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Abstract
A static path condition is a precise necessary condition for informa-
tion flow between two program points. Previous work defined path
conditions for procedural languages. Object oriented languages of-
fer additional constructs such as dynamic dispatch, instanceof and
exceptions. In this paper, we present an analysis of these constructs,
which leads to precise path conditions operating only on the pro-
gram’s variables. This yields a gain in precision, allowing leverage
of automatic constraint solving. We present details of path condi-
tion generation for Java constructs, and discuss preliminary insight
from our prototype implementation.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal methods; D.1.5
[Programming Techniques]: Object-oriented Programming; F.3.2
[Logics and Meaning of Programs]: Semantics of Programming
Languages—Program Analysis; D.4.6 [Operating Systems]: Se-
curity and Protection—Information flow controls

General Terms Algorithms, Languages, Security, Verification,
Theory

Keywords Information Flow Control, Path Condition, Dynamic
Dispatch, Program Slicing, Java

1. Introduction
Information Flow Control (IFC) is a technique for discovering se-
curity leaks which may damage confidentiality or integrity of a
software system. Language-based IFC analyses the source code
of a program in order to check for confidentiality or integrity, and
has become a rapidly developing field (see [28] for an overview).
Language-based IFC is related to program semantics as well as
program analysis. Many authors proposed to implement IFC us-
ing non-standard type systems [29, 25]. For example, the Mo-
bius project is developing sophisticated theoretical foundations as
well as practical implementations and machine-checked correct-
ness proofs for type-based IFC and proof-carrying Java code on
mobile devices [18, 3].

But type-based approaches, while effective, do not fully exploit
the program analysis technology of today. Type-based analysis
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is usually not flow-sensitive, context-sensitive, or object-sensitive,
leading to imprecision and false alarms. A more precise approach
to IFC is based on program slicing and was first proposed by the
current authors [30, 14, 15]. IFC based on slicing and dependence
graphs is flow-sensitive, context-sensitive and object-sensitive [16],
and has been proven to be consistent with the traditional notion of
noninterference [31]. Slicing-based IFC utilizes the sophisticated
program analysis technology available today, and demonstrated to
be applicable to several 10000 lines of code. In particular, our Java
slicer [16] has been augmented with security levels and declassi-
fication, as well as dataflow equations for precise interprocedural
computation of security levels; this slicing-based IFC for Java has
been used on several realistic case studies [14, 15].

But both type systems and program slicing are “dumb” in the
following sense: they can only provide a binary answer to a security
question; that is, they can state whether illegal flow between two
program points is possible, or whether this is definitely not the case.
They may be able to locate the source point making trouble, but
they are unable to provide insight into the specific conditions of a
security violation. In particular, they can not generate input values
which make the security violation visible.

Path conditions, as first proposed in [30], are much more precise
because a path condition says why (i.e. under which conditions)
information flow takes place. Path conditions and its underlying
program slicing machinery are designed for high precision as well
as scalability, and aim to support realistic languages like C or Java
bytecode.

Details of path conditions have been presented in [31]. This
paper also described applications of path conditions for IFC in
realistic C programs, and established the connection between path
conditions and noninterference. For Java, however, how to generate
precise path conditions has not been defined yet.

In this paper, we present the first path condition generator for
Java which relies solely on static program analysis. Of course, the
main problem in generalizing path conditions from C to Java was
the treatment of object-oriented features such as dynamic dispatch
and dynamic type checks.

1.1 Overview
Path conditions are generated according to all possible dependence
paths from the source to the target point. A constraint solver re-
duces these conditions to input values that trigger information flow
between these two points. Such input values have been named “wit-
nesses” in [31], and may be quite helpful e.g. in law suits con-
cerning security violations. However, [31] only defines path condi-
tions for procedural languages. Our preliminary idea for Java pre-
sented in [15] suffers from path conditions containing dynamic type
checks, which constraint solvers cannot simplify statically. Thus
witnesses cannot be generated, and the path conditions from [15]
are only a first step towards realistic applications.
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1 a = u();
2 while (n>0) {
3 x = v();
4 if (x>0)
5 b = a;
6 else
7 c = b;
8 }
9 z = c;
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1 2

3 4
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9

Figure 1: A small program and its dependence graph

This paper presents a detailed study of object-oriented language
constructs based on Java’s language specification, as well as solu-
tions for their integration into a path condition that contains only
program variables and values. We start discussing dynamic type
checks à la instanceof and extend the solutions found there to
dynamic dispatch and exception handling. All these constructs are
based on dynamic type checks. These checks can either be approx-
imated conservatively, or — using program slicing — be trans-
formed into a subcondition that no longer involves the program’s
types but ranges over program variables. Thus we present the first
approach to generate realistic path conditions for Java.

We have implemented a prototype path condition generator for
Java based on the existing implementation for C and our depen-
dence graph generator for Java [16], and demonstrate the feasibility
of our extensions with preliminary case studies.

2. Foundations of Path Conditions
Program dependence graphs (PDG) are a standard tool to model
information flow through a program. Program statements or condi-
tions are represented by the nodes, the edges represent data and
control dependences between statements or conditions. A path
x →∗ y means that information can flow from x to y; if there is
no path, it is guaranteed that there is no information flow. In partic-
ular, all statements (possibly) influencing y (the so-called backward
slice) are easily computed as BS (y) = {x | x→∗ y}

For the small program and its dependence graph in Figure 1,
there is a path from statement 1 to statement 9, indicating that input
variable a may influence output variable z. Since there is no path
1→∗ 4, there is definitely no influence from a to x.

A chop for a chopping criterion (x, y) is the set of nodes that are
part of an influence of the (source) node x on the (target) node y.
This is the set of nodes that lie on a path from x to y in the PDG:
CH(x, y) = {z | x →∗ z →∗ y}. For convenience, we will also use
CH(x, y) for the set of paths between x and y.

Note that PDGs, slicing and chopping are much more complex
for realistic languages with procedures, pointers, complex control
flow, and data structures. An overview of fundamental slicing tech-
niques can be found in [20]; technical details of our dependence
graph generator for full Java bytecode can be found in our previous
work [16].

2.1 Intraprocedural Path Conditions
In order to make program slicing more precise, Snelting introduced
path conditions [30], which are necessary conditions for informa-
tion flow between two nodes. The formulae for the generation of
path conditions are quite complex (for details, see [31]), and only
the most fundamental formula will be given here:

PC(x, y) =
∨

P∈CH(x,y)

∧
z∈P

E(z) where

E(z) =
∨

P Control Path Start→∗z

∧
ν→µ∈P

c(ν→ µ) (1)

PC(x, y) is a necessary condition for flow from x to y, and E(z) is
a necessary condition for the execution of z. A control path is a
path that consists of control dependence edges only. Thus, E(x) is
computed along all control paths from the Start node of the function
to x based on the conditions c(ν → µ) associated with dependence
edge ν → µ. For control dependences, c(ν → µ) is typically a
condition from a while- or if-statement. Program variables in a
path condition are (implicitly) existentially quantified, as they are
necessary conditions for potential information flow.

In [31] Snelting et al. argue why this formula is correct and
precise, and why it improves slicing considerably. Note that cycles
in CH(x, y) can safely be eliminated for PC(x, y), such that the
formula is always finite. For the example in Figure 1, the following
execution and path conditions are computed:

c(2→ 3) ≡ c(2→ 4) ≡ (n > 0), c(4→ 5) ≡ (x > 0),
c(4→ 7) ≡ (x ≤ 0),

E(1) ≡ true, E(3) ≡ (n > 0), E(5) ≡ (n > 0) ∧ (x > 0),
PC(1, 5) ≡ E(1) ∧ E(5) ≡ (n > 0) ∧ (x > 0)

In the presence of data structures like arrays or pointers, addi-
tional constraints will be generated. For data dependences, Φ(ν →
µ) is a condition constraining information flow through data types.
As an example we consider arrays (a full presentation can be
found in [31]): A data dependence ν → µ between an array el-
ement definition a[E1] = . . . and a usage . . . = a[E2] generates
Φ(ν → µ) ≡ E1 = E2; all other data dependences will generate
Φ(ν → µ) ≡ true. The equation to compute a path condition now
becomes:

PC(x, y) =
∨

P∈CH(x,y)

∧
z∈P

E(z) ∧
∧

u→v∈P

Φ(u→ v)

 (2)

For clarification consider the following program fragments and
their path conditions:

1 a[i+3] = x;
2 if (i>10)
3 y = a[2*j-42];

and
1 a[i+3] = x;
2 if ((i>10)&&(j<5))
3 y = a[2*j-42];

with their path conditions:

PC(1, 3) ≡ (i > 10) ∧ (i + 3 = 2 j − 42)
and

PC(1, 3) ≡ (i > 10) ∧ ( j < 5) ∧ (i + 3 = 2 j − 42) ≡ false,
as this condition is not satisfiable.

These examples indicate that path conditions give precise condi-
tions for information flow, and can sometimes determine that such
flow is impossible even though there is a path in the graph. Note
that in practice path conditions tend to be large and a constraint
solver is used to simplify them.

2.2 Interprocedural Path Conditions
In analogy to interprocedural slicing and chopping, interprocedural
path conditions need to be restricted to realizable [20] paths. In-
tuitively, this means that a path in the system dependence graph
(SDG) [17] — i.e. several PDGs connected by interprocedural
edges according to the call graph — that enters a procedure through
a certain invocation site must not leave it at a different invocation
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Figure 2: Abstract structure of multiple invocations of method f

site. As an illustration, consider Figure 2. Here, there are only two
realizable paths at call site A (left), namely from parameter a to c
and from b to d. These transitive dependences, stemming from de-
pendences in method f, are represented in the SDG as summary
edges (dashed in Figure 2). The path from a to g is invalid, as pa-
rameters from one invocation cannot influence another invocation.

In the following, we will focus on path conditions where start
and end node are in the same method, and will concentrate on
object-oriented constructs. The general case, where start and end
node of the path condition lie in different methods, is not specific
to Java and has been addressed in previous work [31].

Path conditions factor out common subpaths with virtual de-
composition [31]; common subpaths between formal parameters
connected by a summary edge have been found good candidates
for such decomposition. Virtual decomposition ignores call and
parameter-passing edges but includes summary edges instead. A
specific Φ condition (which is conjunctively added to the execu-
tion condition) represents the condition for information flow along
a summary edge [31]. This condition is induced by the path condi-
tion between the corresponding formal parameters combined with
conditions that represent parameter binding. In Figure 2 the condi-
tion between a and c would be:

Φ(a→ c) ≡ u = a ∧ PC(u, x) ∧ c = x

Thus PC(u, x) can be reused at other call sites with a different
parameter binding.

Details of path condition generation are not presented here,
but the reader should be aware that making path conditions work
for full C and realistic programs required years of theoretical and
practical work [30, 27, 26, 31]. Today, the implementation ValSoft
can handle C programs up to approx. 10000 LOC and generate
path conditions in a few seconds or minutes. Path conditions for
Java are implemented as an extension of ValSoft, thus utilizing
the sophisticated ValSoft implementation for procedural language
constructs.

3. Dynamic Type Tests
In this section, we explore the precise semantics of the instanceof
operator in order to utilize it in path conditions. Informally, the
result of the expression e instanceof T is true iff the value of the
expression e is not null and e has a runtime type that is below
the type constant T in the type hierarchy [12]. A compile time
error occurs, when no path exists in the type hierarchy from T to
the static type of e. The language thus allows e to have a static
type which is equal to or below T in the hierarchy, even though in
that case, unless e is null, the expression will always evaluate to
true. All this is well known, but path conditions require a precise
formalization of the instanceof semantics.

3.1 Precise semantics for instanceof
Java’s reference types are identical to the defined classes (and in-
terfaces) in a program, so the terms type and class (interface)
are used interchangeably. We write A <: B if A is a subclass
of B. A type hierarchy is the transitive closure of the subclass
(<:) relation. Let C be the set of class types, I the set of in-
terface types, R = C ∪ I the set of reference types, P the set
of primitive types and A the set of array types. Further let S =
{java.io.Serializable, Cloneable, Object}. The notation e :
τ denotes that e has dynamic/runtime type τ, and e :: τ denotes
static typing, respectively.

The type hierarchy induces concrete sets of types that satisfy the
instanceo f operator: Let Γτ denote the set of types in the hierarchy
that evaluate to true in the instanceof τ expression, i.e.

e instanceof τ ≡ e : ρ ∧ ρ ∈ Γτ (3)

For brevity, we assume a special null-type with Γnull = ∅ Then
the definition of instanceof in the JLS [12] requires:
If τ ∈ R then

ρ ∈ Γτ iff (ρ ∈ C ∧ ρ ≤: τ) ∨ (ρ ∈ A ∧ τ ∈ S) (4)

else if τ ∈ A then

ρ ∈ Γτ iff ρ = ρ′[] ∧ τ = τ′[] ∧ ρ′ ∈ Γτ′ (5)

else if τ ∈ P then
ρ ∈ Γτ iff ρ = τ (6)

The last term of equation (5) corresponds to Java’s covariant
array anomaly, that may result in type safety problems when storing
into arrays. When the complete type hierarchy is given at analysis
time, Γτ can easily be computed from the type hierarchy with
e.g. class hierarchy analysis (CHA) [7] or more refined analyses
like rapid rype analysis (RTA) [2] and the XTA algorithm [33]. A
few special cases of Γτ are of high importance:

ΓOb ject = C ∪A, which is infinite in principle1 due toA (7)

ΓCloneable = {X | X <: Cloneable} ∪
⋃

c∈R∪A∪P

c[] (8)

3.2 Path Conditions for instanceof
The Γτ constructed in the previous section are necessary to describe
the generation of precise path conditions for instanceof. Note
that these path conditions still contain dynamic type tests of the
form expr : ρ; these will be removed by transformation in the next
section.

Algorithm 1 Path condition for instanceof
Input: An expression expr instanceof τ
Output: Corresponding path condition with dynamic type tests.

1: if τ = Ob ject ∨ (τ ∈ S ∧ expr :: τ′[]) ∨ (τ = τ′[] ∧ τ′ ∈ P)
then

2: return expr , null
3: else
4: return expr , null ∧ (

∨
γi∈Γτ

expr : γi)
5: end if

Algorithm 1 presents how path conditions for instanceof ex-
pressions are computed; the algorithm is based on the precise
instanceof semantics above. The differences between equa-
tions (4)–(6) and the algorithm stem from optimizations which
are done at compile time, see the JLS [12]. For example, Γint[] =

1 In Java, the number of array dimensions is bounded by 255 [21].



1 // pre: B extends A
2 public class InstanceOfExample {
3 static boolean pred = true;
4 public static void main(String[] args) {
5 A a = pred ? new A() : new B();
6 System.out.println(instanceOf(a));
7 }
8 public static int instanceOf(A sel) {
9 int result = 0;

10 if (sel instanceof B)
11 result = 42;
12 return result;
13 }
14 }

Figure 3: An example for the instanceof operator

{int[]}, therefore the type test is done at compile time and no fur-
ther runtime constraint is required but the test for null.

Obviously, the more refined Γτ is determined, the more precise
the condition for the instanceof expression becomes. As points-
to analysis is usually a prerequisite for precise slicing, points-to
results can be leveraged to increase precision of Γτ. If the number
of possible runtime types thereby reduces to less than or equal to
1, the path condition can immediately be reduced to true (if the
remaining type is an instance of τ, provided that the expression can
never be null) or f alse. As usual, determining Γτ requires whole-
program analysis either without reflection, or using conservative
approximations (e.g. [23]).

For the example program in Figure 3, the initial path condition
between the parameter in line 8 and the return value in line 12 is

PC(sel8, result12) ≡ sel instanceof B

as no other path between these program points exists in the PDG.
Since B is no special type, Algorithm 1 replaces this condition by

PC(sel8, result12) ≡ sel , null ∧ sel : B

3.3 Exploiting backward slices in type tests
Path conditions for instanceof, as described so far, are of limited
practical value, as they may contain type tests with no link to vari-
able values (e.g. sel : B), and thus cannot serve as a witness. This
section presents a novel technique to transform such conditions into
a form containing only program variables and values, which thus
can be used to generate witnesses. The fundamental idea is to re-
place variables in runtime type checks by their backward slice.

The conditions in the last section contained terms of the form∨
i∈Γτ (e : γi) for some type τ, that are essentially runtime checks.

Program slicing offers a means to replace these conditions with
terms that only reference program variables. The term e : γi de-
pends on the last definition of e and will evaluate to true only if
e had been assigned an instance of γi. The program dependence
graph allows to resolve places from which γi-allocations reach a
given statement. This value flow is contained in the so-called back-
ward data slice [4], or more precisely, the statements in a thin
slice [32].

The following steps are to be taken to generate this refined path
condition:

1. Determine the basic path condition p according to Algorithm 1
in section 3

2. Compute the backward data slice or thin slice for the parameter
e of the instanceof τ operator

3. For each type in p extract the allocation sites of that type from
the slice

fA

a b

c d

A.f()

c’ d’

B.f()

Figure 4: Virtual method call with two possible targets and sum-
mary edges

4. Concatenate the path conditions from the program’s start
node to each of these allocation sites and from there to the
instanceof expression with logical or

5. Replace the dynamic type checks in the basic path condition
with the term generated in the last step.

Formally, with Ji := {ai, j ∈ BS thin(e) | ai, j is an allocation
site of type γi} we obtain the fundamental equation

e : γi ⇒

|Ji |∨
j=1

(
PC(Start, ai, j) ∧ PC(ai, j, e)

)
(9)

Informally, when e has runtime type γi, the program must have
passed an allocation site of that type, and this is only possible at
one of the allocation sites that reach expression e. Interprocedural
reaching definitions are modeled in the thin slice. PC(Start, ai, j)
in equation (9) is necessary to reach allocation site ai, j (included
in the thin slice) from the program’s beginning, and PC(ai, j, e) is
required to get from there to expression e. Note that taking one of
these paths (i.e. PC(Start, ai, j) ∧ PC(ai, j, e) holds) does not guar-
antee that e has dynamic type ai, j as slicing may be conservative,
so equation (9) is only an implication.

This equation has the additional advantage that the number of
terms becomes finite due to the finite number of allocation sites, as
opposed to the theoretically infinite sets Γτ[]. If the program repre-
sentation contains all default initializations of variables explicitly,
tests for null can be omitted if the backward data slice does not
contain such a value.

Considering the example in Figure 3 again, the condition from
Algorithm 1 (sel , null ∧ sel : B) needs to be refined using
equation (9). The test for null is redundant, as all program paths
define sel with a non-null value. The backward data slice of
sel yields both allocations in line 5, where only the second has
appropriate type. Hence equation (9) collapses to

PC(sel8, result12) ≡ sel : B

≡
(
(pred = true)∧!pred ∧ true

)
≡ f alse (10)

Thus the parameter sel cannot influence the outcome of this
method, even though the program slice says so.

4. Dynamic Dispatch
Dynamic dispatch has great influence on path conditions: In con-
trast to statically bound methods, a virtual method call might have
multiple possible target methods, one of which is executed at run-
time according to the type of the target object. As an example, Fig-
ure 4 shows a method invocation site for a target object of static
type A, which could dispatch either to A.f() or B.f(). The invoca-



1 class A {
2 int result = 42;
3 int f(int x) {
4 if (x < 1)
5 result = x;
6 return result;
7 }
8 public static void main(String[] args) {
9 A o = new B();

10 int x = 2;
11 int y = o.f(x);
12 }}
13 class B extends A{
14 int f(int x) {
15 if (x < 2)
16 result = x;
17 return result;
18 }}
19 class C extends A {
20 int f(int x) {
21 if (x < 3)
22 result = x;
23 return result;
24 }}

Figure 5: Example program for dynamic binding

tion site holds two parameter nodes a and b where two summary
edges (dashed) model the transitive flow that is possible between
the formal parameters in the possible target methods.

4.1 A naive path condition
Since it is statically unknown which target method is executed,
one might obtain the following naive path condition for dynamic
dispatch of method f, which simply disjuncts all possible cases:

PCf(x, y) ≡
n∨

i=1

PCγi .f(x, y) (11)

where x and y are in general two actual parameters of the call
(connected by a summary node), PCγi .f(x, y) is the condition of the
invocation target for type γi between the formal parameter nodes
corresponding to x and y. Note that not all subclasses must redefine
f, so γi.f might in fact reference a definition of f in a superclass of
γi. For example, if C <: B <: A and only C and A (re)define f, then
B.f is actually A.f.

For Figure 4, equation (11) yields

PC(a, b) ≡
(
(c = a) ∧ PCA(c, d) ∧ (b = d)

)
∨
(
(c′ = a) ∧ PCB(c′, d′) ∧ (b = d′))

For the example program in Figure 5, the path condition between x
and y on line 11 would be:

PC(x, y) ≡ PCA(x, y) ∨ PCB(x, y) ∨ PCC(x, y)
≡ x < 1 ∨ x < 2 ∨ x < 3 ≡ x < 3 (∗)

where PCA, PCB, PCC are the standard path conditions for the three
(re)definitions of f between the formal parameter nodes corre-
sponding to x and y.

While this path condition is correct (it is a necessary condition
for information flow) and easy to build, it is too imprecise since the
program semantics disallows more than one target method. We will
therefore develop an approach to handle dynamic dispatch similar
to the instanceof expression in the last section.

4.2 Exploiting slices again
Previous work [15] already presented a first step towards interpro-
cedural path conditions, precisely expressing the semantics of dy-
namic dispatch. The basic terms essentially become implications
on the target object’s runtime type.2 For the example program in
Figure 5, the path condition between x and y on line 11 would be:

PC(x, y) ≡ (o : A⇒ PCA(x, y)) ∧ (o : B⇒ PCB(x, y))
∧ (o : C ⇒ PCC(x, y)) (∗∗)

In general, for a dynamically dispatched call y = o.f(x), the JLS
[12] induces the following fundamental condition:

PCf(x, y) ≡
n∧

i=1

(o : γi ⇒ PCγi .f(x, y)) (12)

An alternative formulation of this condition is:

PCf(x, y) ≡
n∨

i=1

(o : γi ∧ PCγi .f(x, y)) (13)

The equivalence proof for equations (12) and (13) can be found in
the appendix. The proof relies on the fact that not more than one
of the disjunctions can be satisfied at the same time, and holds pro-
vided o , null. In case o = null, formula (13) is more precise than
(12), as it correctly evaluates to false: a flow of information through
the method body is impossible, since an exception is thrown.

However, both path conditions are of limited practical value,
as they again contain dynamic type tests and thus cannot serve as
a witness. But again equation (9) is applicable to this condition,
so the dynamic type tests can be transformed to a complex path
condition with no explicit type tests. In general, we obtain the
equation

PCf(x, y) ≡
n∨

i=1

(( |Ji |∨
j=1

PC(Start, ai, j) ∧ PC(ai, j, o)
)

∧ PCγi .f(x, y)
)

(14)

Note that the condition of equation (14) is slightly weaker (but still
conservative) than equation (13), as equation (9) is no equivalence
but an implication. For Figure 5, we obtain:

PC(x, y) ≡ ( f alse ∧ PCA(x, y)) ∨ (true ∧ PCB(x, y))∨
( f alse ∧ PCC(x, y)) ≡ x < 2 (∗∗∗)

as the backward data slice contains only the allocation in line 9, so
this condition is more precise than the basic formula (11). Note that
(∗∗) was already more precise than (∗), while (∗ ∗ ∗) now collapses
to a simple condition without type tests “x < 2”, which is more
precise than the “x < 3” in (∗).

5. Exceptions
In principle any subtype of Throwable can be caught in Java, even
subtypes of Error. The latter indicate a VM failure from which
recovery is typically not possible, so catching Errors or Throwable
is discouraged and not discussed in this paper.

As finally blocks are always executed, they can be incorpo-
rated into the CFG as usual and do not impose new challenges for
path conditions. However, catch blocks can alter the control and
data flow and must therefore be treated accordingly. It is possi-
ble to have multiple catch blocks for the same try block. In this

2 [15] used ’instanceof’ in the example, which might be misleading due to
Java’s instanceof operator. The formulae in this work present the exact
semantics.



1 public static void main(String[] args) {
2 System.out.println(exceptionMethod(1));
3 }
4 public static int exceptionMethod(int i) {
5 try {
6 return 5/i;
7 } catch (ArithmeticException e) {
8 return 0;
9 } catch (RuntimeException e) {

10 return Integer.MAX_VALUE;
11 }}

Figure 6: Example for exception handling

case, the appropriate handler is determined according to the excep-
tion’s class. The (textually) first catch block a thrown exception
matches handles that exception, matching is done according to the
instanceof relation [21].

In order to generate appropriate path conditions for this well-
known exception behavior pattern, we model multiple catch as fol-
lows: Multiple catch blocks can be translated to a typeswitch con-
struct which is branched to when an exception is raised. This mod-
eling results in control dependences labeled with type boundaries,
for which execution conditions based on instanceof expressions
can be leveraged in a straightforward manner. If multiple blocks
would match, it is conservative to have multiple conditions evalu-
ate to true. However, to represent Java’s semantics precisely and to
achieve maximum precision, we need to ensure that types that are
caught in previous catch blocks may not evaluate to true.

Formally, let E =< e1, . . . , ek > be the sequence of exception
handlers associated with a try block with type boundaries ei. Then
the control condition for the typeswitch branch involves a dynamic
type test of the form e : ρ ∧ ρ ∈ Γei . Using the adjusted definition
of Γ′ei

= Γei \ (
⋃i−1

j=1 Γe j ) represents the exact semantics of exception
handling and thus will report more precise results when applied to
Algorithm 1 and equation (9).

As an example consider Figure 6, where the path condition
between parameter i and the second catch block is to be computed.
The original path condition yields:

i = 0 ∧ exc1 ∈ ΓRuntimeExc

≡ i = 0 ∧ (exc1 : RuntimeExc ∨ exc1 : ArithmethicExc)
≡ i = 0 ∧ (i = 0 ∨ f alse) ≡ i = 0

as no other exception but ArithmeticException can be thrown in
exceptionMethod, while Algorithm 1 with the refined Γ′ will result
in the condition

i = 0 ∧ exc1 ∈ Γ′RuntimeExc ≡ i = 0 ∧ exc1 : RuntimeExc
≡ i = 0 ∧ f alse ≡ f alse

showing that this catch block is actually dead code.

5.1 Interprocedural Exceptions
Java supports two types of exceptions: Unchecked and checked ex-
ceptions. The former are any subtype of RuntimeException with
the main purpose of signaling a problem of bytecode interpretation.
Most bytecode instructions involved with object references and
array access may for example throw NullpointerExceptions or
ArrayIndexOutOfBoundsExceptions. Nearly every method in Java
might throw an exception, and this needs special attention when
modeling interprocedural exception handling. For each invocation
site, our SDG contains two return value nodes (one for the usual
return value and one for an uncaught exception), and two succes-
sors: one if method invocation terminated normally and the other

1 public class Weighing {
2 public static final int NORMAL = 0;
3 public static final int PAPER_OUT = 1;
4 public static void main(String[] args) {
5 char input = args[0].charAt(0);
6 weigh(PAPER_OUT , 1.0f, input);
7 }
8 public static void weigh(int status,
9 float kal_kg, char input) {

10 float u = 1.0f; // calibration factor
11 float u_kg = 0.0f; // initial value
12 while (true) {
13 u_kg = u * kal_kg;
14 if (status == PAPER_OUT) {
15 if (input == ’+’) {
16 kal_kg = 1.1f;
17 }
18 if (input == ’-’) {
19 kal_kg = 0.9f;
20 }
21 }
22 print(u_kg);
23 }
24 }
25 public static void print(float u_kg) {...}
26 }

Figure 7: Simplified weighing machine controller

1 ( NOT Weighing.print((1.0 * kal_kg))
2 ∧ (input = 43)
3 ∧ (1 = 1) )
4 ∨

5 ( NOT Weighing.print((1.0 * kal_kg))
6 ∧ (input , 43)
7 ∧ (input = 45)
8 ∧ (1 = 1) )

Figure 8: Path condition of Figure 7 from line 9 (input) to 22

for abrupt termination due to an uncaught exception [6]. Those
two successors are control dependent on the call site. However, the
predicate of the call site is not the result of the call but induced
by the semantics of our model. In our SDG it corresponds to the
term exc , null, where exc is the variable that stores the uncaught
exception. Therefore, the control dependences can be viewed as
summarizing the conditions which lead or do not lead to abrupt ter-
mination.3 In a conservative approximation, these conditions can
be set to true, assuming that both cases are feasible.

A more precise modeling retraces the conditions for abrupt ter-
mination to occur. This corresponds to generating the subconditions
between the invocation node and the return value node for normal
termination, and the exception node for abrupt termination, respec-
tively. Considering Figure 6 again, the print statement is only ex-
ecuted, if exceptionMethod terminates normally. As we have al-
ready seen, all exceptions in exceptionMethod are caught, so the
print statement is always executed, the PC for normal termination
of exceptionMethod reduces to true.

6. Implementation and Examples
We have extended the ValSoft infrastructure [31] to include a proto-
type implementation of Java path conditions. For the prototype, the

3 This is equivalent to manually checking for error codes in C



1 public class PCExc {
2 int secret;
3 public static void main(String[] args) {
4 System.out.println(excMethod(1));
5 }
6 public static int excMethod(int check) {
7 try {
8 PCExc pce = new PCExc();
9 pce.secret = check;

10 throw pce;
11 } catch (PCExc pce) {
12 return pce.secret;
13 }
14 }}

1 exc_0 instanceof PCExc
2 ∧ (exc_0 , null)

Figure 9: Illicit information flow through an exception and corre-
sponding path condition

Java SDG was adapted to interface with the C path condition gener-
ator. Thus the procedural Java constructs are tackled by the existing
path condition machinery. For the object-oriented constructs, we
concentrated on dynamic dispatch — the most characteristic fea-
ture of object oriented programming — according to equation (14).
At the time of this writing, the precise conditions for instanceof
and exceptions are not yet integrated and are approximated con-
servatively; the same is true for some other Java constructs. The
precise formulae for these constructs will be integrated in the near
future. Still, all conditions presented in this section have been gen-
erated by the current prototype.

First, consider the example in Figure 7, which is a simplified
version of a program used in previous work [13] and does not use
dynamic dispatch. The example shows that procedural Java con-
structs are handled quite similar to the C case. Thus the path con-
dition in Figure 8 naturally supports standard Java and finds the
illicit paths from the keyboard buffer to the printed weight. The
first line says that the print method may not throw an exception,
so the while loop may execute another time (The current imple-
mentation does not yet replace interprocedural exception handling
with the corresponding summarizing path condition, as presented
in section 5.1). The second line says that input must be the ASCII
of ’+’, and the third that status equals PAPER_OUT. Note that val-
ues are often substituted for variables when they have been found
constant by the SSA-form.

As a second example, we examined the program from Figure 3
with our prototype which yields

PC(sel8, result12) ≡ (new class A) : B

Since A is not a subtype of B, this condition is not satisfiable, and the
PDG contains no other dependence between sel and result. Thus
the parameter sel cannot influence the return value, even though
the program slice says so.

Figure 9 demonstrates precise exception handling. The program
indirectly transmits a secret value via a caught exception, which
is then made public by printing it to the screen. This illicit flow
is detected by the path condition, which checks information flow
between line 6 (check) and the return value in line 12. The first
line represents the catch block that only accepts a PCExc, and the
second line requires this exception not to be null. Both conditions
are always true in this catch block, so the path condition reduces to
true, illustrating that the illicit flow will always take place.

1 public class A {
2 public int foo(int x) {
3 if (x < 17) {
4 return x;
5 } else {
6 return 0;
7 }
8 }
9 }

10 public class B extends A {
11 public int foo(int x) {
12 if (x > 42) {
13 return x;
14 } else {
15 return 0;
16 }
17 }}
18 public class SolvableDynDispatch {
19 int main_decd;
20 int main_inp;
21 public static void main(...) {
22 System.out.println(
23 dynDisp(main_decd , main_inp));
24 }
25 static int dynDisp(int dcd,int in){
26 A dynamic;
27 int result;
28 if (dcd == 1) {
29 dynamic = new A();
30 } else
31 dynamic = new B();
32 result = dynamic.foo(in);
33 return result;
34 }}

Figure 10: Example for dispatch

The last program in Figure 10 illustrates exploitation of back-
ward slices for dynamic dispatch of the method call in line 32. The
condition computed by our tool between in and result on this line
is shown in Figure 11. It is determined based on the detailed path
condition presented in section 4.2. Two cases are possible for the
virtual bound method: Either the target object has type A (upper
case), or B (lower case). A third case contains conflicting terms and
is therefore omitted in Figure 11 as it will be removed by automatic
constraint solvers. A closer examination of the conditions reveals:
Line 1 stems from the condition in A.foo, the next two lines show
the subcondition from dynamic binding: line 3 stems from line 28.
The term after the disjunction represents the analogue condition for
a B object.

This condition can easily be transformed to input values that
trigger output of the second input value by a constraint solver,
e.g 1,16 for an A or 0,43 for a B object. These inputs can serve
as a witness for information flow from the input to the result.

Generating this path condition takes less than a second on a
standard PC. Although the implementation of precise conditions
for Java features has just begun, we expect that generating Java path
conditions takes about the same time as traditional ones. Empirical
evaluation in previous work has shown that this is possible within
a few minutes even for larger programs [31].

7. Related Work and Future Directions
Information flow control analyses today are mainly based on non-
standard type systems. For object-oriented languages, only Jif [25]
can handle a Java-like language, but Jif programs and Java pro-
grams are not compatible and need manual conversion. The anno-



1 ( (17 > x)
2 ∧ dynamic = new class A
3 ∧ (dcd = 1) )
4 ∨

5 ( (x > 42)
6 ∧ dynamic = new class B
7 ∧ (dcd , 1) )
8 ∨ ...

Figure 11: Excerpt of path condition for Figure 10

tation effort and the amount of restrictions imposed by Jif make
this task expensive. Apart from that, while type checking is effi-
cient, type systems like Jif are less precise than program slicing,
amongst others due to missing flow- and context-sensitivity, which
may lead to many spuriously reported violations.

Taint analysis is an important branch of integrity checking con-
cerned with tracking user input in programs. Current implementa-
tions like [22] find critical bugs related to missing user input val-
idation. However, these approaches focus on direct value flow, ig-
noring some or all implicit flow through control dependence.

Symbolic execution is a technique that executes a program with
symbols instead of concrete values for the parameters. During
execution, a predicate Φ (initially true) is built that constrains
the values. When a branch is taken, the predicate is updated to
reflect the condition for that branch. As it represents the conditions
for taking the current path through the CFG, it is often called
path condition as well, however as it only represents the condition
for taking a specific path, it is more like an execution condition
in our work. Today’s systems for symbolic execution are mainly
based on theorem provers or model checking. Theorem prover
based systems like in ESC/Java [10] require manual annotations to
generate verification conditions, while our path conditions analyze
a given chop fully automatically. Other systems rely on model
checkers e.g. [8] which are semi-automatic but need to cope with
state explosion. Most symbolic execution systems perform a per-
method analysis only, while our approach automatically generates
precise interprocedural path conditions.

Recent work by Jhala has been focusing on path slicing [19]. It
takes as input one particular path in the CFG and eliminates all the
operations that are irrelevant towards the reachability of the target
location. The result is a condition for the reachability of the target
location, its infeasibility is sufficient for the infeasibility of the path.
The technique does not work on the PDG but on the CFG only. It
has shown effective for elimination of counterexamples provided
by the model checker Blast. For our application this approach does
not seem beneficial as it needs to check every single path on its
own, while path conditions produce a necessary condition for all
paths between two statements and share common subterms.

Parametric program slicing [9] allows specification of con-
straints over the program’s input. A term rewriting system extracts
a program slice satisfying these constraints. Conditioned program
slicing [5] is a similar technique that slices based on a first or-
der logic formula on the input variables. The conditioned slice is
based on deleting statements while preserving the program’s be-
havior. Both approaches differ from path conditions in that they
do not determine input values but take them as input. In contrast,
path conditions provide a logic formula that must be satisfied for
an information flow to be feasible. Constraint solvers reduce this
condition to input values that satisfy the formula.

Dynamic Path Conditions [13] present two possibilities to re-
fine a static path condition: First, dynamic slicing (more precisely
chopping) greatly reduces the number of control paths. As these
paths form the basis of the path condition computation, the num-

ber of subclauses diminishes. Second, the variable trace is trans-
formed to a logical formula, the restrictive clause, which is con-
junctively linked to the path condition. The restrictive clause can be
constructed even in the case that the variable trace is fragmentary,
which allows using a flight recorder principle, where only the last
N events are stored. Combining these methods yields the greatest
effect. Hybrid approaches do not suffer as much from imprecision
as purely static analyses but need to cope with the vast amount of
trace data that dynamic approaches produce, and yield valid results
only for one execution path, so they are more adequate for post-
mortem analyses, when the deadly failure needs to be determined.
We plan to incorporate dynamic path conditions into this work as
this would allow — for example — to resolve dynamic binding into
a single target, or instanceof expressions into a boolean constant
without requiring subconditions.

Boolean path conditions as presented in this work and in
[30, 27, 26, 31] cannot express temporal properties. For example,
they cannot express that it is necessary for a specific flow that a loop
condition holds and later it does no longer, such that the loop ter-
minates. Boolean conditions become conservative when analyzing
loops and conditions that involve loop variables. A recent approach
by Lochbihler and Snelting [24] extends path conditions with tem-
poral logic to circumvent these imprecisions. Witnesses are created
by model checking instead of constraint solvers.

Another important language feature of Java has not been ad-
dressed in this work, namely concurrency. Two approaches have
been proposed in [31] to generate conditions in the presence of con-
currency: Interference dependence (inter-thread data dependence)
can either be treated like usual data dependence. However, since
interference is not transitive, this will result in overly conserva-
tive conditions. Alternatively, only possible program executions,
so-called threaded witnesses, are considered valid paths for path
condition computation, which requires more expensive slicing and
chopping algorithms. An evaluation of precise concurrent slicing
algorithms can be found in Giffhorn and Hammer’s work [11].

Path conditions can be applied to several areas of software
engineering like program understanding or test case generation. But
our main goal was and is to apply them to security-critical software
to statically enforce a given IFC security policy. We expect them to
be especially valuable for providing precise conditions under which
declassification of sensitive data is required.

Regarding the correctness of path conditions, Snelting et al. [31]
does not provide a correctness proof for their definition. However,
they provide a strong empiric validation that supports trust in its
soundness. Nevertheless, a new project — Quis Custodiet [1] —
is about to prove the soundness of IFC based on program slicing
[34] and path conditions using an interactive theorem prover. Path
conditions for Java, as presented in this paper, will be included in
this proof.

8. Summary
Path conditions make slicing-based IFC much more precise and in
particular give precise conditions for illicit information flow. We
presented the first fully static approach to precise path conditions
for Java. Our fundamental idea is to eliminate dynamic type checks
and dynamic dispatch by the backward slice of the involved vari-
ables. Our technique allows automatic constraint solvers to reduce
the derived path conditions to input values which make an illicit
flow visible.

The feasibility of our method has been shown by applying
our prototype implementation to several examples. Our work is
not finished at this point: A full implementation must transform
dynamic type tests for all Java language features, and test the
scalability on bigger case studies.
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Appendix: Proof of equivalence for equations (12)
and (13)
Proposition. Let o , null. Then

n∧
i=1

(o : γi ⇒ PCγi .f(x, y)) ≡
n∨

i=1

(o : γi ∧ PCγi .f(x, y))

Proof. 1. “⇒”: Let
∧n

i=1(o : γi ⇒ PCγi .f(x, y)). As exactly one of
the potential target methods of dynamic dispatch will be executed,
we know ∃! k. o : γk (where γk is the run-time type of o). Thus from
the premise we conclude PCγk .f(x, y)). Hence o : γk∧PCγk .f(x, y)),4
therefore

∨n
i=1(o : γi ∧ PCγi .f(x, y)).

2. “⇐”: Let
∨n

i=1(o : γi ∧ PCγi .f(x, y)). As above we know
that ∃! k. o : γk. Then also ∃! k. o : γk ∧ PCγk .f(x, y) holds.
Now let i ∈ 1..n. If i , k, then ¬(o : γi), thus the implication
o : γi ⇒ PCγi . f (x, y) holds trivially. If i = k, by assumption
PCγi .f(x, y) holds and hence the implication o : γi ⇒ PCγi .f(x, y).5
Thus

∧n
i=1(o : γi ⇒ PCγi .f(x, y)). �
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