]

end⟩ □
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6. Diagram chasing in abelian categories

6.1. The four lemma revisited. Using the theory developed in Section 5,
we can now state and prove the four lemma in a general abelian category V.
variables {A B C D A′ B′ C′ D′ : V}
variables {f : A −→ B} {g : B −→ C} {h : C −→ D}
variables {f′ : A′ −→ B′} {g′ : B′ −→ C′} {h′ : C′ −→ D′}
variables {α : A −→ A′} {β : B −→ B′} {γ : C −→ C′} {δ : D −→ D′}
variables (fg : exact f g) (gh : exact g h) (fg′ : exact f′ g′) (gh′ : exact g′ h′)
variables (comm1 : α ≫ f′ = f ≫ β) (comm2 : β ≫ g′ = g ≫ γ)
variables (comm3 : γ ≫ h′ = h ≫ δ)

lemma four (hα : epi α) (hβ : mono β) (hδ : mono δ) : mono γ :=

Proof. Since the structure of this proof is identical to the structure of the
proof given in Section 3.2 of the first chapter, we will omit the commentary and
only show the formal proof.
mono_of_zero_of_map_zero _ $ assume (c : C) (hc : γ c = 0), show c = 0, from

have h c = 0, from
suffices δ (h c) = 0, from zero_of_map_zero _ (pseudo_injective_of_mono _) _

this,
calc δ (h c) = h′ (γ c) : by rw [←comp_apply, ←comm3, comp_apply]

. . . = h′ 0 : by rw hc

. . . = 0 : apply_zero _,

exists.elim ((pseudo_exact_of_exact gh).2 _ this) $ assume (b : B) (hb : g b = c),
have g′ (β b) = 0, from

calc g′ (β b) = γ (g b) : by rw [←comp_apply, comm2, comp_apply]
. . . = γ c : by rw hb
. . . = 0 : hc,

exists.elim ((pseudo_exact_of_exact fg′).2 _ this) $ assume (a′ : A′) (ha′ : f′ a′ =
β b),

exists.elim (pseudo_surjective_of_epi α a′) $ assume (a : A) (ha : α a = a′),

have f a = b, from
suffices β (f a) = β b, from pseudo_injective_of_mono _ this,
calc β (f a) = f′ (α a) : by rw [←comp_apply, ←comm1, comp_apply]

. . . = f′ a′ : by rw ha

. . . = β b : ha′,

calc c = g b : hb.symm
. . . = g (f a) : by rw this
. . . = 0 : (pseudo_exact_of_exact fg).1 _ □

This proof is nearly identical to the proof in the category of modules given in
Section 3.2 of the first chapter. The only difference is that we have substituted
lemmas about modules (for example ker_eq_bot) with lemmas about pseudoelements
(for example mono_of_zero_of_map_zero). See also Figure 2 for a comparison of the
goal states at the end of the proofs, further illustating how our use of Lean’s features
makes working with pseudoelements look and feel just like working with actual
elements in a concrete category.

6.2. Constructing morphisms. We have already discussed in the introduc-
tion of Section 5 that the notion of pseudoelement is too weak to define a morphism
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A B C D A′ B′ C′ D′ : Type u,
f : A →l[R] B,
g : B →l[R] C,
h : C →l[R] D,
f′ : A′ →l[R] B′,
g′ : B′ →l[R] C′,
h′ : C′ →l[R] D′,
α : A →l[R] A′,
β : B →l[R] B′,
γ : C →l[R] C′,
δ : D →l[R] D′,
fg : range f = ker g,
gh : range g = ker h,
fg′ : range f′ = ker g′,
gh′ : range g′ = ker h′,
comm1 : ⇑f′ ◦ ⇑α = ⇑β ◦ ⇑f,
comm2 : ⇑g′ ◦ ⇑β = ⇑γ ◦ ⇑g,
comm3 : ⇑h′ ◦ ⇑γ = ⇑δ ◦ ⇑h,
hα : range α = ⊤,
hβ : ker β = ⊥,
hδ : ker δ = ⊥,
c : C,
hc : ⇑γ c = 0,
this : c ∈ ker h,
b : B,
hb : ⇑g b = c,
this : ⇑β b ∈ ker g′,
a′ : A′,
ha′ : ⇑f′ a′ = ⇑β b,
a : A,
ha : ⇑α a = a′,
this : ⇑f a = b
⊢ c = 0

(a) In the category of R-modules

A B C D A′ B′ C′ D′ : V,
f : A −→ B,
g : B −→ C,
h : C −→ D,
f′ : A′ −→ B′,
g′ : B′ −→ C′,
h′ : C′ −→ D′,
α : A −→ A′,
β : B −→ B′,
γ : C −→ C′,
δ : D −→ D′,
fg : exact f g,
gh : exact g h,
fg′ : exact f′ g′,
gh′ : exact g′ h′,
comm1 : α ≫ f′ = f ≫ β,
comm2 : β ≫ g′ = g ≫ γ,
comm3 : γ ≫ h′ = h ≫ δ,
hα : epi α,
hβ : mono β,
hδ : mono δ,
c : ↥C,
hc : ⇑γ c = 0,
this : ⇑h c = 0,
b : ↥B,
hb : ⇑g b = c,
this : ⇑g′ (⇑β b) = 0,
a′ : ↥A′,
ha′ : ⇑f′ a′ = ⇑β b,
a : ↥A,
ha : ⇑α a = a′,
this : ⇑f a = b
⊢ c = 0

(b) In a general abelian category V

Figure 2. Comparison of goal states at the end of the proof of
the four lemma at different levels of generality. By using coercions
and quotient types, the proof using pseudoelements (right) looks
very similar to the proof using real elements (left), but it gives a
much more general result.

in an abelian category by dictating its action on pseudoelements. This is problem-
atic insofar as some of the diagram lemmas assert the existence of some morphism
f : X → Y with certain properties. The proof of such a diagram lemma in the
category of R-modules will generally proceed in four steps:

1. Let x ∈ X. Chase this x along the diagram to construct some y ∈ Y and
define f(x) := y.

2. If the construction of y involved some choice (for example when using an
exactness property), show that y is independent of that choice.

3. Show that this elementwise definition of f is linear.
4. Show that f has the desired properties by chasing elements.
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In a general abelian category, the first three steps are not available. Instead,
the only real way to construct new morphisms is by using universal properties. So a
modified proof strategy for general abelian categories is this:

1. Construct f by repeated applications of universal properties.
2. Show that f has the desired properties by chasing pseudoelements.

An example of this approach is the kernels lemma.

Lemma. Consider the following commutative diagram with exact rows and
columns:

A B C

D E F

G H I

γ δ ε

θ

ζ

λ

η

µ

ν ξ

Assume that δ, ε and ν are monomorphisms. Then there are unique morphisms
α : A→ B and β : B → C such that the diagram commutes. Furthermore, (α, β) is
exact.

Remark. The name “kernels lemma” stems from the fact that by the results
of Section 3, δ is a kernel of λ and ε is a kernel of µ.

Proof. Let us first construct the morphisms α and β. We have

γ ≫ ζ ≫ λ = γ ≫ θ ≫ ν = 0≫ ν = 0,

so γ ≫ ζ factors through δ, as δ is a kernel of λ.

def fill_left [mono δ] : { x : A −→ B // x ≫ δ = γ ≫ ζ } :=
limit_kernel_fork.lift′ _ (kernel_of_mono_exact _ _ δl) (γ ≫ ζ) $

by rw [category.assoc, comm1, ←category.assoc, γθ.1, zero_comp]

We can define β in exactly the same way.

def fill_right [mono ε] : { x : B −→ C // x ≫ ε = δ ≫ η } :=
limit_kernel_fork.lift′ _ (kernel_of_mono_exact _ _ εµ) (δ ≫ η) $

by rw [category.assoc, comm2, ←category.assoc, δl.1, zero_comp]

The diagram now commutes by construction and uniqueness follows from
uniqueness of lifts.

variables {α : A −→ B} {β : B −→ C}
variables (comm3 : α ≫ δ = γ ≫ ζ) (comm4 : β ≫ ε = δ ≫ η)
include comm3 comm4

lemma fill_left_unique [mono δ] : α = fill_left comm1 comm2 γθ δl εµ ζη νξ
lemma fill_right_unique [mono ε] : β = fill_right comm1 comm2 γθ δl εµ ζη νξ

It remains to show the exactness result. We show it for α and β instead of for
fill_left and fill_right because in applications, we may already have some α
and β and we only want the exactness result, so phrasing it this way saves us an
application of the uniqueness lemma.

lemma kernels [mono δ] [mono ε] [mono ν] : exact α β
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The reader who has familiarized themselves with the results of Section 5.4 will
have no difficulties filling in the proof, which is a bit lengthy but completely routine.
We will omit it here, and return to the proof once we can automate it11. □

11In the meantime, the reader may find a non-automated proof at https://github.com/Two
FX/lean-homological-algebra/blob/125b4b1dabdf7df88f517954ace6a6aa9f7054c8/src/diagra
m_lemmas.lean#L199.

https://github.com/TwoFX/lean-homological-algebra/blob/125b4b1dabdf7df88f517954ace6a6aa9f7054c8/src/diagram_lemmas.lean#L199
https://github.com/TwoFX/lean-homological-algebra/blob/125b4b1dabdf7df88f517954ace6a6aa9f7054c8/src/diagram_lemmas.lean#L199
https://github.com/TwoFX/lean-homological-algebra/blob/125b4b1dabdf7df88f517954ace6a6aa9f7054c8/src/diagram_lemmas.lean#L199


CHAPTER 3

An interactive tactic for diagram chasing

The goal of this chapter will be to develop a tactic that can synthesize diagram
chasing proofs based on some form of hint regarding how to perform the chase. It
should take little more time to formalize a proof by diagram chase than to perform it
to a live audience, and certainly much less time than to write down all the arguments
in detail.

In the first section of this chapter, we describe our algorithm for diagram chasing
from a high level perspective. Next, we will describe the implementation of our
algorithm as a tactic using the Lean metaprogramming framework [10]. Finally, we
present examples of proofs created using our tactic.

1. An algorithm for diagram chasing

We will first sketch the general approach to diagram chasing that our tactic
should follow. To do so, we must determine what the core information encapsulated
in a diagram chasing argument is. The answer is given by Aluffi [1, p. 180]: A
diagram chasing argument is determined by the path through the diagram that the
chase takes.

As an example, recall the statement of the four lemma.

A B C D

A′ B′ C ′ D′

f

α

g

β

h

γ δ

f ′ g′
h′

The proof amounts to showing that given c ∈ C such that γ(c) = 0, we already have
c = 0. Here is a graphical representation of the proof:

a b c

a′ b′

α

g

β

f ′

The image describes how to construct the various (pseudo)elements appearing in
the proof. Given this recipe, it only remains to show that these constructions are
possible and that the construction finishes the proof. In the case of the four lemma,
the latter amounts to showing that g(f(a)) = c, from which c = 0 by exactness.

There are two types of constructions. In the first type, which we call pushforward,
we have an element x of the domain of some morphism f : X → Y and wish to
construct an element y of the codomain such that f(x) = y. For example, this is
the face for the construction of b′ from b in the four lemma. This is very simple:
We simply set y := f(x).

In the second type, which we call pullback, we have an element y ∈ Y of the
codomain of some morphism f : X → Y and want to construct an element x of the
domain such that f(x) = y. There are two ways to do so: We can either use that
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44 3. AN INTERACTIVE TACTIC FOR DIAGRAM CHASING

f is an epimorphism or that f is part of some exact pair (f, g). However, we have
shown in Section 3 that being an epimorphism is equivalent to being part of an
exact pair (f, 0), so it will suffice to consider pulling back along exact sequences.

Let
X Y Z

f g

be an exact sequence and let y ∈ Y . The characterization of exactness from
Section 5.4 tells us that a preimage x ∈ X satisfying f(x) = y exists if and only
if g(y) = 0. Therefore, our algorithm must have some way of proving this type of
equality.

1.1. Proving equalities involving pseudoelements. We need to consider
the following problem: We are given hypotheses of the form

f1 ≫ · · · ≫ fn = g1 ≫ · · · ≫ gm

for morphisms fi and gi, which we will call commutativity lemmas as well as
hypotheses of the form

(f1 ≫ · · · ≫ fn)(a) = (g1 ≫ · · · ≫ gm)(b)
for morphisms fi and gi and pseudoelements a and b, which we will call element
lemmas. Our goal is to find a proof for a validity of an equality of the second type.

If all of our lemmas are of the second type, this is a problem in the theory of
equality with uninterpreted function symbols, which is equivalent to the congruence
closure problem, for which efficient algorithms are known [21], even if, like in our
case, the decision procedure needs to emit a proof [22]. In fact, an extension of
the concruence closure algorithm to the type theory in Lean has been developed by
Selsam and de Moura [24] and is available in Lean via the cc tactic.

However, we have decided against using congruence closure in our algorithm.
An immediate obstacle is that we have to support lemmas of the first type. This is
not a big problem: In our application there is only a finite and easy to explicitly
enumerate set of possible arguments of each type, so every lemma of the first type
can be efficiently transformed in a finite set of equalities of the second type.

A much larger problem is the performance of the cc tactic in practice. Despite
being one of the few Lean tactics that are implemented in C++ rather than in Lean
itself, in our tests the runtime of cc ranged in the seconds even for very simple
tasks, which makes it unsuitable for being used in the “inner loop” of some larger
automation.

For this reason, our algorithm uses a simple approach based on depth first
search that searches the entire graph of possible lemma applications for a path from
the left hand side to the right hand side. Note that this approach will, in general,
not even terminate when there are lemmas such as a = f(a). However, the lemmas
that occur in the proofs of the diagram lemmas are well-behaved and thus do not
exhibit this looping behavior1.

2. Infrastructure for diagram chasing

2.1. Structures for common objects. Before we can implement the algo-
rithm discussed in Section 1, it will be advantageous to provide some infrastructure
to facilitate the implementation. This has two main benefits: Working with an

1Of course, using a breadth first search instead of a depth first search solves this problem and
the algorithm will always terminate and find a proof, provided that a proof exists. The runtime of
the BFS-based approach will not be polynomial, but we strongly suspect that due to the small
input sizes a BFS-based approach would outperform the cc tactic in practice. We have not tested
this approach because the DFS-based approach described above worked well in all applications
that we tested.
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abstraction of the raw expressions will make manipulating them easier and will
enable precomputing expensive operations in a comfortable fashion.

First, we define a structure that represents a morphism in an abelian category.
meta structure morphism :=
(ex : expr)
(domain : expr)
(codomain : expr)
(app : expr)

Here, ex is the expression that is represented by the morphism object, and app
is the expression coe_fn ex, i.e., the function on pseudoelements induced by the
morphism. We carry this expression as part of the structure since it is needed in
multiple places and somewhat expensive to create.

Another important building block are expressions of the form f1(f2(. . . (fn(a)))).
They are represented by a list of morphisms in the order indicated by the numbering
and an expression for the element a.
meta def morphism_chain := list morphism

meta structure diagram_term :=
(ms : morphism_chain)
(elem : expr)

Using these definitions, it is easy to define the two types of lemmas mentioned
in the description of our algorithm.
meta structure commutativity_lemma :=
(lhs rhs : morphism_chain)
(ex : expr)

meta structure element_lemma :=
(lhs rhs : diagram_term)
(ex : expr)

Finally, we provide a structure for an exact sequence.
meta structure exactness_lemma :=
(lhs rhs : morphism_chain)
(ex : expr)

When used in combination, these structures will allow us to operate semantically
on the objects we care about in our proof instead of having to work directly with the
underlying expressions. While Lean’s support for pattern matching on expressions
is very good, adding a layer of abstraction will make recursing on the structure of
these expressions more convenient and less error-prone.

2.2. Working with the structures. For each of the structures defined in
the previous section, we provide a function that takes an arbitrary expression and
attempts to interpret that expression as an instance of that structure and returns an
instance upon success. As an example, here is the parsing function for a morphism:
meta def as_morphism (e : expr) : tactic (option morphism) :=
do

‵(%%l −→ %%r) ← infer_type e | return none,
app ← mk_app ‵coe_fn [e],
return $ some ⟨e, l, r, app⟩

Note that diagram_term does not come with an ex field like the other structures.
The reason for this is that we frequently need to manipulate these terms without
needing the expression, for example in incorrect branches of the depth-first search
or when doing recursion on a diagram term. Since building the expression for a
diagram term is quite expensive, we only do so when it is actually needed.
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meta def as_expr : diagram_term → expr
| ⟨[], e⟩ := e
| ⟨t::ts, e⟩ := expr.app t.app $ as_expr ⟨ts, e⟩

2.3. Collecting lemmas. Before we can execute our tactic, we have to scan
the environment for morphisms and lemmas and create instances of our structures
which the tactic can use. Lean provides the local context of a tactic proof via the
local_context tactic. Using our parsing functions, we can automatically extract all
relevant expressions in the local context and create instances for them.
meta def get_morphisms : tactic (list morphism) :=
local_context >>= list.mfiltermap as_morphism

This works well for small, self-contained proofs. However, we would like to be
able to split longer proofs into multiple definitions, lemmas and theorems, and these
declarations would not appear in the local context. Hence, we have to provide a
way for the user to mark definitions and lemmas as relevant for diagram chasing.

Lean provides a mechanism for this: user-defined attributes. We declare an
attribute chase, and the user will be able to mark definitions and lemmas by
prepending @[chase] to the declaration.
meta def chase_attribute : user_attribute := {

name := ‵chase,
descr := "A definition or lemma that can be used in a diagram chase."

}

Since a definition or lemma depends on the variables of the theorem we are proving
(for example the diagram we are chasing in), the user will need to supply a parameter
that contains all the information necessary to instantiate all parameters of the
lemmas. Given this parameter, called f in the following listing, we can retrieve all
tagged declarations.
meta def get_lemmas_from_attribute (f : expr) : tactic (list expr) :=
attribute.get_instances ‵chase >>= (list.mfiltermap $ λ n,

(some <$> (do e ← resolve_name n, to_expr ‵‵(%%e %%f) tt ff)) <|>
return none)

2.4. Extending the tactic monad. We collect all information about the
local context in a separate structure called chase_data.
meta structure chase_data :=
(morphisms : list morphism)
(comm_lemmas : list commutativity_lemma)
(elem_lemmas : list element_lemma)
(exact_lemmas : list exactness_lemma)

We provide a tactic that scans the local context and, optionally, the lemmas
marked by our attribute and returns an object of type chase_data.
meta def mk_chase_data (e : option expr) : tactic chase_data

Passing an argument of type chase_data to every function that uses it would
quickly get tedious, especially since we sometimes need to modify the argument, for
example when a new hypothesis is generated about an element that was constructed
as part of a diagram chase. Instead, we use a construction similar to that used by
smt_tactic in Lean core [10]: We use the state monad transformer to create a new
tactic type called chase_tactic that automatically carries the chase_data object.
@[reducible]
meta def chase_tactic :=
state_t chase_data tactic

Every normal tactic becomes a chase_tactic simply by ignoring the parameter.
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meta instance {α} : has_coe (tactic α) (chase_tactic α) :=
⟨monad_lift⟩

Given a chase_data object, we can run a chase_tactic like a tactic.
meta def run_chase_tactic_with_data {α} (t : chase_tactic α) (d : chase_data) :

tactic α :=
do (res, _) ← t.run d, return res

meta def run_chase_tactic {α} (e : option expr) (t : chase_tactic α) : tactic α :=
mk_chase_data e >>= run_chase_tactic_with_data t

A chase_tactic can retrieve and assign the chase_data using get and put. In
addition, we provide a tactic that adds an element lemma as well as its symmetric
version to the context.
meta def add_elem_lemma (l : element_lemma) : chase_tactic unit :=
do
⟨ms, cs, es, el⟩ ← get,
ls ← l.symm,
put ⟨ms, cs, (ls::l::es), el⟩

3. A tactic for proving equalities in commutative diagrams

The goal of this section is to develop a tactic commutativity that can solve goals
of the form

(f1 ≫ · · · ≫ fn)(a) = (g1 ≫ · · · ≫ gm)(b).
Using the infrastructure developed in the previous section, very little remains to
do. We simply implement a depth first search that explores all possible lemma
applications. The set of possible applications of lemmas can be enumerated naively.
If we have found a path, we build the term out of the applied lemma as well as the
basic lemmas congr_fun and congr_arg, which state that f = g implies f(a) = g(a)
and that a = b implies f(a) = f(b), respectively.

We deviate from this algorithm in one aspect, namely the handling of zero
pseudoelements and zero morphisms. Making the unmodified algorithm work with
zero pseudoelements and zero morphisms would require adding a large number
of hypotheses of the form f(0) = 0 and 0(a) = 0. Instead of adding all of these
hypotheses, we add special handling for this case.

Assume that the goal is t1 = t2, where t1 and t2 are diagram terms. If the DFS
discovers a proof of t1 = h1(. . . hn(a)), where either hi = 0 for some i or a = 0,
then it will try to find a proof of t2 = 0 using DFS and, if that succeeds, directly
construct a proof of t1 = 0 using the lemmas apply_zero and zero_apply. It is easy
to see that this procedure finds a proof of t1 = t2 if and only if the original algorithm
finds a proof of t1 = t2 (note however, that in general, the two algorithms will find
different proof terms), but this method avoids generating a large number of auxiliary
hypotheses.

4. Constructing new pseudoelements

The final missing piece of the tactic is the implementation of the pushforward
and pullback procedures and the “end user interface” of the tactic.

Pushing forward and pulling back is merely a matter of building applications of
the relevant lemmas about pseudoelements that we have proved and (in the case
of pulling back) calling tactic.intro with the correct name. We use the builtin
get_unused_name to avoid name clashes of hypotheses about our newly introduced
elements.

We export our tactic as an interactive tactic called chase with the following
syntax:
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chase e using [f, g, h] with a b c at d

means that we chase an element e along the morphisms f, g, h (in that order),
automatically detecting whether a chase step should be a pullback or a pushforward.
The intermediate elements generated will be called a, b and c and the tactic will
use d as an argument to lemmas marked with @[chase] in order to derive morphisms
or hypotheses from them.

If there are too few names or the with parameter is omitted, then automatically
generated names will be used. If the at parameter is omitted, then no lemma
marked with @[chase] will be used (and in fact, the scan for these lemmas is skipped
entirely).

5. Applications

We are now ready to use our tactics to give concise proofs of diagram lemmas.

5.1. The four lemma again. For a final time, we consider the four lemma.
As sketched in Section 1, to prove the four lemma, we start with a pseudoelement
c, chase it along g, β, f ′ and α to obtain elements b, b′, a′ and a, and finally show
f(a) = b, which implies 0 = g(f(a)) = g(b) = c. Using our automation, writing
down this proof sketch is sufficient to give an automated proof of the four lemma.
lemma four [epi α] [mono β] [mono δ] : mono γ :=
mono_of_zero_of_map_zero _ $ λ c hc,
begin

chase c using [g, β, f′, α] with b b′ a′ a,
have : f a = b, by commutativity,
commutativity

end

5.2. The kernels lemma. In Section 6.2, we did not give a proof of the
statement that the two constructed morphisms form an exact sequence. With our
automation, giving a proof becomes very comfortable. Here is the full proof.
lemma kernels [mono δ] [mono ε] [mono ν] : exact α β :=
begin

apply exact_of_pseudo_exact,
split,
{ intro a,

commutativity },
{ intros b hb,

chase b using [δ, ζ, γ] with e d a,
exact ⟨a, by commutativity⟩ }

end

5.3. The restricted snake lemma. As a final demonstration of our tactic,
we present a proof of the restricted snake lemma. Before we give the statement,
recall that the sequence

0 X Y
f

is exact if and only if f is a monomorphism. Dually,

X Y 0f

is exact if and only if f is an epimorphism.
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Lemma (Restricted Snake Lemma). Consider the following commutative dia-
gram with exact rows and columns.

0 0

B C

0 D E F 0

0 G H I 0

J K

0 0

β

δ ε

ζ

θ

η

λ µ

ν

π

ξ

ρ

τ

Then there is a morphism ω : C → J such that

B C J K
β ω τ

is an exact sequence.

Remark. Some authors call the above theorem the snake lemma, while we call
it the restricted snake lemma. The result we refer to as the snake lemma has the
same statement as the restricted snake lemma, except that we do not require ζ to be
a monomorphism and we do not require ξ to be an epimorphism. This weakening of
the hypothesis is often necessary, for example in the construction of the long exact
sequence in cohomology (cf. [27, Chapter 1]).

The snake lemma can be proved using the restricted snake lemma. We have
formalized both the proof of the restricted snake lemma and the proof of the snake
lemma, but we will not present the proof of the latter here. In the following, we
discuss our formalization of the proof of the restricted snake lemma.

Proof. In a similar fashion to the kernels lemma, the proof consists of two
parts: the construction of ω and the verification of the exact sequence. We will not
give the details of either of the steps here, as the proof is rather long.

There are many benefits to splitting the proof of a statement like this into
multiple parts. A problem we already observed for the kernels lemma is that this
means that we have to carry around a large number of parameters and supply them
whenever we need to refer to a previous definition or result. For the number of
variables and the size of the proof of the restricted snake lemma, this is impractical.
Instead, we collect all data of the commutative diagram in a structure2. We can
then attach the chase attribute defined in Section 2.3 to the structure projections
so that our automation is able to access the morphisms and exactness properties.
In the remainder of the proof, d will be an instance of our structure.

2This is inaccurate. The truth is that we use two structures, as a workaround for an
undiagnosed Lean performance problem which causes the direct definition using a single structure
to time out.
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The proof uses the full range of characterizations in terms of pseudoelements
that we have seen, including “subtraction” and pullbacks. At the heart of the proof
is a description of the constructed morphism ω in terms of pseudoelements:
lemma ω_char (c : d.C) (e : d.E) (g : d.G) (h1 : d.η e = d.ε c) (h2 : d.ν g = d.κ e) :

d.π g = (ω d) c

Note the different notations: For a morphism that is part of the diagram, we use dot
notation like d.π, whereas for objects that we constructed as part of the proof,we
use d as a paramater, as in ω d.

Using this characterization, proving the exactness of (ω, τ) is a breeze for our
automation.
theorem ωτ : exact (ω d) d.τ :=
begin

apply exact_of_pseudo_exact,
split,
{ intro c,

chase c using [d.ε, d.η, d.κ, d.ν] with f e h g at d,
have := ω_char _ c e g (by commutativity) (by commutativity),
commutativity at d },

{ intros j hj,
chase j using [d.π, d.ν, d.κ, d.η, d.ε] with g h e f c at d,
have := ω_char _ c e g (by commutativity) (by commutativity),
exact ⟨c, by commutativity⟩ }

end

The proof of exactness of (β, ω) is not quite as concise, but we can still delegate
all the heavy lifting to our automation. We refer to the source code for the details. □



CHAPTER 4

Related work and conclusion

We have developed the theory of abelian categories in version 3 of the Lean
interactive theorem prover. While numerous libraries of formal mathematics cover
some amount of category theory, the author is aware of only a few that contain
substantial results on limits. As far as we are aware, this is the second time that
abelian categories have been formalized in a theorem prover, after UniMath [26], a
library based on univalent foundations [25] written for the theorem prover Coq [9].
Our work is not a port of the results in UniMath, but develops the theory from
scratch using the integrated approach to limits in mathlib and using Lean’s advanced
features such as quotient types, which significantly improves readability of the
results. Furthermore, no attempt has been made in UniMath to provide automation
similar to what we have implemented.

For these reasons, we suspect that stating and proving the snake lemma and
constructing the long exact sequence in cohomology would be a large undertaking
in UniMath, whereas we have already made significant progress towards this goal in
Lean by giving a proof of the snake lemma.

By using native quotient types and coercions, we were able to develop the theory
of pseudoelements, which constitute an important proof technique in the theory of
abelian categories, in a way that is very comfortable to use. Indeed, consider the
statement that a sequence is exact on pseudoelements if and only if it is exact. In
UniMath, this lemma is stated as in the following listing.

Lemma PEq_isExact {x y z : ob A} (f : x −→ y) (g : y −→ z)
(H : f · g = ZeroArrow (to_Zero A) _ _) :

isExact A hs f g H ↔
Π (b : PseudoElem y) (H : b · g = ZeroArrow (to_Zero A) _ _),

Σ (a : PseudoElem c), PEq (PseudoIm a f) b.

Compare this to the way we stated this lemma in Lean:
theorem exact_iff_pseudo_exact {P Q R : C} (f : P −→ Q) (g : Q −→ R) :

exact f g ↔ (∀ a, g (f a) = 0) ∧ (∀ b, g b = 0 → ∃ a, f a = b)

Our statement has a lot less visual clutter, and is easy to understand even for
the layman, because we use function application syntax rather than PseudoIm, the
equality symbol rather than PEq and the zero symbol for zero morphisms and pseu-
doelements. In addition, we have developed automation that can semiautomatically
synthesize proofs within this theory.

Using these tools, we have given the first ever formally verified proof of the
snake lemma for general abelian categories1. This result is an important milestone
in the construction of the exact sequence in cohomology associated to a short exact
sequence of cochain complexes. This construction is a staple in many parts of
modern mathematics, for example as a computational tool in algebraic topology [17],
or for constructing the long exact sequences for Ext and Tor [6], to name just the
most basic examples.

1In fact, as far as we are aware, as a special case this is also the first ever formally verified
proof of the snake lemma for abelian groups or modules.
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However, the work presented in this thesis is just a first step and there are
several required next steps before our work can be put to proper use. Our work
needs to be integrated with the formalization of enriched category theory under
development by Morrison et al. and then upstreamed into the Lean mathematical
library. Furthermore, our work pretends that abelian categories are the most general
setting in which concepts like exactness can be studied. This is not quite true—for
example, there is a concept of regular category (cf. [5]), which generalizes the concept
of abelian category to include, for example, the category of sets. In this thesis, we
have made no attempt to find the most general setting in which a concept can be
defined, so definitions and proofs need to be reworked where possible in an effort to
increase generality.

Next, we have to carry out the construction of the long exact sequence in
cohomology. The basic definitions of cochain complexes and cohomology have
recently been added to the Lean mathematical library, and based on these definitions
we have already shown the existence of functorial induced morphisms in cohomology
for cochain complexes over an abelian category. We are currently working on
deriving the long exact sequence in cohomology using the snake lemma. Since
the full embedding theorem is unavailable, this poses some interesting technical
challenges which exceed the scope of this thesis.

Finally, an important milestone is connecting this theory with the existing
algebraic structures defined in Lean and its mathematical library, making sure that
the tools we are developing can actually be applied. We have already demonstrated
using the category of R-modules that our definitions of abelian category and exact
sequence are chosen correctly. In line with this, showing that the categorical defini-
tion of cohomology coincides with the direct definition in terms of R-modules will be
very important to applications. Almost certainly, the two constructions will not be
definitionally equal, so what we will be looking for is a natural isomorphism between
the functors from the category of chain complexes of R-modules to the category of
Z-graded R-modules sending a chain complex to its categorical cohomology and its
directly defined cohomology, respectively.
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