
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

On Time-Sensitive Control Dependencies

MARTIN HECKER, SIMON BISCHOF, and GREGOR SNELTING, Karlsruhe Institute of
Technology

We present efficient algorithms for time-sensitive control dependencies (CDs). If statement 𝑦 is
time-sensitively control dependent on statement 𝑥, 𝑥 not only decides whether 𝑦 is executed, but
also how many time steps after 𝑥. If 𝑦 is not standard control dependent on 𝑥, but time-sensitively
control dependent, then 𝑦 will always be executed after 𝑥, but the execution time between 𝑥 and 𝑦
varies. This allows to discover e.g. timing leaks in security-critical software.

We systematically develop properties and algorithms for time-sensitive CDs, as well as for nonter-
mination-sensitive CDs. These do not only work for standard control flow graphs (CFGs), but also for
CFGs lacking a unique exit node (e.g. reactive systems). We show that Cytron’s efficient algorithm
for dominance frontiers [10] can be generalized to allow efficient computation not just of classical
CDs, but also of time-sensitive and nontermination-sensitive CDs. We then use time-sensitive CDs
and time-sensitive slicing to discover cache timing leaks in an AES implementation. Performance
measurements demonstrate scalability of the approach.

CCS Concepts: • Software and its engineering → Automated static analysis; • Theory of computa-
tion → Program analysis; • Security and privacy → Logic and verification.

Additional Key Words and Phrases: control dependency, program slicing, timing dependency, timing
leak

ACM Reference Format:
Martin Hecker, Simon Bischof, and Gregor Snelting. 2021. On Time-Sensitive Control Dependencies.
ACM Trans. Program. Lang. Syst. 1, 1 (August 2021), 39 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION AND OVERVIEW
Timing Leaks are a major source of software security problems today. Attacks based on
timing leaks such as Spectre [22] have become known to the general public. Yet there are
not many program analysis tools that detect timing leaks in software.

In this article we describe a new kind of dependency between program statements, the
time-sensitive control dependency. It is able to discover timing leaks, and can be implemented
as an automatic program analysis. We will explain time-sensitive dependencies, provide
efficient algorithms, provide a soundness proof, and apply it to discover timing leaks in an
implementation of the AES cryptographic standard.

The construction of time-sensitive control dependencies starts with classical control
dependencies. We will thus begin by sketching the research path from CDs to timing

Authors’ address: Martin Hecker; Simon Bischof; Gregor SneltingKarlsruhe Institute of Technology, gregor.
snelting@kit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0164-0925/2021/8-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Martin Hecker, Simon Bischof, and Gregor Snelting

dependencies, and provide introductory examples. Later in the article, we will provide formal
definitions, proofs, and algorithms.

Control dependencies (CDs), originally introduced by [11, 33], are a fundamental building
block in program analysis. CDs have many applications: they can, for example, be used
for program optimizations such as code scheduling, loop fusion, or code motion (see e.g.
[25]); or for program transformations such as partial evaluation (e.g. [20]) or refactoring
(e.g. [5]). CDs are in particular fundamental for program dependence graphs (PDGs) and
program slicing [11, 19, 23]. Intuitively, a program statement 𝑦 is control dependent on
another statement 𝑥, written 𝑥 →𝑐𝑑 𝑦, if 𝑥 – typically an if or while statement – decides
whether 𝑦 will be executed or not. Classical CDs are defined via postdominators; in fact
classical CDs are essentially the postdominance frontiers in the control flow graph (CFG)
[10]. Postdominance frontiers can be computed by an efficient algorithm due to Cytron [10].

Unfortunately, the classic CD definition is limited to CFGs with unique exit node, and
thus assumes that all programs can terminate. In 2007 Ranganath et al. [29] generalized
control dependence to CFGs without unique exits and nonterminating programs (e.g. reactive
systems); providing the first algorithm for nontermination-sensitive CDs. Later, Amtoft [3]
provided definitions and algorithms for nontermination-insensitive CDs, which allow for
sound analysis and slicing of nonterminating programs. But these algorithms could no longer
be based on the efficient Cytron algorithm for postdominance frontiers.

In this contribution, we not only present new efficient algorithms for the Ranganath-Amtoft
CD definitions. We will also provide definitions and algorithms for time-sensitive CDs and
time-sensitive slicing. Time-sensitive CD, written 𝑥 →tscd 𝑦, holds if 𝑥 decides whether 𝑦 is
executed, or if 𝑥 decides when 𝑦 is executed (even if 𝑦 is always executed after 𝑥) – that is,
how many time units after execution of 𝑥. Intuitively, 𝑥 →tscd 𝑦 while not 𝑥 →𝑐𝑑 𝑦 means
that 𝑦 will always be executed after 𝑥, but the execution time between 𝑥 and 𝑦 varies. The
latter property is important to discover timing leaks in security-critical software.

We systematically develop theoretical properties and efficient algorithms for →tscd, and
evaluate their performance. It turns out that Cytron’s efficient algorithm for dominance
frontiers can be generalized to an abstract notion of dominance, which then can be used
for the efficient computation of both the Ranganath/Amtoft CD, as well as our new time-
sensitive CD. We then apply →tscd to (models of) hardware microarchitectures, and use it
to find cache timing leaks in an AES implementation.

Many of the theorems in this article have been formalized and machine-checked using
the machine prover Isabelle. Such theorems are marked with a sign. The Isabelle proofs
can be found in the electronic appendix of this article. For some theorems in section 5,
such an Isabelle proof has not yet been completed. Manual proofs are available, but are not
presented in this article. Consequently, such theorems are called “observations”.

1.1 Overview
The main part of this article will present time-sensitive CDs and algorithms in a rather
technical manner. Before we embark on this, we present an informal overview of our research
path and results. We begin with a discussion of classical control dependencies, and compare
these to our new notion of time-sensitive control dependencies.

1.1.1 Control Dependence. Informally, a control dependence in a CFG, written 𝑥 →𝑐𝑑 𝑦,
means that 𝑥 decides whether 𝑦 is executed or not. In structured programs, 𝑥 is typically an
if or while statement. Figure 1 presents two examples: In the first example (left), node(︀
5
)︀

is control dependent on node
(︀
1
)︀
; node

(︀
3
)︀

is not control dependent on
(︀
1
)︀

but on

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

On Time-Sensitive Control Dependencies 3

1

62

5

7

3 4

1

2 3

4

5

Fig. 1. Two simple control flow graphs illustrating control dependence

(︀
2
)︀
. In the second example (right)1, nodes

(︀
2
)︀
,

(︀
3
)︀
, and

(︀
4
)︀

are control dependent on node
(1). Technically, CD is based on the notion of postdomination in CFGs. 𝑦 postdominates 𝑥
(written 𝑦 ⊑POST 𝑥) if any path from 𝑥 to the exit node must pass through 𝑦. Several formal
CD definitions exist; as this may be confusing we will relate the most popular definitions to
the examples in Figure 1. The original definition of CD in [11] is as follows:

𝑥 →𝑐𝑑 𝑦 ⇐⇒ ¬
(︀
𝑦 ⊑POST 𝑥

)︀
∧ ∃ path 𝜋 : 𝑥 →* 𝑦 such that ∀𝑧 ∈ 𝜋 ∖ {𝑥, 𝑦} : 𝑦 ⊑POST 𝑧

The condition that 𝑦 is not a postdominator for 𝑥 means that from 𝑥 there is a second
path (not containing 𝑦) to the exit node. That is, there is a conditional branch at 𝑥. The
next condition demands that there is a path from 𝑥 to 𝑦, and that 𝑦 is a postdominator
for all nodes 𝑧 between 𝑥 and 𝑦. Thus there is no side branch from any 𝑧 to the exit node;
hence 𝑥 is directly controlling whether 𝑦 is executed.

In Figure 1 (left), node
(︀
5
)︀

postdominates all nodes on paths between
(︀
1
)︀

and
(︀
5
)︀
, but(︀

5
)︀

does not postdominate
(︀
1
)︀
; hence

(︀
1
)︀

→𝑐𝑑

(︀
5
)︀
. But

(︀
3
)︀

does not postdominate
(︀
2
)︀

(this node being the only one between
(︀
1
)︀

and
(︀
3
)︀
), hence ¬

(︀(︀
1
)︀

→𝑐𝑑

(︀
3
)︀)︀

. In Figure 1
(right), node

(︀
4
)︀

is control dependent on node
(︀
1
)︀
. Since we have

(︀
1
)︀

→
(︀
5
)︀
, node

(︀
4
)︀

does
not postdominate

(︀
1
)︀
. The path

(︀
1
)︀

→
(︀
3
)︀

→
(︀
4
)︀

only contains the additional 𝑧 =
(︀
3
)︀
,

and
(︀
4
)︀

postdominates
(︀
3
)︀
, so the second condition is satisfied. But what about the path(︀

1
)︀

→
(︀
2
)︀

→
(︀
3
)︀

→
(︀
4
)︀
? It is irrelevant, as the CD definition only demands there exists a

path where for all 𝑧 etc; it does not demand the 𝑧 condition for all paths. Likewise,
(︀
2
)︀

as
well as

(︀
3
)︀

are control dependent on
(︀
1
)︀
.

An alternate, more compact CD definition was provided in [33], and is used in this article.
Here 𝑥 is a branch node with direct successors 𝑛 and 𝑚, where the control-dependent 𝑦
postdominates one but not the other:

𝑥 →𝑐𝑑 𝑦 ⇐⇒ ∃𝑛, 𝑚 : 𝑥 → 𝑛, 𝑥 → 𝑚, 𝑦 ⊑POST 𝑛, ¬
(︀
𝑦 ⊑POST 𝑚

)︀
Lemma 1.1. The above definitions for 𝑥 →𝑐𝑑 𝑦 are equivalent whenever 𝑥 ≠ 𝑦.

Applied to Figure 1 (right), again we conclude that
(︀
4
)︀

is CD on
(︀
1
)︀
. Choose 𝑛 =

(︀
2
)︀

(𝑛 =
(︀
3
)︀

also works), 𝑚 =
(︀
5
)︀
, then

(︀
4
)︀

postdominates
(︀
2
)︀

(and
(︀
3
)︀
), but

(︀
4
)︀

does not
postdominate

(︀
5
)︀
. Note that both 𝑛 and 𝑚 in the definition are existentially quantified.

Thus the definition neither demands nor inhibits that
(︀
4
)︀

postdominates
(︀
3
)︀
.

Lemma 1.2. In Figure 1 (right), we have
(︀
4
)︀

⊑POST
(︀
2
)︀
,
(︀
4
)︀

⊑POST
(︀
3
)︀
, ¬

(︀(︀
4
)︀

⊑POST
(︀
5
)︀)︀

,
and thus

(︀
1
)︀

→𝑐𝑑

(︀
4
)︀
.

1We thank one reviewer for suggesting this example.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

4 Martin Hecker, Simon Bischof, and Gregor Snelting

1

2

10

36

4 9

1214

5

7

8

11

13

Fig. 2. A CFG 𝐺

1.1.2 CFGs Without Unique Exit. CFGs without unique exit, in particular with no exit
or unreachable exits, are important for modern language constructs, for example event
handlers or loops in reactive systems. Ranganath and Amtoft had generalized postdominance
and CD for such CFGs. The resulting postdominance relations are called max- and sink-
postdominance, and will be explained in section 2.2. If these are used in CD definitions, one
obtains non-termination-sensitive control dependence, written →ntscd; and non-termination-
insensitive control dependence, written →nticd. →nticd is identical to →𝑐𝑑, but also works
for graphs without unique exit. →ntscd is identical to →𝑤𝑐𝑑 (weak control dependence, see
section 2.1), but also works for graphs without unique exit.

→nticd and →ntscd are important building blocks for →tscd. A comparison between →nticd,
→ntscd, and →tscd is given in the next section.

1.1.3 Time-Sensitive Control Dependence. Time-sensitive CD, written 𝑥 →tscd 𝑦, holds if 𝑥
decides when or whether 𝑦 is executed. This dependence is more relaxed than standard CD.
Intuitively, 𝑥 →tscd 𝑦 while not 𝑥 →𝑐𝑑 𝑦 means that 𝑦 will always be executed after 𝑥, but
the execution time between 𝑥 and 𝑦 varies.

The latter property is important to discover timing leaks in security-critical software. A
typical situation is as follows: 𝑦 is not control dependent on 𝑥, but there are at least two
paths from 𝑥 to 𝑦. Then the run time between 𝑥 and 𝑦 varies: 𝑥 →tscd 𝑦. If this variation
depends on secret data, and can be measured by an attacker, a timing leak has been born.
𝑥 →tscd 𝑦 will uncover this leak.

In our work time is discrete; a unit of time coincides with a transition in the CFG. Since
steps of an abstraction of real programs and hardware are timed, this is therefore a “weakly
timing-sensitive” model in the sense of [21].

Now, let us illustrate the differences between the different kinds of control dependences. A
node 𝑦 is non-termination sensitively control dependent on node 𝑥, written 𝑥 →ntscd 𝑦, if 𝑥
decides whether 𝑦 will be executed. In Figure 2, we have

(︀
1
)︀

→ntscd
(︀
2
)︀
, because we will

execute
(︀
2
)︀

when choosing
(︀
2
)︀

as the successor of
(︀
1
)︀

but not if we choose
(︀
10

)︀
. Also, due

to the loop at
(︀
3
)︀
, we have

(︀
3
)︀

→ntscd
(︀
10

)︀
: By choosing

(︀
9
)︀

as the successor of
(︀
3
)︀

we are
guaranteed to reach

(︀
10

)︀
. But if we choose

(︀
4
)︀

as the successor, we might avoid reaching(︀
10

)︀
by staying in the loop forever, so

(︀
3
)︀

decides if
(︀
10

)︀
will be executed.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

On Time-Sensitive Control Dependencies 5

𝑦 is non-termination insensitively control dependent on 𝑥, written 𝑥 →nticd 𝑦, if 𝑥 decides
whether 𝑦 will be executed, assuming we eventually exit all loops that can be exited. In
Figure 2, we still have

(︀
1
)︀

→nticd
(︀
2
)︀
, with the same reasoning as above. But now we have

¬
(︀(︀

3
)︀

→ntscd
(︀
10

)︀)︀
: Since we assume that we always exit the loop at

(︀
3
)︀
, we are guaranteed

to reach
(︀
10

)︀
, no matter which successor we choose at

(︀
3
)︀
.

𝑦 is timing sensitively control dependent on 𝑥, written 𝑥 →tscd 𝑦, if 𝑥 decides when 𝑦 will
be executed. In Figure 2, we have

(︀
7
)︀

→tscd
(︀
8
)︀
, because we will execute

(︀
8
)︀

after one step
when choosing

(︀
8
)︀

as the successor of
(︀
7
)︀

but not if we choose
(︀
11

)︀
, when it takes two or

three steps. Therefore, the choice taken at
(︀
7
)︀

influences the timing of
(︀
8
)︀
. On the contrary,

¬
(︀(︀

4
)︀

→tscd
(︀
5
)︀)︀

, because no matter how we choose, we will always reach
(︀
5
)︀

in two steps.
An interesting case is

(︀
1
)︀

→tscd
(︀
2
)︀
: If we choose

(︀
2
)︀

as successor of
(︀
1
)︀
, we will reach

(︀
2
)︀

in exactly one step, but we will not if we choose
(︀
10

)︀
because we then will not reach

(︀
2
)︀
.

1.1.4 Applications for Software Security. As indicated, →tscd may help to discover timing
leaks. More generally, →tscd is useful for Information Flow Control (IFC). IFC uses program
analysis techniques to discover leaks in software. Technically, noninterference is a property
which guarantees that a program does not leak secret data. Probabilistic noninterference
guarantees that there are no internal timing leaks, which arise if secret data influence
scheduling or other measurable timing properties. For an introduction to IFC, see e.g. [31].

Indeed →tscd was developed as an instrument to improve the precision of probabilistic
noninterference analysis. We will report on applications of →tscd for IFC in a separate article.
In the current article, we focus on algorithms for →tscd; and use a different security example:
in section 4, we will analyse an implementation of the AES cryptographic standard, and
discover cache leaks in this implementation. These infamous cache leaks have been known
for some time [4], but so far no program analysis tool was able to discover such leaks.

1.1.5 Algorithms. The major part of this contribution is concerned with efficient algorithms
for →tscd. For the classical →𝑐𝑑, Cytron’s efficient algorithm for dominance frontiers can be
used; but this algorithm was not employed by Ranganath/Amtoft.

We discovered that a generalized version of Cytron’s algorithm can not only be used for
both →nticd and →ntscd, but also for →tscd. Thus we have been able to obtain efficient
implementations for all these dependence notions. The algorithms are described in section 5.
Performance evaluations are described in section 6.

2 CONTROL DEPENDENCE IN GRAPHS WITHOUT UNIQUE EXIT
Our work was strongly motivated by earlier results of Ranganath et al. [29] and Amtoft
[3]. These authors extended the classical notion of CD and slicing to CFGs which do not
contain a unique exit node. As multiple exit nodes can trivially be handled by adding a new
”global” exit node, Ranganath’s and Amtoft’s work is in fact concerned with CFGs which do
not have a single, unique exit node. A typical example is a CFG with an infinite loop from
which an exit node cannot be reached. Such CFGs are relevant, because modern programs
need not necessarily terminate through exit nodes. One paramount example are reactive
systems, which are assumed to run forever; and thus have no exit node at all. Another
example are event handlers, which may shutdown a thread while the thread has no explicit
exit. Thus Ranganath and Amtoft opened the door to apply CD and slicing to modern
program structures.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 Martin Hecker, Simon Bischof, and Gregor Snelting

Time-sensitive CD will also work on graphs without unique exit. It is therefore necessary
to recall Ranganath’s and Amtoft’s work. We begin with fundamental definitions of CDs
and postdomination for CFGs with no unique exit.

2.1 Classical Control Dependence and Weak Control Dependence
CFGs are a standard representation of programs e.g. in compilers, and many tools are
available which extract CFGs from source code.2 Thus let 𝐺 =

(︀
𝑁, →𝐺

)︀
be the CFG of a

program. In this article, we once and for all assume a fixed CFG 𝐺 and therefore omit the
sub- or superscript 𝐺 whenever possible; e.g. we write 𝑛 → 𝑚 instead of 𝑛 →𝐺 𝑚. In the
classical case of a unique exit node, there is exit ∈ 𝑁 such that 𝑛 →* exit for all 𝑛 ∈ 𝑁 , and
exit → 𝑛 for no node 𝑛 ∈ 𝑁 .

Node 𝑚 postdominates 𝑛 (𝑚 ⊑POST 𝑛) iff 𝑚 ∈ 𝜋 for every path 𝜋 from 𝑛 to exit. Node
𝑚 strongly postdominates 𝑛 (𝑚 ⊑SPOST 𝑛) iff 𝑚 ⊑POST 𝑛, and there exists some 𝑘 ≥ 1 such
that 𝑚 ∈ 𝜋 for every path 𝜋 starting in 𝑛 with length ≥ 𝑘 [27]. In contrast to 𝑚 ⊑POST 𝑛,
𝑚 ⊑SPOST 𝑛 does not hold if there is an infinite loop between 𝑚 and 𝑛: Assume such a
loop exists, then there will be paths 𝜋 starting at 𝑛 of arbitrary length 𝑘 which never pass
through 𝑚: ∀𝑘∃𝜋 : len(𝜋) = 𝑘 ∧ 𝑚 ∉ 𝜋. If this happens, ⊑SPOST is not supposed to hold;
hence the negation of the latter condition must hold for ⊑SPOST .

Classical (nontermination-insensitive) CD, denoted →𝑐𝑑, is defined in terms of postdomi-
nance. Formally (as already explained above),

𝑥 →𝑐𝑑 𝑦 ⇐⇒ ∃𝑛, 𝑚 ∈ 𝑁 : 𝑥 → 𝑛, 𝑥 → 𝑚, 𝑦 ⊑POST 𝑛, ¬
(︀
𝑦 ⊑POST 𝑚

)︀
This CD definition can be modified in order to react sensitively to infinite loops. This

nontermination sensitive form of CD, called “weak control dependence” and written 𝑥 →𝑤𝑐𝑑 𝑦,
was introduced in [27]; and is defined in terms of strong postdominance. The formal definition
is identical to the above CD definition; with ⊑SPOST instead of ⊑POST . Even if 𝑥 →𝑐𝑑 𝑦
does not hold, 𝑥 →𝑤𝑐𝑑 𝑦 might still hold if there is an infinite loop between 𝑥 and 𝑦. Note
that weak control dependence does not imply that this infinite loop is in fact executed.

2.2 Postdominance in Graphs Without Unique Exit
In order to understand how the above definitions are generalized to arbitrary graphs with
no unique exit node, consider the example in Figure 2. It has no unique exit node, since
the only candidate node 10 is unreachable from, e.g., node 6. Thus the classical definitions
for ⊑POST and ⊑SPOST cannot be applied. Instead in [29], Ranganath et al. proposed control
dependence for arbitrary graphs based on the notions of maximal and sink paths.

A maximal path is a path which cannot be extended (i.e.: is infinite, or ends in some
node 𝑛 without successor). On the other hand, a (control-) sink is a strongly connected
component 𝑆 such that no edge leaves 𝑆.3 Specifically, all nodes 𝑛 without successor (in
particular 𝑛 = exit) form a (trivial) sink. A sink path then is a path 𝜋 such that 𝑠 ∈ 𝑆 for
some node 𝑠 ∈ 𝜋 and some sink 𝑆, and if 𝑆 is nontrivial (i.e. not a singleton), then all nodes
in 𝑆 appear in 𝜋 infinitely often. In programming terms, 𝑆 would be an infinite loop in the
CFG, and a sink path corresponds to an execution which infinitely loops in 𝑆.

Definition 2.1 (Implicit in [29]). A node 𝑚 ∈ 𝑁 nontermination-sensitively postdominates a
node 𝑛 ∈ 𝑁 (written 𝑚 ⊑MAX 𝑛) iff 𝑚 ∈ 𝜋 for all maximal paths 𝜋 starting in 𝑛. Similarly, a
2All examples and measurements in this article are based on CFGs which were produced using the JOANA
system. JOANA is a system for IFC and can in particular check probabilistic noninterference for full Java
with arbitrary threads [6, 13, 14].
3In a strongly connected component (SCC) 𝑆, there is a path between all 𝑥, 𝑦 ∈ 𝑆. Every cycle is an SCC.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

On Time-Sensitive Control Dependencies 7

1

2

10

36 7 8

4 59

1214

11

13

(a) →ntscd

1

2

103 6 7 8 9 11 13

4 5

12 14

(b) →nticd

Fig. 3. Nontermination-(in)sensitive CDs for CFG from Figure 2

node 𝑚 nontermination-insensitively postdominates a node 𝑛 (written 𝑚 ⊑SINK 𝑛) iff 𝑚 ∈ 𝜋
for all sink paths 𝜋 starting in 𝑛.

Since every sink path is a maximal path, 𝑚 ⊑MAX 𝑛 implies 𝑚 ⊑SINK 𝑛 . 𝑚 ⊑SINK 𝑛 while
¬

(︀
𝑚 ⊑MAX 𝑛

)︀
means that on reaching 𝑛, 𝑚 will later be executed unless an infinite loop is

entered.
The following definition is equivalent to those in [29] whenever 𝑛 ≠ 𝑚.

Definition 2.2. A node 𝑦 ∈ 𝑁 is non-termination sensitively (resp. insensitively) control-
dependent on 𝑥 ∈ 𝑁 , written 𝑥 →ntscd 𝑦 (resp. 𝑥 →nticd 𝑦), if there exist edges 𝑥 → 𝑛,
𝑥 → 𝑚 such that 𝑦 ⊑MAX 𝑛 (resp. 𝑦 ⊑SINK 𝑛), but ¬

(︀
𝑦 ⊑MAX 𝑚

)︀
(resp. ¬

(︀
𝑦 ⊑SINK 𝑚

)︀
).

Note that this definition is identical to the original CD definition, with ⊑MAX resp.
⊑SINK instead of ⊑POST . In fact, for graphs with unique exit node, we have →ntscd = →𝑤𝑐𝑑

and →nticd = →𝑐𝑑 [29]. Figure 3 shows →ntscd and →nticd for the CFG from Figure 2.
Like many program analysis problems, postdominance and CD can be characterized as a

fixpoint computation. Our first new insight is that both ⊑MAX and ⊑SINK can be characterized
as a greatest resp. least fix point of one rule set D. This surprising fact is the basis for our
generalization of Cytron’s algorithm. Note that the rule set can be interpreted as a functional
which transforms a set of dominance relationships {𝑥 ⊑ 𝑦} into a new set D

(︀
{(𝑥 ⊑ 𝑦}

)︀
. If

such a functional is monotone, it has a least as well as a greatest fixpoint.

Theorem 2.1. 4 Let D be the following rule system, and let D also denote its implicit
functional; write 𝜇 for the least fixpoint, and 𝜈 the greatest fixpoint. Then D is a monotone
functional in the (finite) lattice

(︀
2𝑁×𝑁 , ⊆

)︀
, and 𝜇D = ⊑MAX, and 𝜈D = ⊑SINK.

Rule system D :
𝑛 ⊑ 𝑛

Dself ∀𝑛 → 𝑥 : 𝑚 ⊑ 𝑥 𝑛 →* 𝑚

𝑚 ⊑ 𝑛
Dsucc

The reachability side-condition 𝑛 →* 𝑚 is in most cases redundant for the least fixed
point 𝜇D, but essential for the greatest fixed point 𝜈D.5

Of course, algorithms for →ntscd and →nticd are needed, and indeed Ranganath et al
proposed such algorithms. The algorithm for →ntscd from [29] can in principle be thought of
4Lemmas and Theorems marked with have been formalized and proved in the machine prover Isabelle.
The proof explanations and scripts can be found in the electronic appendix of this article.
5We mention in passing that for graphs with unique exit node, replacing this condition with 𝑛 ≠ exit results
in a similar rule system P on which the algorithm from [8] is based. We will not describe P in detail, but
note that ⊑POST = 𝜈P [15].

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

8 Martin Hecker, Simon Bischof, and Gregor Snelting

as a simple least fixed point computation of the set of nodes 𝑚 such that 𝑚 ⊑MAX 𝑛, but
only for nodes 𝑛 that are successors of branching nodes.

We however discovered a more general and systematic algorithmic approach, which exploits
the above fix-point theorem. It is based on the insight that Cytron’s efficient algorithm for
dominance frontiers can be generalized to an abstract notion of “dominance”; and thus can
be used for ⊑POST , ⊑SPOST , ⊑MAX , ⊑SINK , →ntscd, →nticd, and in particular for →tscd.
We will present all algorithms in a separate section (section 5), as they demand a rather
heavy technical machinery.

In conclusion of this section, we recall another notion from Ranganath et al., which will
also be helpful to characterise →tscd.

Definition 2.3 ([29]). Decisive order dependence, written 𝑛→dod
(︀
𝑚1, 𝑚2

)︀
is a ternary relation

which means that 𝑛 controls the order in which 𝑚1, 𝑚2 are executed.

We omit the formal definition, but provide an intuition: In [29], the necessity of →dod was
motivated by an irreducible6 graph, such as the graph shown in Figure 6a. Here, neither 𝑚1
nor 𝑚2 is nontermination sensitively control dependent on 𝑛: ¬(𝑛 →ntscd 𝑚1) ∧ ¬(𝑛 →ntscd
𝑚2). But the decision at 𝑛 determines which node is executed next: Leaving 𝑛 via the left
branch will execute 𝑚1 before 𝑚2, but leaving 𝑛 via the right branch will execute 𝑚2 before
𝑚1. Thus 𝑛→dod

(︀
𝑚1, 𝑚2

)︀
holds. Ranganath and Amtoft used →ntscd and →dod to define a

sound notion of nontermination-sensitive backward slicing. This is consistent with the fact
that CDs are fundamental for slicing and PDGs.

3 TIMING SENSITIVE CONTROL DEPENDENCE
3.1 Why Time-Sensitivity Matters
Before we formally develop timing sensitive CDs, let us motivate the usefulness of this
concept for software security analysis. Known attacks exploiting timing side channels include
Spectre [22] and cache attacks on implementations of the cryptographic standard AES
[4]. In this kind of attacks, the attacker is able to observe the timing behaviour of certain
instructions; from this observation determine whether some specific data are in the cache or
not; and from this knowledge infer values of secret variables (e.g. by using the secret value
as an array index), or draw conclusions about control flow.

Timing sensitive CDs can reveal such potential attacks, or prove that such attacks are
impossible. For example, in a specific AES implementation7 we find the code lines

(1) for r1: [0 ,1 ,... ,15]
(2) r2 := state[r1]; // state depends on key and plain text
(3) r3 := sbox[r2]; // sbox is a constant array
(4) state[r1] := r3
(5) end

sbox is a constant array which typically spans multiple memory blocks, while r1, r2, r3
are registers. Thus the value of r2 in one iteration may influence whether the read of r3 in a
later iteration is served from cache (namely if, earlier, the corresponding memory block was
already loaded into the cache), or from main memory. This makes a difference in execution
time and can be observed by an attacker; who may thus be able to infer the value of r2.
6A CFG is reducible if the forward edges form a directed acyclic graph, and in any backedge 𝑚 → 𝑛, 𝑛

dominates 𝑚. Structured programs have reducible CFGs; wild gotos typically lead to irreducible CFGs.
7This implementation was presented in [4]. It assumes that all accesses to the sbox array need constant time.
But in fact access time is cache dependent.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

On Time-Sensitive Control Dependencies 9

r2 := state[r1]

r1 := 0

r3 := sbox[r2]

state[r1] := r3

r1 := r1 + 1

r1 > 15 ?

r1 ≤ 15 ?

(2)

(3)

(4)

(5)

(1)

state[_] := msg[_] ... key[_]

(0)

...

(a) Standard CFG

use r1

use r1

miss

r2 := state[r1]

r1 := 0

r3 := sbox[r2]

use r1

state[r1] := r3

r1 := r1 + 1

r1 > 15 ?

r1 ≤ 15 ?

use r2

use r2

miss

(2)

(3)

(4)

(5)

(1)

state[_] := msg[_] ... key[_]

(0)

...

(b) Cache Aware CFG

Fig. 4. Control Flow Graphs for AES Sbox substitution.

Such leaks can be discovered by timing-sensitive CDs; provided the CFG not just describes
the code, but additionally models relevant hardware features such as cache behaviour.

Figure 4 shows the standard CFG for the AES code fragment, as well as the micro-
architectural CFG which models timing differences due to cache hits and misses. The latter
CFG indicates that array access r3 := sbox[r2] in line (3) may either result in a cache hit or
cache miss. In the control flow, this is modeled via two paths leaving node (3) that are joined
after following a different number of edges, and take a different amount of time to execute.
Specifically, the time at which execution reaches the exit node (5) depends on which paths are
taken at (3): node (5) is time sensitively control dependent on node (3). The edge annotations
use r2 indicate that the value register r2 determines which array index, and hence which
cache line is accessed at (3). Furthermore, due to the previous assignment r2 := state[r1],
node (3) is data-dependent on the initialization of the state array from the plain text message
and the key, as indicated in node (0).8 Thus we obtain the following dependency chain
(where →𝑑𝑑 denotes data dependency): (secret input) →𝑑𝑑 state →𝑑𝑑 r2 →𝑑𝑑 (3) →tscd (5).
That means: the time until (5) is reached depends on secret input. Thus time-sensitive CDs
reveal that sbox access is not constant time (in contrast to the AES specification); opening
a door to cache-leak based attacks.

8Besides CDs, data dependencies are important for security analysis. This is described in section 3.4. For
the current AES example, the reader may assume all data dependencies are available as necessary.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

10 Martin Hecker, Simon Bischof, and Gregor Snelting

(a) A CFG with external timing leak (b) A CFG without timing leak

Fig. 5. Dependence of execution time of 𝑚𝑥 on 𝑛.

If a →tscd dependency is not (indirectly) data dependent on secret data, it does not
generate a timing leak. E.g. in the AES CFG, (2) →tscd (5) also holds. But the value of r1
(and thus (2)) is not data dependent on any secret value, so no timing leak arises via (2). We
will discuss this in more depth in section 3.4; and come back to AES and micro-architectural
CFGs in section 4.

3.2 Timing Sensitive Control Dependence
Consider Figure 5a: 𝑚𝑥 is guaranteed to be executed, no matter which branch is taken at 𝑛,
so we have ¬

(︀
𝑛 →ntscd 𝑚𝑥

)︀
. But let us assume that we could measure execution times. Now,

𝑛 can control at which time 𝑚𝑥 will be executed, namely 4 or 2 steps after executing 𝑛. We
will say that 𝑚𝑥 is timing sensitively control-dependent on 𝑛, or 𝑛 →tscd 𝑚𝑥. In Figure 5b,
however, 𝑚𝑥 will always be executed 4 steps after 𝑛, so there we have ¬

(︀
𝑛 →tscd 𝑚𝑥

)︀
.

We will now formally define →tscd. Specifically, we will
(1) Propose a notion ⊑TIME of timing sensitive postdominance.
(2) Give a least fixed point characterization of ⊑TIME.
(3) Propose a notion →tscd of timing sensitive control dependence. It will be based on

⊑TIME the same way that →ntscd is based on ⊑MAX.
(4) Prove soundness and minimality of →tscd.
To start with, remember that ⊑MAX was defined via

𝑚 ⊑MAX 𝑛 ⇐⇒ ∀𝜋 ∈ 𝑛ΠMAX. 𝑚 ∈ 𝜋

where 𝑛ΠMAX is the set of maximal paths starting in 𝑛. For example, in Figure 5a it holds
that 𝑚𝑥 ⊑MAX 𝑛, because any maximal path starting in any successor of 𝑛 must contain 𝑚𝑥

(i.e.: both 𝑚𝑥 ⊑MAX 𝑛′ and 𝑚𝑥 ⊑MAX 𝑛′′), and so must any maximal path starting in 𝑛.
Now for time-sensitive postdominance we additionally want to express that in Figure 5a

𝑚𝑥 can be reached via two different paths, with varying execution time. In order to account
for the different timing of the (first) occurrence of 𝑚𝑥 in maximal paths starting in 𝑛, the
following auxiliary definition is needed.

Definition 3.1. Given any path 𝜋 = 𝑚0, 𝑚1, 𝑚2, . . . we say that 𝑚 appears in 𝜋 at position
𝑘 iff 𝑚 = 𝑚𝑘, and write 𝑚 ∈𝑘 𝜋. If additionally, 𝑚𝑖 ≠ 𝑚 for all 𝑖 < 𝑘, we say that 𝑚 first
appears in 𝜋 at position 𝑘, and write 𝑚 ∈𝑘

FIRST 𝜋.

Using this notation, we can define time-sensitive postdominance as follows.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

On Time-Sensitive Control Dependencies 11

Definition 3.2. (a) 𝑚 timing-sensitively postdominates 𝑛 at position 𝑘 ∈ N, written
𝑚 ⊑𝑘

TIME 𝑛, iff on all maximal paths starting in 𝑛, 𝑚 first appears at position 𝑘. Formally

𝑚 ⊑𝑘
TIME 𝑛 ⇐⇒ ∀𝜋 ∈ 𝑛ΠMAX. 𝑚 ∈𝑘

FIRST 𝜋

(b) 𝑚 timing-sensitively postdominates 𝑛, written 𝑚 ⊑TIME 𝑛, if there exists 𝑘 such that
𝑚 ⊑𝑘

TIME 𝑛. Thus

𝑚 ⊑TIME 𝑛 ⇐⇒ ∃𝑘 ∈ N ∀𝜋 ∈ 𝑛ΠMAX. 𝑚 ∈𝑘
FIRST 𝜋

If we compare 𝑚 ⊑𝑘
TIME 𝑛 to 𝑚 ⊑MAX 𝑛, the difference is that in the latter, 𝑚 must occur

somewhere in all maximal paths from 𝑛, while in the former 𝑚 must first occur at a specific
position 𝑘 in all maximal paths from 𝑛. Thus if 𝑚 ⊑TIME 𝑛, 𝑚 must appear in all maximal
paths from 𝑛 at the same position. Therefore in Figure 5a, 𝑚𝑥 ⊑TIME 𝑛 does not hold, while
in Figure 5b, 𝑚𝑥 ⊑TIME 𝑛 does hold.

Lemma 3.1. Given 𝑚 and 𝑛, the 𝑘 such that 𝑚 ⊑𝑘
TIME 𝑛 (if it exists) is unique.

Following the definitions for nontermination sensitive and insensitive control dependence
→ntscd and →nticd, we define the following timing sensitive notion of control dependence:

Definition 3.3. 𝑦 is said to be timing sensitively control-dependent on 𝑥, written 𝑥 →tscd 𝑦,
if there exist edges 𝑥 → 𝑛 and 𝑥 → 𝑚 as well as some 𝑘 ∈ N such that

𝑦 ⊑𝑘
TIME 𝑛 and ¬(𝑦 ⊑𝑘

TIME 𝑚)

Note that this definition is identical to the definition of →ntscd resp. →𝑐𝑑; with ⊑𝑘
TIME

instead of ⊑MAX resp. ⊑POST . Thus →tscd has the same formal structure as classical CD
and its later extensions.

In Figure 5a we have 𝑚𝑥 ⊑3
TIME 𝑛′ but ¬(𝑚𝑥 ⊑3

TIME 𝑛′′), thus we have 𝑛 →tscd 𝑚𝑥; while
in Figure 5b we have 𝑚𝑥 ⊑3

TIME 𝑛′ and 𝑚𝑥 ⊑3
TIME 𝑛′′ and thus not 𝑛 →tscd 𝑚𝑥. For more

complex examples, consider again the CFG in Figure 2. The timing sensitive postdominance
for this CFG is shown in Figure 7b. Figure 7c and Figure 7d show the corresponding
non-termination sensitive and timing sensitive control dependencies. Note, for example, that
7 →tscd 8 because a choice 7 →𝐺 11 can delay node 8, but in contrast: ¬(7 →*

ntscd 8),
because no choice at node 7 can prevent node 8 from being executed. It is not the case
that, in general, 𝑛 →ntscd 𝑚 implies 𝑛 →tscd 𝑚. For example: 2 →ntscd 8, but ¬(2 →tscd 8).
What does hold here is 2 →*

tscd 8 via 2 →tscd 7 →tscd 8.
We will now provide a fixpoint characterization of 𝑚 ⊑𝑘

TIME 𝑛. Remember from Theorem 2.1
that ⊑MAX is the least fixed point of the rule system D

𝑛 ⊑ 𝑛
Dself ∀𝑛 → 𝑥. 𝑚 ⊑ 𝑥 𝑛 →* 𝑚

𝑚 ⊑ 𝑛
Dsucc

in the lattice
(︀
2𝑁×𝑁 , ⊆

)︀
. Similarly, the ternary relation 𝑚 ⊑𝑘

TIME 𝑛 is the least fixed point
of the rule system TFIRST in the underlying lattice

(︀
2𝑁×N×𝑁 , ⊆

)︀
.

Theorem 3.1. Let TFIRST be the rule-system

𝑛 ⊑0 𝑛
Tself

FIRST
∀𝑛 → 𝑥. 𝑚 ⊑𝑘 𝑥 𝑚 ≠ 𝑛 𝑛 →* 𝑚

𝑚 ⊑𝑘+1 𝑛
Tsucc

FIRST

Then ⊑TIME = 𝜇TFIRST.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 Martin Hecker, Simon Bischof, and Gregor Snelting

(a) A CFG 𝐺

0

1

1
0

0

2

21 1

0 0

(b) ⊑TIME in 𝐺 (edges reversed)
(c) →𝐺

tscd

Fig. 6. The canonical irreducible graph, where neither 𝑛→ntscd 𝑚1 nor 𝑛→ntscd 𝑚2.

Note that the condition 𝑛 →* 𝑚 is redundant for nodes 𝑛 that have some successor 𝑥,
since we consider only the least, but not the greatest, fixed point of TFIRST. The condition
𝑚 ≠ 𝑛 ensures that we only consider the first occurrence of 𝑚 in each path.

We will now demonstrate that →tscd is transitively a stricter requirement than non-
termination sensitive control independence. To this end, we use the following notation.

Definition 3.4. For 𝑀 ⊆ 𝑁 and → a relation on 𝑁 , the backward slice of 𝑀 is(︀
→

)︀* (︀
𝑀

)︀
= {𝑦 | ∃𝑥 ∈ 𝑀 : 𝑦 →* 𝑥}

This definition can be generalized to the ternary relation →dod: if 𝑦→dod
(︀
𝑥1, 𝑥2

)︀
, 𝑦 ∈(︀

→dod
)︀* (︀

𝑀
)︀

only if 𝑥1 and 𝑥2 ∈
(︀
→dod

)︀* (︀
𝑀

)︀
[29].

Theorem 3.2. Let 𝑀 ⊆ 𝑁 . Then(︀
→tscd

)︀* (︀
𝑀

)︀
⊇

(︀
→ntscd ·∪ →dod

)︀* (︀
𝑀

)︀
That is, there are more transitive time-sensitive CDs than the transitive closure of even

the union of →ntscd and →dod. Now remember that Ranganath and Amtoft introduced
→ntscd and →dod in order to provide a sound notion of nontermination-sensitive backward
slicing. Thus in the language of PDGs,

(︀
→

)︀* (︀
𝑀

)︀
is just the backward slice of 𝑀 , and the

theorem states that the timing sensitive backward slice of 𝑀 contains the nontermination
sensitive backward slice of 𝑀 .

It is worth noting that the →tscd slice in Theorem 3.2 does not require a timing sensitive
analogue of the relation →dod. As seen above, the necessity of →dod was motivated by an
irreducible graph, such as the graph in Figure 6. But while in Figure 6 neither 𝑚1 nor 𝑚2 is
nontermination sensitively control dependent on 𝑛, both 𝑚1 and 𝑚2 are timing-sensitively
control dependent on 𝑛 (e.g.: 𝑛 →tscd 𝑚1 because 𝑚1 ⊑1

TIME 𝑛′, but ¬(𝑚1 ⊑1
TIME 𝑛′′), and

also: 𝑚1 ⊑2
TIME 𝑛′′, but ¬(𝑚1 ⊑2

TIME 𝑛′). This 𝑚1/𝑚2 symmetry makes a ternary “→ tsdod”
unnecessary.

3.3 Soundness and minimality of →tscd

It is our ultimate goal to discover timing leaks. We thus need a soundness proof for →tscd,
which guarantees that →tscd will indeed discover all potential timing leaks. We will further
show that →tscd is minimal, which means there are no spurious time-sensitive dependencies.

Any soundness proof makes assumptions about the possibilities of attackers; this is called
the attacker model. To prove soundness of →tscd under an attacker model, we use a technique
called trace equivalence. Let us thus describe our attacker model, and then define trace

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

On Time-Sensitive Control Dependencies 13

1

2

10

36

4 9

1214

5

7

8

11

13

(a) CFG from Figure 2

1 0

2 0

3 0

4

3

0

5

2

1

0

6 0

7

1

0

8

1

2

0

9 0

10

1

0

11 0

12

2

1

0 13

2

3

1

014

2

1

0

(b) Its relation ⊑TIME (edges reversed)

1

2

10

36 7 8

5 94

1214

11

13

(c) Its non-termination sensitive control
dependence →ntscd

1

2

10

3

6

7

4 5 9

14 128

11

13

(d) Its timing sensitive control dependence →tscd

Fig. 7. Timing sensitive postdomination. Edges 𝑛
𝑘−→ 𝑚 indicate 𝑚 ⊑𝑘

TIME 𝑛.

equivalence. We imagine an attacker who tries to infer secret values (such as r2 in the AES
example) measuring execution times for certain execution paths. But the attacker cannot
observe all nodes, he can only observe certain “observable” nodes.9 The goal of security
analysis is then to guarantee that secret information cannot flow to observable nodes, resp.
that execution times measured at observable nodes will not allow the attacker to infer secret
values at unobservable nodes.10 Technically, for →tscd this guarantee is based on trace
equivalence of clocked traces.

Definition 3.5. An (unclocked) trace 𝑡 is a sequence of edges
(︀
𝑛, 𝑛′)︀ ∈

(︀
→𝐺

)︀
∪

(︀
𝑁𝑥 × {⊥}

)︀
that is either finite with 𝑡 =

(︀
𝑛𝑒, 𝑛1

)︀
,

(︀
𝑛1, 𝑛2

)︀
, . . . ,

(︀
𝑛𝑘, 𝑛𝑥

)︀
,

(︀
𝑛𝑥, ⊥

)︀
for some exit node

𝑛𝑥 ∈ 𝑁𝑥, or infinite with 𝑡 =
(︀
𝑛𝑒, 𝑛1

)︀
,

(︀
𝑛1, 𝑛2

)︀
, Partial edges

(︀
𝑛, ⊥

)︀
occur only at exit

nodes.

Definition 3.6. A clocked trace is a trace where every step is additionally annotated with
a time stamp. We write 𝑡 �

[︀
𝑖
]︀

if a trace step 𝑡 has time stamp 𝑖. Given a trace 𝑡 =(︀
𝑛𝑒, 𝑛1

)︀
,

(︀
𝑛1, 𝑛2

)︀
, . . ., its clocked version is thus

𝑡� =
(︀
𝑛𝑒, 𝑛1

)︀
�

[︀
0
]︀

,
(︀
𝑛1, 𝑛2

)︀
�

[︀
1
]︀

, . . .

9These observable nodes are called “low” nodes in the literature on software security analysis (see e.g. [31]).
10This kind of security analysis is called information flow control (IFC), and is based on the technical notion
of noninterference. We will describe technical details on the application of →tscd for IFC in a separate
article; here we present only the AES example and do not discuss technical details of noninterference.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

14 Martin Hecker, Simon Bischof, and Gregor Snelting

Next, we assume there is a fixed set 𝑆 ⊆ 𝑁 of observable nodes.11

Definition 3.7. Let 𝑆 ⊆ 𝑁 ; let a trace 𝑡 be given. We define the 𝑆-observation 𝑡
⃒⃒
𝑆

of 𝑡 to
be the sub-sequence of 𝑡 containing only edges

(︀
𝑛, 𝑛′)︀ with 𝑛 ∈ 𝑆. Traces 𝑡1, 𝑡2 are called

𝑆-equivalent if 𝑡1
⃒⃒
𝑆
= 𝑡2

⃒⃒
𝑆

.

These definitions work for unclocked and clocked traces. 𝑆-observability means that we
assume an attacker to observe exactly those choices made at nodes 𝑛 ∈ 𝑆. Specifically, we
assume that an attacker can observe neither the nodes in a subtrace between observable
nodes, nor – for unclocked traces – the time spent between two observable nodes (i.e: the
length of the subtrace between two observable nodes).

Now we consider traces caused by specific inputs. We write 𝑡𝑖 for the (possibly infinite)
trace caused by input 𝑖. As we want to abstract away from particular input formats or
data objects, we use a nonstandard formalization of input: 𝑖 is a map from CFG nodes to a
(perhaps infinite) list of CFG successor nodes: 𝑖 : 𝑁 → 𝑁*. An input 𝑖 causes 𝑡𝑖 as follows:
If e.g. an if node 𝑛 ∈ 𝑁 is visited for the 𝑘th time during the execution with input 𝑖, the
execution will continue with the 𝑘th element of 𝑖

(︀
𝑛

)︀
, which is a successor node (i.e. true or

false path) of 𝑛. If 𝑛 is only visited finitely often, superfluous entries in 𝑖(𝑛) are ignored.
This encoding has the effect that our CFGs are state-free: they contain CDs and nothing

else. In particular the CFG does not contain program variables or program state – these
are hidden in the 𝑖 encoding. From a practical viewpoint this is however no restriction, and
no weakening of the soundness property: we do not constrain possible 𝑖, and the soundness
theorem below holds for all 𝑖, 𝑖′. Note however that for practical discovery of timing leaks,
data dependences are additionally needed; this is described in section 3.4.

Next, we need the notion of 𝑆-equivalent inputs. For 𝑆 ⊆ 𝑁 , 𝑖
⃒⃒
𝑆

: 𝑆 → 𝑁* is the
restriction of the map 𝑖 to nodes 𝑛 ∈ 𝑆, thereby only determining the successor nodes chosen
at condition nodes ∈ 𝑆. Two inputs 𝑖, 𝑖′ are called 𝑆-equivalent, written 𝑖 ∼𝑆 𝑖′, if 𝑖

⃒⃒
𝑆
= 𝑖′⃒⃒

𝑆
.

An attacker cannot distinguish 𝑆-equivalent inputs.
We will now explain why – in the absence of timing leaks – 𝑆-equivalent inputs demand

𝑆-equivalent traces. It is essential to consider clocked traces: even if two unclocked traces are
𝑆-equivalent, their clocked versions may be different. This is the essence of time-sensitivity!
For illustration consider Figure 5a, with observable nodes 𝑆 = {𝑚, 𝑚𝑥}. Regardless of the
choice made at 𝑛, all inputs 𝑖, 𝑖′ starting in 𝑚 have the same observable trace

𝑡𝑖

⃒⃒
𝑆

=
(︀
𝑚, 𝑛

)︀
,

(︀
𝑚𝑥, ⊥

)︀
= 𝑡𝑖′

⃒⃒
𝑆

Hence 𝑡𝑖 and 𝑡𝑖′ are always trace equivalent. Thus an attacker without clock cannot extract
any secret information from observing traces. However, if equipped with a suitably precise
clock, an attacker will observe 𝑚𝑥 after 5 steps for the input 𝑖 that chooses 𝑛′ at 𝑛, but
already after 3 steps for 𝑖′ that chooses 𝑛′′ at 𝑛, exposing a timing difference. This becomes
obvious if we use the clocked versions of 𝑡𝑖, 𝑡𝑖′ , and then compare their 𝑆-observation:

𝑡�𝑖
⃒⃒
𝑆

=
(︀
𝑚, 𝑛

)︀
�

[︀
0
]︀

,
(︀
𝑚𝑥, ⊥

)︀
�

[︀
5
]︀

≠
(︀
𝑚, 𝑛

)︀
�

[︀
0
]︀

,
(︀
𝑚𝑥, ⊥

)︀
�

[︀
3
]︀

= 𝑡�𝑖′

⃒⃒
𝑆

Since the attacker cannot distinguish 𝑖 and 𝑖′ (they only differ in the choices for the
unobservable node 𝑛), this timing difference allows the attacker to gain additional information,
leading to a timing leak. On the other hand, the program in Figure 5b has no timing leak:
11The assumption of a fixed, static 𝑆 and batch-like execution is standard in IFC and noninterference. It can
be generalised and made more realistic in various ways; which however is not a topic of this article. Likewise,
technical details of noninterference will not be discussed in this article.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

On Time-Sensitive Control Dependencies 15

2

4 5

6

3

1

𝑖1 = {1 →
[︀
3, 3, . . .

]︀
, 3 →

[︀
4, 4, . . .

]︀
}

𝑡�𝑖1
=

(︀
1, 3

)︀
�

[︀
0
]︀

,
(︀
3, 4

)︀
�

[︀
1
]︀

,
(︀
4, 6

)︀
�

[︀
2
]︀

,
(︀
6, ⊥

)︀
�

[︀
3
]︀

𝑡�𝑖1

⃒⃒
𝐵

=
(︀
1, 3

)︀
�

[︀
0
]︀

,
(︀
6, ⊥

)︀
�

[︀
3
]︀

𝑡�𝑖1

⃒⃒
𝐵′ =

(︀
6, ⊥

)︀
�

[︀
3
]︀

𝑖2 = {1 →
[︀
3, 3, . . .

]︀
, 3 →

[︀
5, 5, . . .

]︀
}

𝑡�𝑖2
=

(︀
1, 3

)︀
�

[︀
0
]︀

,
(︀
3, 5

)︀
�

[︀
1
]︀

,
(︀
5, 6

)︀
�

[︀
2
]︀

,
(︀
6, ⊥

)︀
�

[︀
3
]︀

𝑡�𝑖2

⃒⃒
𝐵

=
(︀
1, 3

)︀
�

[︀
0
]︀

,
(︀
6, ⊥

)︀
�

[︀
3
]︀

𝑡�𝑖2

⃒⃒
𝐵′ =

(︀
6, ⊥

)︀
�

[︀
3
]︀

𝑖3 = {1 →
[︀
2, 2, . . .

]︀
, 3 →

[︀
4, 4, . . .

]︀
}

𝑡�𝑖3
=

(︀
1, 2

)︀
�

[︀
0
]︀

,
(︀
2, 6

)︀
�

[︀
1
]︀

,
(︀
6, ⊥

)︀
�

[︀
2
]︀

𝑡�𝑖3

⃒⃒
𝐵

=
(︀
1, 2

)︀
�

[︀
0
]︀

𝑡�𝑖3

⃒⃒
𝐵′ =

(︀
6, ⊥

)︀
�

[︀
2
]︀

Fig. 8. In the CFG on the left, let 𝑀 = {6} be the slicing criterion. Then 𝐵 = 𝐵𝑆
(︀
{6}

)︀
= {1, 6} is the

time-sensitive backward slice of 𝑀 , because 1→tscd 6. 𝐵′ = {6} is a slice that is too small. Right: 3
different inputs with their traces and observable behaviour regarding 𝐵 and 𝐵′.

even if we annotate each edge in the observable trace with its execution time, all inputs 𝑖, 𝑖′

starting in 𝑚 have the same observable clocked trace
𝑡�𝑖

⃒⃒
𝑆

=
(︀
𝑚, 𝑛

)︀
�

[︀
0
]︀

,
(︀
𝑚𝑥, ⊥

)︀
�

[︀
5
]︀

= 𝑡�𝑖′
⃒⃒
𝑆

This discussion motivates the following definition of timing leaks:

Definition 3.8. Let 𝑆 ⊆ 𝑁 be a set of observable (“low”) nodes. A program is free of timing
leaks if for all inputs 𝑖, 𝑖′

𝑖 ∼𝑆 𝑖′ =⇒ 𝑡�𝑖
⃒⃒
𝑆
= 𝑡�𝑖′

⃒⃒
𝑆

This definition is formally identical to classical noninterference definitions (cmp. e.g. [31]),
but is based on clocked traces.

To prevent a timing leak, it is necessary that all nodes which influence the timing of
observable nodes ∈ 𝑆 are observable itself. Otherwise, a secret node might influence the
timing of an observable node. For example, Figure Figure 5a contains – as described above
– a timing leak if we assume 𝑆 = {𝑚, 𝑚𝑥}. Indeed 𝑛 →tscd 𝑚𝑥, but not 𝑛 ∈ 𝑆. With
𝑆′ = 𝑆 ∪ {𝑛} = {𝑚, 𝑛, 𝑚𝑥}, the timing leak disappears: While the timing of 𝑚𝑥 still differs,
𝑖 and 𝑖′ are now distinguishable for the attacker, so this timing difference does not give
additional information.

We will now show how →tscd can be used to check for timing leaks. In particular we
demonstrate that for any observable 𝑀 ⊆ 𝑆, the time-sensitive backward slice 𝐵 =

(︀
→tscd)︀* (︀

𝑀
)︀

fulfills the condition of definition 3.8. This implies that 𝐵 is not too small, i.e. →tscd
is sound.

Before we state the theorem, consider what happens if 𝐵 is too small. In that case, the
→tscd dependency would have “missing edges”. Then there could exist two inputs that agree
on 𝐵, but lead to different traces: 𝑖 ∼𝐵 𝑖′ but 𝑡𝑖

⃒⃒
𝐵

≠ 𝑡𝑖′
⃒⃒
𝐵

. Figure 8 presents one such
example. For 𝐵 = 𝐵𝑆({6}) = {1, 6}, we have 𝑖1 ∼𝐵 𝑖2 and indeed 𝑡�𝑖1

⃒⃒
𝐵
= 𝑡�𝑖2

⃒⃒
𝐵

. In contrast,
the unsound “slice” 𝐵′ = {6} leads to 𝑖1 ∼𝐵′ 𝑖3 but 𝑡�𝑖1

⃒⃒
𝐵′ ≠ 𝑡�𝑖3

⃒⃒
𝐵′ . (Note that the only

difference between the two slices is the timing of
(︀
6, ⊥

)︀
, so we have 𝑡𝑖

⃒⃒
𝐵′ = 𝑡𝑖′

⃒⃒
𝐵′ for the

unclocked traces. In fact, {6} is a sound slice when ignoring timing and using →ntscd.) If
however 𝑖 ∼𝐵 𝑖′ always implies 𝑡�𝑖

⃒⃒
𝐵
= 𝑡�𝑖′

⃒⃒
𝐵

, soundness is guaranteed.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

16 Martin Hecker, Simon Bischof, and Gregor Snelting

Theorem 3.3 (Soundness of →tscd). Let 𝑀 ⊆ 𝑆. Let 𝐵 =
(︀
→tscd

)︀* (︀
𝑀

)︀
be the timing

sensitive backward slice w.r.t 𝑀 . Then, for any inputs 𝑖, 𝑖′ such that 𝑖 ∼𝐵 𝑖′, we have

𝑡�𝑖
⃒⃒
𝐵
= 𝑡�𝑖′

⃒⃒
𝐵

Corollary 3.1. If 𝐵𝑆(𝑆) ⊆ 𝑆, definition 3.8 holds, i.e. there is no timing leak.

As 𝑆 ⊆ 𝐵𝑆(𝑆) always holds, the corollary’s premise is in fact 𝑆 = 𝐵𝑆(𝑆). If the premise
is not satisfied, i.e. for some 𝑥 ∈ 𝐵𝑆(𝑆): 𝑥 ∉ 𝑆, 𝑥 – as explained above – is a timing leak.

Minimality of slicing now shows that 𝐵 = 𝐵𝑆
(︀
𝑀

)︀
is as small as possible: Any set of

nodes 𝐵′ that includes the slicing criterion 𝑀 can only be secure if it is a superset of 𝐵.

Theorem 3.4 (Minimality of →tscd). Under the assumptions of Theorem 3.3, for any
𝐵′ ⊇ 𝑀 with 𝐵′ ⊉ 𝐵 there exist inputs 𝑖, 𝑖′ such that 𝑖 ∼𝐵′ 𝑖′, but:

𝑡�𝑖
⃒⃒
𝐵′ ≠ 𝑡�𝑖′

⃒⃒
𝐵′

It should be noted that the proof for both theorems relies on the non-standard, state-free
input encoding of 𝑖, 𝑖′, which was described above.

3.4 The Full Time-Sensitive Backward Slice
Our nonstandard input encoding (which “factors away” all state information) is not practical
for “real” programs. In such programs, time-sensitive influences through variables must
be considered too. For this reason, discovery of timing leaks needs data dependences in
addition to control dependences. Data dependences have in fact already been used in the
AES example. For completeness and better understanding, we will thus describe the full
algorithm for discovering timing leaks. Note that in this article, we do not provide a modified
soundness proof for the full algorithm, as it does not contribute to →tscd “as such”.

We denote data dependencies by →𝑑𝑑. 𝑥 →𝑑𝑑 𝑦 means that a variable 𝑣 which is defined
(assigned) at 𝑥 is used at 𝑦; provided there is a CFG path 𝑥 →* 𝑦, and 𝑣 is not redefined
on this path [11]. We will not describe the construction of →𝑑𝑑 in detail, but note that for
full languages with functions, objects, multithreading etc. the computation of precise data
dependencies is nontrivial and requires context-sensitive summary dependencies, precise
points-to analysis, may-happen-in-parallel analysis, and much more (see e.g. [14, 23, 30]).

The full algorithm for discovering timing leaks then assumes →𝑑𝑑, and proceeds as follows.
(1) Compute →tscd. If 𝑥 →tscd 𝑦, but not 𝑥 →𝑐𝑑 𝑦, then there may be a timing leak at 𝑦,

but only if it can be influenced by secret data.
(2) Using →𝑑𝑑, the full time-sensitive backward slice is defined as

𝐵𝑆𝑡𝑠(𝑀) =
(︀
→tscd ∪ →𝑑𝑑

)︀* (︀
𝑀

)︀
This slice contains all CFG nodes which may influence 𝑀 ; other nodes which influence
𝑀 cannot exist [6, 14, 18].

(3) Now if 𝑥 →tscd 𝑦, and 𝐵𝑆𝑡𝑠({𝑥}) contains any secret input or variables, there is a
timing leak at 𝑦: the execution time between 𝑥 and 𝑦 varies, depending on secret data.

This procedure is fully analogous to the slicing-based noninterference check used in
JOANA (see [6, 14]; these papers include soundness proofs and other details about slicing-
based IFC), but with →tscd instead of →𝑐𝑑. Note that in the current article, we consider
only context-insensitive timing-dependencies (while JOANA uses context-sensitive, object-
sensitive dependencies). A context-sensitive →tscd is future work.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

On Time-Sensitive Control Dependencies 17

4 TIMING SENSITIVITY FOR MICROARCHITECTURAL CFGS
Already in the abstract we mentioned the infamous AES cache timing leaks which where
discovered by Bernstein [4]. Some details of this attack were described in section 3.1. We
will now describe in more detail how such cache leaks can be discovered resp. prevented via
time-sensitive CDs in microarchitectural CFGs. Basically, the algorithm from section 3.4 is
used, but the underlying CFG must be extended to model cache behaviour.

In the following, we describe this cache-modelling CFG extension in detail. The CFG
edges are labeled with assignments and guards that refer to (cacheable) variables a, b, . . .,
and uncacheable registers r1, r2,

We assume a simple data cache of size four, with a least recently used eviction strategy.
The (micro-architectural) cache-state hence consists of a list

[︀
𝑥1, 𝑥2, 𝑥3, 𝑥4

]︀
of variables,

with 𝑥1 being the most recently used, and 𝑥4 the next to be evicted. In Figure 9b, we
show — under an abstraction that considers cache state only — all possible executions of
the control flow graph, assuming an empty initial cache. For example, the abstract node(︀
9,

[︀
x, d, c, b

]︀)︀
represents all those concrete configurations at control node 9 in which the

concrete micro-architectural cache contains cached values for the variables
[︀
x, d, c, b

]︀
, in this

order (with arbitrary concrete macro-architectural state).
In the example, executions can reach the control node 𝑚 = 15 at cache states represented

by either
[︀
b, y, c, x

]︀
, or by

[︀
b, y, d, x

]︀
. Which of these (abstract) cache states is reached is

determined by the macro-architectural choice made at 𝑛 = 9. But it is easy to see that the
execution time of the read of y at node 𝑚 = 15 does not depend on the choice made at 𝑛 = 9,
since in both (classes of) executions that reach node 𝑚 = 15, the cache does contain the
variable y, which is the only cacheable variable accessed by the edge 15 r2:=y−−−→ 16 at 𝑚.

For the read of variable b at node 𝑚 = 14, on the other hand, one class of executions
reaches 𝑚 in

(︀
14,

[︀
y, c, b, x

]︀)︀
(containing b), while another class of executions reaches 𝑚

in
(︀
14,

[︀
y, d, x, c

]︀)︀
(not containing b). Whether the relevant variable b is in the cache at

𝑚 = 14 (and hence: the execution time of the read of b at 𝑚 = 14) or not depends here on
the choice made at 𝑛 = 9.

Now consider the read of c at node 𝑚 = 21. Does its cache state depend on the choice
made right before at 𝑛′ = 16? There are four (abstract) cache states at 𝑚 = 21. Two
contain the variable c:

(︀
21,

[︀
b, y, c, x

]︀)︀
and

(︀
21,

[︀
a, y, b, c

]︀)︀
. The other two do not contain

c:
(︀
21,

[︀
a, y, b, d

]︀)︀
and

(︀
21,

[︀
b, y, d, x

]︀)︀
. The cache states containing c are reachable from

configurations at control node 𝑛′ = 16. At the same time: cache states not containing c are
also reachable from configurations at control node 𝑛′ = 16. But in fact, whether c is in cache
at 𝑚 does not depend on the choice made at 𝑛′. To see this, note that node 𝑛′ = 16 can
be reached at two different cache states. The first abstract configuration is

(︀
16,

[︀
y, b, c, x

]︀)︀
.

But whenever 𝑚 = 21 is reached from this abstract configuration, c is in the cache (either(︀
21,

[︀
b, y, c, x

]︀)︀
or

(︀
21,

[︀
a, y, b, c

]︀)︀
). The second abstract configuration at which 𝑛′ = 16 can

be reached is
(︀
16,

[︀
y, b, d, x

]︀)︀
. But whenever 𝑚 = 21 is reached from that configuration, c is

not in the cache (
(︀
21,

[︀
a, y, b, d

]︀)︀
or

(︀
21,

[︀
b, y, d, x

]︀)︀
).

On the other hand, the cache status of c at node 𝑚 = 21 does depend on the choice made
earlier at 𝑛 = 9. In this example this is necessarily so, since the node 𝑛 = 9 is the only other
macro-architectural conditional node in the control flow graph. But this is also directly
evident by the structure of the graph in Figure 9b.

Note that through a a small modification of the program, the cache status of c at 𝑚 = 21
could have been independent from the choice made earlier at 𝑛 = 9. For example: had there
been reads to two additional variables (e.g: e, f) right before 𝑚 = 21, then all cache states

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Martin Hecker, Simon Bischof, and Gregor Snelting

2

4

5

a := 1

6

b := 2

7

c := 3

8

d := 4

9

x := 24

10

(x ≤ 0)

11

¬ (x ≤ 0)

12

y := b + c

13

y := d + d

14

[r1] := b

15

16

[r2] := y

17

([r2] ≤ 3)

18

¬ ([r2] ≤ 3)

19

[r3] := a

20

[r3] := b

21

[r4] := c

3

22

(a) Control Flow Graph

(2,[])

(4,[])

(3,[c,a,y,b]) (3,[c,b,y,d])(3,[c,b,y,x])

(5,[a])

a := 1

(6,[b,a])

b := 2

(7,[c,b,a])

c := 3

(8,[d,c,b,a])

d := 4

(9,[x,d,c,b])

x := 24

(10,[x,d,c,b])

(x ≤ 0)

(11,[x,d,c,b])

¬ (x ≤ 0)

(12,[y,c,b,x])

y := b + c

(13,[y,d,x,c])

y := d + d

(14,[y,c,b,x]) (14,[y,d,x,c])

(15,[b,y,c,x])

[r1] := b

(15,[b,y,d,x])

[r1] := b

(16,[y,b,c,x])

[r2] := y

(16,[y,b,d,x])

[r2] := y

(17,[y,b,c,x])

([r2] ≤ 3)

(18,[y,b,c,x])

¬ ([r2] ≤ 3)

(17,[y,b,d,x])

([r2] ≤ 3)

(18,[y,b,d,x])

¬ ([r2] ≤ 3)

(19,[a,y,b,c])

[r3] := a

(19,[a,y,b,d])

[r3] := a

(20,[b,y,c,x])

[r3] := b

(20,[b,y,d,x])

[r3] := b

(21,[a,y,b,c]) (21,[a,y,b,d])(21,[b,y,c,x]) (21,[b,y,d,x])

(22,[c,a,y,b])

[r4] := c [r4] := c

(22,[c,b,y,x])

[r4] := c

(22,[c,b,y,d])

[r4] := c

(b) Cache Aware Abstract Executions

Fig. 9. A CFG and its possible cache-aware abstract executions.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

On Time-Sensitive Control Dependencies 19

at 𝑚 would not have contained c. This is because these two reads would have evicted c even
from

[︀
b, y, c, x

]︀
(and

[︀
a, y, b, c

]︀
).

In summary, the choice made at 𝑛 = 9 does influence the relevant (micro-architectural)
cache state at 𝑚 ∈ {21, 14}. In fact for this micro-architecture, these are the only micro-
architectural dependencies in this CFG. The example indicates how a CFG 𝐺 can be
transformed into a cache-aware version. We will not present the formal definitions here (see
[16]), but just present the transformed CFG for the above example.

Figure 10 shows the micro-architectural-aware CFG 𝐺′ for Figure 9; together with an
explicit timing cost model 𝐶′. A cache-miss is assumed to take 10 units of time, while a
cache-hit takes 2 units12. At node 14, the read from b takes either 2 or 10 units of time,
since b there might either be in the cache, or not.13 Hence in 𝐺′, node 14 has two artificial
successors: the read from b takes either 2 or 10 units of time, since b there might either
be in the cache, or not. On the other hand, node 15 still has only one successor, reached
with timing cost 3 = 2 + 1 (cache access plus register access), since we found that there the
variable y is always in cache.

In 𝐺′, we now have (as desired) that node 21 is in the backward slice of the exit node 3.
Formally,

21 ∈
(︂

→
𝐺′

[︀
𝐶′

]︀
tscd

)︂* (︀
{3}

)︀
Together with the microarchitectural dependence from node 9 to node 21, we conclude that
the decision at node 9 may influence the execution time of node 3.

Note that even if 𝐺 is deterministic, 𝐺′ usually is not. This is no problem, because we
can still use the micro-architectural dependencies →𝐺

𝜇d (and data dependencies →𝑑𝑑) from

the original graph 𝐺, and only use 𝐺′ for timing sensitive control dependence →
𝐺′

[︀
𝐶′

]︀
tscd .

For the AES code, the cache-sensitive graph 𝐺′ has been shown in section 3.1, and we
already described how cache leaks in AES have been discovered through time-sensitive
backward slicing. More details can be found in [16].

5 ALGORITHMS
Our algorithms are based on the fundamental insight that Cytron’s original algorithm for
dominance frontiers can be generalized to CFGs with loops and multiple exit nodes; and
even to the computation of time-sensitive CD. We consider this “generic” algorithm our
major contribution: without it, the new →tscd definition would be worthless in practice; and
even Ranganath’s and Amtoft’s →ntscd/→nticd are more efficient to compute using the new
algorithms.

5.1 New algorithms for ⊑MAX and ⊑SINK

Let us begin with new algorithms for →ntscd and →nticd. These will – in generalization of
Cytron’s approach – be constructed as postdominance frontiers of ⊑MAX and ⊑SINK. The
efficient implementation of ⊑MAX and ⊑SINK needs some technical machinery, namely transitive
reductions and pseudo-forests.

Both ⊑MAX and ⊑SINK will always be represented by their transitive reductions; allowing
efficient construction algorithms. A transitive reduction < of a transitive relation ⊑ is
12memory writes are assumed to always take 2 units of times, and register accesses take 1 unit of time
13In the timing cost model 𝐶, the cost 11 = 10 + 1 that stems from one uncached variable access plus one
register access is split into two edges. We need to do this because in our notion of graphs, there can be no
multi-edges, and we require cost models 𝐶 to be strictly positive.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

20 Martin Hecker, Simon Bischof, and Gregor Snelting

2

4

(1)

3

5

(2) a := 1

6

(2) b := 2

7

(2) c := 3

8

(2) d := 4

9

(2) x := 24

10

(2) (x ≤ 0)

11

(2) ¬ (x ≤ 0)

12

(6) y := b + c

13

(6) y := d + d

14

(1) (1)

23

(2) [r1] := b

24

(10) [r1] := b

15

16

(3) [r2] := y

17

(1) ([r2] ≤ 3)

18

(1) ¬ ([r2] ≤ 3)

19

(11) [r3] := a

20

(3) [r3] := b

21

(1) (1)

25

(2) [r4] := c

26

(10) [r4] := c

22

(1)

(1) (1)

(1) (1)

Fig. 10. Micro-Architecture Aware CFG 𝐺′ for Figure 9.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

On Time-Sensitive Control Dependencies 21

1

2

10

36

4 9

1214

5

7

8

11

13

(a) CFG 𝐺 from Figure 2

1 2

9

103

4

5

12 14

6

7 8

11 13

(b) Transitive Reduction <MAX of ⊑MAX

Fig. 11. Nontermination-sensitive Postdominance

a minimal subset < of ⊑ such that (<)* = ⊑. Thus < has a minimal number of edges
but the same transitive closure as ⊑. Efficient algorithms for transitive reductions have
long been known [2]. But remember that ⊑MAX and ⊑SINK may contain cycles (i.e. are not
antisymmetric), in contrast to the classical ⊑POST. Hence their transitive reductions may
also contain cycles. Therefore the transitive reductions of ⊑MAX and ⊑SINK are not forests
(i.e. sets of trees) as for ⊑POST, but so-called pseudo-forests.

Definition 5.1. A pseudo-forest is a relation < such that for every node 𝑛 ∈ 𝑁 , 𝑚 < 𝑛 for
at most one node 𝑚.

Thus in a pseudo-forest every node has at most one parent node, but in contrast to
ordinary forests, pseudo-forests may contain cycles. Summarizing this discussion, we obtain

Observation 5.1. 1. Both ⊑MAX and ⊑SINK are reflexive and transitive, but not necessarily
anti-symmetric.

2. Any transitive, reflexive reduction <MAX of ⊑MAX is a pseudo-forest.
3. Any transitive, reflexive reduction <SINK of ⊑SINK is a pseudo-forest.

Figure 11 (b) shows a reduction <MAX of ⊑MAX for the CFG in Figure 11 (a). This pseudo-
forest has five trees, with roots 1, 2, 3, {6, 7, 8} and 10.14 Node 9 does not ⊑MAX-postdominate
node 3 because the loop at 3 may not terminate. On the other hand, node 9 does ⊑SINK-
postdominate node 3: a path looping forever at 3 is not a sink path, and any sink path
starting at 3 must eventually reach the trivial sink at node 10.

We will now present new algorithms to compute ⊑MAX and ⊑SINK. The representation of
both ⊑MAX and ⊑SINK by pseudo-forests is crucial, as pseudo-forests admit efficient algorithms
for their computation. Based on pseudo-forests, our algorithm for ⊑MAX is a standard fixpoint
iteration. Beginning with the empty pseudo-forest, new edges are added to <MAX according
to Theorem 2.1 until a fixpoint is reached. Since ⊑MAX is efficiently represented by a pseudo-
forest <MAX, it is straightforward to derive an efficient algorithm for the computation of
⊑MAX, see algorithm 2. In addition, we need an efficient implementation of set-intersection

14In the figure, downarrows 𝑛 → 𝑚 mean that 𝑚 < 𝑛.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

22 Martin Hecker, Simon Bischof, and Gregor Snelting

Input : A pseudo-forest <, represented as a map IMDOM : 𝑁 ˓→ 𝑁 s.t.
IMDOM

[︀
𝑛
]︀
= 𝑚 iff 𝑚 < 𝑛.

Input : Nodes m0, n 0
Output : A least common ancestor of n 0, m0, or ⊥ if there is none.
begin

return lca
(︀

n 0, m0
)︀

end
Function lca

(︀
𝜋 n , 𝜋m

)︀
Input : A <-path 𝜋 n = n 0, . . . , n ending in n
Input : A <-path 𝜋m = m0, . . . , m ending in m
if m ∈ 𝜋 n then return m
switch IMDOM[n] do

case ⊥ do return lin[𝜋 n]
(︀
𝜋m

)︀
case n’ do

if n’ ∈ 𝜋 n then
return lin[𝜋 n]

(︀
𝜋m

)︀
end
return lca

(︀
𝜋m , 𝜋 n n’

)︀
end

end
end
Function lin[𝜋 n]

(︀
𝜋m

)︀
Input : A <-path 𝜋m = m0, . . . , m ending in m
Implicit : A <-path 𝜋 n = n 0, . . . , n ending in n
switch IMDOM[m] do

case ⊥ do return ⊥
case m’ do

if m’∈ 𝜋 n then return m’
if m’∈ 𝜋m then return ⊥
return lin[𝜋 n](𝜋mm’)

end
end

end
Algorithm 1: A least common ancestor algorithm for pseudo-forests. 𝑁 ˓→ 𝑁 denotes a
partial map from 𝑁 to 𝑁 .

in the representation <, i.e.: a least common ancestor algorithm lca< for pseudo-forests; see
algorithm 1.

Algorithm 1 calculates the least common ancestor of 𝑛0 and 𝑚0 by alternately extending
<-paths from 𝑛0 and 𝑚0 one by one. If the newly added node is already contained in the
other path, it is returned as the result of lca(𝑛0, 𝑚0): Since this is the first time the two
paths overlap, this node is not only a common ancestor but also the least one. If one path
cannot be extended (because its IMDOM is ⊥ or starts to contain a cycle), only the other
path is extended (procedure lin). When the other path cannot be extended anymore either,
we do not have an lca, so we return ⊥.

Algorithm 2 works in two phases: First, we establish trivial IMDOM relations for nodes
with only one successor. For the graph in Figure 14 (left), these would be IMDOM[5]=7,
IMDOM[7]=8, IMDOM[8]=9 and IMDOM[9]=8.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

On Time-Sensitive Control Dependencies 23

Next, we calculate IMDOM for conditional nodes (nodes with more than one successor). We
keep a queue of such nodes for which IMDOM has not been calculated. For each conditional
node x, we try to calculate the lca of their successors. If this returns a node a ≠ ⊥, we
set IMDOM[x]=a and remove x from the worklist, otherwise it is put back at the end. The
algorithm terminates once the worklist is empty or we have completed a full iteration through
the worklist without a change to IMDOM. The variable oldest tracks the first node after the
last change; once we visit it again, we are done.

In the case of the graph in Figure 14 (left), assume we iterate in order COND𝐺 =[1,2,3,4],
which becomes our first workqueue. For x=1, we calculate lca({2, 3, 4}). Let’s sup-
pose we try to calculate lca(2, 3) = lca([2], [3]) first. Since IMDOM[2]=⊥, we imme-
diately call lin[[2]]([3]), but since IMDOM[3]=⊥ as well, we return ⊥ as lca(2, 3).
But then lca({2, 3, 4})=⊥ as well. 1 is therefore put back into the queue, so we now
have workqueue=[2,3,4,1] and oldest=1. For x=2, when calculating lca(6, 7), we have
IMDOM[6]=⊥, so we immediately call lin[[6]]([7]). During the recursion in lin, we ex-
tend [7] to [7,8] and [7,8,9] (since no new node is in [6]). The next step would be
IMDOM[9]=8. Since 8 ∈ [7,8,9] (which would lead to a loop), we return ⊥. 2 is therefore put
back into the queue, so we now have workqueue=[3,4,1,2] and oldest=1. For x=3, when
calculating lca(5, 7), we have IMDOM[5]=7 and 7 ∈ [7], so we return 7 as our lca. Since we
have an lca, we update IMDOM[3]=7, keep 3 out of the workqueue (so workqueue=[4,1,2])
and set oldest=⊥. For x=4, when calculating lca(9, 5), we extend both paths alternately
until the path starting in 9 would enter a loop, then only the path starting in 5 is extended.
Then we will find that 8 is our lca, since it is in both paths. In detail, lca([9], [5]) =
lca([5], [9,8]) = lca([9,8], [5,7]) = lin[[9,8]]([5,7]) = lin[[9,8]]([5,7,8])
= 8. We update IMDOM[4]=8, keep 4 out of the workqueue (so workqueue=[1,2]) and keep
oldest=⊥. Now we are back to x=1. When calculating lca(2, 3), we now have IMDOM[3]=7,
so we can extend [3] until we get [3,7,8,9]. But still, no node is contained in [2], so
we still have ⊥ as our lca. We put 1 back into the workqueue (so workqueue=[2,1]) and
set oldest=1. After finding for x=2 that lca(6,7)= ⊥, we put 2 back into the workqueue
(so workqueue=[1,2]) and keep oldest=1. But now our next element in the queue is our
oldest, so we are done.

The computation of ⊑SINK is slightly more complicated. As it is a greatest fixpoint, in
principle we must start with 𝑁 × 𝑁 and reduce it according to the rules; until the greatest
fixpoint is reached. But 𝑁 × 𝑁 cannot be represented by a pseudo-forest. Hence we need
to initialize the fixed point iteration with an approximation ⊑0 of ⊑SINK (i.e.: ⊑0 ⊇ ⊑SINK)
that is representable by a pseudo-forest <0. We can build <0 by interleaving a traversal of a
preliminary pseudo forest < with lca< computations. Consider the preliminary < in figure
12b. We need to establish 3 < 1, but find that lca<

(︀
{2, 3}

)︀
= ⊥ for the successors of 1. We

would like to assume both 3 < 1 and 2 < 1, the latter of which would then be invalidated in
the (downward) fixed point iteration. But then < no longer would be a pseudo forest! If we
assumed just 2 < 1, we would obtain a <0 such that not: <*

0 ⊇ ⊑SINK, so we need to make
the assumption 3 < 1. This example illustrates how the fixpoint iteration must proceed. It
is based on the

Observation 5.2. Let <SINK be a transitive reduction of ⊑SINK. Then whenever 𝑥<SINK𝑦 and
any path starting in 𝑥 is bound for a sink 𝑆 (such 𝑆 is necessarily unique), then any path
starting in 𝑦 is bound for 𝑆 as well.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

24 Martin Hecker, Simon Bischof, and Gregor Snelting

Input : A CFG 𝐺
Data: A pseudo-forest < represented as a map IMDOM : 𝑁 ˓→ 𝑁 s.t. IMDOM

[︀
𝑛
]︀
= 𝑚 iff

𝑚 < 𝑛
Output : A transitive reduction <MAX of ⊑MAX

begin
for 𝑥 ∈ 𝑁, {𝑧 | 𝑥→ 𝑧} = {𝑧} , 𝑧 ≠ 𝑥 do

IMDOM
[︀
𝑥
]︀
← 𝑧

end
MAXIMALup
return IMDOM

end
Procedure MAXIMALup

workqueue← COND𝐺

oldest← ⊥
while workqueue ≠ ∅ do

𝑥← removeFront(workqueue)
assert IMDOM[𝑥] = ⊥
if oldest = 𝑥 then

return
end
if oldest = ⊥ then

oldest← 𝑥
end
𝑎← lca

(︀
{ 𝑦 | 𝑥→ 𝑦 }

)︀
𝑧 ←

{︂
⊥ if 𝑎 = ⊥ ∨ 𝑎 = 𝑥

𝑎 otherwise
if 𝑧 ≠ ⊥ then

IMDOM
[︀
𝑥
]︀
← 𝑧

oldest← ⊥
else

pushBack
(︀
workqueue, 𝑥

)︀
end

end
end

Algorithm 2: An efficient algorithm for the computation of <MAX. COND𝐺 denotes the set
of conditional nodes, i.e.: nodes with more than one successor. workqueue is ordered by
any fixed ordering on nodes 𝑁 .

Here, “bound for 𝑆” means that the path cannot escape sink 𝑆. To illustrate the iteration
for ⊑SINK, consider figure 12b. For node 3 we have already established 4 <* 3 for the sink
node 4 ∈ 𝑆, but we have not yet established 4 <* 2. This suggests that we must – whenever
lca<

(︀
{ 𝑦 | 𝑥 → 𝑦 }

)︀
= ⊥ – choose some successor node 𝑦 of 𝑥 such that already 𝑠 <* 𝑦 for

some sink node 𝑠. We call such nodes 𝑦 processed, and maintain a set PROCD of all such
nodes. Algorithm 3 presents the computation of <SINK, the additional procedures performing
the iteration are given in Figure 13.

Algorithm 3 first initializes ISDOM for sink nodes and nodes with one successor. Remember
that any nontrivial sink 𝑆𝑖 contains a <SINK -cycle. For each sink 𝑆𝑖, we therefore initialize
ISDOM to be such a cycle in arbitrary order. We also choose a representative 𝑠𝑖 for each sink

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

On Time-Sensitive Control Dependencies 25

1

2 3

4

(a) A graph 𝐺

1

2 3

4

(b) A preliminary pseudo forest <

Fig. 12. Computing an initial approximation <0.

𝑆𝑖 and mark all nodes in 𝑆𝑖 as processed. For all nodes outside sinks with one successor, the
initialization of ISDOM is identical to the one in algorithm 2. Once a successor is processed,
we mark all nodes that reach this node through ISDOM-chains as processed.

Next, we construct in 𝑆𝐼𝑁𝐾𝑢𝑝 a preliminary ISDOM that fulfills ISDOM* ⊇ ⊑SINK but
might be too optimistic: For nodes x, ISDOM[x] might exist even though it should be ⊥; or
it might be a node that is too small to be a common ancestor of the successors of x (but the
correct lca is an ancestor of ISDOM[x]). We choose such an ISDOM of x as soon as one of its
successors is processed. When calculating the lca, we only consider the successors which
have already been processed. If the resulting lca is ⊥, we choose an arbitrary successor as
lca. Now, we set ISDOM[x] to be this lca. We also set x and all nodes that reach x through
ISDOM-chains as processed. This succeeds for any x with distance 𝑘 to a sink at attempt 𝑘
at the latest (this can be shown by induction on 𝑘), so this algorithm terminates.

Then, these spurious postdominances are eliminated during 𝑆𝐼𝑁𝐾𝑑𝑜𝑤𝑛. For each con-
ditional node x outside sinks the lca of its successors is calculated. If it is part of a sink
𝑆𝑖, its distinguished representative 𝑠𝑖 is chosen instead. If it is different from the current
ISDOM (either a different node or ⊥), ISDOM is updated and all nodes possibly affected by
this change are put back in the worklist: These are all conditional nodes n having a successor
y that reaches x through ISDOM-chains. This is done until the worklist is empty.

As an example, consider Figure 14 (left). In the initial phase, we set ISDOM[8]=9 and
ISDOM[9]=8 for the non-trivial sink. For its representative, let’s assume we choose 8. We
mark all sink nodes 6, 8 and 9 as processed. Then, we handle non-condition nodes. We set
ISDOM[4]=9 and mark 4 as processed. After that, we set ISDOM[5]=7 (but cannot mark it as
processed since 7 is not). Finally we set ISDOM[7]=8 and mark both 7 and 5 as processed.

In 𝑆𝐼𝑁𝐾𝑢𝑝, 1 has a single processed successor, namely 4. Thus ISDOM[1]=4, and 1 is
processed. For 2, we have two processed successors, but lca(6,7)=⊥. Let’s suppose we
choose ISDOM[2]=7; 2 is also marked as processed. Finally, 3 has two processed successors
and lca(5,7)=7, so we set ISDOM[3]=7 and mark 3 as processed. This finishes 𝑆𝐼𝑁𝐾𝑢𝑝.

In 𝑆𝐼𝑁𝐾𝑑𝑜𝑤𝑛, we first check x=1. Since we still have ISDOM[2]=7, lca({2,3,4})=8. This
is also the representative of this sink, so we set ISDOM[1]=8. For x=2, we now find that
ISDOM[2]=⊥. This change puts 1 back into the worklist. For x=3, no change occurs, since
lca(5,7)=ISDOM[3]=7. For x=4, we have lca(9)=9. The representative of this sink is 8, so
we set ISDOM[4]=8. We would also have to put 1 back into the worklist if it wasn’t there
already. For x=1, the updated ISDOM[2] now means we find lca({2,3,4})=⊥, so we set
ISDOM[2]=⊥. This finishes the calculation of ISDOM.

5.2 Postdominance Frontiers in Graphs Without Unique Exit
We will now derive algorithms for →ntscd and →nticd, based on ⊑MAX and ⊑SINK. In particular,
we generalize Cytron’s idea to split up the postdominance frontier into an “up” and a “local”

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

26 Martin Hecker, Simon Bischof, and Gregor Snelting

Input : A CFG 𝐺
Data: A pseudo-forest < represented as a map ISDOM : 𝑁 ˓→ 𝑁 s.t. ISDOM

[︀
𝑛
]︀
= 𝑚 iff

𝑚 < 𝑛
Output : A transitive reduction <SINK of ⊑SINK

begin
{𝑆1, . . . , 𝑆𝑛} ←

{︀
𝑆𝑖

⃒⃒
𝑆𝑖 ∈ sccs

(︀
𝐺

)︀
,¬ ∃𝑠→ 𝑛. 𝑠 ∈ 𝑆𝑖 ∧ 𝑛 ∉ 𝑆𝑖

}︀
𝑆 ←

⋃︀
𝑆𝑖

for 1 ≤ 𝑖 ≤ 𝑛 do
𝑠𝑖 ← any node in 𝑆𝑖

for 𝑛𝑗 ∈ 𝑆𝑖 in any fixed ordering 𝑛1, . . . , 𝑛𝑘𝑖
of 𝑆𝑖 do

ISDOM
[︀
𝑛𝑗

]︀
← 𝑛𝑗+1 mod 𝑘𝑖

unless 𝑘𝑖 = 1
processed

(︀
𝑛𝑗

)︀
end

end
for 𝑥 ∈ 𝑁, 𝑥 ∉ 𝑆, {𝑧 | 𝑥→ 𝑧} = {𝑧} , 𝑧 ≠ 𝑥 do

ISDOM
[︀
𝑥
]︀
← 𝑧

if 𝑧 ∈ PROCD then processed
(︀
𝑥
)︀

end
SINKup
SINKdown
return ISDOM

end
Algorithm 3: Computation of transitive reduction <SINK of ⊑SINK. Not shown is the
procedure processed

(︀
𝑥

)︀
which updates PROCD given a node 𝑥 s.t. 𝑠 <* 𝑥 for some sink

node 𝑠, by following linear segments ending in 𝑥 upwards.

part, and to follow the tree structure (parent links) while iterating. The latter also works for
pseudo-forests.

To describe this idea in detail, first remember that in graphs with unique exit node 𝑛𝑥,
standard postdominance ⊑POST is always a partial order, while in arbitrary graphs, ⊑MAX

and ⊑SINK may lack anti-symmetry, and may thus contain cycles of nodes postdominating
each other. In the following we therefore reconstruct Cytron’s algorithm with our generalized
definition for postdominance frontiers. In particular, the following definitions replace Cytron’s
definitions from [10]: instead of Cytron’s original ⊏POST we use our new 1-⊑ , and instead of
Cytron’s original ipdom⊑POST we use ipdom⊑. We will thus be able to define the generalized
algorithm in a self-contained way.

Definition 5.2 (Immediate ⊑-Postdominance). Given a binary relation ⊑ on nodes, a node
𝑥 is said to 1-⊑-postdominate 𝑧 if there exists some node 𝑦 ≠ 𝑥 such that 𝑥 ⊑ 𝑦 ⊑ 𝑧. The
set ipdom⊑

(︀
𝑛

)︀
is defined by

ipdom⊑
(︀
𝑛

)︀
=

{︂
𝑚

⃒⃒⃒⃒
𝑚 1-⊑ 𝑛

∀𝑚′ ∈ 𝑁. 𝑚′ 1-⊑ 𝑛 =⇒ 𝑚′ ⊑ 𝑚

}︂
In contrast to strict postdominance, 𝑥 1-⊑ 𝑥 might hold, namely if there is a cycle

𝑥 ⊑ 𝑦 ⊑ 𝑥 for 𝑥 ≠ 𝑦. ipdom⊑
(︀
𝑥

)︀
is the set of immediate postdominators: it contains the

postdominators of 𝑥 that all (other) postdominators of 𝑥 postdominate.
As an example, consider the CFG in Figure 14 (left) with ⊑MAX-postdominance. We have

ipdom⊑
(︀
5
)︀
= {7} since 7 1-⊑ 5 and each 1-⊑ -postdominator of 5 also postdominates 7.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

On Time-Sensitive Control Dependencies 27

Procedure SINKup
workqueue← COND𝐺 ∖ 𝑆 in any order
while workqueue ≠ ∅ do

𝑥← removeFront(workqueue)
assert ISDOM

[︀
𝑥
]︀
= ⊥ ∧ 𝑥 ∉ PROCD

SUCCS← { 𝑦 | 𝑥→ 𝑦, 𝑦 ∈ PROCD }
if SUCCS = ∅ then

𝑧 ← ⊥
else

𝑎← lca
(︀
SUCCS

)︀
𝑧 ←

{︂
any 𝑦 ∈ SUCCS if 𝑎 = ⊥

𝑎 otherwise
end
if 𝑧 ≠ ⊥ then

ISDOM
[︀
𝑥
]︀
← 𝑧

processed
(︀
𝑥
)︀

else
pushBack(workqueue, 𝑥)

end
end

Procedure SINKdown
workset← {𝑛 | 𝑛 ∈

COND𝐺 ∖ 𝑆, ISDOM[𝑛] ≠ ⊥}
while workset ≠ ∅ do

𝑥← removeMin(workset)
𝑎← lca

(︀
{ 𝑦 | 𝑥→𝐺 𝑦 }

)︀
𝑧 ←

⎧⎨⎩
⊥ if 𝑎 = ⊥
𝑠𝑖 if 𝑎 ∈ 𝑆𝑖

𝑎 otherwise
assert ISDOM[𝑥] = ⊥ ⇒ 𝑧 = ⊥
if 𝑧 ≠ ISDOM[𝑥] then

workset← workset ∪
{𝑛 ∈ COND𝐺 ∖ 𝑆 | ∃𝑛→ 𝑦. 𝑥 <* 𝑦}

ISDOM
[︀
𝑥
]︀
← 𝑧

end
end

Fig. 13. Upward and downward iteration for algorithm 3
.

Input : A transitive reduction < of ⊑
Input : A map SCC from nodes 𝑥 to the strongly connected component 𝑐 of < s.t 𝑥 ∈ 𝑐
Input : A topological sorting sccs of all strongly connected components of <.
Output : pdf⊑
for scc ∈ sccs do

local← {𝑦 | 𝑥 ∈ scc, 𝑦 → 𝑥, ¬∃𝑥′ ∈ scc. 𝑥′ < 𝑦⏟ ⏞
𝑦 ∈ scc<

}

up ← {𝑦 | 𝑥 ∈ scc, 𝑥 < 𝑧⏟ ⏞
𝑧 ∈ scc<

, 𝑦 ∈ PDF[𝑧], ¬∃𝑥′ ∈ scc. 𝑥′ < 𝑦⏟ ⏞
𝑦 ∈ scc<

}

for 𝑥 ∈ scc do PDF[𝑥]← local ∪ up
end

Algorithm 4: Computation of pdf⊑

8 ∉ ipdom⊑
(︀
5
)︀

because 7 1-⊑ 5 but not 7 ⊑ 8. For the cycle of 8 and 9, each of those
1-⊑ -postdominates itself and the other one, so we have ipdom⊑

(︀
8
)︀
= ipdom⊑

(︀
9
)︀
= {8, 9}.

Next we need a generalized notion of Cytron’s postdominance frontiers. Intuitively, the
postdominance frontier contains all nodes that are one step away from having 𝑥 as a
postdominator.

Definition 5.3 (⊑-Postdominance Frontiers).

pdf⊑
(︀
𝑥

)︀
=

{︂
𝑦

⃒⃒⃒⃒
¬ 𝑥 1-⊑ 𝑦

for some 𝑠 s.t. 𝑦 → 𝑠 : 𝑥 ⊑ 𝑠

}︂

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

28 Martin Hecker, Simon Bischof, and Gregor Snelting

1

2
3

4

5

9

6

8

7

1

4

2

9

6

7

3

8

5

10

Fig. 14. Two example CFGs

Consider again Figure 14 (left) with ⊑MAX-postdominance. We have pdf⊑
(︀
5
)︀
= {3, 4},

since 5 neither postdominates 3 or 4, but postdominates a successor of those nodes (namely
5 itself). 1 ∉ pdf⊑

(︀
5
)︀

since 5 postdominates no successor of 1. For the node 7 we have
pdf⊑

(︀
7
)︀
= {1, 2, 4}. Note that 3 ∉ pdf⊑

(︀
7
)︀

since 7 postdominates 3.
The following lemma generalizes Cytron’s insight that CD is essentially the same as

postdominance frontiers:

Lemma 5.1. For 𝑛 ≠ 𝑚, we have
𝑛 →ntscd 𝑚 ⇐⇒ 𝑛 ∈ pdf⊑MAX

(︀
𝑚

)︀
and

𝑛 →nticd 𝑚 ⇐⇒ 𝑛 ∈ pdf⊑SINK

(︀
𝑚

)︀
Due to this lemma, we easily obtain →ntscd and →nticd once we have an algorithm for pdf⊑.

For the latter, we – following Cytron – partition pdf⊑
(︀
𝑥

)︀
into two parts: those 𝑦 contributed

locally, and those 𝑦 contributed by nodes 𝑧 which are immediately ⊑-postdominated by
𝑥 (implying 𝑥 ⊑ 𝑧). Informally, the local part pdf local

⊑
(︀
𝑥

)︀
of pdf⊑

(︀
𝑥

)︀
comprises all nodes

from which one can get to 𝑥 in one step, but which do not have 𝑥 as a postdominator. On
the other hand, if 𝑦 ∈ pdf⊑

(︀
𝑧
)︀

and ipdom⊑
(︀
𝑧
)︀

is not the join point of all of 𝑦’s branching,
then 𝑦 is in the “upper” part pdfup

⊑
(︀
𝑧
)︀
. This is formalized in

Definition 5.4 (⊑-Postdominance Frontiers: local and up part).

pdf local
⊑

(︀
𝑥

)︀
= {𝑦 |¬ 𝑥 1-⊑ 𝑦, 𝑦 → 𝑥}

pdfup
⊑

(︀
𝑧
)︀
=

{︀
𝑦 ∈ pdf⊑

(︀
𝑧
)︀ ⃒⃒

∀𝑥 ∈ ipdom⊑
(︀
𝑧
)︀

. ¬ 𝑥 1-⊑ 𝑦
}︀

Under suitable conditions, pdfup
⊑ and pdf local

⊑ indeed partition pdf⊑. This is made precise
in the following

Observation 5.3. Let ⊑ be transitive and reflexive. Also, identify ipdom⊑ with the relation{︀(︀
𝑥, 𝑧

)︀ ⃒⃒
𝑥 ∈ ipdom⊑

(︀
𝑧
)︀}︀

, and assume ipdom*
⊑ = ⊑. Then

pdf⊑
(︀
𝑥

)︀
= pdf local

⊑
(︀
𝑥

)︀
∪

⋃︁{︀
𝑧

⃒⃒
𝑥∈ipdom⊑

(︀
𝑧
)︀}︀ pdfup

⊑
(︀
𝑧
)︀

Fortunately, ⊑MAX and ⊑SINK are reflexive and transitive (but, as explained, not antisym-
metric); thus the partitioning can be applied. For an example, consider again Figure 14

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

On Time-Sensitive Control Dependencies 29

(left) with ⊑MAX-postdominance. We have pdf local
⊑

(︀
5
)︀
= {3, 4}. Since 5 only postdominates

itself trivially, we have 5 ∈ ipdom⊑
(︀
𝑧
)︀

for no node 𝑧, and observation 5.3 indeed gives
pdf⊑

(︀
5
)︀
= {3, 4}. We have pdf local

⊑
(︀
7
)︀
= {2}. Since we have

{︀
𝑧

⃒⃒
7 ∈ ipdom⊑

(︀
𝑧
)︀}︀

= {3, 5},
we need to calculate pdfup

⊑
(︀
3
)︀

and pdfup
⊑

(︀
5
)︀
. For 5, we have already seen pdf⊑

(︀
5
)︀
= {3, 4}.

But pdfup
⊑

(︀
5
)︀

contains only node 4, since 7 actually postdominates 3! Since pdfup
⊑

(︀
3
)︀
= {1},

observation 5.3 results in pdf⊑
(︀
7
)︀
= {1, 2, 4}, as expected.

The next definition provides properties which will enable a fixpoint computation of
pdf local

⊑
(︀
𝑥

)︀
and pdfup

⊑
(︀
𝑧
)︀
.

Definition 5.5. ⊑ is closed under → , if it admits the rules
𝑦 → 𝑥 𝑥′ ⊑ 𝑦 𝑥′ ≠ 𝑦

𝑥′ ⊑ 𝑥
CL→

⊑ lacks joins if it admits the rules
𝑥 ∈ ipdom⊑

(︀
𝑣
)︀

𝑥 ∈ ipdom⊑
(︀
𝑧
)︀ 𝑣 ⊑ 𝑠

𝑧 ⊑ 𝑠
𝑧 ≠ 𝑣

𝑣 ∈ ipdom⊑
(︀
𝑧
)︀

∨ 𝑧 ∈ ipdom⊑
(︀
𝑣
)︀ NoJoin

Informally, the premise of the last rule is “split” at 𝑠 (into 𝑣 and 𝑧), and joined at 𝑥. The
conclusion demands that this cannot happen unless 𝑣 and 𝑧 are immediate neighbours.

Lemma 5.2. Both ⊑MAX and ⊑SINK are closed under →, and lack joins.

As promised, the following theorems provide, under the “lacks join” assumption for ⊑,
simplified formulae for pdf local

⊑
(︀
𝑥

)︀
and pdfup

⊑
(︀
𝑧
)︀
.

Observation 5.4. Let ⊑ be transitive, and closed under → . Then
pdf local

⊑
(︀
𝑥

)︀
=

{︀
𝑦

⃒⃒
¬ 𝑥 ∈ ipdom⊑

(︀
𝑦
)︀

, 𝑦 → 𝑥
}︀

Observation 5.5. Let ⊑ be transitive, reflexive, lacking joins, and closed under → . Also
assume ipdom*

⊑ =⊑. Then, given some 𝑧 with 𝑥 ∈ ipdom⊑
(︀
𝑧
)︀

pdfup
⊑

(︀
𝑧
)︀
=

{︀
𝑦 ∈ pdf⊑

(︀
𝑧
)︀ ⃒⃒

¬ 𝑥 ∈ ipdom⊑
(︀
𝑦
)︀ }︀

As both ⊑MAX and ⊑SINK satisfy the assumptions of the last theorems, these theorems
immediately lead to an efficient rule system for computing pdf⊑

(︀
𝑥

)︀
. The first rule initializes

pdf⊑
(︀
𝑥

)︀
to its “local” part; the second rule applies the formula for the “upper” part, until

a fixpoint is reached. Of course, ipdom⊑ must be computed beforehand.

Definition 5.6. The monotone rule system for computing pdf⊑
(︀
𝑥

)︀
is given by

𝑥 ∉ ipdom⊑
(︀
𝑦
)︀

𝑦 → 𝑥

𝑦 ∈ pdf⊑
(︀
𝑥

)︀ 𝑥 ∉ ipdom⊑
(︀
𝑦
)︀

𝑥 ∈ ipdom⊑
(︀
𝑧
)︀

𝑦 ∈ pdf⊑
(︀
𝑧
)︀

𝑦 ∈ pdf⊑
(︀
𝑥

)︀
The smallest fixpoint of this rule system can be computed by a standard worklist algorithm.

Additionally, we can exploit transitive reductions. Given any transitive reduction < of ⊑,
(1) compute the strongly connected components sccs of the graph

(︀
𝑁, <

)︀
, in a correspond-

ing topological order. These can either be provided by the algorithm computing <, or
by Tarjan’s algorithm [32].

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

30 Martin Hecker, Simon Bischof, and Gregor Snelting

(a) A CFG 𝐺

0

1

1
0

0

2

21

0

(b) ⊑𝑘
TIME

edges reversed
(c) ⊑TIME

edges reversed

Fig. 15. An irreducible graph with intransitive ⊑TIME

(2) compute pdf⊑ by traversing the condensed graph in that order once.
This concludes the algorithm for generalized postdominance frontiers pdf⊑

(︀
𝑥

)︀
; and thus for

→ntscd and →nticd. For the actual computation, we propose the following optimization: By
precomputing the set scc< = { 𝑦 | ∃𝑥′ ∈ scc. 𝑥′ < 𝑦 } for each scc, we can use this for both
the tests on 𝑦, and for enumerating 𝑧.

To illustrate the fixpoint iteration for pdf⊑
(︀
𝑥

)︀
, consider once more the CFG in Figure 14

(left). The “local” rule gives us e.g. 1 ∈ pdf⊑
(︀
3
)︀
, 3 ∈ pdf⊑

(︀
5
)︀
, 4 ∈ pdf⊑

(︀
5
)︀

and 2 ∈
pdf⊑

(︀
7
)︀
. With the “up” rule we can now get 4 ∈ pdf⊑

(︀
7
)︀

by instantiating the rule with
𝑥 = 7, 𝑦 = 4 and 𝑧 = 5. Note that we indeed have shown 4 ∈ pdf⊑

(︀
5
)︀

earlier and we have
7 ∉ ipdom⊑

(︀
4
)︀

as well as 7 ∈ ipdom⊑
(︀
5
)︀
. In contrast, if we try to use 3 ∈ pdf⊑

(︀
5
)︀

to show
3 ∈ pdf⊑

(︀
7
)︀

(which is false), 7 ∉ ipdom⊑
(︀
3
)︀

would have to hold. But 7 ∈ ipdom⊑
(︀
3
)︀
, so

the right rule is not applicable, and we are prevented from showing 3 ∈ pdf⊑
(︀
7
)︀
.

5.3 Timing Sensitive Postdominance Frontiers
In order to develop efficient algorithms for the computation of timing sensitive postdominance
⊑TIME and timing sensitive control-dependence →tscd, let us first recall that our algorithms
for ⊑MAX and →ntscd rely on the fact that ⊑MAX is transitive:

(1) Transitivity of ⊑MAX allows us to efficiently compute and represent ⊑MAX in form of its
transitive reduction <MAX. Here, <MAX turned out to be a pseudo-forest.

(2) Transitivity of ⊑MAX, and the fact that
ipdom*

⊑MAX = ⊑MAX

allows us to use algorithm 4 to efficiently compute →ntscd via pdf⊑MAX .
Disregarding for now that →tscd is defined in terms of the ternary relation 𝑛 ⊑𝑘

TIME 𝑚, and
not in terms of its binary “∃𝑘. -closure” 𝑛 ⊑TIME 𝑚, let us investigate first if 𝑛 ⊑TIME 𝑚 is –
in general – transitive. Consider the (irreducible) CFG in Figure 15a. Here, every maximal
path starting in 𝑛 first reaches 𝑚1 after two steps, hence 𝑚1 ⊑TIME 𝑛. Also, every maximal
path starting in 𝑚1 first reaches 𝑚2 after one step, hence 𝑚2 ⊑TIME 𝑚1. But it is for no
number 𝑘 of steps the case that 𝑚2 ⊑𝑘

TIME 𝑛, hence: ¬ 𝑚1 ⊑TIME 𝑛. In summary, ⊑TIME is
not transitive.

Fortunately, situations as in Figure 15 are the only ones in which ⊑TIME is not transitive:

Theorem 5.1. Let 𝐺 be any reducible CFG. Then ⊑TIME is transitive.

Theorem 5.2. Let 𝐺 be any CFG with unique exit node 𝑛𝑥. Then ⊑TIME is transitive.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

On Time-Sensitive Control Dependencies 31

In practice, many programs have reducible CFGs or a unique exit; then ⊑TIME is transitive
by the above two theorems. Whenever ⊑TIME is transitive, we can use algorithm 4 to compute
→tscd. And if not, in [16] we present an algorithm for →tscd which works even if ⊑TIME is
not transitive. But it is much more complex and thus not described in this article. Note that
even our transitive “restriction” is more general than the restriction to structured CFGs
which is often required in literature on timing leaks, such as in e.g. [1, 17, 28].

Still, even under the ⊑TIME transitivity assumption, we are not done. Compared to the
above ⊑MAX algorithm, we must deal with the ternary 𝑛 ⊑𝑘

TIME 𝑚 instead of the binary ⊑MAX.
To this end, remember that for 𝑚 ≠ 𝑛,

𝑛 ∈ pdf⊑MAX

(︀
𝑚

)︀
⇔ 𝑛 →ntscd 𝑚

To obtain the analogous result for →tscd, we first need to “conservatively” redefine the
notion pdf⊑ of ⊑-postdominance in order to obtain a notion appropriate for non-transitive
relations ⊑. Remember that in definition 5.3, we defined for any binary relation ⊑:

pdf⊑
(︀
𝑚

)︀
=

{︂
𝑛

⃒⃒⃒⃒
¬ 𝑚 1-⊑ 𝑛

for some 𝑛′ s.t. 𝑛 →𝐺 𝑛′ : 𝑚 ⊑ 𝑛′

}︂
Syntactically, we will stick with this definition, but will modify the notion of 1-⊑-

postdominance. The new definition is

Definition 5.7 (1-⊑-Postdominance, redefinition). Given a relation ⊑ ⊆ 𝑁 × 𝑁 , a node
𝑥 ∈ 𝑁 is said to 1-⊑-postdominate 𝑧 if 𝑥 ⊑ 𝑧 and there exists some node 𝑦 ≠ 𝑥 such that

𝑥 ⊑ 𝑦 ⊑ 𝑧

The only change is the new requirement 𝑥 ⊑ 𝑧 , which of course was redundant up to
this section, since any relation ⊑ we considered (i.e.: ⊑POST, ⊑MAX and ⊑SINK) was transitive.
Implicitly, this change also affects immediate ⊑-postdominance ipdom⊑ – see definition 5.2.

Theorem 5.3. Let 𝑛 ≠ 𝑚 ∈ 𝑁 . Then

𝑛 ∈ pdf⊑TIME

(︀
𝑚

)︀
⇔ 𝑛 →tscd 𝑚

Theorem 5.3 holds for arbitrary graphs, and establishes that indeed, timing sensitive
postdominance frontiers are essentially timing sensitive control dependence.

But in order to use the generalized postdominance frontiers algorithm from subsection 5.2
at least for transitive ⊑TIME, we also need the two other two requirements of that algorithm.
These two do, indeed, hold even for arbitrary graphs:

Observation 5.6. Let ⊑ = ⊑TIME. Then ⊑ is closed under →𝐺 , and

pdf local
⊑

(︀
𝑥

)︀
=

{︂
𝑦

⃒⃒⃒⃒
¬ 𝑥 ∈ ipdom⊑

(︀
𝑦
)︀

𝑦 → 𝑥

}︂
Observation 5.7. Let ⊑ = ⊑TIME. Then ⊑ lacks joins and is closed under →𝐺 , and given
some 𝑧 with 𝑥 ∈ ipdom⊑

(︀
𝑧
)︀
:

pdfup
⊑

(︀
𝑧, 𝑥

)︀
=

{︀
𝑦 ∈ pdf⊑

(︀
𝑧
)︀ ⃒⃒

¬ 𝑥 ∈ ipdom⊑
(︀
𝑦
)︀ }︀

All that is required now is an algorithm to compute ⊑TIME. For graphs that are reducible,
or have a unique exit node, this can be done by modifying algorithm 3 to work on N-labeled

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

32 Martin Hecker, Simon Bischof, and Gregor Snelting

Input: A N labeled pseudo-forest <, represented as a map IDOM : 𝑁 ˓→ 𝑁 × N s.t.
IDOM

[︀
𝑛
]︀
=

(︀
𝑚, 𝑘

)︀
iff 𝑚 <𝑘 𝑛

Input: Numbers kn
0, km

0 ∈ N and nodes n0, m0
Output: lca<

(︀(︀
n0, kn

0
)︀

,
(︀
m0, km

0
)︀)︀

if it exists, or ⊥ otherwise.
return lca

(︀(︀
n0, kn

0,
[︀
n0 ↦→ kn

0
]︀)︀

,
(︀
m0, km

0 ,
[︀
m0 ↦→ km

0
]︀)︀)︀

Function lca
(︀
𝜋n, 𝜋m

)︀
Input: A cycle free <-path 𝜋n = n0, . . . , n ending in n, represented by a tuple

(︀
n, kn, KSn

)︀
where KSn is a map on the nodes 𝑛 appearing in 𝜋n s.t. kn = KSn

[︀
n
]︀

and for any
such 𝑛: KSn

[︀
𝑛
]︀
= kn

0 +
∑︀

𝑖 𝑘𝑖 where 𝑛 <𝑘𝑐 . . . <𝑘1 n0 in 𝜋n
Input: A <-path 𝜋m = m0, . . . , m likewise
if kn > km then return lca

(︀
𝜋m , 𝜋n

)︀
if n ∈ 𝜋m ∧ kn = KSm

[︀
n
]︀

then return
(︀
n, kn)︀

if n ∈ 𝜋m ∧ kn ≠ KSm
[︀
n
]︀

then return ⊥
switch IDOM[n] do

case ⊥ do return ⊥
case

(︀
n’ , kn’)︀ do

if n’ ∈ 𝜋n then return ⊥
KSn

[︀
n’

]︀
← kn + kn’

return lca
(︀(︀

n’ , kn + kn’ , KSn
)︀

, 𝜋m
)︀

end
end

end
Algorithm 5: A timing sensitive least common ancestor algorithm for graphs with
transitive ⊑TIME.

pseudo-forests, i.e.: pseudo forests < with edges 𝑛 <𝑘 𝑚 indicating that 𝑚 must first be
reached from 𝑛 after 𝑘 ∈ N steps. The result is a N-labeled pseudo-forest < with

𝑚 ⊑TIME 𝑛 ⇐⇒ ∃𝑘1, . . . , 𝑘𝑐. 𝑚 <𝑘𝑐 . . . <𝑘1 𝑛

for some number 𝑐 ≥ 0 of edges in <. One possible implementation of the required least
common ancestor computation in N-labeled pseudo-forests is shown in algorithm 5.

For an example, consider Figure 14 (right). Before the first call to lca, IDOM contains
only trivial relations for nodes with exactly one successor, e.g. IDOM[4] = (8, 1). To calculate
IDOM[2], we need to call lca with its successors, namely lca((3, 1), (6, 1)). But there, we
find that IDOM[3] is still empty, so the call returns ⊥.

When calculating IDOM[3], we call lca((4, 1), (5, 1)). We find that IDOM[4] = (8, 1), so we
extend this <-path and call lca([(4, 1), (8, 2)], (5, 1)). There, since the left path is now longer,
we swap the arguments and call lca((5, 1), [(4, 1), (8, 2)]). Now, we find that IDOM[5] = (8, 1),
so we extend this path and call lca([(5, 1), (8, 2)], [(4, 1), (8, 2)]). Now, since the final element
of the left path, namely 8, is also contained in the right one with the same distance of 2, we
finally can return (8, 2) as the lca and update IDOM[3] = (8, 2).

Now we can analyse IDOM[2] again. Since IDOM[3] has now an entry, we can extend the path
(3, 1) to [(3, 1), (8, 3)]. After extending (6, 1) to [(6, 1), (7, 2)] and then [(6, 1), (7, 2), (8, 3)],
both paths contain 8 with the same distance 3, so we update IDOM[3] to (8, 3).

On the contrary, if we try to calculate IDOM[1] and call lca((2, 1), (9, 1)), the left path
get extended to [(2, 1), (8, 4)] and the right path to [(9, 1), (10, 2), (2, 3)]. Now, both paths
contain the same node 2, but with different distances 1 and 3. Therefore, the lca is ⊥.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

On Time-Sensitive Control Dependencies 33

6 MEASUREMENTS
We evaluated the performance of our algorithms on a) control flow graphs of Java methods,
as generated by the JOANA system for various third party Java programs; b) randomly
generated graphs 𝐺 =

(︀
𝑁, 𝐸

)︀
usually with |𝐸| = 2 |𝑁 |, as generated by the standard generator

from the JGraphT [26] library. In some cases, we additionally use ladder graphs15, which
are used to represent bad case behaviour.

All benchmarks in this section were made on a desktop computer with an Intel i7-6700
CPU at 3.40GHz, and 64 GB RAM. We implemented the algorithms in Java, using OpenJDK
Java 9 VM. All benchmarks were run using the Java Microbenchmark Harness JMH [9].

Unless explicitly stated otherwise, all data points represent the average over 𝑛 + 1 runs
of the benchmark, where 𝑛 is at least the number of runs which can be finished within 1
second. For example, the data point at |𝑁 | = 21076, time = 18ms in Figure 16a stands for
the average of at least ≈ 50 runs of the benchmark that finished within 1 second. On the
other hand, the data point in at |𝑁 | = 65000, time = 88s in Figure 16c results from only one
run of the benchmark.

The purpose of these benchmarks is to give a general idea of the scalability of the
algorithms. For example, the benchmarks in the upper left and upper right of Figure 18
suggest that our new algorithm for the computation of nontermination sensitive control
dependence →ntscd appears to scale almost linearly for “average” CFGs, while Ranganath’s
original algorithm [29] clearly grows super-linearly for such graphs. The benchmarks can be
summarized as follows:

(1) For “average” CFGs, our algorithms for →ntscd, →nticd, and →tscd offer performance
“almost linear” in the size of the graph.

(2) But for “bad case” CFGs, some algorithms perform decidedly super-linear, and become
impractical for very large such graphs.

6.1 Nontermination Sensitive Postdominance
Algorithm 2 computes maximal path postdominance ⊑MAX, represented as a pseudo-forest
<MAX. This algorithm requires the computation of least common ancestors lca< in pseudo-
forests <, for which we use algorithm 1.

Algorithm 2 repeatedly iterates in a fixed node order. Alternatively, one can implement a
chaotic iteration, by reinserting into a workset those nodes affected by modification to the
pseudo-forest. Both these variants do not specify an iteration order (e.g.: Algorithm 2 does
not specify the initial order of nodes in the workqueue). By default, the implementation
orders the nodes reversed-topologically (as computed by an implementation of Kosaraju’s
Algorithm for strongly connected components, with nodes in the same strongly connected
component ordered arbitrarily).

For Java CFG and randomly generated graphs (neither necessarily with unique exit
node), the chaotic iteration () and Algorithm 2 (▼) behave similarly (Figure 16a and
Figure 16b). Ladder graphs expose non-linear bad-case behavior (Figure 16c). This is even
more pronounced when we deliberately choose a bad iteration order (Figure 16d).

6.2 Nontermination Insensitive Postdominance
Algorithm 3 computes sink path postdominance ⊑SINK, represented as a pseudo-forest <SINK.
Just as before, it uses algorithm 1 for the computation of least common ancestors lca<.

15Ladder graphs consist of two rising chains, one-to-one connected at every node. Just like a ladder.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

34 Martin Hecker, Simon Bischof, and Gregor Snelting

✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚
✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚
✚✚

✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚ ✚

✚

✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚
✚

✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚

✚

✚✚✚✚
✚

✚✚

✚

✚✚✚✚✚✚✚✚✚
✚

✚✚
✚

✚✚✚✚

✚

✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚
✚

✚✚✚✚✚
✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚
✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚
✚

✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚
✚

✚✚✚✚✚✚✚
✚

✚ ✚✚✚

✚

✚
✚✚
✚✚✚ ✚

✚✚ ✚✚✚✚✚✚✚✚✚✚✚
✚

✚✚✚✚✚
✚

✚✚

✚

✚
✚✚✚
✚✚✚✚✚ ✚✚✚✚ ✚✚▼▼▼

▼

▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼

▼

▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼

▼

▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼

▼▼▼
▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼

▼
▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼

▼

▼
▼

▼▼
▼▼▼▼▼▼▼▼▼▼▼0

5
10

1
5

20

ti
m
e
(m

s)

0 5000 10000 15000 20000

|N |

(a) Java CFG

✚ ✚
✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚

✚ ✚ ✚
✚ ✚ ✚

✚ ✚ ✚
✚ ✚

✚ ✚
✚ ✚ ✚

✚ ✚
✚ ✚ ✚ ✚

✚

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼

▼▼
▼▼

▼▼▼▼▼
▼▼▼▼▼

▼▼
▼▼▼▼

▼▼
▼▼

▼

0.
0

0.
5

1.
0

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

(b) Random Graphs

✚ ✚
✚ ✚

✚ ✚ ✚
✚ ✚ ✚ ✚

✚ ✚
✚

✚ ✚
✚ ✚ ✚

✚
✚
✚ ✚

✚
✚
✚
✚
✚

✚

▼▼
▼▼▼▼▼▼▼▼

▼▼▼
▼
▼
▼▼▼▼

0
20

40
60

80

ti
m
e
(s
)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| ≈ 1.5 |N |)

(c) “Bad Case”

✚ ✚
✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚

✚ ✚ ✚
✚

▼▼▼
▼

▼

▼

▼

▼

▼

▼

0
10
0

20
0

30
0

ti
m
e
(s
)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| ≈ 1.5 |N |)

(d) “Bad Case”, bad iteration order

Fig. 16. Computation of <MAX. The orange line shows chaotic iteration performance, the blue line shows
algorithm 2.

Algorithm 3 implements chaotic iteration. We also implemented a variant of Algorithm
3 in which the downward fixed point phase repeatedly iterates a workqueue of nodes in a
fixed node order. The implementations order the nodes reversed-topologically. Unlike before,
this ordering does not require an additional step, since the strongly connected component
computation it can be obtained from is necessary anyway, in order to find control sinks.

Instead of computing least common ancestors lca< by chasing (pseudo-tree) pointers, it
can also be computed by comparison of postorder numbers, as in [8].

For Java CFGs (Figure 17a) the fixed-iteration order variant of Algorithm 3 (▼) performs
on par with the Algorithm 3 as stated (). For randomly generated graphs (Figure 17b)
the variant (▼) appears to perform a bit better than the original () for very large graphs,
roughly on-par with the implementation based on postorder numbers (■).

Using reversed-topological iteration order, ladder graphs (Figure 17c) expose non-linear
bad-case behavior only for Algorithm 3 () and its variant (▼). Even with a bad iteration
order, performance for these two algorithm is not much worse (Figure 17d). On the other
hand, the postorder number based implementation (■) is affected heavily by iteration order.

The ladder graphs we use are unique-exit-node ladder graphs. This also allows us to
directly compare with an implementation of the algorithm by Lengauer and Tarjan [24] ().

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

On Time-Sensitive Control Dependencies 35

✚✚✚✚ ✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚ ✚✚✚✚
✚

✚✚✚✚✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚
✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚
✚✚

✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚ ✚

✚

✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚
✚

✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚

✚

✚✚✚✚
✚✚✚

✚

✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚

✚

✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚
✚

✚✚✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚
✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚
✚

✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚
✚✚✚✚✚✚✚✚

✚
✚ ✚✚✚

✚

✚
✚

✚ ✚✚✚ ✚
✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚

✚
✚✚

✚

✚ ✚✚✚
✚✚✚✚✚ ✚✚✚✚ ✚✚▼▼▼

▼

▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼
▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼

▼

▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼

▼

▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼

▼▼▼ ▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼

▼
▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼

▼

▼
▼▼▼
▼▼▼▼▼▼▼▼▼▼▼■■■

■

■■

■

■■■■■■■■■■■■■ ■■■■■■■
■

■■■■■■■■■■■■■■ ■■■■■
■

■■■ ■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■ ■ ■
■■

■■■■■■■■■■■■■■■■■■■■■■■■

■

■■

■

■■■■■■ ■■
■

■■■■■■■■■■■■■■■■■■■■
■

■■ ■■■■■■■■■■■■■■■ ■■■■■■■

■

■

■■■ ■■■■■■■■■■■■■ ■■■

■

■■■■ ■■■

■

■■■■■■■■■ ■■■■■■■■

■

■■■

■

■■■■■■■■■
■

■■■■■■■■■■■■

■

■

■■ ■ ■■■
■■■■■■■■ ■■■■■■

■

■■■■■■■■■■■■■■■■■■■■
■

■■

■

■■■■■■■■■■■■■■■■ ■■■■
■■■■■■■■

■
■■■■

■

■ ■■ ■■■■■■■■■■■■■■■■■ ■■■■■■
■

■■

■

■
■■■
■■■■■■■■■■■0

10
2
0

3
0

ti
m
e
(m

s)

0 5000 10000 15000 20000

|N |

(a) Java CFG

✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚
✚ ✚

✚ ✚ ✚ ✚
✚ ✚ ✚ ✚ ✚

✚ ✚ ✚ ✚ ✚
✚
✚

✚
✚

✚

✚

✚
✚
✚

✚ ✚
✚ ✚ ✚

✚

✚ ✚ ✚
✚ ✚

✚ ✚ ✚ ✚

✚
✚
✚

✚ ✚

✚

✚
✚
✚

✚

✚

✚

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼

▼
▼▼

▼▼▼
▼▼

▼▼▼

▼
▼▼▼

▼▼▼▼▼▼
▼▼

▼▼

▼▼
▼

▼

▼

▼

▼▼
▼

▼
▼

▼
▼
▼
▼

▼

■■■■■■■■■
■■■

■■■■
■■■■■■■

■■■
■■■

■
■■

■■■■

■

■■■

■
■

■■
■

■■
■

■

■

■

■

■

■

■

■■■
■■■■

0.
0

0.
5

1.
0

1.
5

2.
0

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

(b) Random Graphs

✚ ✚
✚ ✚ ✚ ✚ ✚

✚ ✚ ✚ ✚
✚ ✚ ✚ ✚

✚

✚
✚ ✚

✚
✚

✚ ✚
✚
✚

✚
✚

✚
✚

✚

✚
✚
✚
✚
✚

✚

✚
✚
✚
✚
✚
✚
✚

✚

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼

▼▼
▼▼▼▼

▼
▼

▼
▼▼

▼

▼
▼
▼

▼
▼

▼

▼

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼

■■■

●●●
●

●●●
●

●
●●

●●●●●●●●●●●●●●●●

0
20

40
60

ti
m
e
(s
)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| ≈ 1.5 |N |)

(c) “Bad Case”

✚ ✚
✚ ✚ ✚ ✚

✚ ✚ ✚
✚ ✚

✚ ✚
✚
✚

✚

✚

✚

✚

✚
✚
✚
✚
✚

✚ ✚
✚
✚
✚

✚ ✚
✚
✚

✚

▼▼
▼
▼
▼

▼
▼

▼▼
▼
▼

▼

▼

▼▼

▼

▼
▼

▼▼
▼
▼
▼
▼

▼
▼

▼

■■
■
■

■

■

■

■

■

■

●●●
●

●●●
●

●
●●

●●●●●●●●●●●●●●●●

0
20

40
60

ti
m
e
(s
)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| ≈ 1.5 |N |)

(d) “Bad Case”, bad iteration order

Fig. 17. Computation of <SINK.

6.3 Generalized Postdominance Frontiers
When algorithm 4 is instantiated with <MAX, this yields an algorithm for →ntscd. The
benchmarks for →ntscd include the computation time of both algorithm 4 and <MAX (▼). We
compare with an implementation of Ranganath’s algorithm [29] (). For Java CFG and
randomly generated graphs, the latter becomes impractical for moderately sized graphs,
while algorithm 4 performs well even for very large graphs (Figure 18, upper left and right).
Ladder graphs expose non-linear bad-case behavior even for algorithm 4 (Figure 18c). This
cannot be circumvented, since in these ladder graphs, the size of the relation →ntscd is
quadratic in the number of nodes.

6.4 Timing Sensitive CD
Whenever ⊑TIME is transitive, we can use algorithm 4 to compute timing sensitive control
dependence →tscd. We thus measure the computation time for →tscd on graphs for which
⊑TIME is transitive. These are control flow graphs from Java programs in subfigures (a),
randomly generated graphs (b), and ladder graphs (c). We use algorithm 4, and obtain a
transitive reduction <TIME of ⊑TIME via the modification of algorithm 3 that uses the upwards
iteration of algorithm 5. The benchmarks for →tscd in Figure 19 include the computation
time of all sub-algorithms (). Ladder graphs expose non-linear bad-case behavior.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764

36 Martin Hecker, Simon Bischof, and Gregor Snelting

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚ ✚✚✚

✚

✚✚✚ ✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚ ✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚

✚

✚ ✚

✚

✚✚ ✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚
✚

✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚ ✚✚ ✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚✚✚✚ ✚✚✚

✚

✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚▼▼▼
▼

▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼ ▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼
▼

▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼0
5

10

ti
m
e
(s
)

0 5000 10000 15000 20000

|N |

✚✚
✚
✚

✚
✚

✚✚

✚

✚

▼▼

0
20

40
60

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

✚ ✚ ✚
✚ ✚

✚

✚ ✚

✚

✚

▼ ▼
▼

▼

▼

▼
▼

▼

▼

▼

0
20

40
60

80

ti
m
e
(s
)

0 1000 2000 3000 4000 5000

|N | (|→G| ≈ 1.5 |N |)

(c) “Bad Case”

Fig. 18. Computation of →ntscd.

✚✚✚✚ ✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚ ✚✚✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚ ✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚ ✚✚✚✚ ✚ ✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚

✚

✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚

✚

✚

✚✚ ✚✚✚✚✚✚✚✚✚
✚

✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚

✚

✚✚✚ ✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚✚ ✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚✚✚✚✚✚ ✚✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚ ✚✚

✚

✚✚ ✚✚✚✚✚✚0.
0

0.
1

0.
2

0.
3

ti
m
e
(s
)

0 5000 10000 15000 20000

|N |

✚ ✚
✚ ✚ ✚

✚ ✚
✚ ✚

✚
✚ ✚ ✚ ✚

✚ ✚
✚ ✚ ✚ ✚ ✚

✚ ✚
✚
✚ ✚

✚

✚

✚
✚

0
2

4
6

8
10

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

✚ ✚ ✚
✚

✚

✚

✚

✚

✚

✚

0
2
0

4
0

60

ti
m
e
(s
)

1000 2000 3000 4000 5000

|N | (|→G| ≈ 1.5 |N |)

(c) “Bad Case”

Fig. 19. Computation of →tscd.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

On Time-Sensitive Control Dependencies 37

● ●
●

●●●●●●● ●●●

●

●
●

●
●●●●●●●●● ●●●●●●●●● ●●●● ●

●
●●●●●●●

●

●

●
●●●●● ●●●●● ●●●●●● ●●●●● ●●●●●●● ●●●● ●●●● ● ●●●●●●●●●●●

●
●

●

●
●●

●

●
●

● ●●●●● ●

●

●

●

●●●● ●●●●●
●

● ● ●
● ●●●●●●● ●

●
● ●

●
● ●●●●●

●

●●●

●
●

●●●
●

●
●

●
●● ●●●●

●
●●

●
●

●
●●●● ●●●●●●●●●●●●●●●●●● ●

●
●●● ●●●●

●
●●●

●●●●●●●●●● ●●●●●● ●
●

●
●

●●●●●●

● ●

● ● ●

●

●●
●

● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ● ●●●●
●

●●●●● ●●●●● ●
●

● ●● ●●●●● ●●●● ●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●

●

1
2

3
4

5
co
m
p
u
ta
ti
o
n
ti
m
e
(m

s)

0 100 200 300 400 500 600

|N |

Java CFG

●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●

●●●●●
●●●●●

●●●
●●●

●●●●●
●●●●●●

●●●●●
●●●●

●

●
●●●●●

●
●●

●●●●●
●
●●

●
●●

●
●●●●●●●

●●●
●

●

2
00

4
0
0

6
0
0

co
m
p
u
ta
ti
on

ti
m
e
(m

s)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| = 2 |N |)

Random Graph

Fig. 20. Computation of →nticd via algorithm 4 based on algorithm 3.

7 FUTURE WORK
This article concentrated on the definition of →tscd, and on efficient algorithms. Ongoing
work includes

∙ provide Isabelle proofs for the last 7 “observations” in section 5.
∙ provide formal correctness proofs for the algorithms in section 5.
∙ implement and evaluate the →tscd algorithm which can handle nontransitive ⊑TIME ,

which was mentioned in section 5.3.
∙ provide a theoretical complexity analysis of the algorithms, and more measurements.
∙ transform out timing leaks as in [1], but for arbitrary CFGs (based on →tscd).
∙ apply →tscd to improve IFC and probabilistic noninterference; in particular improve

precision of the so-called “RLSOD” algorithm [6, 7, 12] which is used in JOANA.
Initial work on some of these topics can be found in the first author’s dissertation [16]. A
long-time goal is an interprocedural, context-sensitive extension of →tscd.

8 CONCLUSION
Ranganath and Amtoft opened the door to control dependencies in nonterminating pro-
grams. Inspired by this work, we presented 1. new, efficient algorithms for Ranganath’s
nontermination-(in)sensitive control dependencies; 2. definitions and algorithms for time-
sensitive control dependencies; 3. application of the latter to timing leaks in software security.
Our algorithms are based on systematic generalizations of Cytron’s postdominance frontier
algorithm. Important properties of the new algorithms have been proven using the Isabelle

machine prover; and their performance has been studied. We believe that time-sensitive
control dependencies will prove useful for many applications in program analysis, code
optimization, and software security.

Acknowledgements. The work described in this paper was funded by Deutsche Forschungs-
gemeinschaft Grant Sn11-12/3 in the scope of SPP 1496 “Reliably Secure Software”, and by
BMBF Grant 01BY1172 in the scope of the Security Competence Center KASTEL.

Preliminary versions of parts of this paper have been published in the first author’s
dissertation [16].

REFERENCES
[1] Johan Agat. Transforming out timing leaks. In POPL ’00: Proceedings of the 27th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 40–53, New York, NY, USA, 2000.
ACM.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

38 Martin Hecker, Simon Bischof, and Gregor Snelting

[2] A.V. Aho, M.R. Garey, and J.D. Ullman. The transitive reduction of a directed graph. SIAM Journal
on Computing, 1 (2):131–137, 1972.

[3] Torben Amtoft. Slicing for modern program structures: a theory for eliminating irrelevant loops.
Information Processing Letters, 106(2):45 – 51, 2008.

[4] Daniel J. Bernstein. Cache-timing attacks on AES. Technical report, 2005.
[5] David W. Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and Paolo Tonella. Tool-supported

refactoring of existing object-oriented code into aspects. IEEE Trans. Software Eng., 32(9):698–717,
2006.

[6] Simon Bischof, Joachim Breitner, Jürgen Graf, Martin Hecker, Martin Mohr, and Gregor Snelting. Low-
deterministic security for low-nondeterministic programs. Journal of Computer Security, 26:335–366,
2018.

[7] Joachim Breitner, Jürgen Graf, Martin Hecker, Martin Mohr, and Gregor Snelting. On improvements of
low-deterministic security. In Proc. Principles of Security and Trust (POST), volume 9635 of Lecture
Notes in Computer Science, pages 68–88. Springer Berlin Heidelberg, 2016.

[8] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. A simple, fast dominance algorithm. Software
Practice & Experience, 2001.

[9] Oracle Corporation. Code tools: jmh, 2020.
[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Efficiently

computing static single assignment form and the control dependence graph. ACM Trans. Program.
Lang. Syst., 13(4):451–490, October 1991.

[11] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, July 1987.

[12] Dennis Giffhorn and Gregor Snelting. A new algorithm for low-deterministic security. International
Journal of Information Security, 14(3):263–287, April 2015.

[13] Jürgen Graf, Martin Hecker, Martin Mohr, and Gregor Snelting. Tool demonstration: JOANA. In Proc.
Principles of Security and Trust (POST), volume 9635 of Lecture Notes in Computer Science, pages
89–93. Springer Berlin Heidelberg, 2016.

[14] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and object-sensitive informa-
tion flow control based on program dependence graphs. International Journal of Information Security,
8(6):399–422, Dec 2009.

[15] Matthew S. Hecht and Jeffrey D. Ullman. Analysis of a simple algorithm for global data flow problems.
In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’73, pages 207–217, New York, NY, USA, 1973. ACM.

[16] Martin Hecker. Timing Sensitive Dependency Analysis and its Application to Software Security. PhD
thesis, Karlsruher Institut für Technologie, Fakultät für Informatik, 2020.

[17] Daniel Hedin and David Sands. Timing aware information flow security for a javacard-like bytecode.
Electron. Notes Theor. Comput. Sci., 141(1):163–182, 2005.

[18] Susan Horwitz, Jan Prins, and Thomas W. Reps. On the adequacy of program dependence graphs for
representing programs. In POPL, pages 146–157, 1988.

[19] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst., 12(1):26–60, January 1990.

[20] Neil Jones, Carsten Gomard, and Peter Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice Hall, 1993.

[21] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing- and termination-sensitive secure
information flow: Exploring a new approach. In 32nd IEEE Symposium on Security and Privacy, pages
413–428, 2011.

[22] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
CoRR, abs/1801.01203, 2018.

[23] Jens Krinke. Context-sensitive slicing of concurrent programs. In Proc. FSE, pages 178–187. ACM,
2003.

[24] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst., 1(1):121–141, January 1979.

[25] Steven Muchnik. Advanced Compiler Design and Implementation. Morgan Kaufmann.
[26] Barak Naveh and Stephane Popinet. JGraphT: A java library of graph theory data structures and

algorithms. https://jgrapht.org/, 2003–2019.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

https://jgrapht.org/

1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

On Time-Sensitive Control Dependencies 39

[27] A. Podgurski and L. A. Clarke. A formal model of program dependences and its implications for software
testing, debugging, and maintenance. IEEE Transactions on Software Engineering, 16(9):965–979, Sep
1990.

[28] Willard Rafnsson, Limin Jia, and Lujo Bauer. Timing-sensitive noninterference through composition.
In Matteo Maffei and Mark Ryan, editors, Principles of Security and Trust (POST), volume 10204 of
Lecture Notes in Computer Science, pages 3–25. Springer, 2017.

[29] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff, and Matthew B. Dwyer.
A new foundation for control dependence and slicing for modern program structures. ACM Trans.
Program. Lang. Syst., 29(5), August 2007.

[30] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up slicing. In Proc. FSE
’94, pages 11–20, New York, NY, USA, 1994. ACM.

[31] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded programs. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop, CSFW ’00, Cambridge,
England, UK, July 3-5, 2000, pages 200–214, 2000.

[32] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–
160, 1972.

[33] Michael Joseph Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: August 2021.

	Abstract
	1 Introduction and Overview
	1.1 Overview

	2 Control Dependence in Graphs without Unique Exit
	2.1 Classical Control Dependence and Weak Control Dependence
	2.2 Postdominance in Graphs Without Unique Exit

	3 Timing Sensitive Control Dependence
	3.1 Why Time-Sensitivity Matters
	3.2 Timing Sensitive Control Dependence
	3.3 Soundness and minimality of
	3.4 The Full Time-Sensitive Backward Slice

	4 Timing Sensitivity for Microarchitectural CFGs
	5 Algorithms
	5.1 New algorithms for [MAX] and [SINK]
	5.2 Postdominance Frontiers in Graphs Without Unique Exit
	5.3 Timing Sensitive Postdominance Frontiers

	6 Measurements
	6.1 Nontermination Sensitive Postdominance
	6.2 Nontermination Insensitive Postdominance
	6.3 Generalized Postdominance Frontiers
	6.4 Timing Sensitive CD

	7 Future Work
	8 Conclusion
	References

