
c©Springer-Verlag, 2010. This is the author’s version of the work. It is posted here
by permission of Springer-Verlag for your personal use. Not for redistribution. The
original publication is published in the Proceedings of the International Sympo-
sium on Engineering Secure Software and Systems (ESSoS’10), and is available at
www.springerlink.com (DOI)

Experiences with PDG-based IFC

Christian Hammer

Purdue University?

cjhammer@purdue.edu

Abstract. Information flow control systems provide the guarantees that
are required in today’s security-relevant systems. While the literature has
produced a wealth of techniques to ensure a given security policy, there
is only a small number of implementations, and even these are mostly
restricted to theoretical languages or a subset of an existing language.

Previously, we presented the theoretical foundations and algorithms
for dependence-graph-based information flow control (IFC). As a comple-
ment, this paper presents the implementation and evaluation of our new
approach, the first implementation of a dependence-graph based anal-
ysis that accepts full Java bytecode. It shows that the security policy
can be annotated in a succinct manner; and the evaluation shows that
the increased runtime of our analysis—a result of being flow-, context-,
and object-sensitive—is mitigated by better analysis results and elevated
practicability. Finally, we show that the scalability of our analysis is not
limited by the sheer size of either the security lattice or the dependence
graph that represents the program.
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1 Introduction

Information flow control is emerging as an integral component of end-to-end
security inspections. There is very active research on how to secure the gap
between access control and various kinds of I/O. Recent approaches to IFC are
mainly based on special type sytems [20,21], and increasingly also on other forms
of program analysis. This work reports on the experiences gained from our re-
cent approach of the latter kind [14], and relates the insight gained with other
tools based on type systems. The approach leveraged in this paper is based on
program dependence graphs [8], more precisely system dependence graphs [15],
which faithfully represent the semantics of a given program. The actual informa-
tion flow validation is a graph traversal in the style of program slicing, which is
a common program transformation on dependence graphs. The (backward) slice
of a given statement contains all statements that may semantically influence
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1 class A {
2 int x;
3 void set() { x = 0; }
4 void set(int i) { x = i;}
5 int get() { return x; }
6 }
7 class B extends A {
8 void set() { x = 1; }
9 }

10 class InfFlow {
11 PrintStream sysout = ...;
12 void main(String [] a){
13 //1. no information flow
14 int sec = 0 /*P:High*/;

15 int pub = 1 /*P:Low*/;
16 A o = new A();
17 o.set(sec);
18 o = new A();
19 o.set(pub);
20 sysout.println(

:::::::
o.get());

21 //2. dynamic dispatch
22 if (sec==0 && a[0]. equals(
23 "007")) o = new B();
24 o.set();
25 sysout.println(

:::::::
o.get());

26 }
27 }

Fig. 1. An example program for information flow control

that statement. Therefore, program slicing is closely connected to information
flow control, which (in its simplest form, known as noninterference) checks that
no secret input channel of a given program might be able to influence what is
passed to a public output channel [11].

The major contributions of this work are:

– This paper presents the first dependence-graph-based IFC for full Java byte-
code and its plugin integration into the Eclipse framework.

– Our IFC mechanism allows for succinct security policy specification as the
number of required annotations is greatly reduced compared to traditional
security type systems. This results a major improvement in practicability.

– The evaluation found that flow-, context-, and object-sensitive analysis pays
off: While the analysis time increases compared to insensitive analyses, the
results become significantly more precise, avoiding all sorts of false positives.

– Furthermore, the evaluation indicates that the analysis scales well to the
security kernels we had in mind and that the scalability of our IFC analyses
is not limited by either the size of the security lattice (which might be seen
as a measure of the security policy’s complexity), nor by the size of the
program’s dependence graph.

Previous work presented the theoretical foundations of dependence-graph-
based IFC and described algorithms to efficiently implement these techniques. All
these details are beyond the scope of this article, which focuses on presenting the
framework for IFC in Eclipse and evaluating the effectiveness of these techniques.
The interested reader is refered to our previous publications [12, 14] to find out
all the details that cannot be covered in this work.
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Fig. 2. SDG for the program in Figure 1

2 IFC Analysis

To illustrate dependence-graph-based IFC, Fig. 2 shows a (partial) SDG for
Fig. 1. In the program, the variable sec is assumed to contain a secret value,
which must not influence printed output. First a new A object is created where
field x is initialized to sec. However, this object is no longer used afterward as
the variable is overwritten (“killed”) with a new object whose x field is set to
pub. Note that there is no path in the dependence graph from the initialization
of sec to the first print statement, which means that sec cannot influence that
output, as SDGs contain all possible information flows. This example demon-
strates that in our SDG-based analysis the x fields in the two A objects are
distinguished (object-sensitivity), the side-effects of different calls to set are not
merged (context-sensitivity), and flow-sensitivity kills any influence from the sec
variable to the first println. An analysis missing any of these three dimension of
sensitivity would reject this part of the program, thus producing a false positive.

The next statements show an illegal flow of information: Line 22 checks
whether sec is zero and creates an object of class B in this case. The invo-
cation of o.set is dynamically dispatched: If the target object is an instance of
A then x is set to zero; if it has type B, x receives the value one. Lines 22–24 are
analogous to the following implicit flow:

if (sec==0 && ...) o.x = 0 else o.x = 1;
In the PDG we have a path from sec to the predicate testing sec to o.set()
and its target object o. Following the summary edge one reaches the x field and
finally the second output node. Thus the PDG discovers that the printed value
in line 25 depends on the value of sec.

3 Eclipse Plugins for IFC

We have implemented SDG-based IFC analysis, including declassification, as
described in our previous work [14]. The prototype is an Eclipse plugin, which
allows interactive definition of security lattices, automatic generation of SDGs,
annotation of security levels to SDG nodes via source annotation and automatic
security checks. At the time of this writing, all these components are fully oper-
ational.



Fig. 3. The lattice editor in Eclipse with illegal graph

We implemented the lattice editor based on Eclipse’s GEF graph editing
framework. The lattice elements are represented as bit vectors [1, 9] to support
fast infimum/supremum operators when checking for illegal information flow. It
is worth noting that the algorithm of Ganguly et al. computes incorrect results
without adding synthetic nodes into edges that span more than one level (where
levels are defined in terms of the longest path between two nodes). The authors
were not very specific concerning this restriction. Fortunately, these synthetic
nodes can safely be removed from the lattice after conversion to a bit vector.
Our editor attempts to convert the given graph to such a lattice. If this fails,
the user is notified that the graph does not represent a valid lattice. Otherwise
the lattice can be saved on disk for annotations. Figure 3 shows an example of
a non-trivial graph with top element “a 1” and bottom element “a 3”. But the
lattice conversion fails for this graph, as the elements “a 4” and “a 6” do not have
a unique upper bound: Both “a 2” and “a 5” are upper bounds for these elements,
which violates a crucial property of lattices. The problem view at the bottom
displays a detailed message to the user that describes the violation. If one of the
relation edges between those four elements were removed, a valid lattice would
be generated, which can be leveraged for annotating the source code.

The IFC algorithm was implemented in a two-stage version: As the first
step, the so-called summary declassification nodes are computed. If the depen-
dence graph already contained standard summary edges [15], these need to be
removed first, as they would disturb computation of summary declassification
nodes. Still, generating summary edges during SDG generation was not in vain:



Fig. 4. Example program (with missing declassification) in our Eclipse plugin

As summary declassification nodes can only arise between nodes that originally
were connected by a summary edge, we can omit building the transitive closure
of dependences for all nodes that are not the target of a summary edge. Algo-
rithm 2 of [14] is therefore initialized with these actual-out nodes only. Note that
this optimization does not improve the worst case complexity of the algorithm,
but it reduces analysis time in practice (see section 5). As a second step, the IFC
constraints are propagated through the backward slice of each output channel
according to Algorithm 1 of [14] . Our implementation does not generate these
constraints explicitly, but performs a fixed point analysis.

Figure 4 shows an example program but is missing a declassification in the
foo method. The Eclipse plugin features a full-fledged view for annotations and
security violations. User annotations are shown in the Joana IFC Annotations
view at the bottom of the figure. The message shows the kind of annotation (ANN
stands for provided security level, OUT for required security level, and RED
for declassification with both). Next to the message, the R and P annotations
are shown. The rest of the entries describe the annotated source position and
the ID of the SDG node. Another View, called “Joana IFC Marker/SDGNode
Matching” allows precise matching of the selected source to its respective SDG
node according to the debug information provided in the class file. The last
view, depicted on the right in Figure 4 lists all violations found by the last IFC
checking. For the example program, a run of the IFC algorithm determines a
security violation between nodes 36 (P (36) = secret) and 49 (R(49) = public)



because of the missing declassification in foo. When this declassification from
confidential to public is introduced, no more illicit flow is detected.

4 Case Studies

As an initial micro-benchmark to compare our approach with type-based IFC,
let us reconsider the program from Figure 1. Remember that PDG-based IFC
guarantees that there is no flow from the secure variable (annotated P (11) =
High) to the first output statement in line 20. Hence we analyzed the program
from Figure 1 using Jif [18]. Jif uses a generalization of Denning’s lattices, the
so-called decentralized label model [19]. It allows to specify sets of security levels
(called “labels” based on “principals”) for every statement, and to attach a set of
operations to any label. This is written e.g. {o1 : r1, r2; o2 : r2; r3} and combines
access control with IFC.

But note that the decentralized labels encode these access control features in
an automatically generated standard security lattice and thus cannot overcome
the imprecision of type-based analysis. As an example, we adapted the first
part of Figure 1 to Jif syntax and annotated the declaration of o and both
instantiations of A with the principal {pp:}. The output statement was replaced
by an equivalent code that allowed public output. Jif reports that secure data
could flow to that public channel and thus raised a false alarm. In fact, no
annotation is possible that makes Jif accept the first part of Figure 1 without
changing the source code.

4.1 A JavaCard Applet

As another case study for IFC we chose the JavaCard applet called Wallet.1
It is only 252 lines long, but with the necessary API parts and stubs the PDG
consists of 18858 nodes and 68259 edges. The time for PDG construction was 8
seconds plus 9 for summary edges on an Intel Core 2 Duo CPU with 2.33GHz
and 2GB of RAM.

The Wallet stores a balance that is at the user’s disposal. Access to this
balance is only granted after supplying the correct PIN. We annotated all state-
ments that update the balance with the provided security level High and inserted
a declassification to Low into the getBalance method. The methods credit and
debit may throw an exception if the maximum balance would be exceeded or
if there is insufficient credit, resp. In such cases JavaCard applets throw an
exception, and the exception is clearly dependent on the result of a condition
involving balance. The exception is not meant to be caught but percolates to the
JavaCard terminal, so we inserted declassifications for these exceptions as well.
Besides this intended information flow, which is only possible upon user request
and after verifying the PIN, our analysis proved that no further information flow
is possible from the balance to the output of the JavaCard.

1 http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html
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Note that this JavaCard applet—while operating on a restricted variant of
Java—leverages many features of this standard: In particular we analyzed about
85 static variables and included all control flow due to implicit exceptions into
our analysis without the need to explicitly declare or catch these. Some of these
features would at least require reengineering of source code, others are explicitly
prohibited by Jif, so this benchmark cannot be certified with Jif. Again we find
that the increased precision of dependence graph based analysis allows a more
permissive language.

4.2 The Battleship Example

all

player other

noOne

Fig. 5. The lattice for analyzing the battleship example

The previous experiments demonstrated that our new approach is more gen-
eral than Jif, because we can analyze realistic programming languages (in prin-
ciple all languages that compile to Java bytecode) and accept a larger number
of secure programs due to increased precision. The next step in our evaluation
will examine a native Jif program to get a direct comparison of practicability
between these two systems. As a benchmark program, we chose the battleship
example, which comes with every Jif installation and implements a non-GUI
version of the popular battleship game. In this game, two players place ships of
different lengths on a rectangular board and subsequently “bombard” random
cells on the opponents board until one player has hit all the cells covered by
adversary ships.

The source code of this program consists of about 500 lines plus the required
libraries and stubs. These yield an SDG consisting of 10207 nodes and 77290
edges. For this example we use a standard diamond lattice, where all ≤ player ≤
noOne and all ≤ other ≤ noOne but neither player ≤ other nor other ≤ player
(see Figure 5). This ensures that secret information of one player may not be
seen by the other player and vice versa.

Before this example program could be analyzed by our IFC analysis, it had
to be converted back to regular Java syntax. This included removal of all secu-
rity types in the program, conversion of all syntactic anomalies like parentheses
in throws clauses, and replacing all Jif peculiarities like its own runtime sys-
tem. Most of this process required manual conversion. We annotated the ship
placement strategy in the players initialization method with the security level



P (n) = player . The three declassification statements of the original Jif program
are modeled as declassifications from player to all in our system as well. Then
we annotated all parameters to System.out.println with R(x) = all , which
corresponds to the original program’s variable annotation.

1 /**
2 * Initialize the board by placing ships to cover numCovered coords.
3 */
4 void init /*{P:}**/(int /*{}**/ numCovered) {
5 // Here what we would do in a full system is make a call to
6 // some non -Jif function , through the runtime interface , to
7 // get the position of the ships to place. That function would
8 // either return something random , or would implement some
9 // strategy. Here , we fake it with some fixed positions for

10 // ships.
11 final Ship /*[{P:}]**/ [] myCunningStrategy = {
12 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(1, 1), 1, true),
13 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(1, 3), 2, false),
14 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(2, 2), 3, true),
15 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(3, 4), 4, false),
16 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(5, 6), 5, true),
17 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(5, 7), 6, false),
18 };
19
20 Board /*[{P:}]**/ board = this.board;
21 int i = 0;
22 for (int count = numCovered; count > 0 && board != null; ) {
23 try {
24 Ship /*[{P:}]**/ newPiece = myCunningStrategy[i++];
25 if (newPiece != null && newPiece.length > count) {
26 // this ship is too long!
27 newPiece = new Ship /*[{P:}]**/(newPiece.pos ,
28 count ,
29 newPiece.isHorizontal );
30 }
31 board.addShip(newPiece );
32 count -= (newPiece ==null ?0: newPiece.length );
33 }
34 catch (ArrayIndexOutOfBoundsException ignored) {}
35 catch (IllegalArgumentException ignored) {
36 // two ships overlapped. Just try adding the next ship
37 // instead.
38 }
39 }
40 }

Fig. 6. Initialization method of a Player in Battleship

When we checked the program with this security policy, illicit information
flow was discovered to all output nodes. Manual inspection found that all these
violations were due to implicit information flow from the players initialization
methods, more precisely, due to possible exceptions thrown in these methods.
However, closer inspection found that all of these exceptional control flow paths
are in fact impossible.

As an example consider the initialization method in Figure 6. If the program
checks whether a SSA variable is null, and only executes an instruction involving
this variable if it is not (cf. line 25), then no null-pointer exception may ever be



thrown at that instruction. However, our intermediate representation currently
does not detect that fact, even if two identical checks for null are present in the
intermediate representation, one directly succeeding the other. Jif supports such
local reasoning. For less trivial examples, where a final variable is defined in the
constructor, and may thus never be null in any instance method, Jif requires
additional annotation. We plan to integrate an analysis to detected such cases
even in the interprocedural case [16]. Jif can only support non-local reasoning
with additional user annotations.

Apart from null-pointer problems we found exceptional control flow due to
array stores, where Java must ensure that the stored value is an instance of the
array components, because of Java’s covariant array anomaly. When a variable
of an array type a[ ] is assigned an array of a subtype b[ ] where b ≤ a, then
storing an object of type a into that variable throws an ArrayStoreException.
Here Jif seems to have some local reasoning to prune trivial cases (see lines 11-
17 in Figure 6). Our intermediate representation does currently not prune such
cases, however, with the pointer analysis results we use for data dependences,
such impossible flow could easily be removed.

Lastly, for interprocedural analysis, we found that our intermediate repre-
sentation models exceptional return values for all methods, even if a method
is guaranteed to not throw any exception. Pruning such cases can render the
control flow in calling methods more precise and remove spurious implicit flow.
Jif requires user annotations for such cases, as all possibly thrown exceptions
must either be caught or declared, even RuntimeExceptions, which do not have
to be declared in usual Java.

Currently, our tool does not offer such analysis, so there are only exter-
nal means to detect such spurious cases: Either by manual inspection, theorem
proving (e.g. pre-/post-conditions), or path conditions [13]. After verifying that
such flow is impossible, we can block the corresponding paths in the dependence
graphs, and we do that with declassification. In contrast to normal declassifi-
cations, where information flow is possible but necessary, this declassification
models the guarantee that there is no information flow. As future work, we plan
to integrate analyses which prune impossible control flow to reduce the false
positive rate and thus the burden of external verification.

After blocking information flow through exceptions in Player’s initialization,
our IFC algorithm proved the battleship example secure with respect to the de-
scribed security policy. No further illicit information flow was discovered. During
the security analysis, based on only four declassifications, 728 summary declas-
sification nodes were created. This result shows that summary declassification
nodes essentially affect analysis precision, as they allow context-sensitive slicing
while blocking transitive information flow at method invocation sites. Instead
they introduce a declassification that summarizes the declassification effects of
the invoked methods. Note that the original Jif program contained about 150
annotations (in Figure 6 these are shown as gray comments), most of which are
concerned with security typing. Some of these annotations model, however, prin-
cipals and their authority. Still the number of annotations is at least an order



Table 1. Data for benchmark programs

Nr Name LOC Nodes Edges Time Summary
1 Dijkstra 618 2281 4999 4 1
2 Enigma 922 2132 4740 5 1
3 Lindenmayer 490 2601 195552 5 10
4 Network Flow 960 1759 3440 6 1
5 Plane-Sweep 1188 14129 386507 24 13
6 Semithue 909 19976 595362 24 33
7 TSP 1383 6102 15430 15 2
8 Union Find 1542 13169 990069 36 103
9 JC Wallet 252 18858 68259 8 9

10 JC Purse 9835 135271 1002589 145 742
11 mp 4750 271745 2405312 141 247

Table 2. Characteristics of the lattices in the evaluation.

nodes height impure bits

Lattice A 5 5 0 6

Lattice B 8 4 1 5

Lattice C 8 6 2 10

Lattice D 12 8 2 14

Lattice E 24 11 7 25

Lattice F 256 9 246 266

of magnitude higher than with our analysis. For a program that contains only
500 lines of code (including comments), this means that the annotation burden
in Jif is considerable.

One of the reasons why slicing-based IFC needs less annotations than type
systems is that side-effects of method calls are explicit in dependence graphs, so
no end-label (which models the impact of side-effects on the program counter)
is required, neither are return-value or exception labels. Those are computed as
summary information representing the dependences of called methods.

Apart from these labels, Jif requires explicit annotations to verify any non-
trivial property about exceptional control flow. In particular, many precondi-
tions (e.g., non-nullness) need to be included into the program text instead of
its annotations, e.g. explicit tests for null pointers or catch clauses, which are
typically followed by empty handlers as in the example shown in Figure 6. Pre-
conditions are therefore included as runtime tests to enable local reasoning. Such
coding style is an ordeal from a software engineering perspective, as it impedes
source comprehension and may conceal violated preconditions, which conflicts
with Dijkstra’s principle of the weakest precondition. What one really wants to
have is verification that such cases cannot happen in any execution and thus do
not need to be included into the source code.
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Fig. 7. Avg. execution time (y-axis, in s) of IFC analysis for the unionfind bench-
mark with different lattices and varying numbers of declassifications (x-axis)

5 Scalability

The previous sections demonstrated the precision and practicability of our ap-
proach. To validate the scalability of our new slicing-based information flow
control, we measured execution times on a number of benchmarks with varying
numbers of declassification and using lattices based on different characteristics.
The benchmark programs are characterized in Table 1. We evaluated a bench-
mark of 8 student programs with an average size of 1kLoc, two medium-sized
JavaCard applets and a Java application. The student programs use very few
API calls, and for nearly all we designed stubs (for details see [12]) as to not
miss essential dependences. The “Wallet” case study is the same as in section 4.1,
the “Purse” applet is from the “Pacap” case study [5]. Both applet SDGs contain
all the JavaCard API PDGs, native methods have been added as stubs. The
program mp is the implementation of a mental poker protocol [3]. Again stubs
have been used where necessary.

Table 2 shows the characteristics of the lattices we used in our evaluations:
The first column displays the number of nodes in the lattice, the next column the
maximal height of the lattice. The number of impure nodes in the lattice, which
is shown in the next column, represents all nodes that have more than one parent
in the lattice. The final column displays the number of bits needed in the efficient
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bitset encoding of Ganguly et al. [9]. This encoding allows near-constant2 com-
putation of infima (greatest lower bounds), which will turn out to be essential
for our evaluation. The lattices for evaluation have been designed such that they
cover different characteristics equally: Lattice A is a traditional chain lattice,
lattice B is more flat and contains an impure node. Lattice F has been auto-
matically generated by randomly removing edges from a complete subset lattice
of 9 elements. Conversion to bitset representation is only possible for the Hasse
diagram, i.e. the transitive reduction partial order, which is not guaranteed by
random removal of order edges. So we included a reduction phase before bitset
conversion. Interestingly, Table 2 illustrates that the bitset conversion usually
results in a representation with size linear in the number of lattice nodes.

Figure 7 shows the average execution time of 100 IFC analyses (y-axis, in
seconds) for the unionfind benchmark of Table 1 using the lattices of Table 2.
We chose the unionfind benchmark here, as it had the longest execution time,
and the other benchmarks essentially show the same characteristics. For all IFC
analyses we annotated the SDGs with 100 random security levels as provided
and required security level, respectively. Moreover, we created 5 to 500 random
declassifications to measure the effect of declassification on IFC checking (shown
on the x-axis). The numbers illustrate that our IFC algorithm is quite indepen-

2 The infimum computation is in fact constant, but we need hashing to map lattice
elements to bitsets.
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Fig. 9. Avg. execution time (y-axis, in s) of IFC analysis for all benchmark
programs with the largest lattice and varying numbers of declassifications (x-
axis). Bars use a different scale.

dent of the lattice structure and size. In particular, we got a sub-linear increase
in execution time with respect to the lattice (and bitset) size. Apart from that,
the increase with the number of declassifications is also clearly sub-linear, since
the number of declassifications increases more than linear in our experiments
(see y-axis). Figure 8 depicts the execution time for computing summary de-
classification nodes, which is a prerequisite for precise IFC checking (for details
see [14, section 7]), therefore they have been acquired once for each combination
of program, lattice, and declassifications. They were determined with the same
random annotations as the numbers of Figure 7. Note that we did only compute
summary information between nodes that were originally connected by summary
edges. These numbers expose the same sub-linear correlations between time and
lattice size or numbers of declassifications, respectively.

Figure 9 and 10 show the average execution time (y-axis, in seconds) of
100 IFC analyses and the time for summary declassification node computation,
respectively, for all benchmark programs using the largest lattice and varying
numbers of declassifications. Lines in this graph use the scale depicted on the
right, while bars use a different scale, such that we included the numbers into
each bar. For most programs, the analyses took less than a minute, with only
semithue, purse, and unionfind requiring more time. Again, we found the correla-
tion between execution time and number of declassifications sub-linear. In fact,
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Fig. 10. Time for summary declassification nodes (y-axis, in s) for all benchmark
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the execution time for many benchmarks was lower with 500 declassifications
than with 100. These numbers clearly illustrate the scalability of our informa-
tion flow control analysis. There is no clear correlation between the number of
nodes in the dependence graph and analysis time.

However, there seems to be a correlation between the number of edges in the
SDG and the execution time. Unlike slicing, our IFC analysis is not linear in
the number of SDG nodes and edges, but must find a fixed point in the con-
straint system with respect to the given lattice. Therefore, it may traverse a
cycle in the SDG as often as the lattice is high, and when cycles are nested this
effect may become even worse. Our current implementation does not circumvent
these effects, so one observes that the programs with the most edges yield to
a substantial increase in analysis time. But note that the largest program, mp,
does not belong to the outliers but behaves good-naturedly. One reason might
be the different program structure, which can also be seen from original sum-
mary edge computation (see Table 1), which is considerably lower than for other
large programs. This program does—unlike JavaCard applets and our student
programs—not have a big loop in the main method which may invoke nearly
all functionality. Concluding, we assume that the program’s structure plays a
bigger role than the pure number of nodes or edges for analysis time.

While future work must evaluate the impact of standard slicing optimizations
on this technique for faster fixed point computation, we think that 1 minute exe-



cution time, as observed by the majority of our test cases, is definitely reasonable
for a security analysis. But even the three outliers require maximally 1.5 hours
(including summary declassification analysis), which should be acceptable for a
compile-time analysis that usually needs to be done only once.

5.1 Future Work

While we presented evidence for precision, scalability, and practicability, there is
still room for further improvements: In particular, we expect that optimizations
for slicing, e.g., as presented by Binkley et al. [6], apply to our information
flow analyses as well. These techniques produce up to 71% reduction in run-
time and thus significantly improve scalability. Further research must evaluate
which of these techniques are applicable to information flow control. Apart from
that, compositionality is given for type systems but other analyses, like pointer
analysis which is a prerequisite for our dependence graphs, are usually not. For
more scalability of our approach, we plan to investigate how to make dependence-
graph-based IFC compositional.

6 Related Work

Research in information flow control has been predominantly theoretic during the
last decade (cf. e.g. [17, 20, 21]) where proposed systems were not implemented
at all. More recently, increasingly more approaches are at least implemented
for a rudimentary language, often just a while-language. With Java being a
mainstream language, several approaches have targeted a core bytecode language
(e.g. [2, 4]), but essential features like exceptions, constructors, or unstructured
control flow are often not taken into account. Smith and Thober [22] present a
type inference algorithm for a subset of Java which ameliorates the immoderate
annotation burden of type based IFC. In contrast, the work described in this
paper supports full Java bytecode with unstructured control flow, procedures,
exception handling, etc., and shows that it scales to realistic security kernels.

Genaim and Spoto [10] define an abstract interpretation of the CFG looking
for information leaks. It can handle all bytecode instructions of single-threaded
Java and conservatively handles implicit exceptions of bytecode instructions. The
analysis is flow- and context-sensitive but does not differentiate between fields of
different objects. Instead, they propose an object-insensitive solution that folds
together all fields of a given class. In our experience [12], object-insensitivity
yields too many spurious dependences. The same is true for the approximation
of the call graph by class hierarchy analysis. In this setting, both will result in
many false alarms.

Chandra and Franz [7] implemented a hybrid IFC framework, where Java
bytecode is analyzed statically and the security policy is checked dynamically,
which allows dynamic updates of the policy. However, dynamic enforcement im-
poses a slowdown factor of 2. To improve performance of dynamic label compu-
tation, they only allow fully ordered sets instead of the general security lattices



used in this work. It is, however, not clear if fast infimum computation [9] is ac-
tually slower than their more restrictive scheme. In contrast to their system we
currently only allows a fixed security policy with purely static checking, which
induces higher compile time overhead in favor of zero runtime overhead.

For several years, the most complete and elaborate system for Java-like lan-
guages has been Jif [18]. As noted before, Jif is neither an extension nor a
restriction of Java, but an incompatible variant. Therefore it requires consider-
able reengineering efforts to convert a standard Java program to Jif. The newest
version offers confidentiality as well as integrity checking in the decentralized la-
bel model. Our system differs from Jif in that it directly analyzes Java bytecode
without requiring any refactoring of the source code. It, too, allows both integrity
as well as confidentiality checking, though that entails manual definition of the
security lattice, while Jif’s decentralized label model automatically generates an
appropriate lattice from the annotations. Still, our experiments indicate that the
increased analysis cost is in fact mitigated by a significantly lower annotation
burden and elevated analysis precision.

7 Conclusion

This paper evaluates our novel approach for information flow control based
on system dependence graphs as defined in our previous work [14]. The flow-
sensitivity, context-sensitivity, and object-sensitivity of our slicer extends natu-
rally to information flow control and thus excels over the predominant approach
for information flow control, which is security type systems.

The evaluation section showed that our new algorithm for information flow
control dramatically reduced the annotation burden compared to type systems,
due to its elevated precision. Furthermore, empirical evaluation showed the scal-
ability of this approach. While it is clearly more expensive than security type
systems, the evaluation demonstrates that security kernels are certified in rea-
sonable time. As this certification process is only needed once at compile time,
even an analysis that takes hours is acceptable when it guarantees security for
the whole lifetime of a software artifact. As a consequence, this paper makes
recent developments in program analysis applicable to realistic programming
languages. The presented system implements the first dependence-graph-based
information flow control analysis for a realistic language, namely Java bytecode.
While dependence graph based IFC is not a panacea in that area, it neverthe-
less shows that program analysis has more to offer than just sophisticated type
systems.
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