Appendix to the Article "On Time-Sensitive Control Dependencies"

Simon Bischof, Martin Hecker, Gregor Snelting

August 11, 2021

Contents

1 Basic Definitions and Lemmas 2
2 Lemmas 1.1 and 1.2 6
2.1 Standard control dependency, Lemma 1.1 6
2.2 Example from Fig. 1 right, Lemma 1.2 9
3 Control Dependence in Arbitrary Graphs 11
3.1 Definitions for maximal paths and sink paths 11
3.2 Lemmas about maximal paths 13
3.3 Proof of Theorem 2.1, $\sqsubseteq_{M A X}$ part 18
3.4 Lemmas about sink paths 22
3.5 Proof of Theorem 2.1, $\sqsubseteq_{S I N K}$ part 29
4 Timing Sensitive Control Dependence 32
4.1 Basic Properties of Timing Sensitive Control Dependence 32
4.2 Timing Sensitive Slicing 40
4.3 Soundness and Minimality of Timing Sensitive Control De- pendence 45
4.3.1 Definition of (clocked) Traces and Time-Sensitive Non- Interference 45
4.3.2 Soundness of Timing Sensitive Control Dependence 47
4.3.3 Minimality of Timing Sensitive Control Dependence 56
5 Proofs for the Algorithm section 64
5.1 Postdominance Frontiers 64
5.2 Transitive Reductions and Pseudo-forests 68
5.3 Transitivity results 69
5.3.1 Reducible Graphs 69
5.3.2 Graphs with unique exit node 78
5.4 Timing Sensitive Postdominance Frontiers 80

Appendix to the Article "On Time-Sensitive Control Dependencies" containing definitions and proofs for NTICD, NTSCD and TSCD.
In this theory, we use Isabelle's "theorem" command for results presented in the article, and the "lemma" command for all lemmas that are needed to prove the former.

```
theory NTXCD-Proofs
imports
    Slicing.Postdomination
    Coinductive.Coinductive-List
    Digraph-Basic
begin
```

The CFG locale gives us a graph structure. Loops are permitted, but multiedges are not. Isolated nodes are not permitted (they are not interesting for us anyway). The graph is assumed to have an entry node (which does not have to be unique). There are no assumptions regarding exit nodes, reachability from the entry node or whether the graph is reducible.
There is no explicit node or edge set, instead there is a predicate valid-edge that describes whether an edge is valid. Nodes are valid if they are source or target node of a valid edge (this is the reason why isolated nodes are not permitted). Edges are labeled, but we do not use those labels in this theory. In the CFG locale, a graph can be infinite. In this theory, however, we assume graphs to be finite, and add this assumption to lemmas if needed.

```
context CFG
begin
```


1 Basic Definitions and Lemmas

successor set of a node

```
definition succs :: 'node => 'node set
    where succs n =={targetnode e | e.valid-edge e ^ sourcenode e = n}
```

edge relation
definition edge-rel $\equiv\{(n 1, n 2)$. n2 \in succs $n 1\}$
Definitions of a path. Note that in the node list, the start node is included (for non-empty paths) but the end node is not.

```
abbreviation is-path :: 'node => 'node list = 'node => bool
    where is-path n ns n' == Digraph-Basic.path edge-rel n ns n'^ valid-node n
```

Definitions of a path reachability
definition reaches :: 'node \Rightarrow 'node \Rightarrow bool
where reaches $n m==\exists n s$. path n ns m

Lemmas about Paths

lemma succs-valid: $y \in$ succs $x \Longrightarrow$ valid-node $x \wedge$ valid-node y using succs-def by auto
lemma is-path-valid-node: is-path n ns $m \Longrightarrow$ valid-node m using path-append-conv[of edge-rel] edge-rel-def succs-def by (cases ns rule: rev-cases) auto
lemma succs-path: $x \in$ succs $p \Longrightarrow$ is-path $p[p] x$ using edge-rel-def succs-def by (auto intro: path1)
lemma is-path-succs-empty: assumes is-path n ns m succs $n=\{ \}$

$$
\text { shows } n s=[] \wedge n=m
$$

proof-
from assms have Digraph-Basic.path edge-rel n ns m by simp
from this assms show ?thesis unfolding edge-rel-def by cases auto
qed
lemma path-to-is-path: assumes path n es n^{\prime}
shows is-path n (sourcenodes es) n^{\prime}
using assms
proof (induction rule: path.induct)
case (Cons-path $n^{\prime \prime}$ as n^{\prime} a n)
with edge-rel-def succs-def sourcenodes-def show ?case by (auto intro: Digraph-Basic.path.intros)
qed (auto simp add: sourcenodes-def)
lemma path-append: is-path $n n s n^{\prime} \Longrightarrow$ is-path $n^{\prime} n s^{\prime} n^{\prime \prime} \Longrightarrow$ is-path $n\left(n s @ n s^{\prime}\right)$ $n^{\prime \prime}$
using path-conc by auto
lemma succs-path-extend: $x \in$ succs $p \Longrightarrow i s$-path x ns $y \Longrightarrow i s$-path $p(p \# n s) y$
using edge-rel-def succs-def by (auto intro: path-prepend)
lemma is-path-split: assumes is-path $u(n s 1 @ n \# n s 2) v$
shows is-path uns1 n is-path $n(n \# n s 2) v$
proof-
from assms path-conc-conv[of - u] obtain n^{\prime}
where path-gen: Digraph-Basic.path edge-rel u ns1 n^{\prime}
Digraph-Basic.path edge-rel $n^{\prime}(n \# n s 2) v$ by auto
with this[unfolded path-cons-conv] edge-rel-def succs-def assms
show is-path u ns1 n is-path $n(n \# n s 2) v$ by auto
qed
lemma path-split-elem: assumes $i s$-path $n n s n^{\prime}$
$m \in$ set $n s$
obtains ns1 ns2 where $n s=n s 1 @ m \# n s 2$ is-path n ns1 m is-path m ($m \# n s 2$) n^{\prime}
proof-
from split-list[OF assms(2)] obtain ns1 ns2 where $n s=n s 1 @ m \# n s 2$ by auto with that is-path-split[OF assms(1)[unfolded this]] show ?thesis by auto qed
lemma path-split-elem2: assumes is-path $n n s n^{\prime}$

$$
m \in \text { set } n s \cup\left\{n^{\prime}\right\}
$$

obtains ns1 ns2 where $n s=n s 1 @ n s 2$ is-path $n n s 1 m$ is-path
$m n s 2 n^{\prime}$
proof (cases $m \in$ set $n s$)
case True
with path-split-elem[OF assms(1) True] that show ?thesis by metis
next
case False
with assms path0 that[of ns []] is-path-valid-node show ?thesis by auto
qed
lemma edge-rel-impl-path:
$(a, b) \in$ edge-rel \Longrightarrow is-path $a[a] b$
using edge-rel-def succs-path by simp
lemma edge-impl-valid-target: $(a, b) \in$ edge-rel \Longrightarrow valid-node b unfolding edge-rel-def succs-def by auto
lemma edge-rel-rtrancl-path:
assumes $(a, b) \in$ edge-rel * and valid-node a shows \exists ns. is-path a ns b
using assms
proof (induction rule:rtrancl-induct)
case base
with path0 show ?case by metis
next
case (step y z)
then obtain $n s$ where is-path $a n s y$ by blast
with step path-append edge-rel-impl-path have is-path a (ns@[y])z by auto
thus? ?case by auto
qed
lemma reaches-intros:
valid-node $n \Longrightarrow$ reaches $n n$
valid-edge $e \Longrightarrow$ sourcenode $e=n \Longrightarrow$ targetnode $e=m \Longrightarrow$ reaches $n m$ using path.intros path-edge reaches-def by metis+
lemma reaches-trans: reaches n1 n2 \Longrightarrow reaches n2 n3 \Longrightarrow reaches n1 n3 using path-Append reaches-def by metis
lemma scc-path:
assumes $n \in$ scc-of edge-rel m and valid-node m obtains $n s$ where is-path m ns n
using assms node-in-scc-of-node scc-of-is-scc is-scc-connected edge-rel-rtrancl-path by metis

```
lemma lset-split: assumes n}\inl\mathrm{ lset ns
                            obtains ns1 ns2 where ns=lappend (llist-of ns1) (LCons n ns2)
    using split-llist[OF assms, unfolded lfinite-eq-range-llist-of] by auto
lemma lset-split-first: assumes n \in lset ns
                            obtains ns1 ns2 where ns=lappend (llist-of ns1) (LCons n ns2)
n\not\in set ns1
    using split-llist-first[OF assms, unfolded lfinite-eq-range-llist-of] by auto
lemma is-path-Cons: is-path n ( n'#ns) m\Longrightarrown= n'^(\existsx. x \in succs n ^
is-path x ns m)
    using path-cons-conv[of edge-rel] edge-rel-def succs-valid by auto
lemma is-path-snoc: is-path n ( ns@[n`) m\Longrightarrowm cuccs n'^ is-path n ns n'
    using path-append-conv[of edge-rel] edge-rel-def by auto
lemma path-first: assumes is-path n ns m
                            obtains ns'ns\mp@subsup{s}{}{\prime\prime}\mathrm{ where is-path nns'm m & set ns'ns=ns'@ns"}
using assms
proof (cases m set ns)
    case True
    from split-list-first[OF this] obtain ns' ns2 where ns = ns'@m#ns2 m & set
ns' by auto
    with is-path-split[OF assms[unfolded this(1)]] that show ?thesis by auto
qed auto
lemma path-last: assumes is-path n ns m
                                    ns\not=[]
                            obtains ns' ns"' where is-path n (n#ns") mn\not\in set ns" ns=
ns'@n#ns'"
using assms
proof (cases ns)
    case (Cons n' ns2)
    with is-path-Cons assms have n\in set ns by auto
    with split-list-last obtain ns3 ns4 where ns=ns3@n#ns4 n & set ns4 by
metis
    with is-path-split assms that show ?thesis by blast
qed auto
lemma path-end-unique: assumes \existsns.is-path n ns m
                    n\not=m
                            obtains ns'' where is-path n (n#ns') mm\not\in set ns' n\not\inset ns'
proof-
    from assms obtain ns where path: is-path n ns m ns \not= [] by force+
    with path-last assms obtain ns1 where is-path n (n#ns1) mn & set ns1 by
metis
    with path-first[OF this(1)] obtain ns3 ns4
    where second-split: is-path n ns3 m m & set ns3 n#ns1 = ns3@ns4 by auto
```

```
    with assms obtain n' ns3' where ns3 = n'#ns3' by (cases ns3) auto
    with second-split have ns1 = ns3'@ns4 m & set ns3' by auto
    with second-split «n # set ns1` that show ?thesis by auto
qed
lemma path-rev-last: assumes is-path p ns n
                            shows last (n#rev ns)=p
using assms
proof (cases ns)
    case Cons
    with assms[unfolded this, unfolded path-cons-conv] show ?thesis by auto
qed auto
lemma is-path-induct[consumes 1]:
    assumes is-path n ns m
    valid-node m\LongrightarrowPm[] m
    \nx ns. is-path n (n#ns)m\Longrightarrowx\in succs n \Longrightarrow is-path x ns m \LongrightarrowP
x ns m
                                    \LongrightarrowPn(n#ns)m
    shows P n ns m
proof-
    from assms have Digraph-Basic.path edge-rel n ns m valid-node n by auto
    from this assms edge-rel-def assms succs-valid show ?thesis by induction auto
qed
end
```


2 Lemmas 1.1 and 1.2

2.1 Standard control dependency, Lemma 1.1

The assumption that there is a unique exit node reachable from all other nodes is given by the Postdomination locale.

```
context Postdomination
begin
lemma Exit-is-path: valid-node n \Longrightarrow\exists ns. is-path n ns (-Exit-)
    using Exit-path path-to-is-path by blast
lemma Exit-succs: succs (-Exit-) = {}
    using succs-def Exit-source by auto
```

The Postdomination framework does not allow the exit node to postdom-
inate any node. However, in reality it postdominates every (valid) node.
Therefore, this definition expresses the correct postdominance relation.
definition postdom $::$ 'node \Rightarrow 'node \Rightarrow bool (- postdom - $[51,50]$)
where n^{\prime} postdom $n \equiv n^{\prime}=(-$ Exit- $) \vee n^{\prime}$ postdominates n

Definition of control dependence introduced by Wolfe [31]. This is the definition we use.
definition $c d::$ 'node \Rightarrow 'node \Rightarrow bool
where $c d n m=(\exists x 1 \in$ succs n. m postdom $x 1) \wedge(\exists x 2 \in$ succs n. $\neg m$ postdom x2)
lemma postdom-succs: assumes m postdom n

$$
\begin{aligned}
& x \in \text { succs } n \\
& n \neq m
\end{aligned}
$$

shows m postdom x
proof-
from assms succs-def obtain e
where e-gen: valid-edge e sourcenode $e=n$ targetnode $e=x$ by auto
\{
fix es
assume path x es (-Exit-) $m \neq(-$ Exit-)
with path.intros e-gen assms postdominate-def postdom-def
have $m \in$ set (sourcenodes (e\#es)) by auto
with sourcenodes-def e-gen assms have $m \in \operatorname{set}$ (sourcenodes es) by auto
\}
with assms postdominate-def e-gen postdom-def show ?thesis by auto
qed
lemma postdom-refl: valid-node $n \Longrightarrow n$ postdom n
using postdominate-refl postdom-def by auto
lemma postdom-intro-all-succs: assumes succs $n \neq\{ \}$
$\bigwedge x . x \in$ succs $n \Longrightarrow m$ postdom x
shows m postdom n
proof -
\{
fix es
assume path: path n es (-Exit-) $m \neq(-E x i t-)$
with empty-path-nodes assms Exit-succs have es $\neq[]$ by auto
with path path-split-Cons obtain e es' where split: es $=e \# e s^{\prime}$ valid-edge e sourcenode $e=n$ path (targetnode e) es' (-Exit-) by metis
with assms succs-def postdom-def postdominate-def sourcenodes-def path
have $m \in$ set (sourcenodes es) by auto
\}
with postdom-def postdominate-def assms succs-valid show ?thesis by fastforce qed

Shows that for $n \neq m$, the definition of $c d$ we use is equivalent to another often-used definition.
lemma control-dependence-alt: assumes $n \neq m$
shows $c d n m \longleftrightarrow(\exists x 1 \in$ succs n. m postdom $x 1) \wedge \neg m$ postdom n
proof-
\{
fix x

```
    assume not-postdom: \neg m postdom n succs n}\not={}}m\mathrm{ postdom }
    with succs-def postdominate-def postdom-def have valid-node n valid-node m
by auto
    with postdominate-def not-postdom postdom-def obtain es
            where no-m-path: path n es (-Exit-) m & set (sourcenodes es) by auto
    from this Exit-succs not-postdom path.intros obtain e es'
            where valid-edge e sourcenode e = n es =e#es' path (targetnode e)es'
(-Exit-)
            by cases auto
    with succs-def postdominate-def postdom-def no-m-path sourcenodes-def not-postdom
    have \existsx2\insuccs n. ᄀ m postdom x2 by auto
    }
    with cd-def postdom-succs assms show ?thesis by fast
qed
lemma postdom-cd-variant: assumes }n\not=m\negm\mathrm{ postdom n
    shows ( \existsx\insuccs n. m postdom x)
    \longleftrightarrow(\existsns.is-path n ns m^(\forallz\inset ns - {n,m}.m postdomz)) (is ?L
\longleftrightarrow?R)
proof-
    {
        fix }
    assume x-assms: x \in succs n m postdom x
    with postdominate-implies-path postdom-def assms path-to-is-path
    obtain ns1 where is-path x ns1 m}\mathrm{ by metis
    with path-first obtain ns where ns-gen: is-path x ns m m & set ns by metis
    from this x-assms(2) have }\forallz\inset ns - {n,m}.m postdom z
    proof (induction rule: is-path-induct)
            case (2 x x ' ns)
            with postdom-succs[of m x] show ?case by auto
    qed auto
    with x-assms ns-gen succs-path-extend have ?R by fastforce
    }
    note succs-postdom-to-path-postdom = this
    {
    fix ns
    assume is-path n ns m \forallz\inset ns - {n,m}.m postdom z
    from this assms have ?L
    proof (induction rule: is-path-induct)
            case (2nxns)
            then show ?case
            proof (cases x }\in{n,m}
                case True
            from 2 postdom-def have valid-node x m}\not=(-Exit-) by aut
            with True 2 postdominate-refl postdom-def show ?thesis by auto
        next
            case False
                with 2(3) obtain x' ns' where ns= 和#ns' by (cases ns) auto
            with 2(3) is-path-Cons have ns=x#ns' by auto
```

```
            with 2 False show ?thesis by auto
            qed
    qed auto
    }
    with succs-postdom-to-path-postdom show ?thesis by auto
qed
```

Lemma 1.1. The right side is the original definition of control dependence by Ferrante et al. [11].
theorem control-dependence-alt2: assumes $n \neq m$
shows $c d n m \longleftrightarrow(\exists n s$. is-path $n n s m \wedge(\forall z \in$ set $n s-\{n, m\}$. m postdom $z))$
$\wedge \neg m$ postdom n
using assms control-dependence-alt postdom-cd-variant by metis
end

2.2 Example from Fig. 1 right, Lemma 1.2

Edge relation for Fig. 1 right.
definition node-rel-example1 :: nat \times nat \Rightarrow bool
where node-rel-example1 $e==e \in\{(1,2),(1,3),(2,3),(3,4),(1,5),(4,5)\}$
interpretation example1:
$C F G$ fst snd λx. Predicate (λ s. False) node-rel-example1 1
proof unfold-locales qed (auto simp add: node-rel-example1-def)
interpretation example1:
CFGExit fst snd λx. Predicate (λ s. False) node-rel-example1 15
proof unfold-locales qed (auto simp add: node-rel-example1-def)
interpretation example1:
Postdomination fst snd λx. Predicate (λ s. False) node-rel-example1 15
proof unfold-locales
let ?path = example1.path
let ?valid-node $=$ example1.valid-node
let ? reaches $=$ example1.reaches
have Collect example1.valid-node $=\{1,2,3,4,5\}$
using example1.valid-node-def node-rel-example1-def by auto
then have valids: $\bigwedge n$. example1.valid-node $n \longleftrightarrow n \in\{1,2,3,4,5\}$
by auto
from valids example1.reaches-intros
have self: ?reaches 11 ?reaches 55 by auto
have node-rel-example1 $(1,2)$
node-rel-example1 $(1,3)$ node-rel-example1 $(2,3)$
node-rel-example1 $(3,4)$ node-rel-example1 $(4,5)$
unfolding node-rel-example1-def by auto
with example1.reaches-intros have step: ?reaches 12 ?reaches 13 ?reaches 23 ?reaches 34 ?reaches 45 by auto
with example1.reaches-trans have ?reaches 14 ?reaches 15
?reaches 25 ?reaches 35 by metis+
with self step valids example1.reaches-def
show $\bigwedge n$. ?valid-node $n \Longrightarrow \exists$ ns. ?path 1 ns n $\bigwedge n$. ?valid-node $n \Longrightarrow \exists n$. ?path $n n s 5$ by auto
qed
Following are the proofs for Lemma 1.2. The different statements are separated into different Isabelle theorems.

Part of Lemma 1.2
theorem example1-y-postdom-n2: example1.postdom 43
proof-
from node-rel-example1-def example1.succs-def
have succs: example1.succs $3=\{4\}$ by simp
with example1.succs-valid example1.postdom-refl have example1.postdom 44
by auto
with example1.postdom-intro-all-succs succs show ?thesis by fastforce
qed
Part of Lemma 1.2
theorem example1-y-postdom-n1: example1.postdom 42
proof-
from node-rel-example1-def example1.succs-def have example1.succs $\mathscr{2}=\{3\}$ by simp
with example1.postdom-intro-all-succs example1-y-postdom-n2 show ?thesis by fastforce
qed
Part of Lemma 1.2
theorem example1-y-not-postdom-Exit: \neg example1.postdom 45
proof
assume example1.postdom 45
with example1.postdominate-implies-path obtain $n s$ where example1.path 5 ns 4
unfolding example1.postdom-def by auto
with example1.path-Exit-source show False by auto
qed
Part of Lemma 1.2
theorem example1-cd-x-y: example1.cd 14
proof-
from example1.succs-def node-rel-example1-def
have $2 \in$ example1.succs $15 \in$ example1.succs 1 by auto
with example1.cd-def example1-y-postdom-n1 example1-y-not-postdom-Exit show ?thesis by auto
qed

3 Control Dependence in Arbitrary Graphs

3.1 Definitions for maximal paths and sink paths context $C F G$
 begin

Definition of a maximal path

```
coinductive max-path :: 'node => 'node llist }=>\mathrm{ bool
    where succs }\mp@subsup{n}{}{\prime}={}\Longrightarrow\mathrm{ valid-node }\mp@subsup{n}{}{\prime}\Longrightarrow\mathrm{ max-path n' (llist-of [ }n\mathrm{ '])
        \| \| y \in \text { succs } x \Longrightarrow \text { max-path y ns ב max-path x (LCons x ns)}
```

Nontermination-sensitive postdomination. on-max-paths $n m \longleftrightarrow m \sqsubseteq_{M A X}$ $n \longleftrightarrow \mathrm{~m}$ lies on all maximal paths starting in n. See Definition 2.1.

```
definition on-max-paths :: 'node }=>\mathrm{ 'node }=>\mathrm{ bool
    where on-max-paths n m=(\forallns. max-path n ns \longrightarrowm\inlset ns)
```

on-max-paths-prev $n m 1 m 2 \longleftrightarrow$ on all maximal paths starting in $\mathrm{n}, \mathrm{m} 1$
occurs before m2. Used to define $\rightarrow_{d o d}$.

```
definition on-max-paths-prev :: 'node => 'node => 'node }=>\mathrm{ bool
    where on-max-paths-prev n m1 m2 = ( }\forall\mathrm{ ns. max-path n ns }
            (\existsns1 ns2.ns = lappend (llist-of ns1) (LCons m1 ns2) ) m2 & set ns1))
```

Helper definitions to define sinks. We use the condensation graph, where every SCC is shrunk to a single node.
definition cond-edges $\equiv((\lambda(n 1, n 2)$. (scc-of edge-rel n1, scc-of edge-rel n2 $))$ ' edge-rel) - Id
definition cond-nodes $\equiv\{s c c . \exists n . s c c=s c c$-of edge-rel $n \wedge$ valid-node $n\}$
lemma cond-edges-no-self-loop:
assumes $(s 1, s \mathcal{L}) \in$ cond-edges shows $s 1 \neq s 2$ using assms unfolding cond-edges-def by auto
lemma cond-nodes-scc: $s \in$ cond-nodes $\Longrightarrow n \in s \Longrightarrow s=s c c$-of edge-rel n using scc-of-unique[of n] cond-nodes-def by auto

Lemma to ensure our definition of condensation graphs is correct
lemma cond-edges-alt:
assumes $s 1 \in$ cond-nodes
and $s 2 \in$ cond-nodes
shows $(s 1, s 2) \in$ cond-edges
$\longleftrightarrow(\exists n 1 \in s 1 . \exists n 2 \in s 2 .(n 1, n 2) \in$ edge-rel \wedge scc-of edge-rel $n 1 \neq s c c-o f$ edge-rel n2)
(is ? $P \longleftrightarrow$? right)
proof
assume $(s 1, s 2) \in$ cond-edges
then obtain $n 1$ n2 where
$(s 1, s \mathcal{Z})=($ scc-of edge-rel n1, scc-of edge-rel n2 $)$

```
    (n1, n2) \in edge-rel
    (scc-of edge-rel n1, scc-of edge-rel n2) \in cond-edges
    unfolding cond-edges-def
    by (metis (no-types,lifting) Diff-iff case-prod-conv imageE old.prod.exhaust)
    thus ?right using cond-edges-no-self-loop
    by (metis node-in-scc-of-node prod.inject)
next
    assume ?right
    then obtain n1 n2 where n-props: n1 \in s1 n2 \in s2 (n1, n2) \in edge-rel
                scc-of edge-rel n1 }=\mathrm{ scc-of edge-rel n2 by auto
    with cond-nodes-scc assms have s1 = scc-of edge-rel n1 s2 = scc-of edge-rel n2
by auto
    with n-props assms show ?P unfolding cond-nodes-def cond-edges-def by auto
qed
```

Definition of sink nodes

```
definition sink-node \(n \equiv \neg(\exists s c c\). (scc-of edge-rel \(n\), scc \() \in\) cond-edges \()\)
```

Definition of sink paths

```
definition sink-path :: 'node \(\Rightarrow\) 'node llist \(\Rightarrow\) bool
```

 where sink-path \(n n s\)
 $$
==\text { max-path } n n s \wedge
$$

$$
\left(\exists n^{\prime} . n^{\prime} \in \text { lset } n s \wedge \text { sink-node } n^{\prime}\right.
$$

$$
\wedge\left(\text { succs } n^{\prime} \neq\{ \}\right.
$$

$$
\longrightarrow\left(\forall n^{\prime \prime} \in \text { scc-of edge-rel } n^{\prime} . \neg \text { lfinite (lfilter }\left(\lambda x . x=n^{\prime \prime}\right)\right.
$$

$n s)$))
Nontermination-insensitive postdomination. on-sink-paths $n m \longleftrightarrow m \sqsubseteq_{\text {SIN } K}$ $n \longleftrightarrow \mathrm{~m}$ lies on all sink paths starting in n. See Definition 2.1.
definition on-sink-paths :: 'node \Rightarrow 'node \Rightarrow bool
where on-sink-paths $n m==\forall n s$. sink-path $n n s \longrightarrow m \in l$ let $n s$
Definition that is equivalent to on-sink-paths but easier to work with
definition on-ext-paths :: 'node \Rightarrow 'node \Rightarrow bool
where on-ext-paths $x n==\forall n s n^{\prime}$. is-path x ns $n{ }^{\prime}$

$$
\begin{aligned}
& \longrightarrow\left(\exists n s^{\prime} n^{\prime \prime} . \text { is-path } n^{\prime} n s^{\prime} n^{\prime \prime}\right. \\
&\left.\wedge n \in \operatorname{set}\left(n s @ n s^{\prime} @\left[n^{\prime}\right]\right)\right)
\end{aligned}
$$

lemma subseteq-mono[mono]: $(\bigwedge x . P x \longrightarrow Q x) \Longrightarrow A \subseteq\{x . P x\} \longrightarrow A \subseteq\{x$. $Q x\}$
by auto
Definition of NTSCD (Definition 2.2)
definition ntscd :: 'node \Rightarrow 'node \Rightarrow bool
where ntscd $p n==(\exists x 1 \in$ succs p. on-max-paths $x 1 n) \wedge(\exists x 2 \in$ succs p. \neg on-max-paths x2 n)

Definition of NTICD (Definition 2.2)

```
definition nticd :: 'node \(\Rightarrow\) 'node \(\Rightarrow\) bool
    where nticd \(p n==(\exists x 1 \in\) succs \(p\). on-sink-paths \(x 1 n) \wedge(\exists x 2 \in\) succs \(p\). \(\neg\)
on-sink-paths x2 n)
```

Rule system defined in Theorem 2.1 (least fixed point).
inductive $D s::$ 'node \Rightarrow 'node \Rightarrow bool
where Id: valid-node $m \Longrightarrow$ Ds $m m$
\mid Succ: succs $n \subseteq\{x$. Ds $m x\} \Longrightarrow \exists n$ s. is-path n ns $m \Longrightarrow$ Ds $m n$
Rule system defined in Theorem 2.1 (greatest fixed point).
coinductive Di :: 'node \Rightarrow 'node \Rightarrow bool where Id: valid-node $m \Longrightarrow$ Di $m m$
\mid Succ: succs $n \subseteq\{x$. Di $m x\} \Longrightarrow \exists n s$. is-path n ns $m \Longrightarrow$ Di $m n$

3.2 Lemmas about maximal paths

lemma max-path-hd: max-path n (LCons $\left.n^{\prime} n s\right) \Longrightarrow n=n^{\prime}$
by (cases rule: max-path.cases) auto
lemma max-path-LCons: assumes max-path n ns
obtains $n s^{\prime}$ where $n s=$ LCons $n n s^{\prime}$
proof -
from assms have $n s \neq$ LNil by (cases rule: max-path.cases) auto
then obtain $n^{\prime} n s^{\prime}$ where $n s=L$ Cons $n^{\prime} n s^{\prime}$ by (cases ns) auto
with max-path-hd assms that show ?thesis by auto
qed
lemma max-path-valid-node: max-path $n n s \Longrightarrow$ valid-node n by (cases rule: max-path.cases) (auto simp add: succs-def)
lemma max-path-no-succs: assumes max-path n ns
succs $n=\{ \}$
shows $n s=L$ Cons n LNil
using assms by cases auto
lemma max-path-step: assumes max-path x ns succs $x \neq\{ \}$
obtains $y n s^{\prime}$ where $n s=L C o n s x n s^{\prime}$ max-path $y n s^{\prime} y \in$ succs
x
using assms by (cases rule: max-path.cases) simp
lemma max-path-step-LCons: assumes max-path x (LCons $x^{\prime} n s$)

$$
n s \neq \text { LNil }
$$

obtains y where $x=x^{\prime}$ max-path y ns $y \in \operatorname{succs} x$
using assms by (cases rule: max-path.cases) auto
lemma max-path-append: assumes is-path $n n s n^{\prime}$

$$
\text { max-path } n^{\prime} n s^{\prime}
$$

shows max-path n (lappend (llist-of ns) ns')

```
proof
    from assms have Digraph-Basic.path edge-rel n ns n' by auto
    from this assms(2) edge-rel-def max-path.intros
    show ?thesis by (induction rule: Digraph-Basic.path.induct) auto
qed
lemma max-path-end: assumes is-path n ns n'
                        succs }\mp@subsup{n}{}{\prime}={
                        shows max-path n(llist-of (ns@[n`]))
proof-
    from assms max-path.intros is-path-valid-node have max-path n' (llist-of [ n ])
by auto
    from max-path-append[OF assms(1) this, unfolded lappend-llist-of-llist-of] show
?thesis.
qed
lemma max-path-split: assumes max-path n (lappend (llist-of ns) (LCons n'ns'))
                    shows max-path n'(LCons n'ns')^is-path n ns n'
using assms
proof (induction ns arbitrary: n)
    case Nil
    with max-path-hd[of n n ] max-path-valid-node show ?case by (auto intro:
max-path.intros)
next
    case (Cons a ns n)
    with max-path-hd have n=a by auto
    have lappend (llist-of ns) (LCons n' ns') \not=LNil by (cases ns) auto
    with Cons(2) max-path-hd obtain n2 where n2 \in succs n
    max-path n2 (lappend (llist-of ns) (LCons n' ns')) by (cases rule: max-path.cases)
auto
    with succs-path-extend[of n2 n] Cons <n=a\rangle show ?case by auto
qed
lemma max-path-split-elem: assumes max-path n ns
                                    m}\inl\mathrm{ lset ns
                    obtains ns1 ns2 where is-path n ns1 m max-path m (LCons
m ns\mathcal{O)}
                                    ns = lappend (llist-of ns1)(LCons m ns2)
    using assms lset-split that max-path-split assms by metis
```

Builds a cyclic repetition of the given list.
primcorec cycle :: 'a list \Rightarrow 'a llist
where cycle ys $=($ case ys of []\Rightarrow LNil

$$
\mid(x \# x s) \Rightarrow \text { LCons } x(\text { cycle }(x s @[x])))
$$

lemma cycle-hd: assumes cycle $x s=L C o n s x$ ys
obtains $x s^{\prime}$ where $x s=x \# x s^{\prime}$
proof (cases xs)
case Nil
with cycle.code have cycle $x s=L N i l$ by auto with assms show ?thesis by auto

next

```
    case (Cons z zs)
```

 from cycle.code[of z\#zs] Cons that assms show ?thesis by auto
 qed
lemma cycle-lset: lset (cycle xs) \subseteq set $x s$
proof
fix x
assume $x \in$ lset (cycle xs)
with lset-split obtain ns1 ns2
where cycle $x s=$ lappend (llist-of ns1) (LCons x ns2).
then show $x \in$ set $x s$
proof (induction ns1 arbitrary: xs)
case (Nil xs)
with cycle-hd[of xs] obtain $x s^{\prime}$ where $x s=x \# x s^{\prime}$ by auto
with cycle.code show ?case by auto
next
case (Cons y ys xs)
hence cycle-LCons: cycle $x s=$ LCons y (lappend (llist-of ys) (LCons x ns2))
by auto
with cycle-hd[of $x s]$ obtain $x s^{\prime}$ where $x s=y \# x s^{\prime}$ by auto
with cycle.code[of $\left.y \# x s^{\dagger}\right]$ cycle-LCons
have cycle $\left(x s^{\prime} @[y]\right)=$ lappend (llist-of ys) (LCons x ns2) by auto
with Cons (1)[OF this] $\left\langle x s=y \# x s^{\prime}\right\rangle$ show ?case by auto
qed
qed
lemma cycle-infinite: assumes $x s \neq[]$
shows \neg lfinite (cycle xs)
proof
assume lfinite (cycle xs)
then obtain $x s^{\prime}$ where llist-of $x s^{\prime}=$ cycle $x s$ by (auto simp add: lfinite-eq-range-llist-of)
with assms show False
proof (induction xs ${ }^{\prime}$ arbitrary: xs)
case Nil
with cycle.code $[$ of $x s$] show ?case by (cases xs) auto
next
case (Cons a xs')
with cycle.code $[$ of $x s$] show ?case by (cases xs) auto
qed
qed
lemma cycle-lappend-unfold: cycle $(x s @ y s)=$ lappend (llist-of xs) (cycle (ys@xs))
proof (induction xs arbitrary: ys)
case (Cons x xs)
with cycle.code[of $x \# x s @ y s]$ Cons $[$ of $y s @[x]]$ show ?case by auto
qed auto

```
lemma lfilter-cycle:lfilter P (cycle xs) = cycle (filter P xs)
proof (coinduction arbitrary: xs)
    case Eq-llist
    show ?case
    proof (cases \existsx\inset xs. P x)
        case True
        with split-list-first-prop obtain x xs1 xs2
            where split: xs = xs1@x#xs2 \forall ' ' set xs1. \neg P x' P x by metis
        with cycle-lappend-unfold[of xs1] cycle.code[of x#-] show ?thesis by auto
    next
        case False
        with cycle-lset[of xs] lfilter-False filter-False show ?thesis by auto
    qed
qed
lemma cycle-max-path: is-path n ( }n#ns)n\Longrightarrow\mathrm{ max-path n (cycle ( }n#ns)\mathrm{ )
proof (coinduction arbitrary: n ns rule: max-path.coinduct)
    case (max-path n ns)
    from cycle.code[of n#ns] have cycle-unfold: cycle ( }n#ns)=\mathrm{ LCons n (cycle
(ns@[n])) by auto
    show ?case
    proof (cases ns)
        case Nil
        with max-path path-append-conv[of - n []] edge-rel-def have n \insuccs n by
auto
    with max-path cycle-unfold Nil show ?thesis by auto
    next
        case (Cons y ys)
        with max-path is-path-split[of-[n] y]
        have paths: is-path y (y#ys) n is-path n [n] y by auto
        with path-append-conv[of-n []] edge-rel-def have }y\in\mathrm{ succs }n\mathrm{ by auto
        from path-append[OF paths] have is-path y (y#ys@[n]) y by simp
        with Cons }\langley\in\mathrm{ succs n> cycle-unfold show ?thesis by auto
    qed
qed
lemma cycle-max-path-neq-nil: is-path \(n n s n \Longrightarrow n s \neq[] \Longrightarrow\) max-path \(n\) (cycle \(n s\) )
using path-cons-conv[of - n] cycle-max-path by (cases ns) auto
lemma lappend-split-eq: assumes lappend (llist-of ns1) (LCons n ns2)
\[
=\text { lappend (llist-of ms1) (LCons m msZ })
\]
\[
m \notin \text { set } n s 1
\]
\[
n \notin \text { set } m s 1
\]
shows \(m=n\)
using assms
proof (induction ns1 arbitrary: ms1)
case (Nil ms1)
```

```
    then show ?case by (cases ms1) auto
next
    case (Cons a ns1 ms1)
    then show ?case by (cases ms1) auto
qed
```

Given a valid node, this function creates a maximal path starting in that node.
primcorec ext-max-path :: 'node \Rightarrow 'node llist
where ext-max-path $x=$
(if succs $x=\{ \}$
then llist-of $[x]$
else LCons x (ext-max-path (SOME $y . y \in$ succs $x))$)
lemma max-path-ext: valid-node $x \Longrightarrow$ max-path x (ext-max-path x)
proof (coinduction arbitrary: x rule: max-path.coinduct)
case max-path
show ?case
proof (cases succs $x=\{ \}$)
let $? y=$ SOME $y . y \in \operatorname{succs} x$
case False
with someI have y-props: ? $y \in$ succs x by fast
with ext-max-path.code have ext-max-path $x=$ LCons x (ext-max-path ?y) by
auto
with y-props succs-valid show ?thesis by auto
qed (auto simp add: max-path ext-max-path.code)
qed
lemma on-max-paths-prev-trivial: on-max-paths-prev n n m
unfolding on-max-paths-prev-def
proof clarify
fix $n s$
assume max-path n ns
with max-path-LCons obtain $n s^{\prime}$ where $n s=L C o n s n n s^{\prime}$ by auto
then show $(\exists n s 1 n s 2 . n s=$ lappend (llist-of ns1) $($ LCons n ns2) $) \wedge m \notin$ set
ns1)
by (auto intro: exI[of - []])
qed
lemma on-max-paths-not-prev: assumes on-max-paths n m1

$$
\neg \text { on-max-paths-prev } n \text { m1 m2 }
$$

obtains $n s$ where is-path n ns m2 m1 \notin set ns
proof -
from assms on-max-paths-prev-def obtain ns1 where ns1-gen: max-path n ns1 $\forall n s 2 n s 3 . n s 1=$ lappend (llist-of ns2) $($ LCons $m 1 n s 3) \longrightarrow m 2 \in$ set ns2 by auto
with assms on-max-paths-def have $m 1 \in$ lset ns1 by auto
with lset-split-first obtain ns2 ns3
where ns23-gen: ns1 = lappend (llist-of ns2) (LCons m1 ns3) m1 \ddagger set ns2
by metis
with ns1-gen split-list obtain ns2a ns2b where ns2 $=n s 2 a @ m 2 \# n s 2 b$ by metis with max-path-split ns1-gen ns23-gen have is-path n ($n s 2 a @ m 2 \# n s 2 b$) m1 by auto
with that is-path-split[OF this] ns23-gen <ns2 $=n s 2 a @ m 2 \# n s 2 b\rangle$ show ?thesis by simp
qed

3.3 Proof of Theorem 2.1, $\sqsubseteq_{M A X}$ part

First, we prove multiple lemmas that help us prove Theorem 2.1
Proof of the Reflexivity of on-max-paths (and therefore $\sqsubseteq_{M A X}$). Also will be part of Observation 5.1.
theorem on-max-paths-refl: on-max-paths x x
unfolding on-max-paths-def by clarify (cases rule: max-path.cases, auto)
Proof of the Transitivity of on-max-paths (and therefore $\sqsubseteq_{M A X}$). Also will be part of Observation 5.1.
theorem on-max-paths-trans: assumes on-max-paths $x y$
on-max-paths $y z$
shows on-max-paths $x z$
proof -
\{
fix $n s$
assume max-path x ns
with assms on-max-paths-def max-path-split-elem 〈max-path x ns〉 obtain ns1 $n s 2$
where $n s=$ lappend (llist-of ns1) (LCons y ns2) max-path y (LCons y ns2)
by metis
with assms on-max-paths-def have $z \in l$ let $n s$ by auto
\}
with assms on-max-paths-def show ?thesis by auto
qed
lemma $D s$-valid-node: assumes $D s m n$
shows valid-node m valid-node n
using assms by (induction rule: Ds.cases) (auto simp add: is-path-valid-node)
lemma Ds-imp-max-paths: Ds m $n \Longrightarrow$ on-max-paths $n m$
proof (induction rule: Ds.induct)
next
case (Succ n m)
then obtain $n s^{\prime}$ where is-path: is-path $n n s^{\prime} m$ by auto
show ?case unfolding on-max-paths-def
proof clarify
fix $n s$
assume max-path: max-path n ns
show $m \in$ lset $n s$

```
    proof (cases succs n={})
        case True
        with is-path-succs-empty is-path max-path-LCons max-path lset-intros(1)
        show ?thesis by metis
    next
        case False
        with max-path-step max-path obtain x ns2
            where ns =LCons n ns2 max-path x ns2 }x\in\mathrm{ succs n by metis
            with Succ on-max-paths-def show ?thesis by auto
        qed
    qed
qed (simp add: on-max-paths-refl)
```

This function constructs a maximal path that starts in the node given as second argument and that doesn't contain the node given as first argument. Precondition: $\neg D s n x$.
primcorec avoid-path :: 'node \Rightarrow 'node \Rightarrow 'node llist
where avoid-path $n x=$
(if succs $x=\{ \}$
then llist-of $[x]$
else LCons x (avoid-path $n(S O M E y . y \in \operatorname{succs} x \wedge \neg D s n y))$)
lemma not-Ds-cont: \neg Ds $m n \Longrightarrow$ succs $n \neq\{ \} \Longrightarrow \exists x . x \in \operatorname{succs} n \wedge \neg D s m$ x
proof-
have not-Ds-cont: $\forall x . x \in$ succs $n \longrightarrow$ Ds $m x \Longrightarrow$ succs $n \neq\{ \} \Longrightarrow$ Ds $m n$ proof
assume $\forall x . x \in$ succs $n \longrightarrow$ Ds $m x$ succs $n \neq\{ \}$
then obtain x where x-gen: Ds $m x x \in$ succs n by auto
from this path $0[$ of edge-rel] obtain $n s$ where is-path $x n s m$ by cases blast+ with x-gen succs-path-extend show $\exists n s$. is-path $n n s m$ by blast
qed auto
then show $\neg D$ s $m n \Longrightarrow$ succs $n \neq\{ \} \Longrightarrow \exists x . x \in$ succs $n \wedge \neg D s m x$ by auto
qed
lemma not-Ds-max-path: \neg Ds $n x \Longrightarrow$ valid-node $x \Longrightarrow$ max-path x (avoid-path $n x$)
proof (coinduction arbitrary: x rule: max-path.coinduct)
case (max-path x)
then show? case
proof (cases succs $x=\{ \}$)
case True
with max-path avoid-path.code show ?thesis by auto
next
let $? y=$ SOME $y . y \in$ succs $x \wedge \neg D s n y$
case False
with avoid-path.code have path: avoid-path $n x=$ LCons x (avoid-path n ? y)
by auto

```
    from max-path not-Ds-cont[THEN someI-ex] False have ?y }\in\mathrm{ succs }x\neg\mathrm{ Ds n
?y by auto
    with path succs-def show ?thesis by auto
    qed
qed
lemma not-Ds-avoid-n:\negDs n x \Longrightarrow valid-node x \Longrightarrow n &lset (avoid-path n x)
proof (rule ccontr)
    assume assm:\neg Ds n x valid-node x ᄀ n #lset (avoid-path n x)
    with lset-split[of n avoid-path n x] obtain ns1 ns2
    where avoid-path n x = lappend (llist-of ns1) (LCons n ns2) by auto
    with assm show False
    proof (induction ns1 arbitrary: x)
        case (Nil x)
        with Ds.intros avoid-path.code show ?case by (cases succs x = {}) auto
    next
    case (Cons a ns1 x)
    hence path: avoid-path n x = LCons a (lappend (llist-of ns1) (LCons n ns2))
by auto
    with avoid-path.code have cont: succs }x\not={}\mathrm{ by (cases ns1) auto
    let ?y = SOME y. y \in succs x ^\negDs n y
    from Cons avoid-path.code cont have avoid-path n x = LCons x (avoid-path n
?y) by auto
    with path have path': avoid-path n ?y = lappend (llist-of ns1) (LCons n ns2)
by auto
    from Cons not-Ds-cont[THEN someI-ex] cont have ?y \in succs x ᄀ Ds n?y
by auto
    with succs-def Cons(1)[OF this(2)] path' show ?thesis by auto
    qed
qed
lemma max-paths-imp-Ds: on-max-paths }xn\Longrightarrow\mathrm{ valid-node x בDs n x
proof (rule ccontr)
    assume on-max-paths x n valid-node x ᄀ Ds n x
    with not-Ds-max-path on-max-paths-def not-Ds-avoid-n show False by blast
qed
Proof of the \(\sqsubseteq_{M A X}\) part of Theorem 2.1.
theorem Ds-max-paths: Ds \(n x \longleftrightarrow\) on-max-paths \(x n \wedge\) valid-node \(x\) using max-paths-imp-Ds Ds-imp-max-paths Ds-valid-node by auto
lemma on-max-paths-ex-path: on-max-paths \(n m \Longrightarrow\) valid-node \(n \Longrightarrow \exists n s\). is-path \(n \mathrm{~ns} m\)
using Ds-max-paths Ds.cases path0 by metis
lemma ntscd-cond-succ: assumes \(\neg\) on-max-paths \(p\) n
\[
x \in \text { succs } p
\]
on-max-paths \(x\) n
shows ntscd \(p n\)
```

unfolding $n t s c d$-def
proof
from assms on-max-paths-def obtain ns where ns-gen: max-path p ns $n \notin l$ let $n s$ by auto
with assms max-path-step obtain x2 ns ${ }^{\prime}$
where max-path x2 $n s^{\prime} n s=L C o n s p n s^{\prime} x 2 \in$ succs p by blast
with ns-gen on-max-paths-def show $\exists x 2 \in$ succs p. \neg on-max-paths $x 2 n$ by auto qed (insert assms, blast)

This function itself is never used in this theory. It is only defined to use the resulting induction rule.
function ntscd-steps $::$ 'node \Rightarrow 'node list \Rightarrow 'node list
where ntscd-steps $p(n \# n s)=($ if $n=p$ then $(n \# n s)$
else ntscd-steps p (dropWhile (λ m. on-max-paths m
n) $(n \# n s))$)
| ntscd-steps $p[]=[]$
proof -
fix $Q x$
assume $(\bigwedge p n n s .(x:: '$ node \times 'node list $)=(p, n \# n s) \Longrightarrow Q)(\bigwedge p . x=(p$, []$) \Longrightarrow Q$)
thus Q by (cases x, cases snd x) auto
qed auto
termination
proof (relation measure (length o snd))
fix $p n n s$
from on-max-paths-refl length-drop While-le[of λ m. on-max-paths m n ns]
show (($p::$ 'node, drop While (λ m. on-max-paths $m n)(n \# n s)),(p, n \# n s))$

$$
\in \text { measure (length } \circ \text { snd) by auto }
$$

qed auto
lemma ntscd-rtranclpI': assumes is-path p ns n
$\forall m \in \operatorname{set}(n \#$ rev ns). $p \neq m \longrightarrow \neg$ on-max-paths $p m$ shows $n t s c d^{* *} p n$
using assms
proof (induction $p n \#$ rev ns arbitrary: n ns rule: $n t s c d$-steps.induct)
case (1 p n ns)
show ?case
proof (cases $n=p$)
let ?ds $=$ dropWhile $(\lambda m$. on-max-paths $m n)(n \#$ rev $n s)$
let ?ts $=$ takeWhile (λ m. on-max-paths $m n$) ($n \#$ rev $n s$)
from on-max-paths-refl have ?ts $\neq[]$ by auto
then obtain $t s-h t s^{\prime}$ where $t s$-split: ? $t s=t s-h \# t s s^{\prime}$ by (cases ?ts) auto
case False
with 1 have not-max: ᄀ on-max-paths $p n$ by simp
from 1 (2) path-rev-last last-in-set $[$ of $n \#$ rev $n s]$ have $p \in \operatorname{set}(n \#$ rev $n s)$ by auto
with 1 drop While-eq-Nil-conv not-max have ?ds $\neq[]$ by auto
then obtain $n^{\prime} n s-r$ where ? ds $=n^{\prime} \#$ rev (rev ns-r) by (cases ?ds) auto
then obtain $n s^{\prime}$ where $d s$-split: ? ds $=n^{\prime} \#$ rev $n s^{\prime}$ by blast
with takeWhile-drop While-id have split: $n \#$ rev $n s=$?ts@ n '\#rev ns' by metis with t-split have rev $n s=t s^{\prime} @ n^{\prime} \#$ rev ns s^{\prime} by auto
with rev-rev-ident [of $n s$] have $n s=n s^{\prime} @ n^{\prime} \#$ rev ts ${ }^{\prime}$ by auto
with 1(2) is-path-split[of-ns]
have split-path: is-path $p n s^{\prime} n^{\prime}$ is-path $n^{\prime}\left(n^{\prime} \#\right.$ rev ts $\left.{ }^{\prime}\right) n$ by auto
from split have set $\left(n^{\prime} \#\right.$ rev $\left.n s^{\prime}\right) \subseteq$ set $(n \#$ rev $n s)$ by auto
with 1 have $\forall m \in \operatorname{set}\left(n^{\prime} \#\right.$ rev $\left.n s^{\prime}\right)$. $p \neq m \longrightarrow \neg$ on-max-paths $p m$ by auto with 1 False ds-split split-path have $n t s c d^{* *} p n^{\prime}$ by auto
from ds-split[unfolded drop While-eq-Cons-conv] have \neg on-max-paths $n^{\prime} n$ by auto
obtain $x 2$ where on-max-paths x2 n x2 \in succs n^{\prime}
proof (cases rev ts ${ }^{\prime}$)
case Nil
with split-path path-last-is-edge[of - - [n]] edge-rel-def have $n \in$ succs n^{\prime} by auto
with that on-max-paths-refl show ?thesis by auto
next
case (Cons t' ts ${ }^{\prime \prime}$)
with split-path have is-path $n^{\prime}\left(n^{\prime} \# t^{\prime} \# t s^{\prime \prime}\right) n$ by auto
with is-path-split[of - [n $]]$ have is-path $n^{\prime}[n] t^{\prime}$ by auto
with path-last-is-edge[of - - [n I] edge-rel-def have $t^{\prime} \in$ succs n^{\prime} by auto
from $t s$-split Cons have $t^{\prime} \in$ set ?ts by auto
hence on-max-paths $t^{\prime} n$ by (auto dest: set-takeWhileD)
with $\left\langle t^{\prime} \in\right.$ succs $\left.n^{\prime}\right\rangle$ that show ?thesis by auto
qed
with $\triangleleft \neg$ on-max-paths $\left.n^{\prime} n\right\rangle n t s c d-c o n d-s u c c$ have $n t s c d n^{\prime} n$ by auto
with $\left\langle n t s c d^{* *} p n^{\prime}\right\rangle$ show ?thesis by auto
qed auto
qed
lemma ntscd-rtranclpI: assumes is-path p ns n

$$
\forall m \in \text { set } n s \cup\{n\} . p \neq m \longrightarrow \neg \text { on-max-paths } p m
$$

shows ntscd** p n
using assms ntscd-rtranclpI' by auto

3.4 Lemmas about sink paths

lemma on-ext-pathsE: on-ext-paths $x n \Longrightarrow$ is-path $x n s n^{\prime}$
$\Longrightarrow\left(\exists n s^{\prime} n^{\prime \prime}\right.$. is-path $\left.n^{\prime} n s^{\prime} n^{\prime \prime} \wedge n \in \operatorname{set}\left(n s @ n s^{\prime}\right) \cup\left\{n^{\prime \prime}\right\}\right)$
using on-ext-paths-def by auto
lemma sink-node-reachable:
assumes sink-node n is-path n ns m
shows $m \in$ scc-of edge-rel n
using assms
proof (induction ns arbitrary: m rule: rev-induct)
case (snoc x xs m)
hence x-rel: $x \in$ scc-of edge-rel $n(x, m) \in$ edge-rel unfolding path-append-conv by auto

```
    show ?case
    proof (rule ccontr)
    assume m & scc-of edge-rel n
    with scc-of-unique have scc-change: scc-of edge-rel m}\not=\mathrm{ scc-of edge-rel n by
auto
    from x-rel have (scc-of edge-rel x, scc-of edge-rel m)
        \in(\lambda(n1, n2). (scc-of edge-rel n1, scc-of edge-rel n2))' edge-rel by auto
    with x-rel scc-change cond-edges-def
    have (scc-of edge-rel n, scc-of edge-rel m) \in cond-edges by (auto dest!: scc-of-unique)
    with assms sink-node-def show False by auto
    qed
qed simp
lemma sink-node-path: assumes sink-node n
                                    is-path n ns y
                                    shows }\forallm\in\operatorname{set}(ns@[y]).m\in scc-of edge-rel n
proof
    fix m
    assume in-set: m \in set ( ns@[y])
    show m\in scc-of edge-rel n
    proof (cases m=y)
        case True
        with assms sink-node-reachable show ?thesis by blast
    next
        case False
        with in-set have m\in set ns by auto
        with path-split-elem assms sink-node-reachable show ?thesis by blast
    qed
qed
lemma cond-nodes-edges: cond-edges }\subseteq\mathrm{ cond-nodes }\times\mathrm{ cond-nodes
    unfolding cond-edges-def cond-nodes-def edge-rel-def succs-def by auto
lemma cond-edge-impl-path:
assumes (a,b) \in cond-edges
assumes ( }\mp@subsup{\varphi}{a}{}\ina
assumes ( }\mp@subsup{\varphi}{b}{}\inb
shows ( }\mp@subsup{\varphi}{a}{},\mp@subsup{\varphi}{b}{})\in\mp@subsup{\mathrm{ edge-rel}}{}{*
unfolding cond-edges-def
proof -
    from assms(1)
    obtain x y where x-y-props:
        (x,y) \in edge-rel
        a = scc-of edge-rel x
    b = scc-of edge-rel y
    unfolding cond-edges-def by auto
    hence }x\inay\inb\mathrm{ by auto
    with assms(2) x-y-props(2)
```

```
    have ( }\mp@subsup{\varphi}{a}{},x)\in\mathrm{ edge-rel* by (meson is-scc-connected scc-of-is-scc)
    moreover with assms(3) x-y-props(3)\langley\inb\rangle
    have (y, \varphi b) \inedge-rel* by (meson is-scc-connected scc-of-is-scc)
    ultimately
    show ( }\mp@subsup{\varphi}{a}{},\mp@subsup{\varphi}{b}{})\in\mathrm{ edge-rel* using x-y-props(1)
    by (meson rtrancl.rtrancl-into-rtrancl rtrancl-trans)
qed
lemma path-in-cond-impl-path:
assumes (a,b) \in cond-edges+
assumes ( }\mp@subsup{\varphi}{a}{}\ina
assumes ( }\mp@subsup{\varphi}{b}{}\inb
shows ( }\mp@subsup{\varphi}{a}{},\mp@subsup{\varphi}{b}{})\in\mathrm{ edge-rel*
using assms
proof (induction arbitrary: }\mp@subsup{\varphi}{b}{}\mathrm{ rule:trancl-induct)
    case step
    fix y z \varphi b
    assume (y,z)\in cond-edges
    hence is-scc edge-rel y unfolding cond-edges-def by auto
    hence }\exists\mp@subsup{\varphi}{y}{}.\mp@subsup{\varphi}{y}{}\iny\mathrm{ using scc-non-empty' by auto
    then obtain }\mp@subsup{\varphi}{y}{}\mathrm{ where }\mp@subsup{\varphi}{y}{}\mathrm{ -in-y: }\mp@subsup{\varphi}{y}{}\iny\mathrm{ by auto
    assume }\mp@subsup{\varphi}{b}{}\mathrm{ -elem: }\mp@subsup{\varphi}{b}{}\in
    assume }\\mp@subsup{\varphi}{b}{}.\mp@subsup{\varphi}{a}{}\ina\Longrightarrow\mp@subsup{\varphi}{b}{}\iny\Longrightarrow(\mp@subsup{\varphi}{a}{},\mp@subsup{\varphi}{b}{})\in\mp@subsup{\mathrm{ edge-rel*}}{}{*
    with assms(2) \varphi }\mp@subsup{\varphi}{y}{}-in-
    have }\mp@subsup{\varphi}{a}{}-to-\mp@subsup{\varphi}{y}{}:(\mp@subsup{\varphi}{a}{},\mp@subsup{\varphi}{y}{})\in\mathrm{ edge-rel* using cond-edge-impl-path by auto
    from }\mp@subsup{\varphi}{b}{}\mathrm{ -elem }\mp@subsup{\varphi}{y}{}\mathrm{ -in-y «(y,z) G cond-edges`
    have ( }\mp@subsup{\varphi}{y}{},\mp@subsup{\varphi}{b}{})\in\mathrm{ edge-rel* using cond-edge-impl-path by auto
    with }\mp@subsup{\varphi}{a}{}-to-\mp@subsup{\varphi}{y}{
    show ( }\mp@subsup{\varphi}{a}{},\mp@subsup{\varphi}{b}{})\in\mp@subsup{edge-rel* by auto}{}{*
next
    case (base \varphi \varphi y)
    thus ?case
        using assms(2) cond-edge-impl-path by blast
qed
lemma cond-edges-acyclic:acyclic cond-edges
proof (rule acyclicI, rule allI, rule ccontr, clarify)
    fix }
Assume there is a cycle in the condensation graph.
assume cyclic: (x, x) \in cond-edges }\mp@subsup{}{}{+
have nonrefl: ( }x,x)\not\in\mathrm{ cond-edges unfolding cond-edges-def by auto
from this cyclic
obtain b where b-on-path: (x,b) \in cond-edges ( }b,x)\in\mp@subsup{\mathrm{ cond-edges }}{}{+
    by (meson converse-tranclE)
```

hence $x \in$ cond-nodes $b \in$ cond-nodes using cond-nodes-edges by auto
hence nodes-are-scc: is-scc edge-rel x is-scc edge-rel b
using scc-of-is-scc unfolding cond-nodes-def by auto
have $\exists \varphi_{x} . \varphi_{x} \in x \exists \varphi_{b} . \varphi_{b} \in b$ using nodes-are-scc scc-non-empty' ex-in-conv by auto
then obtain $\varphi_{x} \varphi_{b}$ where φx-elem: $\varphi_{x} \in x \varphi_{b} \in b$ by metis
with nodes-are-scc(1) b-on-path path-in-cond-impl-path cond-edge-impl-path $\varphi x b$-elem(2)
have $\varphi_{b} \in x$
by - (rule is-scc-closed)
with nodes-are-scc φ xb-elem
have $x=b$ using is-scc-unique[of edge-rel] by simp
hence $(x, x) \in$ cond-edges using b-on-path by simp
with nonrefl
show False by simp
qed
lemma finite-CFG-impl-finite-condensation: assumes finite (Collect valid-node) shows finite cond-edges
proof-
from edge-rel-def succs-valid have edge-rel \subseteq Collect valid-node \times Collect valid-node by auto
with assms finite-subset have finite edge-rel by auto
with finite-Diff finite-imageI cond-edges-def show ?thesis by auto
qed
For each node, we can find a sink that is reachable from it.

```
lemma leafE:
    assumes valid-node n and finite cond-edges
    shows \exists sink. (scc-of edge-rel n, sink) \in cond-edges* }\wedge\neg(\exists\mathrm{ out. (sink,out) }
cond-edges)
proof -
    define reachable-cond where [simp]:
        reachable-cond \equiv{(m2,m1).(scc-of edge-rel n,m1) \in cond-edges* ^ (m1,
m2) \in cond-edges }\mp@subsup{}{}{+}
    show ?thesis
    proof (rule wfE-min[of reachable-cond - fst'reachable-cond \cup {scc-of edge-rel
n}])
    have subset: reachable-cond }\subseteq\mathrm{ converse (cond-edges +) by auto
    hence finite reachable-cond using assms by (simp add: finite-subset)
    thus wf (reachable-cond)
        by (meson assms acyclic-converse cond-edges-acyclic cyclic-subset
                        finite-acyclic-wf subset wf-acyclic wf-trancl)
    next
    from assms(1)
    show scc-of edge-rel n f fst'reachable-cond U {scc-of edge-rel n} by auto
next
```

```
    fix sink
    assume sink1: sink }\in\mathrm{ fst'reachable-cond U {scc-of edge-rel n}
    assume sink2: scc \not\infst'reachable-cond \cup {scc-of edge-rel n}
                    if (scc, sink) \in reachable-cond for scc
    have left: (scc-of edge-rel n, sink) \in cond-edges* using sink1 by auto
    {
        fix out
        have (sink, out) }\not\in\mathrm{ cond-edges
        proof (rule ccontr, simp)
            assume (sink, out) \in cond-edges
            with left
            have (out, sink) \in reachable-cond
                by auto
            with sink2
            show False by auto
        qed
    }
    hence right: }\neg(\exists\mathrm{ out. (sink, out ) }\in\mathrm{ cond-edges) by auto
    with left show ?thesis by -(rule exI, rule conjI)
    qed
qed
lemma path-sink-path-append:
        assumes is-path n ns n' and sink-path n' ns'
        shows sink-path n (lappend (llist-of ns) ns')
using assms sink-path-def max-path-append by auto
lemma sink-path-exists: assumes valid-node n and finite (Collect valid-node)
    obtains ns where sink-path n ns
proof -
    from assms finite-CFG-impl-finite-condensation obtain sink
        where sink:(scc-of edge-rel n, sink) \in cond-edges* \neg(\exists out. (sink, out) }
cond-edges)
        by (auto dest: leafE)
        with assms(1) have sink-scc: sink \in cond-nodes unfolding cond-nodes-def
cond-edges-def
    proof (cases sink = scc-of edge-rel n)
            case False
            with assms(1) \operatorname{sink}(1)
            have (scc-of edge-rel n, sink) \in cond-edges }\mp@subsup{}{}{+
                    unfolding cond-edges-def by (metis rtranclD)
            from this edge-impl-valid-target cond-edges-def
            show sink }\in{\mathrm{ scc-of edge-rel n | n. valid-node n} by cases auto
    qed auto
    with node-in-scc-of-node obtain n' where }\mp@subsup{n}{}{\prime}:\mp@subsup{n}{}{\prime}\in\operatorname{sink}\mathrm{ unfolding cond-nodes-def
by fastforce
    have n: n \in scc-of edge-rel n by (rule node-in-scc-of-node)
```

obtain $n s$ where $n s$: is-path $n n s n^{\prime}$
proof $(-$, cases $($ scc-of edge-rel $n)=\operatorname{sink})$
case True
thus ?thesis
using scc-path that n^{\prime} assms(1) by metis
next
case False
thus ?thesis using $n n^{\prime}$ edge-rel-rtrancl-path path-in-cond-impl-path $\operatorname{sink}(1)$
$\operatorname{assms}(1)$ that
by (metis rtrancl-eq-or-trancl)
qed
from ns n^{\prime} sink-scc
have scc: scc-of edge-rel $n^{\prime}=\operatorname{sink}$ using scc-of-unique unfolding cond-nodes-def by fast
with sink ns have sink-node: sink-node n^{\prime} unfolding sink-path-def sink-node-def by fast
show ?thesis
proof (cases succs $n^{\prime}=\{ \}$)
case True
with max-path-end [OF ns] sink-node sink-path-def that show?thesis by fastforce
next
case False
from scc-path is-path-valid-node scc ns have sink \subseteq Collect valid-node by blast
with assms finite-subset scc have finite sink sink \subseteq scc-of edge-rel n^{\prime} by auto
then obtain ns2 where ns2-gen: is-path $n^{\prime} n s 2 n^{\prime} \forall m \in \operatorname{sink}-\left\{n^{\prime}\right\} . m \in$
set ns2
proof (induction arbitrary: thesis rule: finite-subset-induct)
case empty
with ns is-path-valid-node path0 show ?case by fast
next
case (insert m F)
with scc-path is-path-valid-node ns obtain ns1 where path1: is-path $n^{\prime} n s 1$ m by blast
with insert scc-of-unique have $n^{\prime} \in s c c$-of edge-rel m by fastforce
with scc-path is-path-valid-node path1 obtain ns2 where path2: is-path m $n s 2 n^{\prime}$ by blast
from insert obtain $n s 3$ where path3: is-path $n^{\prime} n s 3 n^{\prime} \forall m \in F-\left\{n^{\prime}\right\} . m \in$ set ns3 by auto
with path1 path2 path-append have cycle-path: is-path $n^{\prime}(n s 1 @ n s 2 @ n s 3) n^{\prime}$ by auto
\{
assume $m \neq n^{\prime}$
with path2 is-path-Cons have $m \in$ set ns2 by (cases ns2) auto
\}
with path3 insert cycle-path show ?case by fastforce
qed
from False obtain n2 where n2-gen: n2 \in succs n^{\prime} by auto
with succs-path sink-node-reachable sink-node scc-of-unique

```
    have }\mp@subsup{n}{}{\prime}\inscc-of edge-rel n2 by fastforce
    with scc-path n2-gen succs-valid obtain ns3 where is-path n2 ns3 n' by blast
    with ns2-gen succs-path-extend path-append n2-gen
    have full-path: is-path n'( }\mp@subsup{n}{}{\prime}#ns3@ns2) n'\forallm\in sink.m\in set ( n'#ns3@ns2)
by auto
    with cycle-max-path-neq-nil have max-path: max-path n'(cycle ( n'#ns3@ns2))
by auto
    from cycle.code[of n'#-] have cycle-n': n' }\mp@subsup{n}{}{\prime}\inl\mathrm{ lset (cycle ( }\mp@subsup{n}{}{\prime}#ns3@ns2)) by
auto
    {
        fix }\mp@subsup{n}{}{\prime\prime
        assume }\mp@subsup{n}{}{\prime\prime}\in\mathrm{ scc-of edge-rel n'
        with scc full-path
    have filter }(\lambdax.x=\mp@subsup{n}{}{\prime\prime})(\mp@subsup{n}{}{\prime}#ns3@ns\Omega) ==[] by (auto simp add: filter-empty-conv)
        with lfiter-cycle cycle-infinite
        have ᄀlfinite (lfilter ( }\lambdax.x=\mp@subsup{n}{}{\prime\prime})(\mathrm{ cycle ( }\mp@subsup{n}{}{\prime}#ns3@ns2))) by meti
    }
    with max-path sink-node ns cycle-n' sink-path-def path-sink-path-append that
    show ?thesis by blast
    qed
qed
```

Equivalence of on-ext-paths and on-sink-paths. This allows us to use the easier to handle on-ext-paths in proofs and then convert them to on-sink-paths.
lemma on-sink-ext-paths-equiv: assumes finite (Collect valid-node)
shows on-ext-paths $x n \longleftrightarrow$ on-sink-paths $x n$
proof
assume ext-paths: on-ext-paths $x n$
\{
fix $n s m$
assume assm: sink-path x ns
with sink-path-def obtain n^{\prime} where n^{\prime}-gen: max-path $x n s n^{\prime} \in l$ set $n s$ sink-node n^{\prime}
succs $n^{\prime} \neq\{ \} \longrightarrow\left(\forall n^{\prime \prime} \in\right.$ scc-of edge-rel $n^{\prime} . \neg$ lfinite (lfilter $\left(\lambda x . x=n^{\prime \prime}\right)$
$n s)$) by auto
with max-path-split-elem obtain ns1 ns2
where ns-split: $n s=$ lappend (llist-of ns1) (LCons $\left.n^{\prime} n s 2\right)$ is-path $x n s 1 n^{\prime}$
by metis
have $n \in$ lset $n s$
proof (cases $n \in$ scc-of edge-rel n^{\prime})
case True
show ?thesis
proof (cases succs $n^{\prime}=\{ \}$)
case True
with $\langle n \in$ scc-of edge-rel n '〉 scc-path ns-split is-path-valid-node
obtain $n s^{\prime}$ where is-path $n^{\prime} n s^{\prime} n$ by blast
with is-path-succs-empty True n^{\prime}-gen show ?thesis by auto
next
case False

```
            with }\mp@subsup{n}{}{\prime}\mathrm{ -gen }\langlen\inscc-of edge-rel n'> have (lfilter (\lambdax.x=n)ns)\not=LNi
by auto
            with lfilter-eq-LNil show ?thesis by auto
        qed
    next
        case False
            with ext-paths on-ext-paths-def ns-split obtain ns' n''
            where is-path n'ns' n' n\in set (ns1@ns'@[n'\eta) by blast
            with sink-node-path n'-gen False ns-split show ?thesis by auto
    qed
    }
    with on-sink-paths-def show on-sink-paths x n by auto
next
    assume sink-paths: on-sink-paths x n
    show on-ext-paths x n unfolding on-ext-paths-def
    proof (clarify del: conjE)
        fix ns n'
        assume path1: is-path x ns n'
    with sink-path-exists assms finite-CFG-impl-finite-condensation is-path-valid-node[OF
this]
            obtain ns1 where sink-ext: sink-path n' ns1 by auto
            with path-sink-path-append[OF path1] have sink-path x (lappend (llist-of ns)
ns1) by auto
    with sink-paths on-sink-paths-def have n-elem: n \inlset (lappend (llist-of ns)
ns1) by auto
    show \existsn\mp@subsup{s}{}{\prime}\mp@subsup{n}{}{\prime\prime}. is-path n' ns' n'\prime}\wedgen\in\operatorname{set (ns @ ns' @ [n'\eta)
    proof (cases n f set ns)
            case True
            with is-path-valid-node path1 path0 show ?thesis by fastforce
    next
            case False
            with n-elem have n l lset ns1 by auto
            with sink-ext sink-path-def max-path-split lset-split
            obtain ns2 where n-ext: is-path n' ns2 n by metis
            then show ?thesis by auto
        qed
    qed
qed
```


3.5 Proof of Theorem 2.1, $\sqsubseteq_{S I N K}$ part

First, we prove multiple lemmas that help us prove Theorem 2.1
lemma on-ext-paths-ex: on-ext-paths $x n \Longrightarrow$ valid-node $x \Longrightarrow \exists$ ns. is-path x ns n using path0 on-ext-pathsE path-split-elem2 by (metis append-Nil)

Proof of the Reflexivity of on-sink-paths (and therefore $\sqsubseteq_{\text {SINK }}$). Part of Observation 5.1.
theorem on-sink-paths-refl: on-sink-paths $x x$
fix $n s$
assume sink-path x ns
with sink-path-def max-path-LCons obtain $n s^{\prime}$ where $n s=L C o n s x n s^{\prime}$ by
blast
then have $x \in l$ set $n s$ by auto
\}
with on-sink-paths-def show ?thesis by auto
qed
lemma on-ext-paths-trans: assumes on-ext-paths $x y$
on-ext-paths $y z$
shows on-ext-paths $x z$
unfolding on-ext-paths-def
proof (clarify del: conjE)
fix $n s n^{\prime}$
assume path: is-path x ns n^{\prime}
with assms on-ext-paths-def obtain ns1 $n 1^{\prime}$
where ext1: is-path $n^{\prime} n s 1 n 1^{\prime} y \in \operatorname{set}(n s @ n s 1 @[n 1])$ by blast
show $\exists n s^{\prime} n^{\prime \prime}$. is-path $n^{\prime} n s^{\prime} n^{\prime \prime} \wedge z \in \operatorname{set}\left(n s\right.$ @ $\left.n s^{\prime} @\left[n^{\prime}\right\rceil\right)$
proof (cases $y=n 1^{\prime}$)
case True
with on-ext-paths-ex[OF assms(2)] ext1 is-path-valid-node obtain ns2
where is-path y ns2 z by auto
with ext1 True path-append have is-path $n^{\prime}(n s 1 @ n s 2) z z \in \operatorname{set}(n s @ n s 1 @ n s 2 @[z])$
by auto
thus ?thesis by auto
next
case False
with ext1 have $y \in \operatorname{set}(n s @ n s 1)$ by auto
with path-split-elem path-append[OF path ext1(1)] obtain ys1 ys2
where y-split: ns@ns1 = ys1@y\#ys2 is-path y (y\#ys2) n1' by blast
from on-ext-pathsE[OF assms(2) this(2)] obtain ns2 n2'
where is-path n1' ns2 n2 ${ }^{\prime} z \in \operatorname{set}((y \# y s \mathcal{Z}) @ n s 2 @[n \mathcal{Z}])$ by auto
with ext1 path-append y-split
have path2: is-path $n^{\prime}(n s 1 @ n s 2) n 2^{\prime} z \in \operatorname{set}((y s 1 @ y \# y s 2) @ n s 2 @[n 2])$ by auto
from this[folded y-split(1)] have $z \in \operatorname{set}(n s @(n s 1 @ n s 2) @[n 2$ I $)$ by auto with path2 show ?thesis by blast
qed
qed
Proof of the Transitivity of on-sink-paths (and therefore $\sqsubseteq_{\text {SINK }}$). Also will be part of Observation 5.1.
theorem on-sink-paths-trans: assumes finite (Collect valid-node)
on-sink-paths $x y$
on-sink-paths $y z$
shows on-sink-paths $x z$
using assms on-sink-ext-paths-equiv on-ext-paths-trans by blast
lemma Di-ex-path: Di $n x \Longrightarrow \exists n s$. is-path x ns n by (cases rule: Di.cases) (auto intro: path0)
lemma Di-imp-ext-paths: assumes Di m n shows on-ext-paths $n m$
unfolding on-ext-paths-def
proof (clarify del: conjE)
fix $n s n^{\prime}$
assume is-path: is-path nns n^{\prime}
from this assms show $\exists n s^{\prime} n^{\prime \prime}$. is-path $n^{\prime} n s^{\prime} n^{\prime \prime} \wedge m \in \operatorname{set}\left(n s @ n s^{\prime} @\left[n^{\prime \prime}\right]\right)$
proof (induction ns arbitrary: n) case (Nil n)
with Di-ex-path[of m n] path0 show ?case by auto
next case (Cons a ns n)

```
        with is-path-Cons obtain x where x-gen: n =a x fuccs n is-path x ns n'
```

by blast
from Cons(3) show ?case
proof cases
case Id
with x-gen path $0[$ of edge-rel $n\rceil$ is-path-valid-node[of $x]$ show ?thesis by
fastforce
next
case Succ
with x-gen Cons (1) [of $x]$ show ?thesis by auto
qed
qed
qed
lemma ext-paths-imp-Di: on-ext-paths $x n \Longrightarrow$ valid-node $x \Longrightarrow$ Di $n x$
proof (coinduction arbitrary: x rule: Di.coinduct)
case (Di x)
show ?case
proof (cases $n=x$)
case False
from Di on-ext-paths-ex have path-ex: $\exists n s$. is-path $x n s n$ by auto
have $\bigwedge y . y \in$ succs $x \Longrightarrow$ on-ext-paths $y n$ unfolding on-ext-paths-def
proof (clarify del: conjE)
fix $y n s n^{\prime}$
assume $y \in$ succs x is-path $y n s n^{\prime}$
with succs-path-extend have is-path $x(x \# n s) n^{\prime}$ by auto
from Di on-ext-pathsE[OF Di(1) this] False
show $\exists n s^{\prime} n^{\prime \prime}$. is-path $n^{\prime} n s^{\prime} n^{\prime \prime} \wedge n \in \operatorname{set}\left(n s @ n s^{\prime} @\left[n^{\prime \prime}\right]\right)$ by auto
qed
with succs-def path-ex Di show ?thesis by auto
qed (simp add: Di)
qed

lemma $D i$-ext-paths: assumes valid-node x

shows Di $n x \longleftrightarrow$ on-ext-paths $x n$
using Di-imp-ext-paths ext-paths-imp-Di assms by auto
Proof of the $\sqsubseteq_{S I N K}$ part of Theorem 2.1.
theorem Di-sink-paths: assumes valid-node x
finite (Collect valid-node)
shows Di $n x \longleftrightarrow$ on-sink-paths $x n$
using Di-ext-paths on-sink-ext-paths-equiv assms by auto
Noted in Section 2.2 directly after Definition 2.1.
theorem on-max-paths-implies-on-sink-paths: assumes on-max-paths n m
shows on-sink-paths $n m$
using on-max-paths-def on-sink-paths-def sink-path-def assms by auto
Definition 2.3.
definition dod :: 'node \Rightarrow 'node \Rightarrow 'node \Rightarrow bool
where dod $n m 1 m 2==m 1 \neq m 2 \wedge n \neq m 1 \wedge n \neq m 2 \wedge$ on-max-paths $n m 1$
\wedge on-max-paths n m2
$\wedge(\exists x 1 \in$ succs n. on-max-paths-prev $x 1 \mathrm{~m} 1 \mathrm{m2})$
$\wedge(\exists$ x2 \in succs n. on-max-paths-prev x2 m2 m1)

4 Timing Sensitive Control Dependence

4.1 Basic Properties of Timing Sensitive Control Dependence

Part of Definition 3.1: at-pos $k n s n=m \in \in^{k} n s$
definition at-pos :: nat \Rightarrow 'node llist \Rightarrow 'node \Rightarrow bool where at-pos $k n s n==$ llength $n s>k \wedge \operatorname{lnth} n s k=n$

Part of Definition 3.1: at-pos-first $k n s n=m \in^{k}{ }_{F I R S T} n s$
definition at-pos-first :: nat \Rightarrow 'node llist \Rightarrow 'node \Rightarrow bool
where at-pos-first $k n s n==$ llength $n s>k \wedge$ lnth $n s k=n \wedge\left(\forall k^{\prime}<k\right.$. lnth ns $k^{\prime} \neq n$)

Part of Definition $3.2\left(\sqsubseteq^{k}\right.$ TIME[FIRST] $)$
definition on-max-paths-pos-k-first :: 'node \Rightarrow nat \Rightarrow 'node \Rightarrow bool
where on-max-paths-pos-k-first $n k m==\forall n s$. max-path $n n s \longrightarrow$ at-pos-first k ns m

Part of Definition 3.2 ($\sqsubseteq_{T I M E[F I R S T]}$)
definition on-max-paths-pos-first :: 'node \Rightarrow 'node \Rightarrow bool
where on-max-paths-pos-first $n m==\exists k$. on-max-paths-pos-k-first $n k m$
lemma at-pos-succ: at-pos (k+1) (LCons $n n s) m \longleftrightarrow a t$-pos $k n s m$

```
    using at-pos-def Suc-ile-eq by auto
lemma not-at-pos-first-to-at-pos: assumes }\neg\mathrm{ at-pos-first k ns m
                            shows \neg at-pos k ns m \vee (\exists\mp@subsup{k}{}{\prime}<k. at-pos k' ns m)
    using assms at-pos-first-def at-pos-def
proof (cases enat k<llength ns ^ lnth ns k=m)
    case True
    with assms at-pos-first-def obtain k' where k''gen: lnth ns k'}=m\mp@subsup{k}{}{\prime}<k\mathrm{ by
auto
    with True enat-ord-simps less-trans have enat k' < llength ns by metis
    with }\mp@subsup{k}{}{\prime}\mathrm{ -gen at-pos-def show ?thesis by auto
next
    case False
    with assms at-pos-first-def at-pos-def show ?thesis by auto
qed
```

Lemma 3.1.
theorem on-max-paths-pos-k-first-k-unique: assumes valid-node n on-max-paths-pos-k-first $n k 1$ m on-max-paths-pos-k-first $n k 2$ m shows $k 1=k 2$
proof (rule ccontr)
assume $k 1 \neq k 2$
with assms obtain $k k^{\prime}$
where k-gen: on-max-paths-pos- k-first $n k$ m on-max-paths-pos- k-first $n k^{\prime} m k$
$<k^{\prime}$
by (cases $k 1<k 2$) auto
from assms max-path-ext obtain ns where max-path n ns by auto
with k-gen on-max-paths-pos-k-first-def at-pos-first-def show False by auto
qed
lemma on-max-paths-pos-k-first-m-unique: assumes valid-node n
on-max-paths-pos-k-first n k m1
on-max-paths-pos-k-first $n k$ m2
shows $m 1=m 2$
proof -
from assms max-path-ext obtain ns where max-path n ns by auto with assms on-max-paths-pos-k-first-def at-pos-first-def show?thesis by auto qed

Definition 3.3.
definition tscd :: 'node \Rightarrow 'node \Rightarrow bool
where tscd $n m==\exists k$. $(\exists x 1 \in$ succs n. on-max-paths-pos-k-first $x 1 k m)$

$$
\wedge(\exists x 2 \in \text { succs } n . \neg \text { on-max-paths-pos-k-first } x 2 k m)
$$

Rule System from Theorem 3.1.
inductive Tfirst :: 'node \Rightarrow nat \Rightarrow 'node \Rightarrow bool where Tfirst $n 0$ n
$\mid \forall x \in$ succs n. Tfirst $x k m \Longrightarrow m \neq n \Longrightarrow$ is-path n ns $m \Longrightarrow n s \neq[] \Longrightarrow$ Tfirst $n(k+1) m$
lemma on-max-paths-pos-k-first-refl: on-max-paths-pos-k-first n 0 n proof-
\{
fix $n s$
assume max-path $n n s$
with max-path-LCons obtain $n s^{\prime}$ where $n s=L C o n s n n s^{\prime}$ by auto
with at-pos-first-def zero-enat-def have at-pos-first 0 ns n by auto
\}
with on-max-paths-pos-k-first-def show ?thesis by auto
qed
lemma on-max-path-pos-first-0: valid-node $n \Longrightarrow$ on-max-paths-pos-k-first $n 0 m$ $\Longrightarrow n=m$
using on-max-paths-pos-k-first-m-unique on-max-paths-pos-k-first-refl by metis
lemma on-max-paths-pos-first-refl: on-max-paths-pos-first $n n$
using on-max-paths-pos-first-def on-max-paths-pos-k-first-refl by metis
lemma on-max-paths-pos-k-first-0: valid-node $n \Longrightarrow$ on-max-paths-pos-k-first $n 0$ $m \Longrightarrow n=m$
using on-max-paths-pos-k-first-m-unique on-max-paths-pos-k-first-refl by metis
lemma at-pos-first-step: assumes $n \neq m$
at-pos-first k ns m
shows at-pos-first ($k+1$) (LCons $n n s$) m

```
proof-
    {
        fix }\mp@subsup{k}{}{\prime
        assume k}\mp@subsup{k}{}{\prime}<k+
        with assms at-pos-first-def have lnth (LCons nns) k'\not=m by (cases k') auto
    }
    with assms at-pos-first-def Suc-ile-eq show at-pos-first (k+1) (LCons n ns) m
by auto
qed
lemma at-pos-first-succ-Suc: assumes at-pos-first (k+1) (LCons n ns)m
                    shows at-pos-first k ns m
    using assms at-pos-first-def Suc-ile-eq by auto
lemma at-pos-first-succ-neq: assumes n\not=m
                    at-pos-first k (LCons n ns) m
                    shows }k>0\mathrm{ at-pos-first (k-1) ns m
proof-
    from assms at-pos-first-def show k>0 by force
    with at-pos-first-succ-Suc assms show at-pos-first (k-1) ns m by (cases k) auto
qed
```

lemma on-max-paths-pos-k-first-end-node: assumes valid-node n on-max-paths-pos-k-first $n k m$ succs $n=\{ \}$

shows $k=0 n=m$

proof -
from assms max-path.intros have max-path n (llist-of [n]) by auto
with assms on-max-paths-pos-k-first-def have at-pos-first k (llist-of [n]) mby auto
with at-pos-first-def enat- 0 -iff show $k=0 n=m$ by auto
qed
lemma Tfirst-path: valid-node $n \Longrightarrow$ Tirst $n k m \Longrightarrow \exists n s$. is-path $n n s m$ by (cases rule: Tfirst.cases) (auto intro: exI[of - []])

Proof of Theorem 3.1.

```
theorem on-max-paths-pos-first-Tfirst-equiv: assumes valid-node n
                                    shows Tfirst n km\longleftrightarrowon-max-paths-pos-k-first
nkm
proof
    assume Tfirst n k m
    then show on-max-paths-pos-k-first n k m
    proof (induction)
        case (1 n)
        with on-max-paths-pos-k-first-refl show ?case by auto
    next
        case (2nkmns)
        with is-path-Cons[of n] have has-succs: succs n}\not={}\mathrm{ by (cases ns) auto
        {
            fix ns
            assume max-path n ns
            with 2 max-path-step has-succs obtain x ns'
            where ns=LCons n ns' max-path x ns' }x\in\mathrm{ succs n by metis
            with 2 on-max-paths-pos-k-first-def at-pos-first-step have at-pos-first (k+1)
ns m}\mathrm{ by auto
    }
    with on-max-paths-pos-k-first-def show ?case by auto
    qed
next
    assume on-max-paths-pos-k-first n k m
    with assms show Tfirst n k m
    proof (induction k arbitrary: n)
        case (0 n)
        with on-max-path-pos-first-0 Tfirst.intros show ?case by auto
    next
        case (Suc k n)
        with max-path-ext have max-path n (ext-max-path n) by auto
        with max-path-LCons obtain ns where max-path: max-path n (LCons n ns)
by metis
```

```
    with Suc on-max-paths-pos-k-first-def at-pos-first-def
    have llength (LCons n ns) > Suc k \forallk'<k+1. lnth (LCons n ns) k'\not=m by
auto
    with max-path enat-0-iff obtain x where x-gen: x fuccs n by cases auto
    from <\forall k}<k+1. lnth (LCons n ns) k'\not=m> have n\not=m by aut
    {
        fix x1
        assume succ: x1 \in succs n
        {
            fix ns
            assume max-path x1 ns
            with succ max-path.intros have max-path n (LCons n ns) by auto
            with at-pos-first-succ-Suc on-max-paths-pos-k-first-def Suc(3)
            have at-pos-first kns m}\mathrm{ by fastforce
        }
        with Suc succ succs-valid on-max-paths-pos-k-first-def have Tfirst x1 k m by
auto
    }
    note succs-Tfirst = this
    with x-gen succs-valid[of x n] Tfirst-path succs-path-extend obtain ns
        where is-path n (n#ns) m by metis
    with succs-Tfirst Tfirst.intros }\langlen\not=m\rangle\mathrm{ show ?case by auto
    qed
qed
lemma lset-at-pos-first: assumes m}\inlset n
    obtains k}\mathrm{ where at-pos-first k ns m
proof-
    from assms lset-split-first obtain ns1 ns2
        where ns=lappend (llist-of ns1) (LCons m ns2) m & set ns1 by metis
    then have at-pos-first (length ns1) ns m
    proof (induction ns1 arbitrary: ns)
        case Nil
        with at-pos-first-def enat-0 show ?case by auto
    next
        case (Cons n ns1)
        with at-pos-first-step show ?case by auto
    qed
    with that show ?thesis by auto
qed
lemma on-max-paths-prev-at-pos-first: assumes on-max-paths-prev n m1 m2
                                    max-path n ns
                                    at-pos-first k1 ns m1
                                    at-pos-first k2 ns m2
                                    m1 = m2
                                    shows k1<k2
proof-
    from assms on-max-paths-prev-def obtain ns1 ns2
```

```
        where ns = lappend (llist-of ns1) (LCons m1 ns2) m2 & set ns1 by auto
        with assms(2-5) show ?thesis
        proof (induction ns1 arbitrary: n k1 k2 ns)
        case Nil
        with at-pos-first-def show ?case by fastforce
    next
        case (Cons n' ns1)
        then show ?case
        proof (cases n'=m1)
            case True
            with Cons at-pos-first-def show ?thesis by (cases k2 = 0) auto
    next
        case False
        let ?ns' = lappend (llist-of ns1) (LCons m1 ns2)
        have ?ns' }=\mathrm{ LNil by (cases ns1) auto
        with Cons(2,6) max-path-step-LCons[of n n] obtain x
            where x-gen: }x\in\mathrm{ succs n max-path x ?ns' }n=\mp@subsup{n}{}{\prime}\mathrm{ by auto
        with Cons at-pos-first-succ-neq False
        have at-post-first-m1: at-pos-first (k1-1) ?ns' m1 by auto
        from Cons have n'\not= m2 by auto
        with Cons at-pos-first-succ-neq x-gen have at-pos-first (k2-1) ?ns' m2 by
auto
        with at-post-first-m1 Cons x-gen have k1 - 1<k2 - 1 by auto
        then show ?thesis by auto
    qed
    qed
qed
lemma on-max-paths-pos-k-first-step: assumes on-max-paths-pos-k-first \(n k m\)
\[
\begin{aligned}
& n \neq m \\
& x \in \text { succs } n
\end{aligned}
\]
\[
\text { shows on-max-paths-pos-k-first } x(k-1) m
\]
proof-
from on-max-path-pos-first-0 assms succs-valid have \(k=(k-1)+1\) by (cases k) auto
\{
fix \(n s\)
assume max-path x ns
with max-path.intros on-max-paths-pos-k-first-def at-pos-first-succ-neq assms
have at-pos-first \((k-1) n s m\) by metis
\}
with on-max-paths-pos-k-first-def show ?thesis by auto
qed
lemma on-max-paths-pos-first-chain: assumes on-max-paths-pos-k-first x k1 y
on-max-paths-pos-k-first y k2 z
max-path x ns
at-pos-first \(k\) ns \(z\)
shows \(k<k 1 \vee k=k 1+k 2\)
```

using assms
proof (induction $k 1$ arbitrary: x ns k)
case ($0 \times n \mathrm{k}$)
with on-max-paths-pos-k-first-0 max-path-valid-node have valid-node $x x=y$ by
auto
with 0 on-max-paths-pos-k-first-def have at-pos-first $k 2 n s z$ by auto
with at-pos-first-def 0 show ?case by (cases rule: linorder-cases) auto
next
case (Suc k1 x ns k)
with max-path-LCons obtain $n s^{\prime}$ where $n s$-split: $n s=L C o n s x n s s^{\prime}$ by auto
from on-max-paths-pos-k-first-refl have on-max-paths-pos-k-first x $0 x$ by auto
with on-max-paths-pos-k-first-k-unique Suc max-path-valid-node have $x \neq y$ by blast
show ?case
proof (cases $x=z$)
case True
with ns-split Suc at-pos-first-def show ?thesis by auto
next
case False
with Suc ns-split at-pos-first-def obtain k^{\prime} where $k=k^{\prime}+1$ by (cases k) auto
with at-pos-first-succ-Suc Suc ns-split have pos-k': at-pos-first $k^{\prime} n s^{\prime} z$ by blast
with at-pos-first-def have $n s^{\prime} \neq$ LNil by auto
from Suc(4) ns-split Suc this obtain $x 2$ where max-path $x 2 n s^{\prime} x 2 \in$ succs x by cases auto
with pos- k^{\prime} Suc on-max-paths-pos- k-first-step $[$ OF $\operatorname{Suc}(2)]\langle x \neq y\rangle\left\langle k=k^{\prime}+1\right\rangle$ show ?thesis by auto
qed
qed
lemma on-max-paths-pos-first-step: assumes on-max-paths-pos-first $n m$

$$
n \neq m
$$

$$
x \in \text { succs } n
$$

shows on-max-paths-pos-first x m
using on-max-paths-pos-first-def on-max-paths-pos-k-first-step assms by metis
lemma on-max-paths-pos- k-first-Suc: assumes on-max-paths-pos-k-first $n(k+1)$ m

$$
x \in \operatorname{succs} n
$$

shows on-max-paths-pos-k-first $x k m$
proof -
from on-max-paths-pos-k-first-refl assms succs-valid on-max-paths-pos-k-first-k-unique
have $n \neq m$ by fastforce
with assms on-max-paths-pos-k-first-step show ?thesis by fastforce
qed
lemma on-max-paths-pos-k-implies-on-max-paths: assumes on-max-paths-pos-k-first $n k m$
shows on-max-paths $n m$

```
proof-
    {
        fix ns
        assume max-path n ns
        with assms on-max-paths-pos-k-first-def have at-pos-first kns m by auto
        with lset-conv-lnth at-pos-first-def have m}\inlset ns by fastforc
    }
    with on-max-paths-def show ?thesis by auto
qed
lemma on-max-paths-pos-k-first-diff: assumes max-path n ns
                            at-pos-first k1 ns m1
                            on-max-paths-pos-k-first n k2 m2
                            k1\leqk2
                shows on-max-paths-pos-k-first m1 (k2-k1) m2
    using assms
proof (induction k1 arbitrary: n ns k2)
    case 0
    with max-path-LCons obtain ns'' where ns=LCons n ns'' by auto
    with 0 at-pos-first-def show ?case by auto
next
    case (Suc k1)
    with max-path-LCons obtain ns' where ns-split: ns = LCons n ns' by auto
    with Suc at-pos-first-def enat-0-iff have ns' }\not=LNil by aut
    with max-path-step-LCons ns-split Suc(2) obtain x
        where x-gen: max-path x ns'}x\in\mathrm{ succs n by blast
    with at-pos-first-succ-Suc Suc(3) ns-split have at-pos: at-pos-first k1 ns' m1 by
auto
    from x-gen Suc on-max-paths-pos-k-first-Suc have on-max-paths-pos-k-first x
(k2-1) m2 by auto
    with at-pos Suc x-gen show ?case by fastforce
qed
lemma tscd-cond-succ-k: assumes ᄀ on-max-paths-pos-k-first n (k+1)m
                    x\in succs n
                        on-max-paths-pos-k-first x k m
                        n\not=m
            shows tscd n m
proof-
    from assms on-max-paths-pos-first-Tfirst-equiv succs-valid have Tfirst x k m by
auto
    with assms succs-valid Tfirst-path succs-path-extend obtain ns
        where path: is-path n ( n#ns) m by metis
    {
        assume }\forallx2\insuccs n. on-max-paths-pos-k-first x2 k m
        with on-max-paths-pos-first-Tfirst-equiv assms succs-valid
        have }\forallx2\in\mathrm{ succs n. Tfirst x2 k m}\mathrm{ by auto
        with path Tfirst.intros on-max-paths-pos-first-Tirst-equiv assms have False by
blast
```

```
}
with assms tscd-def show ?thesis by auto
qed
```

lemma tscd-cond-succ: assumes \neg on-max-paths-pos-first $n m$
shows tscd $n m$
using assms on-max-paths-pos-first-def on-max-paths-pos-first-refl tscd-cond-succ-k by metis

4.2 Timing Sensitive Slicing

Definition of the combined slice of a binary and ternary relation. Used in Theorem 3.2 as \cup. See Definition 3.4.

```
inductive-set combined-slice
    \(::(\) 'node \(\Rightarrow\) 'node \(\Rightarrow\) bool \() \Rightarrow\) ('node \(\Rightarrow\) 'node \(\Rightarrow\) 'node \(\Rightarrow\) bool \() \Rightarrow\) ('node set)
\(\Rightarrow\) 'node set
    for \(c d\) :: 'node \(\Rightarrow\) 'node \(\Rightarrow\) bool
    and od :: 'node \(\Rightarrow\) 'node \(\Rightarrow\) 'node \(\Rightarrow\) bool
    and \(M\) :: 'node set
    where \(m \in M \Longrightarrow m \in\) combined-slice \(c d\) od \(M\)
            \(\mid\) cd \(n m \Longrightarrow m \in\) combined-slice cd od \(M \Longrightarrow n \in\) combined-slice cd od \(M\)
            \(\mid\) od \(n m 1 m 2 \Longrightarrow m 1 \in\) combined-slice \(c d\) od \(M \Longrightarrow m 2 \in\) combined-slice
cd od \(M\)
                    \(\Longrightarrow n \in\) combined-slice \(c d\) od \(M\)
```

Definition 3.4: The backward slice of a binary relation.
abbreviation backward-slice :: ('node \Rightarrow 'node \Rightarrow bool) \Rightarrow ('node set) \Rightarrow 'node set where backward-slice $c d M==$ combined-slice $c d(\lambda n m 1 \mathrm{m2}$. False) M
lemma combined-slice-cd-rtranclp: $c d^{* *} n m \Longrightarrow m \in$ combined-slice $c d$ od M
$\Longrightarrow n \in$ combined-slice cd od M
by (induction rule: rtranclp.induct) (auto intro: combined-slice.intros)
This function itself is never used in this theory. It is only defined to use the resulting induction rule.

```
function tscd-steps :: 'node \(\Rightarrow\) 'node list \(\Rightarrow\) 'node list
    where tscd-steps \(p(n \# n s)=\)
                        (if \(n=p\) then \((n \# n s)\)
                else tscd-steps \(p\) (dropWhile ( \(\lambda m\). on-max-paths-pos-first \(m n\) )
( \(n \# n s\) ) ) )
    |tscd-steps \(p[]=[]\)
proof-
    fix \(Q x\)
    assume \((\bigwedge p n n s .(x:: '\) node \(\times\) 'node list \()=(p, n \# n s) \Longrightarrow Q)(\bigwedge p . x=(p\),
[]\() \Longrightarrow Q\) )
```

thus Q by (cases x, cases snd x) auto
qed auto

termination

proof (relation measure (length o snd))
fix $p n n s$
from on-max-paths-pos-first-refl length-drop While-le[of λ m. on-max-paths-pos-first $m n n s$]
show (($p::^{\prime}$ node, dropWhile (λ m. on-max-paths-pos-first m $\left.n\right)(n \# n s)$), $(p, n$ \# $n s)$)
\in measure (length \circ snd) by auto
qed auto
lemma tscd-rtranclpI': assumes is-path p ns n
$\forall m \in$ set $(n \#$ rev $n s) . p \neq m \longrightarrow \neg$ on-max-paths-pos-first
p m
shows $t s c d^{* *} p n$
using assms
proof (induction p n\#rev ns arbitrary: n ns rule: tscd-steps.induct)
case (1 p nns)
show ?case
proof (cases $n=p$)
let ?ds $=$ dropWhile (λm. on-max-paths-pos-first $m n$) ($n \#$ rev $n s$)
let ?ts $=$ takeWhile $(\lambda$ m. on-max-paths-pos-first $m n)(n \#$ rev $n s)$
from on-max-paths-pos-first-refl have ?ts $\neq[]$ by auto
then obtain $t s$ - h ts' where $t s$-split: ? $t s=t s-h \# t s^{\prime}$ by (cases ?ts) auto
case False
with 1 have not-max: \neg on-max-paths-pos-first $p n$ by simp
from 1(2) path-rev-last last-in-set[of $n \#$ rev ns] have $p \in \operatorname{set}(n \#$ rev ns) by auto
with 1 drop While-eq-Nil-conv not-max have ? ds $\neq[]$ by auto
then obtain $n^{\prime} n s-r$ where ? $d s=n^{\prime} \#$ rev (rev ns-r) by (cases ?ds) auto
then obtain $n s^{\prime}$ where $d s$-split: ? $d s=n^{\prime} \#$ rev $n s^{\prime}$ by blast
with take While-drop While-id have split: $n \#$ rev $n s=$? ts@ $n^{\prime} \#$ rev ns' by metis
with $t s$-split have rev $n s=t s^{\prime} @ n^{\prime} \#$ rev $n s^{\prime}$ by auto
with rev-rev-ident [of $n s$] have $n s=n s^{\prime} @ n^{\prime} \#$ rev ts ${ }^{\prime}$ by auto
with 1(2) is-path-split[of-ns]
have split-path: is-path $p n s^{\prime} n^{\prime}$ is-path $n^{\prime}\left(n^{\prime} \#\right.$ rev ts') n by auto
from split have set $\left(n^{\prime} \#\right.$ rev $\left.n s^{\prime}\right) \subseteq$ set $(n \#$ rev $n s)$ by auto
with 1 have $\forall m \in \operatorname{set}\left(n^{\prime} \#\right.$ rev $\left.n s^{\prime}\right) . p \neq m \longrightarrow \neg$ on-max-paths-pos-first $p m$
by auto
with 1 False ds-split split-path have $t s c d^{* *} p n^{\prime}$ by auto
from ds-split[unfolded drop While-eq-Cons-conv] have \neg on-max-paths-pos-first
$n^{\prime} n$ by auto
obtain $x 2$ where on-max-paths-pos-first $x 2 n$ x2 \in succs n^{\prime}
proof (cases rev ts')
case Nil
with split-path path-last-is-edge[of - - [n I] edge-rel-def have $n \in$ succs n^{\prime} by auto
with that on-max-paths-pos-first-refl show ?thesis by auto

```
    next
            case (Cons t' ts '')
            with split-path have is-path n' ( }\mp@subsup{n}{}{\prime}#\mp@subsup{t}{}{\prime}#t\mp@subsup{s}{}{\prime\prime})n\mathrm{ by auto
            with is-path-split[of - [n \] have is-path n' [ [ | ] t' by auto
            with path-last-is-edge[of--[n']] edge-rel-def have t'\in succs n' by auto
            from ts-split Cons have t'\in set ?ts by auto
            hence on-max-paths-pos-first t' n by (auto dest: set-takeWhileD)
            with {t'}\in\mathrm{ succs n'\ that show ?thesis by auto
            qed
            with \\neg on-max-paths-pos-first n' n` tscd-cond-succ have tscd n' n by auto
            with \langletscd** p n'` show ?thesis by auto
    qed auto
qed
lemma tscd-rtranclpI: assumes is-path p ns n
    \forallm\inset ns \cup{n}. p\not=m\longrightarrow\neg on-max-paths-pos-first p m
                            shows tscd** p n
using assms tscd-rtranclpI' by auto
lemma on-max-paths-pos-k-first-less-eq: assumes on-max-paths-pos-k-first n k1
m1
            on-max-paths-pos-k-first n k2 m2
                        k1\leqk2
                        max-path n (lappend ns1 ns2)
                        m2 \in lset ns1
                            shows m1\in lset ns1
proof-
    from assms in-lset-conv-lnth obtain k where k-gen: m2 = lnth ns1 k k<llength
ns1 by metis
    with lnth-lappend1 have m2 = lnth (lappend ns1 ns2) k by metis
    with assms on-max-paths-pos-k-first-def at-pos-first-def not-less have k}\geqk2 by
metis
    with assms k-gen enat-ord-simps less-le-trans not-less have k1<llength ns1 by
metis
    with assms on-max-paths-pos-k-first-def at-pos-first-def lnth-lappend1 in-lset-conv-lnth
    show ?thesis by metis
qed
lemma on-max-paths-prev-ccontr: assumes on-max-paths-prev x n m
                    n\not=m
                        is-path x ms m
                        n\not\in set ms
                shows False
proof -
    from assms is-path-valid-node max-path-ext have max-path m (ext-max-path m)
by auto
    with max-path-LCons obtain ems' where ext-eq: ext-max-path m = LCons m
ems' by auto
    let ?ms' = lappend (llist-of ms) (LCons m ems')
```

from 〈max-path m (ext-max-path m) 〉 ext-eq assms max-path-append have max-path x ? ms^{\prime} by auto
with assms on-max-paths-prev-def obtain ms1 ms2 where $m \notin$ set ms1
$? m s^{\prime}=$ lappend (llist-of ms1) (LCons $\left.n m s 2\right)$ by auto
with assms lappend-split-eq[OF this(2)] show ?thesis by auto
qed
lemma on-max-paths-prev-split:
assumes on-max-paths-prev n m1 m2 valid-node n
obtains ns1 ns2 where is-path n ns1 m1 max-path m1 (LCons m1 ns2)

```
                                    m1 & set ns1 m2 & set ns1
```

proof -
from max-path-ext assms have max-path n (ext-max-path n) by simp
with assms on-max-paths-prev-def obtain ns1' ns2
where ns-gen: max-path n (lappend (llist-of ns1') (LCons m1 ns2)) m2 \notin set $n s 1^{\prime}$ by auto
with max-path-split have split1: is-path n ns1' m1 max-path m1 (LCons m1 ns2) by auto
with path-first obtain ns1 nsx where is-path n ns1 m1 m1 \notin set ns1 ns1' $=$ $n s 1 @ n s x$ by metis
with ns-gen split1 that show thesis by auto
qed
Proof of Theorem 3.2.
theorem tscd-slice-includes-ntscd-dod:
combined-slice ntscd dod $M \subseteq$ backward-slice tscd M

proof

fix x
assume $x \in$ combined-slice ntscd dod M
then show $x \in$ backward-slice tscd M
proof induction
case (2 $n \mathrm{~m}$)
with ntscd-def obtain $x 1$ x2 where succs: x1 \in succs n on-max-paths $x 1 \mathrm{~m}$ x2 \in succs $n \neg$ on-max-paths $x 2 m$ by auto
with on-max-paths-ex-path succs-valid obtain $n s^{\prime}$ where is-path $x 1 n s^{\prime} m$ by blast
with path-first obtain $n s$ where path1: is-path x1 ns $m \mathrm{~m} \notin$ set $n s$ by metis with succs succs-path-extend have path2: is-path $n(n \# n s) m$ by blast
\{
fix m^{\prime}
assume m^{\prime}-gen: $m^{\prime} \in$ set $n s \cup\{m\} n \neq m^{\prime}$ on-max-paths-pos-first $n m^{\prime}$
with path-split-elem2 path1 obtain ns1 ns2
where ns-split: is-path $x 1 n s 1 m^{\prime} n s=n s 1 @ n s 2$ by metis
with path1 have $m \notin$ set ns1 by auto
from succs on-max-paths-def obtain $m s$ where ms-gen: max-path x2 ms m \notin lset $m s$ by auto
from m^{\prime}-gen on-max-paths-pos-first-step succs have on-max-paths-pos-first x2 m^{\prime} by auto
with on-max-paths-pos-first-def on-max-paths-pos-k-first-def ms-gen obtain k where at-pos-first $k \mathrm{~ms} \mathrm{~m}^{\prime}$ by auto
with at-pos-first-def lset-conv-lnth have $m^{\prime} \in l$ lset $m s$ by fastforce
with max-path-split-elem ms-gen obtain ms1 ms2
where ms-split: max-path m^{\prime} ms2 $m s=$ lappend (llist-of ms1) ms2 by metis
with ns-split max-path-append have max-path x1 (lappend (llist-of ns1) ms2)
by auto
with on-max-paths-def succs ms-gen ms-split ns-split path1 lset-lappend-lfinite have False by auto
\}
with path2 tscd-rtranclpI have tscd** $n m$ by fastforce
with combined-slice-cd-rtranclp 2 show ?case by auto

next

case (3 n m1 m2)
with dod-def obtain $x 1$ x2 where succs: $x 1 \in$ succs n on-max-paths-prev $x 1$ m1 m2
$x 2 \in$ succs n on-max-paths-prev $x 2 m 2 m 1 m 1 \neq m 2$ by auto
with succs-valid on-max-paths-prev-split obtain ns11 ns12
where path1: is-path x1 ns11 m1 max-path m1 (LCons m1 ns12)
$m 1 \notin$ set ns11 m2 \notin set ns11 by metis
have $t s c d^{* *} n m 1 \vee t s c d^{* *} n m 2$
proof (cases $\forall m 1^{\prime} \in$ set ns11 $\cup\{m 1\} . n \neq m 1^{\prime} \longrightarrow \neg$ on-max-paths-pos-first $n \mathrm{~m} 1^{\prime}$)
case True
from succs succs-path-extend path1 have is-path $n(n \# n s 11) m 1$ by auto
with True tscd-rtranclpI show ?thesis by auto
next
case False
then obtain $m 1^{\prime}$
where $m 1^{\prime}$-gen: $m 1^{\prime} \in$ set $n s 11 \cup\{m 1\} n \neq m 1^{\prime}$ on-max-paths-pos-first n $m 1^{\prime}$ by auto
from succs succs-valid on-max-paths-prev-split obtain ns21 ns22
where path2: is-path x2 ns21 m2 max-path m2 (LCons m2 ns22) $m 1 \notin$ set ns21 m2 \notin set ns21 by metis
with succs succs-path-extend have path3: is-path n ($n \# n s 21$) m2 by auto \{
fix $m 2^{\prime}$
assume $m 2^{\prime}$-gen: $m 2^{\prime} \in$ set $n s 21 \cup\{m 2\} n \neq m 2^{\prime}$ on-max-paths-pos-first n
with $m 1^{\prime}$-gen on-max-paths-pos-first-def obtain $k 1 k 2$ where k-gen: on-max-paths-pos- k-first $n k 1 \mathrm{ml}^{\prime}$
on-max-paths-pos-k-first $n k 2$ m2 $^{\prime}$ by auto
obtain m^{\prime} where $m^{\prime} \in$ set $n s 11 \cup\{m 1\} m^{\prime} \in$ set $n s 21 \cup\{m 2\}$
proof (cases $k 1 \leq k 2$)
case True
from max-path-append [OF path2(1,2)] succs max-path.intros
have max-path n (lappend (llist-of ($n \# n s 21 @[m 2])$) ns22)
by (auto simp: lappend-llist-of-LCons)
with on-max-paths-pos-k-first-less-eq[OF k-gen - this] True m2'-gen m1'-gen

```
that
        show ?thesis by fastforce
        next
            case False
            from max-path-append[OF path1(1,2)] succs max-path.intros
            have max-path n (lappend (llist-of (n#ns11@[m1])) ns12)
                by (auto simp: lappend-llist-of-LCons)
            with on-max-paths-pos-k-first-less-eq[OF k-gen(2,1) - this] False m2'-gen
m1'-gen that
            show ?thesis by fastforce
            qed
            with path-split-elem2 path1 path2 m1'-gen m2'-gen obtain ns1a ns1b ns2a
ns2b
            where split: ns11=ns1a@ns1b is-path x1 ns1a m'
                    ns21 = ns2a@ns2b is-path m' ns2b m2 by metis
            with path-append path2 have is-path x1 (ns1a@ns2b) m2 by metis
        with split on-max-paths-prev-ccontr succs path1 path2 have False by fastforce
        }
        with path3 tscd-rtranclpI show ?thesis by fastforce
    qed
    with combined-slice-cd-rtranclp 3 show ?case by auto
    qed (auto intro: combined-slice.intros)
qed
```


4.3 Soundness and Minimality of Timing Sensitive Control Dependence

4.3.1 Definition of (clocked) Traces and Time-Sensitive Non-Interference

Definition of the set of input nodes (nodes with more than one successor).
definition input-nodes :: 'node set
where input-nodes $=\{n . \exists x y . x \in$ succs $n \wedge y \in \operatorname{succs} n \wedge x \neq y\}$
A trace (unclocked) is a (potentially infinite) list of partial edges.
type-synonym 'a trace $=\left({ }^{\prime} a \times\right.$ 'a option $)$ llist
An input is a map from nodes to a (potentially infinite) list of nodes. The k-th element of the list for a node n gives the successor chosen at the k-th visit of n.

To guarantee that valid maximal traces are produced when using an input i, we require that for each n, each element of the list $i n$ has to be a successor of n. Also, if n is not an exit node, the list $i n$ has to be infinite.

```
definition is-input :: ('node \(\Rightarrow\) 'node llist) \(\Rightarrow\) bool
    where is-input \(i==\forall n .(\forall m \in \operatorname{lset}(i n) . m \in\) succs \(n) \wedge(\) succs \(n \neq\{ \} \longrightarrow \neg\)
lfinite ( \(i n\) ) )
```

Definition of the next node of the trace, which is read from input. If we
choose a node m as a successor, this function returns Some m. If the current node is an exit node, we return None, resulting in a partial edge.

```
fun read \(::\) ('node \(\Rightarrow\) 'node llist) \(\Rightarrow\) 'node \(\Rightarrow\) 'node option
    where read in \(n=(\) if succs \(n=\{ \}\) then None else Some (lhd (in)))
```

Constructs the trace with given start node according to the given input. Ends in a partial edge if we reach an exit node, otherwise produces an infinite trace.

```
primcorec exec :: 'node \(\Rightarrow\) ('node \(\Rightarrow\) 'node llist) \(\Rightarrow\) 'node trace
    where exec \(n i=L \operatorname{Cons}(n\), read \(i n)\)
        (if succs \(n=\{ \}\) then LNil else exec (lhd (in)) (i(n:=ltl (i)
n))))
```

Definition of Observational equivalence of inputs given an observable node set. Inputs are equivalent with regards to a given set if the input lists are equal for each node of the observable set (i.e. if the chosen successors are the same at observable nodes).
definition input-obs-equiv :: 'node set \Rightarrow ('node \Rightarrow 'node llist $) \Rightarrow$ ('node \Rightarrow 'node llist) \Rightarrow bool
where input-obs-equiv S i1 $i 2==\forall n \in S$. i1 $n=i 2 n$
A clocked trace is a (potentially infinite) list of partial edges annotated with the time at which it is executed.
type-synonym 'a t-trace $=\left(n a t \times{ }^{\prime} a \times\right.$ 'a option $)$ llist
Definition of the timed observable sub-trace, given an observable node set and a starting time. We take a given trace, annotate it with timing information (starting at the given time), and then filter out every non-observable node. Helper definition to describe suffixes of timed observable sub-traces.
fun trace-time-obs' $::$ 'node set \Rightarrow nat \Rightarrow 'node trace \Rightarrow 'node t-trace
where trace-time-obs' $S k n s=$ lfilter $(\lambda p$. fst $($ snd $p) \in S)$ (lzip (iterates Suc k) $n s$)

Definition 3.7: Definition of the timed observable sub-trace, given an observable node set, starting at time 0 .
fun trace-time-obs $::$ 'node set \Rightarrow 'node trace \Rightarrow 'node t-trace
where trace-time-obs S ns $=$ trace-time-obs' $S 0$ ns
Definition 3.7: Definition of Observational equivalence of timed traces given an observable node set.
definition trace-time-obs-equiv :: 'node set \Rightarrow 'node trace \Rightarrow 'node trace \Rightarrow bool where trace-time-obs-equiv S ns1 ns2 $=$ = trace-time-obs $S n s 1=$ trace-time-obs $S n s 2$

Definition 3.8: Time-sensitive Noninterference. If it holds, an attacker gains no information about choices made at non-observable nodes by observing
the resulting trace at observable nodes. This is true even if they have a clock.

$$
\begin{aligned}
& \text { definition noninterferent-time }:: \\
& \text { where noninterferent-time } S= \text { node set } \Rightarrow \text { bool } \\
& \longrightarrow \text { i1 i2 n. input-obs-equiv } S \text { i1 i2 } \\
& \longrightarrow \text { valid-node } n \longrightarrow \text { is-input i1 } \longrightarrow \text { is-input i2 } \\
& \longrightarrow \text { trace-time-obs-equiv } S(\text { exec } n \text { i1) }(\text { exec } n \text { i2) }
\end{aligned}
$$

4.3.2 Soundness of Timing Sensitive Control Dependence

Alternate definition of equality for potentially infinite lists, which is sometimes easier to work with in proofs.

```
coinductive llist-eq :: 'a llist }=>\mathrm{ ' 'a llist }=>\mathrm{ bool
    where llist-eq LNil LNil
    | llist-eq xs ys \Longrightarrowllist-eq (LCons x xs) (LCons x ys)
```

Proof that the alternate definition of equality for potentially infinite lists is correct.
lemma llist-eq-is-eq: llist-eq xs ys $\longleftrightarrow x s=y s$
proof
assume llist-eq xs ys
then show $x s=y s$ by (coinduction arbitrary: xs ys) (auto elim: llist-eq.cases)
next

$$
\text { assume } x s=y s
$$

then show llist-eq xs ys
proof (coinduction arbitrary: xs ys)
case (llist-eq xs ys)
then show ?case by (cases xs; cases ys) auto
qed
qed
Next observable node (annotated with a time). Might not be unique if the program is not non-interferent. Includes the "non-observation" (no more observable events) as an explicit observation. Helper definition for the proof of Theorem 3.3.
inductive next-obs-t :: 'node set \Rightarrow 'node \Rightarrow ('node \times nat) option \Rightarrow bool
where is-path $n n s m$ length $n s=k \Longrightarrow \forall n^{\prime} \in$ set $n s . n^{\prime} \notin S \Longrightarrow m \in S$
\Longrightarrow next-obs-t $S n(S o m e(m, k))$
| max-path $n n s \Longrightarrow \forall n^{\prime} \in l$ set ns. $n^{\prime} \notin S \Longrightarrow$ next-obs-t S n None
lemma next-obs-t-in-S: assumes valid-node n
$n \in S$
shows next-obs-t $S n$ (Some ($n, 0$))
using assms next-obs-t.intros(1)[of n []] by auto
lemma next-obs-t-prev-Some: assumes next-obs-t $S x(S o m e(m, k))$

$$
\begin{aligned}
& x \in \text { succs } n \\
& n \notin S
\end{aligned}
$$

$$
\begin{array}{rl}
\text { shows next-obs-t } S & n(\text { Some }(m, k+1)) \\
\text { using assms succs-path-extend by cases (auto intro!: next-obs-t.intros) }
\end{array}
$$

Helper definition for the proof of Theorem 3.3. tcc S holds if all nodes have only one possible next observation.

```
definition tcc :: 'node set \(\Rightarrow\) bool
    where tcc \(S==\forall n\) o1 o2. valid-node \(n \wedge\) next-obs-t \(S n\) o1 \(\wedge\) next-obs-t \(S n\)
\(o 2 \longrightarrow o 1=o 2\)
lemma is-input-step: assumes is-input \(i\)
    shows is-input \((i(n:=l t l(i n)))\) succs \(n \neq\{ \} \longrightarrow l h d(i n) \in \operatorname{succs} n\)
proof-
    from assms is-input-def lset-ltl[ of i \(n]\) show is-input: is-input \((i(n:=l t l(i n)))\)
by auto
    from assms is-input-def show succs \(n \neq\{ \} \longrightarrow l h d(i n) \in\) succs \(n\) by (cases
i n) auto
qed
lemma is-input-max-path: assumes valid-node \(n\)
                        is-input \(i\)
                    shows max-path \(n\) (lmap fst (exec \(n i)\) )
using assms
proof (coinduction arbitrary: \(n i\) )
    case (max-path \(n i\) )
    show ?case
    proof (cases succs \(n=\{ \}\) )
        case True
        with max-path exec.code show ?thesis by auto
    next
        let \(? n^{\prime}=l h d(i n)\)
        let \(? i^{\prime}=i(n:=l t l(i n))\)
        case False
        with exec.code[of \(n i\) ]
        have lmap fst (exec \(n i)=L\) Cons \(n\left(\right.\) lmap fst (exec ? \(\left.n^{\prime} ? i^{\prime}\right)\) ) by auto
        with max-path is-input-step False exec.code[of \(n i]\) succs-valid show ?thesis by
blast
    qed
qed
lemma tscd-slice-sound: shows tcc (backward-slice tscd M) (is tcc ?S)
proof-
    \{
        fix \(n m k\)
        assume next-obs-t ?S \(n\) (Some \((m, k)\) )
        then obtain \(n s\)
            where is-path n ns \(m \forall n^{\prime} \in\) set ns. \(n^{\prime} \notin ? S\) length \(n s=k m \in ? S\) by cases
auto
    then have on-max-paths-pos-k-first \(n k m\)
    proof (induction ns arbitrary: \(n k\) )
```

```
        case Nil
        with on-max-paths-pos-k-first-refl show ?case by auto
    next
        case (Cons n' ns n k)
        with is-path-Cons obtain n'
            where split: }n=\mp@subsup{n}{}{\prime}\mp@subsup{n}{}{\prime\prime}\in\mathrm{ succs n is-path n' ns m by metis
        {
            assume }\neg\mathrm{ on-max-paths-pos-k-first n k m
            with Cons tscd-cond-succ-k split have tscd n m by fastforce
            with Cons split have False by (auto intro: combined-slice.intros)
        }
        then show ?case by auto
    qed
}
note next-obs-Some = this
{
    fix nm k
    assume assm1: next-obs-t ?S n (Some ( }m,k)\mathrm{ )
    then have m}\in?S\mathrm{ by cases auto
    from assm1 next-obs-Some have pos-k: on-max-paths-pos-k-first n k m by auto
    assume next-obs-t ?S n None
    then obtain ns where max-path n ns \foralln'\inlset ns. n' }\not=?S\mathrm{ by cases auto
    with pos-k on-max-paths-pos-k-first-def at-pos-first-def lset-conv-lnth }\langlem\in?S
    have False by fastforce
}
note not-Some-None = this
{
    fix n m1 k1 m2 k2
    assume obs: next-obs-t ?S n (Some (m1, k1)) next-obs-t ?S n (Some (m2,
k2)) k1<k2
    with next-obs-t.cases next-obs-Some
    have m1-obs-pos: m1 \in?S on-max-paths-pos-k-first n k1 m1 by blast+
    from obs(2) obtain ns
        where ns-gen: m2 \in ?S \forall n'\inset ns. n' }\not=?S length ns = k2 is-path n ns m2
        by cases auto
    with is-path-valid-node max-path-ext obtain ns' where max-path m2 ns' by
blast
    with ns-gen max-path-append have max-path n (lappend (llist-of ns) ns') by
auto
    with m1-obs-pos on-max-paths-pos-k-first-def at-pos-first-def
    have lnth (lappend (llist-of ns) ns') k1 = m1 by auto
    with m1-obs-pos ns-gen obs have False by (auto simp add: lnth-lappend-llist-of)
}
note not-Some-Some-unequal-k = this
{
    fix n obs1 obs2
    assume obs: next-obs-t ?S n obs1 next-obs-t ?S n obs2 valid-node n
    have obs1 = obs2
    proof (cases obs1)
```

```
        case None
        with obs not-Some-None show ?thesis by (cases obs2) auto
    next
        case (Some o1)
        then obtain m1 k1 where obs1: obs1 = Some (m1,k1) by fastforce
    with obs not-Some-None show ?thesis
    proof (cases obs2)
        case (Some o2)
        then obtain m2 k2 where obs2: obs2 = Some (m2, k2) by fastforce
            with obs1 obs not-Some-Some-unequal-k have k1 = k2 by (cases rule:
linorder-cases) auto
            with obs1 obs2 obs on-max-paths-pos-k-first-m-unique
            show ?thesis by (auto dest!: next-obs-Some)
        qed auto
        qed
    }
    with tcc-def show ?thesis by auto
qed
lemma trace-time-obs-LNil: assumes trace-time-obs' Sk(exec n i) = LNil
                        is-input i
                        valid-node n
                    shows next-obs-t S n None
proof -
    {
        fix m
        assume m\inlset (lmap fst (exec n i))
        then obtain obs1 where obs1-gen:obs1 \inlset (exec n i) fst obs1=m by
auto
        with in-lset-conv-lnth obtain k1
            where lnth (exec n i) k1 = obs1 k1 < llength (exec n i) by metis
        with lset-lzip llength-iterates
        have (k+k1, obs1) \in lset (lzip (iterates Suc k) (exec n i)) by force
        with assms obs1-gen have m\not\inS by (auto simp add:lfilter-eq-LNil)
    }
    with is-input-max-path assms next-obs-t.intros show ?thesis by metis
qed
lemma trace-time-obs-LCons: assumes trace-time-obs \({ }^{\prime} S k(\) exec \(n i)=\) LCons ( \(\left.k^{\prime}, m, m^{\prime}\right) n s^{\prime}\)
is-input \(i\)
valid-node \(n\)
shows \(m \in S\)
next-obs-t \(S n\left(\right.\) Some \(\left.\left(m, k^{\prime}-k\right)\right)\)
\(k^{\prime} \geq k\)
\(m^{\prime}=\) read \(i m\)
succs \(m=\{ \} \longrightarrow n s^{\prime}=\) LNil
succs \(m \neq\{ \} \longrightarrow\)
\(\left(\exists i^{\prime} \cdot n s^{\prime}=\right.\) trace-time-obs \({ }^{\prime} S\left(k^{\prime}+1\right)(\) exec \((\operatorname{lhd}(i\)
```

m)) i^{\prime})

$$
\begin{aligned}
& \wedge \text { is-input } i^{\prime} \\
& \wedge \text { input-obs-equiv } S i^{\prime}(i(m:=l t l(i m))) \\
& \wedge \operatorname{lhd}(i m) \in \text { succs } m) \\
(\text { is }-\longrightarrow & ? \text { cont })
\end{aligned}
$$

proof-
from assms lfilter-eq-LConsD[of 入obs. fst (snd obs) $\in S$ lzip (iterates Suc k) (exec $n i)$]
obtain ns1' $n s 2$
where split: lzip (iterates Suc $k)($ exec $n i)=$ lappend $n s 1^{\prime}\left(L C o n s\left(k^{\prime}, m, m^{\prime}\right)\right.$ $n s 2$)

```
                    lfinite \(n s 1^{\prime} \forall m^{\prime} \in l\) set \(n s 1^{\prime}\). fst (snd \(\left.m^{\prime}\right) \notin S m \in S\)
```

 \(n s^{\prime}=l\) lilter \((\lambda o b s . f s t(\) snd obs \() \in S) n s \mathcal{Z}\)
 by fastforce
with lfinite-eq-range-llist-of obtain ns1 where ns1-gen: ns1' $=$ llist-of ns1 by auto
with split
have lzip (iterates Suc k) (exec $n i)=$ lappend (llist-of ns1) (LCons $\left(k^{\prime}, m, m^{\prime}\right)$ ns2)
$\forall m^{\prime} \in$ set $n s 1$. fst $\left(\right.$ snd $\left.m^{\prime}\right) \notin S$ by auto
with $\operatorname{assms}(2,3) \operatorname{split}(4,5)$ have next-obs-t $S n\left(S o m e\left(m, k^{\prime}-k\right)\right) \wedge k^{\prime} \geq k \wedge$ $m^{\prime}=$ read $i m$
$\wedge\left(\right.$ succs $\left.m=\{ \} \longrightarrow n s^{\prime}=L N i l\right) \wedge($ succs $m \neq\{ \} \longrightarrow$?cont $)$
proof (induction ns1 arbitrary: $n i k$)
case (Nil nik)
let $? i^{\prime}=i(m:=l t l(i m))$
let $? n^{\prime}=\operatorname{lhd}(i n)$
from Nil obtain ks $n s^{\prime \prime}$
where dezip: iterates Suc $k=$ LCons $k^{\prime} k s$ exec $n i=L C o n s\left(m, m^{\prime}\right) n s^{\prime \prime}$ $n s 2=$ lzip $k s n s^{\prime \prime}$ by (auto simp add: lzip-eq-LCons-conv)
with exec.code[of $n i$] have exec: $n=m m^{\prime}=$ read $i m$
$n s^{\prime \prime}=\left(\right.$ if succs $n=\{ \}$ then LNil else exec ? $\left.n^{\prime} ? i^{\prime}\right)$ by auto
with next-obs-t-in-S Nil have obs: next-obs-t $S n(S o m e ~(m, 0))$ by auto
from dezip iterates.code[of Suc k] have iterate: $k=k^{\prime} k s=$ iterates Suc ($k+1$) by auto
with exec dezip obs Nil show ?case
proof (cases succs $m=\{ \}$)
case False
with iterate Nil exec dezip
have $n s^{\prime}: n s^{\prime}=$ trace-time-obs ${ }^{\prime} S\left(k^{\prime}+1\right)\left(\operatorname{exec}(\operatorname{lhd}(i m)) ? i^{\prime}\right)$ by auto
from Nil False is-input-step have input-step: is-input? $i^{\prime} l h d(i m) \in \operatorname{succs}$ m by auto
from input-obs-equiv-def
have input-obs-equiv $S ? i^{\prime}(i(m:=l t l(i m)))$ by auto
with ns' input-step exec obs iterate show ?thesis by fastforce
qed auto
next
case (Cons obs ns1 n ik)
let $? k x=f s t$ obs
let $? x=f s t(s n d o b s)$
let $? x^{\prime}=$ snd $($ snd obs $)$
let $? i^{\prime}=i(n:=l t l(i n))$
let $? n^{\prime}=\operatorname{lh} d(i n)$
from Cons obtain ks ns"
where dezip: iterates Suc $k=$ LCons ? $k x$ ks exec $n i=L C o n s(? x, ? x) n s^{\prime \prime}$
lzip $k s n s^{\prime \prime}=$ lappend (llist-of ns1) $\left(\right.$ LCons $\left.\left(k^{\prime}, m, m^{\prime}\right) n s 2\right)$
by (auto simp add: lzip-eq-LCons-conv)
then have $n s^{\prime \prime} \neq L N i l$ by (cases ns1) auto
with exec.code[of $n i]$ dezip have succs $n \neq\{ \}$ by auto
with exec.code[of $n i]$ have exec $n i=L C o n s(n$, read $i n)\left(e x e c ? n^{\prime} ? i^{\prime}\right)$ by
auto
from this dezip(2)
have exec: $? x=n ? x^{\prime}=$ read $i n n s^{\prime \prime}=$ exec $?^{\prime} n^{\prime} ? i^{\prime}$ by auto
from Cons is-input-step 〈succs $n \neq\{ \}$ 〉succs-valid
have valid: is-input ? $i^{\prime} ? n^{\prime} \in$ succs n valid-node ? n^{\prime} by metis +
from Cons have $n s^{\prime}: n s^{\prime}=l$ filter $(\lambda o b s . f s t \quad(s n d$ obs $) \in S) n s 2$
$\forall m^{\prime} \in$ set ns1. fst (snd $\left.m^{\prime}\right) \notin S$ by auto
from dezip exec iterates.code[of Suc k]
have lzip (iterates Suc $(k+1))\left(\right.$ exec $\left.? n^{\prime} ? i^{\prime}\right)=$ lappend (llist-of ns1) (LCons
($\left.k^{\prime}, m, m^{\prime}\right) n s 2$)
by auto
with Cons valid $n s^{\prime}$
have step: next-obs-t $S ? n^{\prime}\left(\right.$ Some $\left.\left(m, k^{\prime}-(k+1)\right)\right) \wedge(k+1) \leq k^{\prime}$
$\wedge m^{\prime}=$ read $? i^{\prime} m$
$\wedge\left(\right.$ succs $\left.m=\{ \} \longrightarrow n s^{\prime}=L N i l\right)$
\wedge (succs $m \neq\{ \}$
$\longrightarrow\left(\exists i^{\prime} . n s^{\prime}=\right.$ trace-time-obs ${ }^{\prime} S\left(k^{\prime}+1\right)\left(\operatorname{exec}\left(\operatorname{lhd}\left(? i^{\prime} m\right)\right) i^{\prime}\right)$
$\wedge i s$-input i^{\prime}
\wedge input-obs-equiv $S i^{\prime}\left(? i^{\prime}\left(m:=l t l\left(? i^{\prime} m\right)\right)\right)$
$\left.\left.\wedge l h d\left(? i^{\prime} m\right) \in \operatorname{succs} m\right)\right)$
by blast
with step add-diff-assoc2 diff-cancel2 have k-diff: $k^{\prime}-(k+1)+1=k^{\prime}-k$ by
metis
from Cons exec have $n \notin S$ by auto
with next-obs-t-prev-Some $\left[\right.$ where $\left.? k=k^{\prime}-(k+1)\right] k$-diff step valid
have obs-step: next-obs-t $S n\left(S o m e ~\left(~ m, ~ k^{\prime}-k\right)\right) \wedge k \leq k^{\prime}$ by auto
from step $\langle n \notin S\rangle\langle m \in S\rangle$ have read: ? $i^{\prime} m=i m m^{\prime}=$ read $i m$ by auto
with step obs-step show ?case
proof (cases succs $m=\{ \}$)
case False
with step obtain i^{\prime} where i^{\prime}-gen: ns $s^{\prime}=$ trace-time-obs ${ }^{\prime} S\left(k^{\prime}+1\right)($ exec
(lhd $\left.\left.\left(? i^{\prime} m\right)\right) i^{\prime}\right)$
is-input i^{\prime} input-obs-equiv $S i^{\prime}\left(? i^{\prime}\left(m:=l t l\left(? i^{\prime} m\right)\right)\right)$
lhd $\left(? i^{\prime} m\right) \in$ succs m by auto
with read input-obs-equiv-def $\langle n \notin S\rangle$
have $n s^{\prime}=$ trace-time-obs ${ }^{\prime} S\left(k^{\prime}+1\right)\left(\operatorname{exec}(\operatorname{lhd}(i m)) i^{\prime}\right)$
input-obs-equiv $S i^{\prime}(i(m:=l t l(i m)))$
lhd $(i m) \in$ succs m by auto

```
            with False obs-step read i'-gen show ?thesis by blast
            qed auto
    qed
    with }\langlem\inS\rangle\mathrm{ show m}\inS\mathrm{ next-obs-t Sn (Some (m, k'-k)) k' }\geqkm\mp@subsup{m}{}{\prime}=rea
i m
        succs m={}\longrightarrown\mp@subsup{s}{}{\prime}=\mathrm{ LNil succs m}\not={}\longrightarrow?\mathrm{ ?cont by auto}
qed
lemma trace-time-obs-equiv-subset: assumes S1\subseteqS2
                                    trace-time-obs-equiv S2 ns1 ns2
                                    shows trace-time-obs-equiv S1 ns1 ns2
proof-
    {
        fix ns :: 'node t-trace
        from assms have (\lambdap.fst (snd p)\inS1)=(\lambdap.fst (snd p)\inS1 ^fst (snd
p)\inS2) by auto
        then have lfilter ( }\lambdap.fst (snd p)\inS1) n
                    =lfilter ( }\lambdap.fst (snd p)\inS1\wedgefst (snd p)\inS2) ns by meti
        with lfilter-lfilter[symmetric] have lfilter ( }\lambdap.fst (snd p)\inS1) n
            = lfilter ( }\lambdap.fst (snd p)\inS1) (lfilter ( \lambdap.fst (snd p)\inS2) ns) by meti
    }
    from assms this[of lzip - ns1] this[of lzip - ns2] trace-time-obs-equiv-def
    show ?thesis by auto
qed
lemma singleton-repeat: assumes }\forallm\inlset ns. m \in{x
                    \neg lfinite ns
                            shows ns = repeat }
    using assms
proof (coinduction arbitrary: ns)
    case Eq-llist
    then obtain nns' where ns=LCons n ns' by (cases ns) auto
    with Eq-llist show ?case by auto
qed
lemma is-input-linear-repeat: assumes is-input i
                    succs n}\not={{
                        n\not\in input-nodes
                            shows i n = repeat (THE x. x f succs n)
proof-
    from assms input-nodes-def obtain x where succs n ={x} by auto
    with assms is-input-def singleton-repeat show ?thesis by fastforce
qed
lemma input-obs-equiv-input-nodes: assumes input-obs-equiv ( }S\cap\mathrm{ input-nodes)
i1 i2
                                    is-input i1
                                    is-input i2
                                    shows input-obs-equiv S i1 i2
```

```
proof -
    {
    fix n
```

 assume n-gen: \(n \in S n \notin\) input-nodes
 have i1 \(n=i 2 n\)
 proof (cases succs \(n=\{ \}\))
 case True
 with assms is-input-def have \(\forall m \in \operatorname{lset}(i 1 n)\). False \(\forall m \in\) lset (i2 n). False
 by blast+
then show ?thesis by (cases i1 n; cases i2 n) auto
next
case False
with assms n-gen is-input-linear-repeat show?thesis by metis
qed
\}
with input-obs-equiv-def assms show ?thesis by fastforce
qed
lemma tcc-noninterferent-time: assumes tcc S
shows noninterferent-time S
proof-
\{
obtain $k::$ nat where $k=0$ by simp
fix n i1 i2
assume valid: valid-node n is-input i1 is-input i2
assume input-obs-equiv S i1 i2
with valid
have llist-eq (trace-time-obs ${ }^{\prime} S k($ exec n i1)) (trace-time-obs' $S k$ (exec n i2))
proof (coinduction arbitrary: $k n$ i1 i2)
case (llist-eq $k n$ i1 i2)
show ?case
proof (cases trace-time-obs ${ }^{\prime} S k($ exec $\left.n i 1)\right)$
case LNil
then show ?thesis
proof (cases trace-time-obs' $S k$ (exec n i2))
case (LCons x21 x22)
with trace-time-obs-LCons[where ? $m=$ fst (snd x21)] llist-eq
have Some-obs: next-obs-t $S n($ Some $((f s t(s n d x 21)), f s t x 21-k))$ by
(cases x21) auto
from LNil llist-eq trace-time-obs-LNil have next-obs-t $S n$ None by auto
with Some-obs assms tcc-def llist-eq show ?thesis by auto
qed auto
next
case split1: (LCons p1 ns1)
obtain $k 1^{\prime} n 1 n 1^{\prime}$ where $p 1$-split: $p 1=\left(k 1^{\prime}, n 1, n 1^{\prime}\right)$ by (cases $\left.p 1\right)$
with trace-time-obs-LCons[where ? $m=n 1$] llist-eq split1
have obs1: next-obs-t $S n\left(\operatorname{Some}\left(n 1, k 1^{\prime}-k\right)\right) \wedge n 1 \in S k 1^{\prime} \geq k$ by auto
show ?thesis
proof (cases trace-time-obs' Sk(exec n i2))

```
            case LNil
            with llist-eq trace-time-obs-LNil have next-obs-t S n None by auto
            with obs1 assms tcc-def llist-eq show ?thesis by auto
            next
                case split2: (LCons p2 ns2)
            obtain k2' n2 n2' where p2-split: p2 = (k2', n2, n2') by (cases p2)
            with trace-time-obs-LCons[where ?m=n2] llist-eq split2
            have next-obs-t S n (Some (n2, k2'-k)) k2'\geqk by auto
            with obs1 tcc-def llist-eq assms eq-diff-iff[of k k1' kZ']
            have n-eq: n1 = n2 k1' = k2' by auto
            note splits = split1 split2 p1-split p2-split
            from llist-eq splits trace-time-obs-LCons
            have n'-reads: n1' = read i1 n1 n2' = read i2 n2 by metis+
            show ?thesis
            proof (cases succs n1 = {})
                    case True
                    with n-eq have read i1 n1 = read i2 n2 by auto
                    with True llist-eq splits trace-time-obs-LCons n-eq llist-eq.intros(1)
                    show ?thesis by metis
                    next
                    case False
                    let ?n1' = lhd (i1 n1)
                    let ?n2' = lhd (i2 n2)
                    from llist-eq splits n-eq trace-time-obs-LCons(6) False
                    obtain i1' i2' where cont: ns1 = trace-time-obs'S (k1'+1) (exec ?n1'
i1')
                                    is-input i1'
                                    input-obs-equiv S i1'(i1(n1:=ltl (i1 n1)))
                                    ?n1' \in succs n1
                                    ns2 = trace-time-obs'S (k\mp@subsup{Q}{}{\prime}+1)(exec ?n2' i2')
                                    is-input i2'
                                    input-obs-equiv S i2' (i2(n2:=ltl (i2 n2)))
                                    ?n2' \in succs n2
                    by metis
                    with input-obs-equiv-def llist-eq n-eq
                    have input-equiv: input-obs-equiv S i1' i2' by auto
                    from llist-eq cont n-eq input-obs-equiv-def obs1 input-nodes-def
                    have n'-gen: ?n1' = ?n2' by (cases n1 \in input-nodes) auto
                    with llist-eq splits n-eq n'-reads cont input-equiv succs-valid[of ?n2' n2]
                    show ?thesis by auto
                    qed
                qed
            qed
    qed
    with trace-time-obs-equiv-def llist-eq-is-eq <k = 0`
    have trace-time-obs-equiv S (exec n i1) (exec n i2) by fastforce
    }
    with noninterferent-time-def show ?thesis by auto
qed
```

Proof of Theorem 3.3 (Soundness of Time-Sensitive Control Dependence).
theorem tscd-slice-noninterferent-time: assumes $S=$ backward-slice tscd M shows noninterferent-time S proof-
from assms tscd-slice-sound combined-slice.intros have tcc S by auto with tcc-noninterferent-time show noninterferent-time S by auto
qed
lemma M-subset-slice: $M \subseteq$ combined-slice cd od M using combined-slice.intros by blast

Proof of Corollary 3.1 Note that since $S \subseteq$ backward-slice tscd S, the premise is equivalent to backward-slice tscd $S=S$.
theorem tscd-slice-noninterferent-time': assumes backward-slice tscd $S \subseteq S$
shows noninterferent-time S
proof-
from assms M-subset-slice have backward-slice tscd $S=S$ by blast
with tscd-slice-noninterferent-time show ?thesis by blast
qed

4.3.3 Minimality of Timing Sensitive Control Dependence

lemma is-input-prepend: assumes is-input i

$$
x \in \text { succs } n
$$

shows is-input ($i(n:=L C o n s x(i n)))$
using assms is-input-def by auto
lemma trace-time-obs-shift: trace-time-obs' $S\left(k+k^{\prime}\right) n s$

$$
=\operatorname{lmap}\left(\lambda(k, n) \cdot\left(k+k^{\prime}, n\right)\right)\left(\text { trace-time-obs }{ }^{\prime} S k n s\right)
$$

proof-
have pred-f: $(\lambda p$. fst $($ snd $p) \in S) o\left(\lambda(k, n) .\left(k+k^{\prime}, n\right)\right)=(\lambda p . f s t($ snd $p) \in$ S) by auto
have iterates Suc $\left(k+k^{\prime}\right)=\operatorname{lmap}\left(\lambda k . k+k^{\prime}\right)($ iterates Suc $k)$ by (coinduction arbitrary: k) force
with lzip-lmap 1 of $\lambda k . k+k^{\prime}$ iterates Suc $\left.k n s\right]$
lfilter-lmap $\left[\right.$ of $\lambda p . f s t($ snd $p) \in S \lambda(k, n) .\left(k+k^{\prime}, n\right)$, unfolded pred- $\left.f\right]$ show ?thesis by auto
qed
lemma trace-time-obs-equiv-LCons:
assumes trace-time-obs-equiv S (LCons ($n, n 1$) ns1) (LCons ($n, n 2$) ns2)
shows trace-time-obs-equiv S ns1 ns2
proof-
let ? $f=(\lambda(k, n) .(k+(1:: n a t), n))$
from assms trace-time-obs-equiv-def
have trace-time-obs' S 0 (LCons $(n, n 1) n s 1)=$ trace-time-obs' $S 0$ (LCons $(n, n 2)$ ns2) by auto
with iterates.code[of Suc 0] have trace-time-obs' S 1 ns1 = trace-time-obs' $S 1$ ns2

```
    by (cases n \inS ) auto
    with trace-time-obs-shift[of S 0 1] llist.inj-map-strong[of - - ?f ?f]
    have trace-time-obs'S 0 ns1 = trace-time-obs' S 0 ns2 by auto
    with trace-time-obs-equiv-def show ?thesis by auto
qed
```

Helper function to generate a valid input.
fun arbitrary-input :: 'node \Rightarrow 'node llist
where arbitrary-input $n=($ if succs $n=\{ \}$ then LNil else repeat (SOME $x . x \in$ succs n))
lemma arbitrary-input-succs-infinite: succs $n \neq\{ \} \Longrightarrow \neg$ lfinite (arbitrary-input n)
using linite-iterates by auto
lemma arbitrary-input-in-succs: $n^{\prime} \in l$ lset (arbitrary-input $\left.n\right) \Longrightarrow n^{\prime} \in$ succs n using someI $[$ of $\lambda x . x \in$ succs $n]$ by (cases succs $n=\{ \}$) auto

Given a maximal path, generates a valid input whose execution results in that path.
primcorec max-path-to-input :: 'node llist \Rightarrow 'node \Rightarrow 'node llist
where max-path-to-input ns $n=$
(case ldrop While $\left(\lambda n^{\prime} . n^{\prime} \neq n\right)$ ns of
LNil \Rightarrow arbitrary-input n
| LCons n1 LNil \Rightarrow arbitrary-input n
|LCons $n 1$ (LCons n2 ns') \Rightarrow LCons n2 (max-path-to-input (LCons n2 $\left.\left.n s^{\prime}\right) n\right)$)
lemma max-path-to-input-cases:
assumes max-path-to-input $n s \quad n=m s$
ldropWhile $\left(\lambda n^{\prime} . n^{\prime} \neq n\right) n s=L N i l \Longrightarrow m s=$ arbitrary-input $n \Longrightarrow P$
$\bigwedge n 1$. ldropWhile $\left(\lambda n^{\prime} . n^{\prime} \neq n\right) n s=$ LCons $n 1$ LNil $\Longrightarrow m s=$
arbitrary-input $n \Longrightarrow P$
$\bigwedge n 1$ n2 $n s^{\prime}$. ldrop While $\left(\lambda n^{\prime} . n^{\prime} \neq n\right) n s=$ LCons $n 1$ (LCons n2 $\left.n s^{\prime}\right)$
$\Longrightarrow m s=L C o n s$ n2 (max-path-to-input (LCons n2 ns') n)
$\Longrightarrow P$
shows P
proof-
show ?thesis
proof (cases ldrop While $\left.\left(\lambda n^{\prime} . n^{\prime} \neq n\right) n s\right)$
case LNil
with assms max-path-to-input.code show ?thesis by auto
next
case (LCons m1 ms')
with assms max-path-to-input.code show ?thesis by (cases ms') auto
qed
qed
lemma ldropWhile-LCons:

```
    assumes ldropWhile P xs = LCons x xs'
    obtains xs1 where xs = lappend (llist-of xs1) (LCons x xs') \negP x
proof-
    from assms ldropWhile-eq-LNil-iff have ex-not-P: \existsx\inlset xs. \neg P x by fastforce
    with lfinite-ltakeWhile[of P] lfinite-eq-range-llist-of obtain xs1
        where ltakeWhile P xs = llist-of xs1 by auto
    from this[symmetric] have xs = lappend (llist-of xs1) (ldropWhile P xs) by auto
    with assms lhd-ldropWhile[OF ex-not-P] that show ?thesis by auto
qed
lemma max-path-input: assumes max-path \(n\) ns
                            shows is-input (max-path-to-input ns)
proof-
    {
        fix m m'
        assume m'\inlset (max-path-to-input ns m)
        with lset-split obtain ns1 ns2
            where max-path-to-input ns m = lappend (llist-of ns1) (LCons m' ns2) by
metis
        with assms have m'\in succs m
        proof (induction ns1 arbitrary: n ns)
            case (Nil nns)
            show ?thesis
            proof (cases rule: max-path-to-input-cases[OF Nil(2)])
            case 1
            have m'\inlset (LCons m'ns2) by auto
            with arbitrary-input-in-succs 1 show ?thesis by auto
            next
                    case (2 n1)
                    have m'\inlset (LCons m'ns2) by auto
                    with arbitrary-input-in-succs 2 show ?thesis by auto
            next
                case (3 n1 n2 ns')
                    from ldropWhile-LCons[OF 3(1)] obtain ns1
                    where ns-split: ns = lappend (llist-of ns1) (LCons n1 (LCons n2 ns'))
n1 =m by metis
            with 3 Nil max-path-split have max-path m (LCons m (LCons m' ns')) by
auto
            from this Nil max-path-hd show ?thesis by cases auto
            qed
        next
            case (Cons x ns1 n ns)
            show ?thesis
            proof (cases rule: max-path-to-input-cases[OF Cons(3)])
                case 1
                have m' }\mp@subsup{m}{}{\prime}\mathrm{ lset (lappend (llist-of (x # ns1)) (LCons m'ns2)) by auto
                with arbitrary-input-in-succs 1 show ?thesis by auto
            next
                case (2n1)
```

```
            have m'\inlset (lappend (llist-of (x # ns1)) (LCons m' ns2)) by auto
            with arbitrary-input-in-succs 2 show ?thesis by auto
        next
            case (3 n1 n2 ns')
            from ldropWhile-LCons[OF 3(1)] obtain ns1'
                where ns-split: ns = lappend (llist-of ns1') (LCons n1 (LCons n2 ns'))
by metis
            with lappend-llist-of-LCons
            have ns = lappend (llist-of (ns1'@[n1])) (LCons n2 ns') by auto
            with 3 Cons max-path-split have max-path n2 (LCons n2 ns') by auto
            with Cons 3 show ?thesis by auto
        qed
    qed
}
note set-succs = this
{
    fix n
    assume succs n}={
    assume lfinite (max-path-to-input ns n)
    with lfinite-eq-range-llist-of obtain ns1
        where max-path-to-input ns n = llist-of ns1 by auto
    then have False
    proof (induction ns1 arbitrary: ns)
        case (Nil ns)
        from <succs n }\not={}\\mathrm{ \ iterates.code[of }\lambdax.x SOME x. x \in succs n]
        show ?thesis by (cases rule: max-path-to-input-cases[OF Nil]) auto
    next
        case (Cons n' ns1)
        show ?thesis
        proof (cases rule: max-path-to-input-cases[OF Cons(2)])
            case 1
        with «succs n = {}` arbitrary-input-succs-infinite lfinite-llist-of show ?thesis
by metis
        next
            case (2 n1)
        with <succs n = {}` arbitrary-input-succs-infinite lfinite-llist-of show ?thesis
by metis
            next
                case (3 n1 n2 ns')
                with Cons show ?thesis by auto
            qed
        qed
    }
    with set-succs is-input-def show ?thesis by metis
qed
lemma max-path-exec: assumes max-path n ns
    shows ns = lmap fst (exec n (max-path-to-input ns))
proof -
```

```
    from assms have llist-eq ns (lmap fst (exec n (max-path-to-input ns)))
    proof (coinduction arbitrary: n ns)
    case (llist-eq n ns)
    show ?case
    proof (cases succs n={})
        case True
        with llist-eq max-path-no-succs have ns=LCons n LNil by auto
        from True exec.code have lmap fst (exec n (max-path-to-input ns))}=LCon
n LNil by auto
        with llist-eq-is-eq <ns = LCons n LNil` show ?thesis by auto
    next
        case False
        with llist-eq max-path-step obtain n' ns'
            where ns-split: ns = LCons n ns' max-path n' ns' by metis
    let ?i = max-path-to-input ns
    let ? i' = ?i(n:=ltl (?i n))
    from ns-split max-path-LCons obtain ns'" where ns'-split: ns'}=LCons n'
ns" by auto
    with ns-split have ldropWhile ( }\lambda\mp@subsup{n}{}{\prime}..\mp@subsup{n}{}{\prime}\not=n)ns=LCons n (LCons n' ns '')
by auto
        with max-path-to-input.code[of ns n] ns'-split
        have input-n: ?i }n=LCons n'(max-path-to-input ns' n) by aut
        {
            fix n2
            have ? i' n2 = max-path-to-input ns' n2
            proof (cases n2 = n)
                case True
                    with input-n show ?thesis by auto
                next
                case False
                with ns-split max-path-to-input.code show ?thesis by auto
            qed
        }
        then have ? 'i' = max-path-to-input ns' by auto
        with input-n False exec.code[of n ? i]
        have lmap fst (exec n (max-path-to-input ns))
            =LCons n (lmap fst (exec n' (max-path-to-input ns'))) by auto
        with ns-split show ?thesis by auto
        qed
    qed
    with llist-eq-is-eq show ?thesis by auto
qed
lemma at-pos-obs-lset: assumes at-pos k (lmap fst ns) m
    obtains m' where (k,m,m')\inlset (lzip (iterates Suc 0) ns)
proof-
    obtain }\mp@subsup{k}{}{\prime}:: nat where k'=0 by sim
    from assms obtain m' where (k+k',m,m') \inlset (lzip (iterates Suc k') ns)
    proof (induction k arbitrary: k' ns thesis)
```

case 0
with at-pos-def obtain $n n s^{\prime}$ where split: $n s=L$ Cons $n n s^{\prime}$ fst $n=m$ by (cases ns) auto
then obtain m^{\prime} where $n=\left(m, m^{\prime}\right)$ by (cases n) simp
with 0 iterates.code[of Suc k '] split show ?case by auto
next
case (Suc k $k^{\prime} n s$ thesis)
with at-pos-def obtain $n n s^{\prime}$ where split: $n s=L C o n s n n s^{\prime}$ by (cases ns) auto
with at-pos-succ Suc have at-pos k (lmap fst $n s^{\prime}$) m by auto
with $\operatorname{Suc}(1)\left[\right.$ of $\left.k^{\prime}+1\right]$ obtain m^{\prime}
where $\left(k+k^{\prime}+1, m, m^{\prime}\right) \in$ lset (lzip (iterates Suc $\left.\left.\left(k^{\prime}+1\right)\right) n s^{\prime}\right)$ by auto
with Suc iterates.code[of Suc k'] split show ?case by auto
qed
with $\left\langle k^{\prime}=0\right\rangle$ that show ?thesis by auto
qed
lemma no-obs-after-k: assumes $\left(k, m, m^{\prime}\right) \in \operatorname{lset}\left(\right.$ lzip (iterates Suc $\left.\left.k^{\prime}\right) n s\right)$
$k<k^{\prime}$
shows False
proof-
from assms lset-split obtain ns1 ns2
where lzip (iterates Suc k^{\prime}) ns = lappend (llist-of ns1) (LCons ($\left.k, m, m^{\prime}\right) n s$) $)$
by metis
with assms(2) show ?thesis
proof (induction ns1 arbitrary: ns k^{\prime})
case Nil
with iterates.code[of Suc k '] show ?case by (cases ns) auto
next
case (Cons n ns1)
with iterates.code[of Suc k] Cons(1)[of $\left.k^{\prime}+1\right]$ show ?case by (cases ns) auto
qed
qed
lemma lset-obs-at-pos: assumes $\left(k, m, m^{\prime}\right) \in \operatorname{lset}(l z i p(i t e r a t e s ~ S u c ~ 0) ~ n s) ~$
shows at-pos k (lmap fst ns) m
proof-
from assms obtain k^{\prime} where $\left(k+k^{\prime}, m, m^{\prime}\right) \in \operatorname{lset}\left(\right.$ lzip (iterates Suc $\left.\left.k^{\prime}\right) n s\right) k^{\prime}$
$=0$ by auto
from this(1) show ?thesis
proof (induction k arbitrary: $k^{\prime} n s$)
case ($0 k^{\prime} n s$)
then obtain $n n s^{\prime}$ where $n s$-split: $n s=L C o n s n n s^{\prime}$ by (cases ns) auto with 0 no-obs-after- $k\left[\right.$ of $\left.k^{\prime} m m^{\prime}\right]$ iterates.code[of Suc k] at-pos-def ns-split enat-0
show? ?case by auto
next
case (Suc $k k^{\prime} n s$)
then obtain $n n s^{\prime}$ where $n s$-split: $n s=L C o n s n n s^{\prime}$ by (cases ns) auto

```
    with iterates.code[of Suc k` Suc
    have ( }k+\mp@subsup{k}{}{\prime}+1,m,\mp@subsup{m}{}{\prime})\inl\mathrm{ lset (lzip (iterates Suc ( }\mp@subsup{k}{}{\prime}+1))n\mp@subsup{s}{}{\prime})\mathrm{ by auto
    with at-pos-succ Suc(1)[of k'+1] ns-split show ?case by auto
    qed
qed
```

Proof of Theorem 3.4 (Minimality of Time-Sensitive Control Dependence). In this version, the trace showing the violation of the non-interference criterion might start at any node of the graph.
theorem tscd-minimal: assumes $\neg\left(S^{\prime} \supseteq\right.$ backward-slice tscd $\left.M\right)($ is $\neg(-\supseteq ? S))$ $M \subseteq S^{\prime}$
shows \neg noninterferent-time S^{\prime}
proof-
from assms obtain n^{\prime} where $n^{\prime} \in ? S n^{\prime} \notin S^{\prime}$ by auto
from this assms obtain $n m$ where $n m$-gen: $n \notin S^{\prime} m \in S^{\prime}$ tscd $n m$ by induction auto
with $t s c d$-def obtain $k x 1$ x2 where x-gen: $x 1 \in \operatorname{succs} n \neg$ on-max-paths-pos- k-first $x 1 k m$

$$
\text { x2 } \in \text { succs } n \text { on-max-paths-pos-k-first x2 } k m
$$

by auto
with succs-valid have valid: valid-node n valid-node x2 by auto
from on-max-paths-pos-k-first-def x-gen obtain ns
where ns-gen: max-path $x 1 \mathrm{~ns} \neg$ at-pos-first $k n s m$ by auto
with max-path-input max-path-exec obtain i
where i-gen: is-input $i n s=l m a p$ fst (exec x1 i) by metis
from i-gen is-input-max-path valid have max-path x2 (lmap fst (exec x2 i)) by auto
with at-pos-def at-pos-first-def x-gen on-max-paths-pos-k-first-def
have at-pos-x2: at-pos k (lmap fst (exec x2 i)) m
$\forall k^{\prime}<k$. \neg at-pos $k^{\prime}($ lmap $f s t($ exec $x 2 i)) m$ by auto
from ns-gen not-at-pos-first-to-at-pos have \neg at-pos $k n s m \vee\left(\exists k^{\prime}<k\right.$. at-pos k^{\prime} $n s m$) by auto
then have trace-time-obs $S^{\prime}($ exec x1 $i) \neq$ trace-time-obs $S^{\prime}($ exec x2 $i)$
proof
assume \neg at-pos $k n s m$
from $\left\langle m \in S^{\prime}\right\rangle$ at-pos-obs-lset[OF at-pos-x2(1)] obtain m^{\prime}
where m^{\prime}-gen: $\left(k, m, m^{\prime}\right) \in$ lset (trace-time-obs $S^{\prime}($ exec $\left.x 2 i)\right)$ by auto
from lset-obs-at-pos[of $k m m\rceil\langle\neg$ at-pos $k n s m\rangle\langle m \in S\rangle i$-gen
have $\left(k, m, m^{\prime}\right) \notin$ lset (trace-time-obs $S^{\prime}($ exec $\left.x 1 i)\right)$ by auto
with m^{\prime}-gen show ?thesis by metis
next
assume $\exists k^{\prime}<k$. at-pos $k^{\prime} n s m$
then obtain k^{\prime} where at-pos $k^{\prime} n s m k^{\prime}<k$ by auto
with $\left\langle m \in S^{\prime}\right\rangle$ at-pos-obs-lset[of k] i-gen obtain m^{\prime}
where m^{\prime}-gen: $\left(k^{\prime}, m, m^{\prime}\right) \in$ lset (trace-time-obs $S^{\prime}($ exec x1 $\left.i)\right)$ by auto
from lset-obs-at-pos[of $\left.k^{\prime} m m^{\prime}\right]$ at-pos-x2 $\left\langle m \in S^{\prime}\right\rangle\left\langle k^{\prime}<k\right\rangle$
have $\left(k^{\prime}, m, m^{\prime}\right) \notin$ lset (trace-time-obs $S^{\prime}($ exec x2 $\left.i)\right)$ by auto
with m^{\prime}-gen show ?thesis by metis
qed
with trace-time-obs-equiv-def
have obs-not-equiv: \neg trace-time-obs-equiv $S^{\prime}($ exec x1 $i)($ exec x2 $i)$ by auto let ? $i 1=i(n:=L C o n s x 1(i n))$
let ? i2 $=i(n:=L C o n s x 2(i n))$
from input-obs-equiv-def $n m$-gen i-gen is-input-prepend x-gen
have inputs: input-obs-equiv S^{\prime} ? i1 ?i2 is-input?i1 is-input ?i2 by auto
from x-gen exec.code have exec n ? i1 $=L C o n s(n$, Some x1) (exec x1 i)
exec n ? $i 2=L$ Cons $(n$, Some x2) (exec x2 $i)$ by auto
with obs-not-equiv trace-time-obs-equiv-LCons
have \neg trace-time-obs-equiv S^{\prime} (exec n ?i1) (exec n ?i2) by metis
with valid inputs noninterferent-time-def show ?thesis by blast
qed
Proof of Theorem 3.4 (Minimality of Time-Sensitive Control Dependence). In this version, the trace showing the violation of the non-interference criterion has to start at the entry node. Here, we need to assume that every node is reachable from the entry node.

```
theorem tscd-minimal-entry-node:
    assumes \(\neg\left(S^{\prime} \supseteq\right.\) backward-slice tscd Os) \((\) is \(\neg(-\supseteq ? S))\)
        \(O s \subseteq S^{\prime}\)
    \(\bigwedge n\). valid-node \(n \Longrightarrow \exists\) ns. is-path (-Entry-) ns \(n\)
    obtains i1 i2 where is-input i1 is-input i2 input-obs-equiv \(S^{\prime}\) i1 i2
                \(\neg\) trace-time-obs-equiv \(S^{\prime}\) (exec (-Entry-) i1) (exec (-Entry-) i2)
proof -
    from assms tscd-minimal noninterferent-time-def obtain i1 i2 \(n\)
        where \(i\)-n-gen: valid-node \(n\) is-input i1 is-input i2 input-obs-equiv \(S^{\prime}\) i1 i2
                        \(\neg\) trace-time-obs-equiv \(S^{\prime}\) (exec \(n\) i1) (exec \(n\) i2) by metis
    with assms obtain \(n s\) where is-path (-Entry-) ns \(n\) by auto
    with that \(i\)-n-gen show ?thesis
    proof (induction ns arbitrary: \(n\) i1 i2 rule: rev-induct)
        case (snoc \(n^{\prime} n s^{\prime} n\) i1 i2)
        let ? \(i^{\prime}=i 1\left(n^{\prime}:=\right.\) LCons \(\left.n\left(i 1 n^{\prime}\right)\right)\)
        let ? i2 \(^{\prime}=i 2\left(n^{\prime}:=L\right.\) Cons \(\left.n\left(i 2 n^{\prime}\right)\right)\)
        from snoc(8) is-path-snoc succs-valid
        have split: \(n \in\) succs \(n^{\prime}\) valid-node \(n^{\prime}\) is-path (-Entry-) \(n s^{\prime} n^{\prime}\) by metis+
        with \(\operatorname{snoc}(4,5)\) is-input-prepend have is-input: is-input ?i1' is-input ?i2' by
auto
    from \(\operatorname{snoc}(6)\) input-obs-equiv-def have input-equiv: input-obs-equiv \(S^{\prime}\) ?i1' ?i2'
by auto
        from split exec.code have exec \(n^{\prime}\) ? \(\mathrm{i1}^{\prime}=L C o n s\left(n^{\prime}\right.\), Some \(\left.n\right)(\) exec \(n\) i1)
                            exec \(n^{\prime}\) ? i2 \(^{\prime}=L C o n s\left(n^{\prime}\right.\), Some \(\left.n\right)(\) exec \(n\) i2) by auto
        with trace-time-obs-equiv-LCons snoc(7)
        have \(\neg\) trace-time-obs-equiv \(S^{\prime}\) (exec \(n^{\prime}\) ? i1 ) (exec \(n^{\prime}\) ? i2') by metis
        with snoc split is-input input-equiv show ?case by blast
    qed auto
qed
```


5 Proofs for the Algorithm section

5.1 Postdominance Frontiers

Definition 5.2, part 1. spdom $=1-\sqsubseteq$-Postdominance.
abbreviation spdom pdrel $n m==\exists m^{\prime} \neq m$. pdrel $n m^{\prime} \wedge$ pdrel $m^{\prime} m$
Definition 5.2, part 2.
abbreviation ipdom pdrel $n==\left\{m\right.$. spdom pdrel $n m \wedge\left(\forall m^{\prime}\right.$. spdom pdrel $n m^{\prime}$ \longrightarrow pdrel $\left.\left.m m^{\prime}\right)\right\}$

Definition 5.3.
abbreviation pdf pdrel $m==\{n . \neg$ spdom pdrel $n m \wedge(\exists x \in$ succs n. pdrel $x m)\}$
lemma on-max-paths-step: assumes on-max-paths $n m$
$n \neq m$
$x \in$ succs n
shows on-max-paths x m
proof -
\{
fix $n s$
assume max-path x ns
with assms max-path.intros on-max-paths-def have $m \in l$ set $n s$ by fastforce
\}
with on-max-paths-def show ?thesis by blast
qed
lemma on-sink-paths-step: assumes on-sink-paths n m
$n \neq m$
$x \in$ succs n
shows on-sink-paths x m
proof -
\{
fix $n s$
assume sink-path x ns
with assms succs-path path-sink-path-append on-sink-paths-def have $m \in l$ lset
$n s$ by fastforce
\}
with on-sink-paths-def show ?thesis by auto
qed
Ntscd part of Lemma 5.1
theorem ntscd-on-max-paths-frontier:
assumes $n \neq m$
shows $n \in$ pdf on-max-paths $m \longleftrightarrow n t s c d n m$
proof
assume $n \in p d f$ on-max-paths m
with assms on-max-paths-refl ntscd-cond-succ show ntscd $n m$ by fast

next

assume $n t s c d n m$
with ntscd-def obtain $x 1$ x2 where $x 1 \in$ succs $n x 2 \in$ succs n
on-max-paths $x 1 m \neg$ on-max-paths $x 2 m$ by auto
with on-max-paths-step assms on-max-paths-trans show $n \in$ pdf on-max-paths m by fast
qed
lemma nticd-cond-succ: assumes finite (Collect valid-node)
\neg on-sink-paths p n
$x \in$ succs p
on-sink-paths x n
shows nticd $p n$
proof-
from assms on-sink-ext-paths-equiv on-ext-paths-def obtain ns n'
where ext: is-path pns $n^{\prime} \forall n s^{\prime} n^{\prime \prime}$. is-path $n^{\prime} n s^{\prime} n^{\prime \prime} \longrightarrow n \notin \operatorname{set}\left(n s @ n s^{\prime} @\left[n^{\prime \prime}\right]\right)$
by metis
have $\exists x 2 \in$ succs p. \neg on-ext-paths $x 2 n$
proof (cases ns)
case Nil
from assms on-sink-ext-paths-equiv on-ext-paths-ex succs-valid obtain $n s^{\prime}$
where is-path $x n s^{\prime} n$ by metis
with Nil assms succs-path-extend ext show ?thesis by fastforce
next
case (Cons $p^{\prime} n s 2$)
with ext is-path-Cons obtain $x 2$
where x2-gen: $p^{\prime}=p x 2 \in$ succs p is-path $x 2$ ns2 n^{\prime} by blast
from ext Cons have $\forall n s^{\prime} n^{\prime \prime}$. is-path $n^{\prime} n s^{\prime} n^{\prime \prime} \longrightarrow n \notin \operatorname{set}\left(n s 2 @ n s^{\prime} @\left[n^{\prime \prime}\right]\right)$
by auto
with x2-gen on-ext-paths-def show ?thesis by metis
qed
with assms on-sink-ext-paths-equiv nticd-def show ?thesis by auto
qed
Nticd part of Lemma 5.1
theorem nticd-on-max-paths-frontier:
assumes finite (Collect valid-node)

$$
n \neq m
$$

shows $n \in p d f$ on-sink-paths $m \longleftrightarrow$ nticd $n m$
proof
assume $n \in p d f$ on-sink-paths m
with assms on-sink-paths-refl nticd-cond-succ show nticd $n m$ by fast
next
assume nticd $n m$
with nticd-def obtain $x 1 x 2$ where $x 1 \in \operatorname{succs} n x 2 \in$ succs n on-sink-paths x1 m ᄀon-sink-paths $x 2 m$ by auto
with on-sink-paths-step assms on-sink-paths-trans show $n \in p d f$ on-sink-paths m by fast
qed

Definition 5.5, part 1.
abbreviation closed G pdrel $==\forall n x m . x \in$ succs $n \wedge$ pdrel $n m \wedge n \neq m \longrightarrow$ pdrel x m

Definition 5.5, part 2.
abbreviation noJoin pdrel $==\forall n m 1$ m2 m12. $(m 12 \in$ ipdom pdrel $m 1 \wedge m 12$ \in ipdom pdrel m2 \wedge pdrel $n m 1 \wedge$ pdrel $n m 2 \wedge m 1 \neq m 2 \wedge$
valid-node n)
$\longrightarrow m 1 \in$ ipdom pdrel $m 2 \vee m 2 \in$ ipdom pdrel
m1
Part of Lemma 5.2: $\sqsubseteq_{M A X}$ is closed under \rightarrow_{G}.
theorem on-max-paths-closed G : closed G on-max-paths
using on-max-paths-step by auto
Part of Lemma 5.2: $\sqsubseteq_{S I N K}$ is closed under \rightarrow_{G}.
theorem on-sink-paths-closed G : closed G on-sink-paths
using on-sink-paths-step by auto
abbreviation linearizable pdrel $==\forall n$ m1 m2. valid-node $n \wedge$ pdrel $n m 1 \wedge$ pdrel n m2
\longrightarrow pdrel m1 m2 \vee pdrel m2 m1
"linearize" lemma to be instantiated with $\sqsubseteq_{M A X}$ and $\sqsubseteq_{S I N K}$.
lemma on-all-paths-linearize: assumes closed $G P$
$\bigwedge n m$. P $n m \Longrightarrow$ valid-node $n \Longrightarrow \exists n s$. is-path n
ns m
shows linearizable P
proof -
\{
fix $n m 1 m 2$
assume assms2: valid-node $n P n m 1 P n m 2$
with assms obtain $n s$ where $i s-p a t h ~ n ~ n s ~ m 2 ~ b y ~ m e t i s ~$
with assms assms2 have $P m 1 m 2 \vee P m 2 m 1$
proof (induction ns arbitrary: n)
case (Cons a ns n)
with is-path-Cons Cons show ?case by blast
qed auto
\}
then show ?thesis by auto
qed
lemma linearizable-noJoin: assumes linearizable P
$\bigwedge n m 1 m 2 . P n m 1 \Longrightarrow P m 1 m 2 \Longrightarrow P n m 2$
ヘn. P n n
shows noJoin P
proof -

```
    {
    fix n m1 m2 m12
    assume assms2: m12 \in ipdom P m1 m12 \in ipdom P m2 P n m1 P n m2 m1
# m2 valid-node n
    with assms have P m1 m2 \vee P m2 m1 by blast
    with assms2 obtain m1' m2'
        where m'-gens: m12 \in ipdom P m1'm12 \inipdom Pm\mp@subsup{\mathcal{N}}{}{\prime}Pnm1'P nm\mp@subsup{\mathcal{N}}{}{\prime}
                m1'\not=m2' P m1'm2' m1'\in{m1,m2} m\mp@subsup{2}{}{\prime}\in{m1,m2}
        by blast
    {
        fix m'
        assume spdom P m1' m'
        with m'-gens assms have Pm12 m'^P m2' m12 by blast
        with assms have Pm2' m' by blast
    }
    with assms m'-gens(5,6) have m2' }\in\mathrm{ ipdom P m1' by blast
    with m'-gens have m1 \in ipdom P m2 \vee m2 \inipdom P m1 by auto
}
    then show ?thesis by blast
qed
"linearize" lemma for \sqsubseteq}\mp@subsup{\sqsubseteq}{MAX}{
lemma on-max-paths-linearize: linearizable on-max-paths
    using on-all-paths-linearize on-max-paths-step on-max-paths-ex-path by blast
Part of Lemma 5.2: \sqsubseteq}\mp@subsup{\}{AAX}{}\mathrm{ lacks joins.
theorem on-max-path-noJoin: noJoin on-max-paths
    using on-max-paths-refl on-max-paths-trans linearizable-noJoin[OF on-max-paths-linearize]
    by blast
"linearize" lemma for \sqsubseteq}\mp@subsup{\sqsubseteq}{SINK}{
lemma on-sink-paths-linearize: assumes finite (Collect valid-node)
        shows linearizable on-sink-paths
proof-
    from assms on-ext-paths-ex on-sink-ext-paths-equiv
    have }\bigwedgenm\mathrm{ . on-sink-paths n m \ valid-node n # gns. is-path n ns m by
blast
    with assms on-all-paths-linearize on-sink-paths-step show ?thesis by blast
qed
Part of Lemma 5.2: }\mp@subsup{\sqsubseteq}{SINK}{}\mathrm{ lacks joins.
theorem on-sink-path-noJoin: assumes finite (Collect valid-node)
                            shows noJoin on-sink-paths
proof-
    from assms on-sink-paths-linearize have linearizable on-sink-paths by simp
    from on-sink-paths-refl on-sink-paths-trans[OF assms] linearizable-noJoin[OF
this]
    show ?thesis by blast
qed
```


5.2 Transitive Reductions and Pseudo-forests

Theorems for the properties of the transitive, reflexive reductions (see Observation 5.1).
We will not give a full mechanized proof here due to the complexity of formalizing transitive, reflexive reductions.
We will however prove lemmas here and give a pen-and-paper proof on why they imply those properties.
For $\sqsubseteq \in\left\{\sqsubseteq_{M A X}\right.$, $\left.\sqsubseteq_{S I N K}\right\}$, we will need linearizable: $m 1 \sqsubseteq n \Longrightarrow m 2 \sqsubseteq$ $n \Longrightarrow m 2 \sqsubseteq m 1 \vee m 1 \sqsubseteq m 2$ and scc: $n \neq m 1 \Longrightarrow m 1 \sqsubseteq n \Longrightarrow m 2 \sqsubseteq n$ $\Longrightarrow n \sqsubseteq m 1 \Longrightarrow n \sqsubseteq m 2$. The linearizable part has already been proved in the previous section, the scc part will be proved in this section.
Now, assume we have $m 1<n$ and $m 2<n$. (with $<$ being the corresponding transitive, reflexive reduction of $\sqsubseteq\left({ }^{*}\right)$). Then from $\left({ }^{*}\right)$ we have $m 1 \sqsubseteq n$ and $m 2 \sqsubseteq n$. With "linearize", we have $m 2 \sqsubseteq m 1 \vee m 1 \sqsubseteq m 2$ (w.l.o.g. let $m 2 \sqsubseteq m 1$ be true). This means we have (via (${ }^{*}$), $m 1 \sqsubseteq n$ and $m 2 \sqsubseteq m 1$) a path in the "<-graph" from n to $m 2$. But since $m 2<n$ and (*), this path must contain the $m 2<n$ edge. But then $n \sqsubseteq m 1$, and "scc" gives us $n \sqsubseteq m 2$ (note $m 1<n$ and $\left({ }^{*}\right)$ gives us $n \neq m 1$). Thus, $n, m 1$ and $m 2$ belong to the same SCC of the " ${ }_{i}$-graph". In any transitive, reflexive reduction, the nodes of an SCC in the original graph form a cycle without other edges between them (Theorem 2 of "The Transitive Reduction of a Directed Graph" by Aho, Alfred and R. Garey, M and Ullman, Jeffrey (doi $10.1137 / 0201008)$). But then $m 1=m 2$.
"scc" lemma to be instantiated with $\sqsubseteq_{M A X}$ and $\sqsubseteq_{S I N K}$.
lemma on-all-paths-scc: assumes closedG P
$\wedge n m . P n m \Longrightarrow$ valid-node $n \Longrightarrow \exists$ ns. is-path n ns m
\nm1 m2. $P n m 1 \Longrightarrow P m 1 m 2 \Longrightarrow P n m 2$
$\wedge n . P n n$
valid-node $n n \neq m 1 P n m 1 P n m 2 P m 1 n$
shows P m2 n
proof-
from assms obtain ns where path: is-path n ns m2 by metis
show ?thesis
proof (cases ns)
case Nil
with path assms(4) show? ?thesis by simp
next
case Cons
with path is-path-Cons have $n \in$ set $n s$ by auto
with split-list-last obtain ns1 ns2 where ns-split: ns $=n s 1$ @ $n \# n s 2 n \notin$ set
$n s 2$ by metis
with path is-path-split have is-path n ($n \# n s 2$) m2 by blast
with is-path-Cons obtain x where x-gen: $x \in$ succs n is-path x ns2 m2 by blast

```
    with assms have P x n by blast
    with x-gen(2) ns-split(2) show ?thesis
    proof (induction ns2 arbitrary: x)
        case Nil
        then show ?case by auto
    next
        case (Cons a ns2 x)
        with is-path-Cons obtain y where a=x y\in succs x is-path y ns2 m2 by
blast
            with assms(1) Cons show ?case by auto
        qed
    qed
qed
"scc" lemma for \sqsubseteq}\mp@subsup{\sqsubseteq}{MAX}{
lemma on-max-paths-scc: assumes valid-node n
                                    n\not=m1
                                    on-max-paths n m1
                                    on-max-paths n m2
                                    on-max-paths m1 n
                            shows on-max-paths m2 n
    using assms on-all-paths-scc[of on-max-paths n m1 m2] on-max-paths-step on-max-paths-ex-path
        on-max-paths-refl on-max-paths-trans by blast
"scc" lemma for \sqsubseteq}\mp@subsup{\sqsubseteq}{SINK}{
lemma on-sink-paths-scc: assumes finite (Collect valid-node)
                                    valid-node n
                                    n\not=m1
                            on-sink-paths n m1
                                    on-sink-paths n m2
                                    on-sink-paths m1 n
                            shows on-sink-paths m2 n
proof -
    from assms on-ext-paths-ex on-sink-ext-paths-equiv
    have }\nm.on-sink-paths n m\Longrightarrow valid-node n\Longrightarrow\existsns.is-path n ns m by
blast
    with assms on-all-paths-scc[of on-sink-paths n m1 m2] on-sink-paths-step on-sink-paths-refl
        on-sink-paths-trans show ?thesis by blast
qed
```


5.3 Transitivity results

5.3.1 Reducible Graphs

To define reducibility, we need an additional assumption that every node is reachable from the entry node.

```
context
    assumes Entry-path: \bigwedgen. valid-node n\Longrightarrow\existsns.is-path (-Entry-) ns n
```

assumes reducible: $\backslash n$ ns. is-path $n n s n \wedge n s \neq[]$ $\longrightarrow\left(\exists m \in\right.$ set ns. $\forall m^{\prime} \in$ set ns. $\forall n s^{\prime}$. is-path (-Entry-) $n s^{\prime} m^{\prime}$ $\left.\longrightarrow m \in \operatorname{set}\left(n s^{\prime} @[m]\right)\right)$
begin
Definition of Weak Order Dependency. Not used in any results given in the article, but an important definition to make proofs about reducible graphs easier.

```
definition wod :: 'node \(\Rightarrow\) 'node \(\Rightarrow\) 'node \(\Rightarrow\) bool
    where wod \(n m 1 m 2==m 1 \neq m 2\)
        \(\wedge(\exists m s 1\). is-path \(n m s 1 m 1 \wedge m 2 \notin\) set \(m s 1)\)
    \(\wedge(\exists\) ms 2. is-path n ms2 \(m 2 \wedge m 1 \notin\) set ms2)
    \(\wedge(\exists x \in\) succs \(n\). on-max-paths-prev x m1 m2 \(\vee\) on-max-paths-prev
x m2 m1)
```

lemma on-max-path-prev-non-step-wod: assumes on-max-paths n m1

$$
\begin{aligned}
& x \in \text { succs } n \\
& \text { on-max-paths-prev x m1 m2 } \\
& \neg \text { on-max-paths-prev } n \mathrm{~m} 1 \mathrm{m2} \\
& n \neq \text { m2 } \\
& m 1 \neq m 2
\end{aligned}
$$

 shows wod \(n m 1 m 2\)
 proof-
from assms succs-valid on-max-paths-prev-split obtain ns11
where ns1-split: is-path x ns11 m1 m2 \notin set ns11 by metis
with succs-path-extend assms have path1: is-path n ($n \# n s 11$) $m 1$ by blast
from assms on-max-paths-not-prev obtain ns2 where is-path n ns2 m2 m1 \notin
set ns2 by metis
with path1 ns 1 -split assms wod-def show ?thesis by auto
qed
lemma paths-order-ntscd-tranclp: assumes is-path p pns n
$m \notin$ set pns
is-path p pms m
$n \notin$ set pms
$x \in \operatorname{succs} p$
$n \neq m$
on-max-paths-prev x a m
shows $n t s c d^{* *} p m \vee n t s c d^{* *} p n$
proof (clarify)
assume $\neg n t s c d^{* *} p n$
from max-path-ext assms succs-valid have max-ext-x: max-path x (ext-max-path
x) by auto
from assms on-max-paths-prev-split succs-valid obtain xns
where xns-gen: is-path x xns $n n \notin$ set xns $m \notin$ set xns by metis
from path-first[OF assms(1)] obtain ns ns ${ }^{\prime}$
where $p n$-path: is-path p ns n pns $=n s @ n s^{\prime}$ by blast
with assms have $m \notin$ set ns by auto
from path-first[OF assms(3)] obtain $m s s^{\prime}$
where pm-path: is-path pms $m m \notin$ set $m s p m s=m s @ m s^{\prime}$ by auto
with assms have $n \notin$ set ms by auto
have $m s \neq[]$
proof
assume $m s=[]$
with path-empty-conv pm-path have $p=m$ by auto
with path-empty-conv assms pn-path have $n s \neq[]$ by auto
with $\langle m \notin$ set $n s\rangle$ path-cons-conv $[o f-p]\langle p=m\rangle p n$-path show False by (cases ns) auto
qed
from assms on-max-paths-def on-max-paths-prev-def have on-max-paths $x n$ by auto
with assms ntscd-cond-succ $\neg \neg$ ntscd $\left.{ }^{* *} p n\right\rangle$ have max-paths: on-max-paths $p n$ by auto
from is-path-valid-node[OF pm-path(1)] max-path-ext
have max-ext-m: max-path m (ext-max-path m) by auto
with pm-path max-path-append have max-path p (lappend (llist-of ms) (ext-max-path $m)$) by auto
with $\langle n \notin$ set ms〉 max-paths on-max-paths-def have $n \in l$ lset (ext-max-path m) by auto
from lset-split [OF this] obtain ens1 ens2
where ext-max-path $m=$ lappend (llist-of ens1) (LCons n ens2) by auto
with max-ext-m max-path-split have path-mns: \exists mns. is-path m mns n by simp blast

$$
\text { show } n t s c d^{* *} p m
$$

proof (cases \exists nms. is-path $n n m s$)
case False
\{
fix m^{\prime}
assume m^{\prime}-gen: $m^{\prime} \in \operatorname{set}(m \#$ rev $m s) m^{\prime} \neq p$ on-max-paths $p m^{\prime}$
with on-max-paths-step assms have on-max-paths $x m^{\prime}$ by auto
with max-ext-x on-max-paths-def have $m^{\prime} \in l$ set (ext-max-path x) by auto with max-path-split-elem max-ext-x obtain ms1' where path-xm': is-path x $m s 1^{\prime} m^{\prime}$ by metis
obtain $m s 3^{\prime}$ where is-path $m^{\prime} m s 3^{\prime} m$
proof (cases $m=m^{\prime}$)
case True
with path0 is-path-valid-node[OF path-xm] that[of []] show ?thesis by auto

next

case False
with m^{\prime}-gen have $m^{\prime} \in$ set $m s$ by auto
with path-split-elem pm-path(1) that show ?thesis by blast
qed
with path-xm' path-append have is-path $x\left(m s 1^{\prime} @ m s 3^{\prime}\right) m$ by auto
with on-max-paths-prev-ccontr $[\operatorname{OF} \operatorname{assms}(7,6)$ this $]$ have $n \in \operatorname{set}\left(m s 1^{\prime} @ m s 3^{\prime}\right)$
by auto
with path-split-elem 〈is-path $x\left(m s 1^{\prime} @ m s 3^{\prime}\right) m$) False have False by blast \}

```
    with ntscd-rtranclpI[OF pm-path(1)] show ?thesis by auto
    next
    case True
    with assms path-end-unique obtain nms
    where cycle1: is-path n(n#nms) m n & set nms m & set nms by blast
    from path-end-unique path-mns assms obtain mns
    where cycle2: is-path m (m#mns) n m & set mns n # set mns by blast
    let ?cs = n#nms@m#mns
    from path-append[OF cycle1(1) cycle2(1)] have is-path n ?cs n by auto
    with reducible[of n ?cs] obtain d where dom:d \in set ?cs
        \forallm'\inset ?cs. }\forallns\mathrm{ . is-path (-Entry-) ns m' }\longrightarrowd\in set (ns @ [m']) by auto
    from Entry-path assms obtain ps where entry-p-path: is-path (-Entry-) ps p
by auto
    have dom-path:d \in set (ps@[p])
    proof (rule ccontr)
    assume d & set (ps@[p])
    from pm-path entry-p-path path-append succs-path-extend assms xns-gen(1)
    have is-path (-Entry-) (ps@ms) m is-path (-Entry-) (ps@p#xns) n by auto
    with dom <d & set (ps@[p])\rangle have d \in set (ms@[m])d\in set (xns@[n]) by
auto
    with <m \not\in set xns\rangle\langlen & set ms` assms(6) have d-elem: d\in set ms d f set
xns by auto
    with path-split-elem xns-gen obtain ns1 ns2
    where xns-d-split:xns=ns1@d#ns2 is-path x ns1 d by blast
    from d-elem path-split-elem pm-path obtain ms1 ms2
    where ms=ms1@d#ms2 is-path d (d#ms2) m by blast
    with xns-d-split \langlen & set xns><n & set ms> path-append
    have is-path x(ns1@d#ms2) mn\not\inset(ns1@d#ms2) by auto
    from on-max-paths-prev-ccontr[OF assms (7,6) this] show False .
    qed
    obtain dps where dps-gen: is-path d dps p
    proof (cases d \in set ps)
        case True
        with path-split-elem entry-p-path that show ?thesis by blast
    next
        case False
        with dom-path assms path0[of - p] that[of []] show ?thesis by auto
    qed
    obtain c cs where c-gen: is-path c cs p c \in set ?cs \forallc'\inset (tl cs). c' }\not=\mathrm{ set
?cs
    proof (cases dps)
        case Nil
        with dom that[OF dps-gen] show ?thesis by auto
    next
        case (Cons d' dps')
        with path-cons-conv[of - d] dps-gen dom have \existsc\inset dps.c\in set ?cs by
auto
    from split-list-last-propE[OF this] obtain cs1 c cs2
    where cs-gen:dps=cs1@c#cs2 c \in set ?cs \forallc'\inset cs2. c' & set ?cs by
```

```
auto
        with is-path-split[OF dps-gen[unfolded this(1)]] that show ?thesis by auto
    qed
    with path-cons-conv[of-c] have n-set-cs: }n\not=c\Longrightarrown\not=set cs by (cases cs
auto
    {
        fix pps
        assume pcs-gen: n & set pps is-path p pps p pps \not=[]
        with pcs-gen cycle-max-path-neq-nil have max-path p (cycle pps) by auto
            with max-paths on-max-paths-def cycle-lset[of pps] pcs-gen have False by
auto
    }
    note cycle-ccontr = this
    show ?thesis
    proof (cases c \in set (m#mns))
        case True
        with path-split-elem cycle2 obtain mcs cns
        where mns-split:is-path m mcs c m#mns=mcs@c#cns by blast
        have False
        proof (rule cycle-ccontr)
            from mns-split path-append pm-path c-gen show is-path p(ms@mcs@cs)p
by auto
            from assms cycle2 True have n & set (m#mns) by auto
            with mns-split 〈ms \not=[]> n-set-cs <n # set ms`
            show ms@mcs@cs =[] n\not\in set (ms@mcs@cs) by auto
        qed
        thus ?thesis ..
    next
        case False
        with c-gen have c\inset (n#nms) by simp
        with path-split-elem cycle1 obtain ncs cms
        where nms-split: is-path n ncs c n#nms = ncs@c#cms by blast
        {
            fix m'
            assume m'-gen: m' 
            with on-max-paths-step assms have on-max-paths x m' by auto
            from m'-gen assms «n }\not=\mathrm{ set ms` have m'}=n=n\mathrm{ by auto
            obtain mms' pms'
            where ms-split: is-path m'mms'mn}\mp@subsup{m}{}{\prime}|\mathrm{ set mms' is-path p pms' m' n #
set pms'
            proof (cases m=m')
                case True
                    with path0 is-path-valid-node[OF assms(3)] that[of []] pm-path «n & set
ms>
            show ?thesis by auto
            next
                case False
                with m'-gen have m'\in set ms by auto
                with path-split-elem pm-path(1) obtain ms1 ms2
```

where $m s=m s 1 @ m^{\prime} \# m s 2$ is-path $m^{\prime}\left(m^{\prime} \# m s 2\right) m$ is-path $p m s 1 m^{\prime} \mathbf{b y}$
blast
with that $\langle n \notin$ set $m s$ show ?thesis by auto
qed
from xns-gen nms-split c-gen succs-path[OF assms(5)] path-append
have is-path x (xns@ncs@cs@[p])x by auto
with cycle-max-path-neq-nil have max-path x (cycle (xns@ncs@cs@[p])) by auto
with <on-max-paths x m^{\prime} ’ on-max-paths-def cycle-lset[of xns@ncs@cs@[p]]
have $m^{\prime} \in \operatorname{set}(x n s @ n c s @ c s @[p])$ by auto
have False
proof (cases $m^{\prime} \in$ set $x n s$)
case True
with path-split-elem xns-gen obtain $x \mathrm{~ms}^{\prime} \mathrm{xms}^{\prime \prime}$
where is-path $x x m s^{\prime} m^{\prime} x n s=x m s^{\prime} @ m^{\prime} \# x m s^{\prime \prime}$ by blast
with path-append ms-split xns-gen
have is-path $x\left(x m s^{\prime} @ m m s^{\prime}\right) m n \notin$ set $\left(x m s^{\prime} @ m m s^{\prime}\right)$ by auto
with on-max-paths-prev-ccontr[OF assms $(7,6)]$ show ?thesis by blast

next

case False
with $\left\langle m^{\prime} \in \operatorname{set}(x n s @ n c s @ c s @[p])\right\rangle m^{\prime}$-gen have $m^{\prime} \in \operatorname{set}(n c s @ c s)$ by auto
then obtain $n^{\prime} n p s^{\prime}$ where $n p s^{\prime}$-gen: ncs@cs $=n^{\prime} \# n p s^{\prime}$ by (cases $n c s @ c s)$ auto
with path-append $\left[\right.$ OF nms-split(1) c-gen(1)] have is-path $n\left(n^{\prime} \# n p s^{\prime}\right) p$ by auto
with nps'-gen path-cons-conv[of edge-rel n n] edge-rel-def succs-valid
obtain $n 2$
where $n p s^{\prime}$-path: $n=n^{\prime}$ is-path n2 $n p s^{\prime} p$ by blast
with $\left\langle m^{\prime} \in \operatorname{set}(n c s @ c s)\right\rangle n p s^{\prime}$-gen $\left\langle m^{\prime} \neq n\right\rangle$ have $m^{\prime} \in$ set $n p s^{\prime}$ by auto with path-split-elem nps'-path obtain nps1 nps2
where $n p s^{\prime}-$ split: $n p s^{\prime}=n p s 1 @ m^{\prime} \# n p s 2$ is-path $m^{\prime}\left(m^{\prime} \# n p s 2\right) p$ by blast
have $n \notin$ set nps'
proof (cases ncs)
case Nil
with $n p s^{\prime}$-gen c-gen(3) show ?thesis by auto
next
case (Cons a list)
with nms-split(2) cycle1(2) nps'-gen n-set-cs show ?thesis by force
qed
with $\left\langle n p s^{\prime}=n p s 1 @ m^{\prime} \# n p s 2\right\rangle$ have n-not-elem: $n \notin$ set $\left(m^{\prime} \# n p s^{\prime}\right)$ by
auto
show ?thesis
proof (rule cycle-ccontr)
from n-not-elem nps'-split ms-split path-append
show $n \notin \operatorname{set}\left(p m s^{\prime} @ m^{\prime} \# n p s 2\right)$ is-path $p\left(p m s^{\prime} @ m^{\prime} \# n p s 2\right) p p m s^{\prime} @ m^{\prime} \# n p s 2$
$\neq[]$ by auto
qed
qed

```
        }
        with ntscd-rtranclpI[OF pm-path(1)] show ?thesis by auto
        qed
    qed
qed
lemma reducible-wod-imp-ntscd-tranclp: assumes wod \(n \mathrm{~m} 1 \mathrm{m2}\)
\[
\text { shows } n t s c d^{* *} n m 1 \vee n t s c d^{* *} n m 2
\]
proof -
from assms wod-def obtain ms1 ms2
where order-paths: is-path \(n\) ms1 m1 m2 \(\notin\) set ms1 is-path n ms2 m2 m1 \(\ddagger\) set \(m s 2\) by auto
from assms wod-def obtain \(x\)
where \(m 1 \neq m 2 x \in\) succs \(n\) on-max-paths-prev \(x\) m1 m2 \(\vee\) on-max-paths-prev \(x\) m2 m1 by auto
with paths-order-ntscd-tranclp order-paths show ?thesis by blast
qed
lemma ntscd-not-on-max-paths: assumes ntscd \(n\) m
\[
n \neq m
\]
shows \(\neg\) on-max-paths \(n m\)
using assms ntscd-def on-max-paths-step by blast
lemma ntscd-rtrancl-not-on-max-paths: assumes ntscd** \(n\) m
\[
n \neq m
\]
shows \(\neg\) on-max-paths \(n m\)
proof
assume on-max-paths \(n\) m
with assms show False
proof (induction rule: converse-rtranclp-induct)
case (step x y)
show ?case
proof (cases \(y=m\) )
case True
with step ntscd-not-on-max-paths show ?thesis by auto
next
case False
with step have \(\neg\) on-max-paths \(y m x \neq y\) by auto
with on-max-paths-def obtain ns where ns-gen: max-path y ns m \(\notin\) lset ns
by auto
from step ntscd-def obtain \(x 1\) where \(x 1\)-gen: on-max-paths \(x 1\) y \(x 1 \in\) succs
\(x\) by auto
with on-max-paths-ex-path succs-valid path-first obtain ns1
where ns1-gen: is-path \(x 1 n s 1\) y \(y \notin\) set ns1 by metis
with succs-path-extend x1-gen max-path-append ns-gen
have max-path \(x\) (lappend (llist-of ( \(x \# n s 1\) )) ns) by blast
with step on-max-paths-def ns1-gen ns-gen have \(m \in\) set \(n s 1\) by auto with ns1-gen path-split-elem obtain \(n s 1^{\prime} n s 1^{\prime \prime}\)
where ns1-split: is-path \(x 1 n s 1^{\prime} m n s 1=n s 1^{\prime} @ m \# n s 1^{\prime \prime}\) by metis
```

```
    from step ntscd-def obtain x2 where x2 \in succs x ᄀon-max-paths x2 y by
auto
            with on-max-paths-def obtain ns2
                where ns2-gen: max-path x2 ns2 y }\ddagger\mathrm{ lset ns2 by auto
            with max-path.intros(2)〈x2 \in succs x〉 step (4,5) on-max-paths-def
            have m}\inlset ns2 by fastforc
            with ns2-gen max-path-split-elem obtain ns2' ns\mp@subsup{2}{}{\prime\prime}
            where ns2-split: max-path m (LCons m ns2')
                    ns2 = lappend (llist-of ns2') (LCons m ns2') by metis
            with ns1-split ns1-gen ns2-gen max-path-append
            have max-path x1 (lappend (llist-of ns1') (LCons m ns2'`))
                y \not\inlset (lappend (llist-of ns1') (LCons m ns2'')) by auto
            with x1-gen on-max-paths-def show ?thesis by auto
    qed
    qed simp
qed
lemma reducible-on-max-paths-order: assumes on-max-paths \(n\) m1

> on-max-paths n m2
> \(m 1 \neq m 2\)
shows on-max-paths-prev n m1 m2 \(\vee\) on-max-paths-prev
n m2 m1
proof (cases valid-node n)
case True
with max-path-ext obtain \(n s\) where max-path \(n\) ns by auto
with assms on-max-paths-def max-path-split-elem obtain ns1
where is-path \(n\) ns1 \(m 1\) by metis
with assms show ?thesis
proof (induction ns1 arbitrary: \(n\) )
case Nil
with path-empty-conv on-max-paths-prev-trivial show ?case by auto
next
case (Cons n' ns1 n)
show ?case
proof (cases \(n=m 2 \vee n=m 1\) )
case False
from Cons is-path-Cons obtain \(x\)
where \(x\)-gen: \(x \in\) succs \(n\) is-path \(x\) ns1 m1 \(n=n^{\prime}\) by metis
with on-max-paths-step False Cons
have max-paths: on-max-paths x m1 on-max-paths \(x\) m2 by metis+
with Cons \(x\)-gen have \(x\)-prev: on-max-paths-prev \(x\) m1 m2 \(\vee\) on-max-paths-prev \(x m 2 \mathrm{m1}\) by auto
from Cons ntscd-rtrancl-not-on-max-paths False have \(\neg n t s c d^{* *} n m 1 \neg\)
\(n t s c d^{* *} n\) m2 by auto
with reducible-wod-imp-ntscd-tranclp have \(\neg\) wod \(n \mathrm{m1}\) m2 \(\neg\) wod \(n \mathrm{m2}\) m1
by auto
with on-max-path-prev-non-step-wod \(x\)-prev Cons \(x\)-gen False show ?thesis
by blast
qed (auto simp add: on-max-paths-prev-trivial)
```


qed

qed (auto simp add: on-max-paths-prev-def max-path-valid-node)
Proof of Theorem 5.1. The assumption of a reducible graph is given by the context, so it is an implicit assumption of this theorem.
theorem reducible-on-max-paths-first-pos-trans: assumes on-max-paths-pos-first x y

> on-max-paths-pos-first $y z$
> shows on-max-paths-pos-first $x z$
proof (cases valid-node $x \wedge y \neq z$)
case non-trivial: True
from assms on-max-paths-pos-first-def obtain $k 1 k 2$
where k-gen: on-max-paths-pos- k-first $x k 1$ y on-max-paths-pos-k-first y $k 2 z$ by auto
from on-max-paths-pos-k-implies-on-max-paths on-max-paths-trans k-gen
have on-max-paths: on-max-paths x y on-max-paths $y z$ on-max-paths $x z$ by
blast+
show ?thesis
proof (cases on-max-paths-prev x y z)
case True
\{
fix $n s$
assume max-path: max-path x ns
with on-max-paths on-max-paths-def lset-at-pos-first obtain k
where z-pos: at-pos-first k ns z by blast
from max-path k-gen on-max-paths-pos-k-first-def have at-pos-first k1 ns y
by auto
with k-gen max-path on-max-paths-pos-first-chain z-pos on-max-paths-prev-at-pos-first True
have at-pos-first ($k 1+k 2$) ns z by fastforce
\}
with on-max-paths-pos-first-def on-max-paths-pos-k-first-def show ?thesis by auto

next

case False
with on-max-paths reducible-on-max-paths-order non-trivial
have z-prev-y: on-max-paths-prev $x z y$ by auto
from on-max-paths max-path-ext non-trivial obtain ns where max-path: max-path x ns by auto
with on-max-paths on-max-paths-def lset-at-pos-first lset-at-pos-first obtain k where z-pos: at-pos-first k ns z by blast
from max-path k-gen on-max-paths-pos-k-first-def have at-pos-first $k 1 n s y$ by auto
with k-gen max-path z-pos on-max-paths-prev-at-pos-first z-prev-y non-trivial
have less1: $k<k 1$ by fastforce
with on-max-paths-pos-k-first-diff k-gen z-pos max-path
have z-y: on-max-paths-pos-k-first $z(k 1-k) y$ by auto
from on-max-paths-prev-split z-prev-y non-trivial max-path-valid-node
have valid-node z by metis

```
    {
    fix ns2
    assume max-path2: max-path x ns2
    with on-max-paths on-max-paths-def lset-at-pos-first lset-at-pos-first obtain
k'
            where z-pos2: at-pos-first k'ns2 z by blast
    from max-path2 k-gen on-max-paths-pos-k-first-def have at-pos-first k1 ns2 y
by auto
    with k-gen max-path2 z-pos2 on-max-paths-prev-at-pos-first z-prev-y non-trivial
    have less2: }\mp@subsup{k}{}{\prime}<k1 by fastforc
    with on-max-paths-pos-k-first-diff k-gen z-pos2 max-path2
    have on-max-paths-pos-k-first z (k1-k') y by auto
    with z-y on-max-paths-pos-k-first-k-unique 〈valid-node z\rangle have k1-k'}=k1-
by auto
            with less1 less2 have k'=k by auto
            with less1 less2 z-pos2 have at-pos-first k ns2 z by auto
    }
    with on-max-paths-pos-first-def on-max-paths-pos-k-first-def show ?thesis by
auto
    qed
next
    case False
    with assms on-max-paths-pos-first-def on-max-paths-pos-k-first-def max-path-valid-node
    show ?thesis by auto
qed
end
end
```


5.3.2 Graphs with unique exit node

The assumption that there is a unique exit node reachable from all other nodes is given by the Postdomination locale.

```
context Postdomination
begin
```

lemma unique-exit-on-max-paths-first-pos-k-trans: assumes on-max-paths-pos-k-first
$x k 1 y$
on-max-paths-pos-k-first y k2 z
shows on-max-paths-pos-k-first $x(k 1+k 2)$
z
proof (cases valid-node x)
case x-valid: True
\{
fix $n s$
assume max-path $x n s$
with assms x-valid have at-pos-first $(k 1+k 2) n s$ z
proof (induction $k 1$ arbitrary: $x n s$)
case 0
with on-max-paths-pos-k-first-0 have $x=y$ by auto
with 0 on-max-paths-pos-k-first-def show ?case by auto
next
case (Suc k1 x ns)
then show ?case
proof (cases $x=z$)
case True
with Suc on-max-paths-pos-k-first-refl on-max-paths-pos-k-first-k-unique
have $z \neq y$ by blast
with Suc True on-max-paths-pos-k-first-end-node Exit-succs have $z \neq$
(-Exit-) by auto
\{
fix $n s^{\prime}$
assume is-path y $n s^{\prime}$ (-Exit-)
with Exit-succs max-path-end have max-path y (llist-of (ns'@[(-Exit-)]))
by auto
with Suc on-max-paths-pos-k-first-def at-pos-first-def in-lset-conv-lnth
have $z \in$ lset (llist-of ($n s^{@} @[(-$ Exit-) $])$) by metis
with $\langle z \neq(-$ Exit- $)\rangle$ have $z \in$ set $n s^{\prime}$ by simp
\}
note exit-path-z $=$ this
with path0 have $y \neq(-$ Exit-) by fastforce
from Suc on-max-paths-pos-k-first-def at-pos-first-def
have at-pos-first (Suc k1) ns y by auto
with at-pos-first-def in-lset-conv-lnth have $y \in l s e t n s$ by metis
with Suc max-path-split-elem max-path-valid-node have valid-node y by
metis
with Exit-is-path obtain ns2 where ns2-gen: is-path y ns2 (-Exit-) by
auto
with exit-path- z have ns2 $\neq[]$ by fastforce
with path-last ns2-gen obtain ns3
where ns3-gen: is-path y ($y \# n s 3$) (-Exit-) $y \notin$ set ns3 by metis
with $\langle z \neq y\rangle$ exit-path-z split-list obtain ns4 ns5
where ns3 = ns4@z\#ns5 by fastforce
with ns3-gen is-path-split[of - y\#ns4]
have ns3-split: is-path $z(z \# n s 5)(-E x i t-) y \notin$ set $(z \# n s 5)$ by auto
with Exit-succs max-path-end[of - z\#ns5]
have max-path z (llist-of (z\#ns5@[(-Exit-)])) by auto
with True Suc on-max-paths-pos-k-first-def at-pos-first-def in-lset-conv-lnth
have $y \in$ lset (llist-of $(z \# n s 5 @[(-$ Exit- $)]))$ by metis
with ns3-split $\langle y \neq(-$ Exit- $)\rangle$ show ?thesis by auto
next
case False
from Suc on-max-paths-pos-k-first-end-node have succs $x \neq\{ \}$ by blast
with Suc max-path-step obtain $x^{\prime} n s^{\prime}$
where step: $n s=L$ Cons $x s^{\prime}$ max-path $x^{\prime} n s^{\prime} x^{\prime} \in$ succs x by metis
with on-max-paths-pos-k-first-Suc Suc(2) have on-max-paths-pos-k-first x^{\prime} $k 1 y$ by force

```
            with step Suc succs-valid have at-pos-first (k1 + k2) ns'z by fastforce
            with at-pos-first-step step False show ?thesis by auto
        qed
    qed
}
with on-max-paths-pos-k-first-def show ?thesis by auto
qed (auto simp add: on-max-paths-pos-k-first-def max-path-valid-node)
```

Proof of Theorem 5.2. The assumption of a unique exit node is given by the locale context, so it is an implicit assumption of this theorem.
theorem unique-exit-on-max-paths-first-pos-trans: assumes on-max-paths-pos-first $x y$
on-max-paths-pos-first y z
shows on-max-paths-pos-first $x z$
using assms on-max-paths-pos-first-def unique-exit-on-max-paths-first-pos-k-trans by metis
end

5.4 Timing Sensitive Postdominance Frontiers
 context CFG
 begin

Definition 5.7, redefinition of $1-\sqsubseteq$-Postdominance.
abbreviation spdom' pdrel $n m==$ pdrel $n m \wedge\left(\exists m^{\prime} \neq m\right.$. pdrel $n m^{\prime} \wedge$ pdrel m^{\prime} m)

Redefinition of the Postdominance Frontier, which uses the redefined 1 - $\sqsubseteq-$ Postdominance from Definition 5.7.
abbreviation $p d f^{\prime}$ pdrel $m==\{n$. \neg spdom' pdrel $n m \wedge(\exists x \in$ succs n. pdrel x $m)$ \}

Proof of Theorem 5.3.
theorem tscd-on-max-paths-pos-first-frontier:
assumes $n \neq m$
shows $n \in p d f^{\prime}$ on-max-paths-pos-first $m \longleftrightarrow t s c d n m$
proof
assume $p d f: n \in p d f^{\prime}$ on-max-paths-pos-first m
with assms on-max-paths-pos-first-refl have \neg on-max-paths-pos-first $n m$ by auto
with $p d f$ tscd-cond-succ show $t s c d n m$ by auto
next
assume $t s c d n m$
with tscd-def obtain $k x 1 x 2$ where succs: $x 1 \in$ succs $n x 2 \in$ succs n on-max-paths-pos-k-first x1 $k m \neg$ on-max-paths-pos-k-first $x 2 k m$ by auto
with on-max-paths-pos-first-def on-max-paths-pos-k-first-step assms
on-max-paths-pos-k-first-k-unique succs-valid have \neg on-max-paths-pos-first
$n m$ by metis
with succs assms on-max-paths-pos-first-def show $n \in p d f^{\prime}$ on-max-paths-pos-first m by auto
qed
end
end

