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Abstract
We present a new approach combining dynamic slicing with path
conditions in dependence graphs enhanced by dynamic informa-
tion collected in a program trace. While dynamic slicing can only
reveal that certain dependences have been holding during program
execution, the combination with dynamic path conditions reveals
why, as well.

The approach described here has been implemented for full
ANSI-C. It uses the static dependence graph to produce a fine-
grained variable and dependence trace of an executing program.
This information is used for dynamic slicing, yielding significantly
smaller sets of statements than static slices, as well as for increasing
precision of the path condition between two statements. Such a
dynamic path condition contains explicit information about if and
how one statement influenced the other.

Dynamic path conditions work even when tracing information is
incomplete or corrupted e.g. in case of a “damaged flight recorder”.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Tracing; F.3.1 [Logics and Mean-
ing of Programs]: Specifying and Verifying and Reasoning about
Programs; F.3.2 [Logics and Meaning of Programs]: Semantics
of Programming Languages—Program Analysis

General Terms Algorithms, Reliability, Security, Theory, Verifi-
cation

Keywords Dynamic Slicing, Dynamic Chopping, Path Condition,
Information Flow Control

1. Introduction
Security for a software product should always be guaranteed a pri-
ori to its deployment, at least for security-sensitive products. Tra-
ditionally, this task has been done by static program analysis tech-
niques which provide powerful means to guarantee certain prop-
erties. For example, the ValSoft system [13] uses static program
slicing to check if security relevant parts of the system are influ-
enced by not security relevant parts and if such an influence has
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been found, ValSoft can generate necessary conditions for this in-
fluence to occur (called path conditions). Program slicing can be
seen as a form of information flow control [16]. Still, such checks
can only assert the validity of the specified properties.

For unforeseen incidents security-sensitive modules usually
contain some sort of “flight recorder”. It allows a posteriori re-
construction of problems leading to a—possibly fatal—error.

This work presents a new approach to employ the data recorded
during program execution—the program trace—for a posteriori de-
tection and isolation of problem causes. The trace is used to gain
higher precision in two ways, which may as well be combined:
First, a dynamic slicing algorithm identifies all statements that ac-
tually influenced the fatal statement during program execution. The
dynamic slice is generally much smaller than the static slice and
thus, a smaller set of statements have to be examined. If such a
statement is suspicious, a path condition can be computed between
the suspicious and the fatal statement. Path condition generation is
based on a chop between the suspicious and the fatal statement. The
dynamic chop between these statements is, again, generally much
smaller than the static chop (chops contain the statements that par-
ticipate in an influence from a source to a target statement). Thus, a
dynamic chop contains a smaller number of paths between the two
statements, leading to a less conservative path condition. Second,
the observed values of program variables are transformed into an
additional logical constraint, which, conjunctively combined, im-
proves the precision of path conditions.

This dynamic path condition allows the precise reconstruction
of the scenario that lead to the fatal error (post-mortem analysis). If
the dynamic path condition is unsatisfiable, there was definitely no
influence between the given statements even though the dynamic
chop indicated otherwise. But if the path condition is satisfiable, it
serves as a “witness” for the illegal information flow: A constraint
solver will resolve the path condition to input values which trig-
gered the illegal flow. These input values can be given to the pro-
gram again and the influence becomes visible once more. In case
of safety violations, these input values thus serve as witnesses for
the illegal behavior.

The remainder of this paper is organized as follows. Section 2
presents the theoretical foundations of slicing and path conditions.
In Section 3 we describe how information for the program trace
is collected and discuss problematic points of tracing. Section 4
presents the variants of the dynamic slicing algorithm. Their appli-
cation for path condition generation and the additional constraint
based on dynamic variable data is described in Section 5. Experi-
mental results are presented in Section 6. Related work is discussed
in Section 7. The last section concludes and presents future work.



1 a = u();
2 while (n>0) {
3 x = v();
4 if (x>0)
5 b = a;
6 else
7 c = b;
8 }
9 z = c;
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Figure 1. A small program and its dependence graph

2. Foundations
2.1 Static Slicing and Dependence Graphs
Mark Weiser introduced (static) program slicing primarily as a de-
bugging aid [21]. The idea was that programmers mentally ab-
stract away any code that cannot influence a statement showing
unexpected behavior. He called this statement the slicing crite-
rion. Weiser gave an algorithm for automatic slicing based on data
flow analysis in the source code. Later, program slicing was de-
fined as a reachability analysis in the Program Dependence Graph
(PDG) [6].

Program dependence graphs are a standard tool to model infor-
mation flow through a program. Program statements or conditions
are represented by the nodes, the edges represent the dependences
between statements or conditions. A data dependence edge x → y
means that statement x assigns a variable which is used in statement
y (without being reassigned underway). A control dependence edge
x → y means that the mere execution of y depends on the value of
the condition x (which is typically a condition in an if- or while-
statement).

A path x →∗ y means that information can flow from x to y; if
there is no path, it is guaranteed that there is no information flow.
In particular, all statements (possibly) influencing y (the so-called
backward slice) are easily computed as

BS (y) = {x | x→∗ y}

For the small C program and its dependence graph in Figure 1,
there is a path from statement 1 to statement 9, indicating that input
variable a will eventually influence output variable z. Since there
is no path 1→∗ 4, there is definitely no influence from a to x.

A chop for a chopping criterion (x, y) is the set of nodes that are
part of an influence of the (source) node x on the (target) node y.
This is basically the set of nodes that lie on a path from x to y in the
PDG:

CH(x, y) = {z | x→∗ z→∗ y}

For programs with procedures slicing and chopping is more
complex because the calling context of procedures has to be
obeyed. However, because the calling context is preserved in dy-
namic slicing and chopping almost automatically, it will not be
discussed here.

Note that PDGs and slicing are much more complex for realistic
languages with pointers, complex control flow, and data structures.
An overview of fundamental slicing techniques can be found in
[12, 18]; technical details will not be discussed here. For the full C
language, the computation of precise dependence graphs and slices
is absolutely nontrivial; there is ongoing research worldwide since
15 years. The state of the art in PDGs and slicing is summarized in
the recent work by Krinke [11].

2.2 Path Conditions
In order to make the analysis more precise, Snelting et al. intro-
duced path conditions [16], which are necessary conditions for in-
formation flow between two nodes.

The formulae for the generation of path conditions are quite
complex (for details, see [16]), and only the most fundamental
formula will be given here:

PC(x, y) =
∨

P Path x→∗y

∧
z node in P

E(z)

where E(z) is a necessary condition for the execution of z:

E(x) =
∨

P Control Path Start→∗ x

∧
ν→µ∈P

c(ν→ µ)

A control path is a path that consists of control dependence edges
only. Thus, E(x) is computed along all control paths from the Start
node of the function to x based on the conditions c(ν → µ) as-
sociated with dependence edge ν → µ. For control dependences,
c(ν → µ) is typically a condition from a while- or if-statement.
Program variables in a path condition are (implicitly) existentially
quantified, as they are necessary conditions for potential informa-
tion flow.

Because the paths between the criterion nodes are based on the
computed chops, we assume that a chop CH(x, y) is the set of
paths between x and y. We will be interested in the set of paths
P1, P2, . . . ∈ CH(x, y) and a slightly relaxed notation for path
conditions is used:

PC(x, y) =
∨

P∈CH(x,y)

∧
z∈P

E(z)

Figure 1 shows a small example program fragment and its
dependence graph. For this example, the following execution and
path conditions are computed:

c(2→ 3) ≡ c(2→ 4) ≡ (n > 0),
c(4→ 5) ≡ (x > 0), c(4→ 7) ≡ (x ≤ 0),
E(1) ≡ true, E(3) ≡ (n > 0),
E(5) ≡ (n > 0) ∧ (x > 0),
PC(1, 5) ≡ E(1) ∧ E(5) ≡ ∃n, x.(n > 0) ∧ (x > 0)

In the presence of complex data structures like arrays or pointers,
additional constraints will be generated. For data dependences,
c(ν→ µ) is a condition constraining information flow through data
types. As an example we only consider arrays (a full presentation
can be found in [16]): A data dependence ν → µ between an array
element definition a[E1] = . . . and a usage . . . = a[E2] generates
c(ν → µ) ≡ E1 = E2; all other data dependences will generate
c(ν → µ) ≡ true. The equation to compute a path condition now
becomes:

PC(x, y) =
∨

P∈CH(x,y)

∧
z∈P

E(z) ∧
∧
ν→µ∈P

c(ν→ µ)

For clarification consider the following program fragments and
their path conditions:

1 a[i+3] = x;
2 if (i>10)
3 y = a[2*j-42];

PC(1, 3) ≡ ∃i, j.(i > 10) ∧ (i + 3 = 2 j − 42)
and

1 a[i+3] = x;
2 if ((i>10)&&(j<5))
3 y = a[2*j-42];



PC(1, 3) ≡ ∃i, j.(i > 10) ∧ ( j < 5)
∧ (i + 3 = 2 j − 42)

≡ false

These examples indicate that path conditions give precise con-
ditions for information flow and can even determine that such flow
is impossible even though there is a path in the graph.

Note that in practice path conditions tend to be large and a
constraint solver is used to simplify them.

Details of path condition generation are not presented here, but
the reader should be aware that making path conditions work for
full C and realistic programs required years of theoretical and prac-
tical work [11, 14–16]. Just to mention a few things: the program
must be transformed into single assignment form first (see below);
and while PDG cycles can be ignored, due to the high number of
cycle-free PDG paths in realistic programs, interval analysis for ir-
reducible graphs must be exploited to obtain a hierarchy of nested
sub-PDGs; BDDs must be used to minimize the size of path con-
ditions. Today, our implementation ValSoft can handle C programs
up to approx. 10000 LOC and generate path conditions in a few
seconds or minutes.

2.2.1 Multiple Variable Assignments
Consider the example code in Figure 2 (left) and the (primitive)
path condition

PC(1, 5) ≡ (x < 7) ∧ (x = 8)

between a in line 1 and x in line 5. This condition is unsatisfiable,
although there is definitely a way how line 1 can influence line
5. The problem is that the program contains multiple assignments
to the variable x that this path condition cannot distinguish. For
static path conditions this problem is solved by using a variant of
SSA-form [5] of the program. That way, different variable defini-
tions are distinguished and eventually brought together using the φ
operator, thus replacing multiple variable assignments with single
assignments. Figure 2 (right) shows the SSA form of the original
program (left).

The SSA form makes our path condition solvable by distin-
guishing between different definitions of the variable x:

PC(1, 5) ≡ (x2 < 7) ∧ (x3 = 8)

Transforming a program into SSA form, however, modifies the
code representation and is thus not desirable for dependence graphs
in ValSoft which are close to the source code structure. In order to
maintain the code structure, an assignment form similar to the SSA
form is used: Index numbers represent the node numbers in the
dependence graph, allowing a precise distinction between different
variable occurrences. Path conditions as

(e puf [idx] == ” + ”)

are thus written as

(e puf 99[idx98] ==97 ” + ”101)

The φ operator does not occur in the code structure itself, but is
only used for computing path conditions.

2.2.2 Weak and Strong Path Conditions
For a given chop between two statements x, y one can usually
define more than one path condition. Still, every single instance
is a necessary condition for information flow along the chop. To
argue about quality, a partial order1 ≤ is defined for the pair (x, y)

PC′(x, y) ≤ PC(x, y) iff PC(x, y)⇒ PC′(x, y)

1 In fact, path conditions form only a preorder. Modulo equivalence one
obtains a partial order [14, 16].

1 x = a;
2 while (x < 7) {
3 x = y + x;
4 if (x == 8)
5 p(x);
6 }

1 x 1 = a;
2 while (x 2 =Φ(x 1 ,x 3 ),x 2 <7){
3 x 3 = y + x 2 ;
4 if (x 3 == 8)
5 p(x 3 );
6 }

Figure 2. Multiple variable assignments

In such a case PC(x, y) is called stronger than PC′(x, y). Stronger
path conditions are usually easier to solve by the constraint solver
and thus more favorable.

Note that the precision of the underlying chop affects the
strength of the path condition: if two chops exist where one is
more precise than the other CH(x, y) ⊂ CH′(x, y), then every path
P ∈ CH(x, y) in the smaller chop is also a path in the larger chop.
Thus, the smaller chop generates a stronger path condition, since
the disjunction in the path condition runs over fewer paths:∨

P∈CH(x,y)

∧
z∈P

E(z)⇒
∨

P∈CH′(x,y)

∧
z∈P

E(z)

This fact forms the theoretic basis for Section 4.
Adding another conjunctive term R to the path condition is a

different way to strengthen it. In Section 5 logical formula will
be generated from dynamic trace data and conjunctively combined
with the original path condition, yielding a stronger (or equal) path
condition:

PC(x, y) ∧ R ≥ PC(x, y)

3. Program Tracing
Trace data, also known as a runtime protocol of variable bindings
and their def-use locations, plays a role for dynamic slicing (cf.
Section 4) and for refinement of path conditions (cf. Section 5).

To collect trace data one has to execute the program in a con-
trolled environment, which motivated the employment of a stan-
dard debugger like the gdb. We implemented a debugger driver that
abstracts away from the actual debugger in use, offering the tracer
a standard interface for controlled execution.

The used tracing approach is based on a static dependence
graph. Any information that the tracer (and the debugger) needs for
controlled execution, like where to set break points and used/de-
fined variables, are extracted from a fine-grained system depen-
dence graph (SDG). Fine-grained means that statement nodes are
expanded to an Abstract Syntax Tree [11]. This fine-grained struc-
ture forms a prerequisite for building path conditions in general. It
also allows detailed tracing of variable bindings, where variables
that need to be recorded before statement execution (variables used
for the computation) are distinguished from the variable(s) defined
by the statement, which is recorded after execution. Thus every
statement is mapped to a set of variables and their role (Defini-
tion, Use). The control dependence information is extracted from
the SDG.

In the tracing phase, the program is executed statement by
statement, where for every statement the attached variables are
traced, either before or after the execution of the statement. For
procedure calls the tracer maps the actual parameters to the formal
parameters. This implies a Use and Definition role at the same time,
which are traced before the execution of the method call. Note that
a trace ‘inlines’ the called procedures and thus, is automatically
context-sensitive.



1 LINE 11
2 USE Z
3 DEF X
4 LINE 12
5 USE X
6 LINE 13
7 USE Y
8 DEF X
9 LINE 14

10 USE X

1 LINE 11
2 USE Z
3 DEF X
4 LINE 12
5 USE X
6 LINE 13
7 USE Y
8

9 LINE 14
10 USE X

Figure 3. Incorrect dependence by gap in protocol

3.1 Third Party Code
A problem well known in static program analysis arises for dy-
namic analyses as well: Libraries (especially provided by a third
party) usually do not provide source code nor the debugging infor-
mation needed to collect tracing data. I.e. any side-effect produced
by a library call does not generate the tracing information to pro-
duce correct dynamic dependences. When the debugging informa-
tion is extracted from the static SDG that problem arises already
during construction of the SDG. But even if one did not depend on
a static dependence graph would one face the same problem.

A possible solution has been employed by static analysis de-
signers for some years now: One writes stubs for those library
methods and conservatively adds the summary dependences at the
invocation point.

3.2 Incomplete Traces
Besides the problem of third party code, other reasons exist, why
a trace could be incomplete: Either the tracer looses information,
maybe on purpose for restricted memory, or because of limitations
of the tracing approach. But it depends on the purpose whether the
detail of the traced data suffices to gain sound results. As mentioned
at the beginning of this section, our goals are dynamic slicing resp.
chopping (cf. Section 4) and the refinement of path conditions with
dynamic variable data (cf. Section 5).

Dynamic slicing does not depend on the actual values of vari-
ables but on the def-use relations of variables. Missing entries in
the trace will most probably lead to false dependences and thus in-
correct dynamic slices. As an example consider Figure 3. While in
the left protocol line 10 depends on the definition in line 8, this en-
try has been missed in the protocol on the right. The dynamic slice
will determine a dependence to line 3 then, which is incorrect.

With gdb controlling the program execution and the fine-
grained variable tracing, one cannot guarantee the correctness of
the program trace in all cases: First one has to assert that one
line of source code has not more than one statement. Code like
x = a + x; x++; will not result in a detailed protocol since the
debugger works only line-based and will thus report only one defi-
nition and one use of x instead of two, respectively. Tools like GNU
indent produce code that circumvents these problems.

Multiple assignments to the same variable in one statement like
x = a + x++ are undefined in ANSI-C and will thus be ignored.
Under certain circumstances, however, our technique will produce
fragmentary traces in special cases: a statement with two method
calls like x = f(a) + g(b) may yield an incorrect value for b as
the debugger cannot stop between the method calls to allow accu-
rate parameter tracing. A solution to this problem is the combina-
tion of static slicing and dynamic slicing similar to [23]. Another
solution would be to transform the source program to a program
that has at most one assignment or one function call per statement.

4. Dynamic Slicing
Dynamic program slicing was introduced by Korel and Laski [10].
Dynamic slicing builds a dynamic dependence graph computed
from the real dependences arising during program execution.
Therefore, a dynamic dependence graph usually is considerably
smaller than a static dependence graph, which has to relay on con-
servative approximations not to relinquish soundness.

For illustration consider Figure 1 again. If the execution trace
is 1,2,3,4,7,9 then the static backward slice of node 9 is the whole
graph. The dynamic slice of 9 does, in contrast, not contain the
statements 1 and 5 as those did not contribute to the value of z in
the given run.

Once a program trace has been collected, dynamic slicing typ-
ically falls to two tasks: In the preprocessing phase a dynamic de-
pendence graph is generated by processing the collected data. In
the slicing phase this graph is traversed to build the dynamic slice
for the given slicing criteria.

A naive approach to dynamic slicing would mark all statements
encountered during program execution, reduce the static depen-
dence graph to the corresponding nodes, and do static slicing on
that graph. This approach is, however, imprecise which can be il-
lustrated on Figure 1: With the execution trace 1,2,3,4,7,2,3,4,5,9
the naive algorithm would mark all nodes visited, yielding a dy-
namic slice that contains the whole graph. Node 5 had no effect on
node 7, though, as the definition of b took place after the use. So,
nodes 1 and 5 should not be in the dynamic slice.

As a remedy, Agrawal [1] proposed not to work on the static de-
pendence graph but on the tracing protocol, which shows a linear
program with all loops unrolled. From that data the dynamic de-
pendence graph needs to be computed. Its nodes usually represent
basic blocks rather than single statements, which build the nodes
of the static variant. Dependences point from a variable use to its
last definition. It may be a bit confusing that dynamic edges are re-
versed compared to static edges. Dynamic (backward) slicing thus
follows all edges starting from the slicing criterion:

dBS (y) = {x | y→∗ x}

Since the length of the runtime protocol is in principle un-
bounded, the space requirement of the context-sensitive dynamic
dependence graph for long program runs explodes. Therefore sev-
eral ways to compact this graph were proposed.

Agrawal [1] noted that the number of statements in a program is
bounded and hence, the number of different slices must be bounded,
too. He found that nodes with the same transitive dynamic de-
pendences could be merged. This graph was called Reduced Dy-
namic Dependence Graph (RDDG). While this representation is
quite compact and gives a program slice in O(1) (the transitive de-
pendences are stored in every node), different instances of the same
node (e.g. in a loop) cannot be distinguished. So the reduced size
of the graph results in a loss of precision.

Context-sensitivity is a property that is not granted with such an
approach. As a consequence of the linearity of the trace, however,
dynamic slicing can be done in a context-sensitive manner, if la-
bels are added to the edges [24, 25]. The labels contain additional
information to disambiguate the distinct execution instances of the
statements that the edge links. Zhang et al. call this dynamic graph
the dynamic data dependence graph. As an example consider Fig-
ure 2 together with the execution trace 1,2,3,4,2,3,4,5. The graph
contains edge labels that capture the execution time of the involved
statements. The check whether x<7 on line 2 is executed at time 2
and depends on the value of x computed in line 1 at time 1. Thus
the edge contains these timestamps: (2, 1). The node corresponding
to line 3 (we will use the terms node/statement/line interchangeably
for this example) is dependent on the execution of statement 1 in
the first instance of the while-loop, represented by an edge marked



x=a

x<7

x=y+x

x==8

p(x)

(2,1)

(3,1)

(4,3)

(5,3)

(6,3)

(7,6)

(8,6)

Figure 4. Dynamic data dependence graph for figure 2. Control
dependence edges are omitted for readability

(3, 1); in the second it is dependent on the last instance of itself: the
loop edge is marked with the execution times (6, 3).

The dynamic program slice is computed in the dynamic data
dependence graph using the following formula (let x →l y denote
the edge from x to y with the timestamp label l = (t1, t2)):

dBS cs(y, t) = {x | ∃ Path p : (y = x0 →l0 . . .→ln−1 xn = x) :
l0 = (t, t0) ∧
∀0 < i < n − 1 : li = (ti−1, ti) ∧ li+1 = (ti, ti+1)}

In our example, the dynamic slice of the first execution of line 2
(with timestamp 2) is line 2 itself and line 1. Line 3 is not included,
as the edge with timestamp 5 is not followed. Starting from line 2
with timestamp 5, however, we will have to include line 3 and come
back to line 1. This small example already illustrates the power of
edge labels.

Similar to the dynamic program slice, it is possible to define a
dynamic program chop in the dynamic data dependence graph:

dCHcs(x, y, tx, ty) = {xi | ∃ Path p : (y = x0 →l0 . . .→ln−1 xn = x) :
l0 = (ty, t0) ∧ ln−1 = (tn−2, tx) ∧
∀0 < i < n−1 : li = (ti−1, ti) ∧ li+1 = (ti, ti+1)}

A dynamic chop contains all nodes that are part of a path from
x to y in the dynamic data dependence graph that starts at y with
timestamp ty and ends at x with timestamp tx.

The dynamic data dependence graph is not restricted in space,
though, and the graph can only be built if the runtime protocol is
entirely processed which may take too much time for long-running
applications. Zhang et al. [24, 25] thus proposed—apart from this
full preprocessing algorithm (FP)—two variants that do not build
the graph beforehand: no preprocessing (NP) and limited prepro-
cessing (LP). The NP algorithm entirely forbears from construct-
ing the dependence graph and, when slicing, runs back the linear
trace to find the most recent definition of the given variable. Hence,
NP has a worst case complexity of O(N2) which is unacceptable
for large slices or for many slicing criteria. Even with the use of
caching by marking statements already in the slice not to be fol-
lowed again, this complexity cannot be lowered. The best com-
promise between the FP and NP algorithms is, according to the
authors, the LP algorithm, which introduces summary information
at a given offset between two such entries in the tracing protocol.
Still, the complexity cannot be reduced by an order of magnitude
but only by a constant factor.

We implemented all the mentioned algorithms for dynamic slic-
ing and evaluated them on our test suite (cf. Section 6). Our exper-
iments approve the results of Zhang et al. [24,25]. On average over

100 slicing criteria for agrep, the cached LP algorithm was, with
about 20 seconds and 4.7 MB memory, faster than NP with about
21 sec and FP with 26 sec, consuming insignificantly more mem-
ory than the NP algorithm, which used 4.4 MB ram, and better than
FP needing 6.4 MB.

5. Dynamic Path Conditions
5.1 Refinement by Dynamic Chopping
When constructing a path condition from a statement to another,
all paths between those two statements are determined with a chop
in the static dependence graph. As mentioned in Section 2.2.2, the
accuracy of the path condition for the executed program can be in-
creased if a dynamic chop is used instead. The dynamic dependence
graph usually contains only the dependence edges that actually took
place and thus the dynamic chop will yield a much smaller number
of paths between those two statements.

As an example, consider Figure 1 again. If the execution trace
is 1,2,3,4,7,9 then the dynamic chop between 2 and 9 is 2,3,4,7,9.
Statement 5 is never executed in this setting and thus can be re-
moved from the dynamic chop. A static chop would conserva-
tively have to add it. With the dynamic chop one omits the paths
2,3,4,5,7,9 and 2,4,5,7,9 in the path condition between 2 and 9.

Although our path condition generator reuses partial informa-
tion and thus half the number of paths does not yield a 50% shorter
path condition, this small example already shows the impact of this
refinement.

5.2 Refinement by Traced Values
In order to strengthen a given path condition PC with runtime infor-
mation, the trace is analyzed to retrieve the variable assignments.
As the analyzed program went through a series of assignment states
during runtime, all of them have to be captured in a restrictive
clause R. This clause, in turn, can be used to make path conditions
stronger.

At first the intersection V of variables used in the path condition
PC and the trace T is determined:

V = {v | v ∈ var(T ) ∩ var(PC)}

For each variable v the values it carried during the trace are ex-
tracted, let β(v) the set of values wi that variable v has contained:

β(v) = (v = w1) ∨ (v = w2) ∨ . . .

Now the restrictive clause R can be described as the conjunction of
all variable value sets:

R =
∧
vi∈V

β(vi)

In order to make the path condition PC stronger, the results from
Section 2.2.2 are used and both clauses are conjunctively combined

PC′ = PC ∧ R

yielding the stronger and thus more precise path condition PC′.
Because of the SSA-like form, variables only match if their in-

dex numbers are the same, so that multiple assignments are han-
dled. This makes it mandatory for the program trace to list vari-
ables along with their respective node numbers as in Figure 5 which
shows a simple trace for a run of the program from Figure 2.

Note that the node numbers are different to the SSA-numbers
from Figure 2 and thus, the path condition for a flow from line 1 to
line 5 is PC(1, 5) = (x3 < 7) ∧ (x7 = 8). For this path condition the
trace yields the variable assignments

R = (x3 = 2∨ x3 = 4∨ x3 = 6∨ x3 = 8)∧ (x7 = 4∨ x7 = 6∨ x7 = 8)



1 LINE 1
2 USE a_2 2
3 DEF x_1 2
4 LINE 2
5 USE x_3 2
6 LINE 3
7 USE y_5 2
8 USE x_6 2
9 DEF x_4 4

10 LINE 4
11 USE x_7 4
12 LINE 2
13 USE x_3 4
14 LINE 3
15 USE y_5 2
16 USE x_6 4
17 DEF x_4 6
18 LINE 4
19 USE x_7 6
20 LINE 2
21 USE x_3 6
22 LINE 3
23 USE y_5 2
24 USE x_6 6
25 DEF x_4 8
26 LINE 4
27 USE x_7 8
28 LINE 5
29 USE x_8 8
30 LINE 2
31 USE x_3 8

Figure 5. A simple program trace for Figure 2

Again, both clauses are conjunctively combined to PC′ = PC ∧
R yielding the stronger and thus more precise path condition PC′:

PC′ = (x3 = 2 ∨ x3 = 4 ∨ x3 = 6) ∧ (x7 = 8)

5.3 Correctness of Dynamic Path Conditions
Sometimes only fragments of a trace are available due to a ”defec-
tive recorder” or intentionally to save memory. While fragmented
traces are generally useless for dynamic slicing (see Section 3.2),
they still hold valuable information for strengthening path condi-
tions.

However, incomplete tracing information is prone to lead to
wrong path conditions. For example, consider the simple path con-
dition (x > 1) for a program where the trace yields the restrictive
clause

(x = 0 ∨ x = 1)
while the variable assignment states actually were

(x = 0 ∨ x = 1 ∨ x = 2)

The restricted path condition

PC′ = (x > 1) ∧ (x = 0 ∨ x = 1) ≡ f alse

would be in contradiction to the actual program state (x = 2) and
thus definitely rules out data dependence where it may actually be
possible.

To avoid unsound path conditions, it is conservatively assumed
that there is an additional unknown value ⊥ for each variable
representing the assignments which occurred but were not traced
due to some reason. This measure yields a correct conservatively
restricted path condition being as precise as the fragmentation of

the trace allows. For our example, the resulting path condition is

(x > 1) ∧ (x = 0 ∨ x = 1 ∨ x =⊥)
≡ (x > 1 ∧ x =⊥) ≡ x > 1

Only if the completeness of the trace (at least for certain variables,
see Section 3.2) can be guaranteed, one may abandon this conser-
vative measure (for those variables).

It may seem that using this trick one doesn’t gain any additional
information of dynamic variable data. To show the advantage of
variable traces containing unknown values, consider the path condi-
tion PC(1,5) of Figure 1. With a fragmented variable trace forming
the conservative restrictive clause (x = 5∨ x =⊥)∧ (n = 3∨n =⊥)
the improved path condition from 1 to 5 will be:

PC(1, 5) ≡ (n > 0 ∧ x > 0) ∧ (x = 5 ∨ x =⊥) ∧ (n = 3 ∨ n =⊥)

It is immediately clear that the traced variable values x = 5 and
n = 3 may trigger an influence from line 1 to line 5.

This tiny example shows that while conservative restrictive
clauses cannot be used to evaluate a clause of the path condition to
false, they may reveal input values that triggered an illegal infor-
mation flow.

6. Case Studies
Five case studies will show the impact of dynamic information on
path conditions for actual programs. Table 1 lists the programs used
for evaluation purposes together with lines of code and the number
of nodes and edges in the (static) SDG. The programs ptb_like
and mergesort are included in this article (figures 6 and 12). The
remaining programs are taken from the GNU project.

Program LOC Nodes in SDG Edges in SDG
ptb like 35 134 334
mergesort 59 244 640
cal 678 2388 6149
agrep 3990 22961 81203
patch 7998 30774 246754

Table 1. Example programs for case studies

Program static dynamic criterion
ptb like 65 173 49 124 9-8, 33-53
mergesort 123 299 97 216 45-14, 21-8
cal 240 648 0 0 228-10, 281-18

134 315 44 92 367-12, 551-3
agrep 13170 40324 0 0 605-15, 638-7
(sgrep.c) 13138 40144 961 2345 96-14, 121-9
patch 16529 246754 6314 81365 825-23, 935-10

Table 2. Evaluation of static vs. dynamic chop sizes

Our first goal was to show the impact of dynamic chopping in
contrast to static chopping. Remember from sections 2.2.2 and 5.1
that smaller chop sizes result in more precise path conditions. Ta-
ble 2 shows the number of nodes and edges for the static chop
followed by these numbers for the dynamic chop. The chopping
criterion is given in the format from: line-column, to: line-column.
For the program agrep the criteria refer to the file sgrep.c. They
were chosen in a way to find statements in the code which involve
several variables that possibly influence each other, preferably in
loops. The goal was to produce interesting path conditions. For ex-
ample, the static chop in the program ptb_like (listed in Figure 6)



1 #define TRUE 1
2 #define CTRL2 0
3 #define PB 0
4 #define PA 1
5 void printf();
6 void main()
7 {
8 int p_ab[2] = {0, 1};
9 int p_cd[2] = {1, 1};

10 char e_puf[8] =
{’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’};

11 int u = 0;
12 int idx = 0;
13 float u_kg = 0.0;
14 float kal_kg = 1.0;
15

16 while(TRUE) {
17 if ((p_ab[CTRL2] & 0x10)==0) {
18 u = ((p_ab[PB] & 0x0f) << 8) +

(unsigned int)p_ab[PA];
19 u_kg = (float) u * kal_kg;
20 }
21 if ((p_cd[CTRL2] & 0x01) != 0) {
22 for (idx=0;idx<7;idx++) {
23 e_puf[idx] = (char)p_cd[PA];
24 if ((p_cd[CTRL2] & 0x10) != 0) {
25 if (e_puf[idx] == ’+’)
26 kal_kg *= 1.01; /* illegal */
27 else if (e_puf[idx] == ’-’)
28 kal_kg *= 0.99; /* illegal */
29 }
30 }
31 e_puf[idx] = ’\0’;
32 }
33 printf("Article: %7.7s\n" +

"   %6.2f kg    ",e_puf,u_kg);
34 }
35 }

Figure 6. ptb like

from line 9 to line 33 (u kg) contains 65 nodes connected by 173
edges. The dynamic chop, however, contains only 49 nodes and
124 edges. It is clear that the latter subgraph contains a noticeable
smaller number of paths than the subgraph induced by the static
chop. Sometimes the dynamic chop can rule out a dependence be-
tween two statements completely: Consider the first lines of the
programs cal and agrep. One can see that the dynamic chop for
these criteria is empty. The following evaluation of using traced
variable values to improve precision in dynamic path conditions
contains another example of that kind. In all these cases there was
definitely no (illegal) information flow between the chopping crite-
ria although the static chop indicated so.

After showing that dynamic chopping can considerably reduce
the number of paths and thus yield a more precise path condition,
that narrows down the reasons for an (illicit) influence, we will
present excerpts of path conditions and augment them with the re-
striction condition, which is based on trace data (partly using in-
complete traces). Again, this information reveals variable values
which may have contributed to the necessary condition that trig-
gered an illegal information flow.

The first example ptb_like, shown in Figure 6, is taken from a
weighing machine controller. Such a program represents perfectly
the security relevant software we have in mind for this approach:

1 ( ((p_cd[0] & 0x01) != 0)
2 ∧ ((p_cd[0] & 0x10) != 0)
3 ∧ ((p_ab[0] & 0x10) == 0)
4 ∧ (e_puf[idx] == ’+’)
5 ∧ (idx < 7) )
6 ∨

7 ( ((p_cd[0] & 0x01) != 0)
8 ∧ ((p_cd[0] & 0x10) != 0)
9 ∧ (e_puf[idx] == ’-’)

10 ∧ ((p_ab[0] & 0x10) == 0)
11 ∧ (e_puf[idx] != ’+’)
12 ∧ (idx < 7) )

Figure 7. Static path condition for ptb like

1 ... ∨
2 ( e_puf == <unknown>
3 ∧ idx == 0
4 ∧ p_cd == {1, 1}
5 ∧ p_ab == {0, 1}
6 ∧ ((p_cd[0] & 0x01) != 0)
7 ∧ ((p_cd[0] & 0x10) != 0)
8 ∧ (e_puf[idx] == ’-’)
9 ∧ ((p_ab[0] & 0x10) == 0)

10 ∧ (e_puf[idx] != ’+’)
11 ∧ (idx < 7) )
12 ∨ ...

Figure 8. Excerpt of a dynamic path condition for ptb like

1 ((p_cd[0] & 0x01) != 0)
2 ∧ ((p_cd[0] & 0x10) != 0)
3 ∧ ((p_ab[0] & 0x10) == 0)
4 ∧ (e_puf[idx] == ’+’)
5 ∧ (idx < 7)

Figure 9. Dynamic path condition of illegal flow in ptb like

There is a part of the program, the so-called calibration path, that
contains all paths from the sensor (p_ab) to the value display, in
this case the weight stored in u_kg (line 33). For a certificate that
the machine is correctly calibrated one needs to assure that there
is no way to influence the calculation of the weight, for example
from the keyboard. Consider the static path condition between the
keyboard buffer p_cd in line 9 and the display of u_kg, the actual
weight, in line 33. The final path condition is shown in Figure 7.
Note that & represents bitwise logical and. An illegal information
flow could only happen, if the keyboard buffer p_cd contained one
of the special characters ‘+’ or ‘-’. Since our run uses an input
buffer containing only ones, we expect the dynamic path condition
to evaluate to false.

Using a dynamic chop immediately reveals this fact: the static
path condition describes a path that was not taken during runtime,
the precise dynamic path condition yields false. The dynamic path
condition based on the static chop, in contrast, consists of ten
conjunctive blocks, one of which is shown in Figure 8. Dynamic
trace data is shown in bold, e_puf has not been traced (incomplete
trace). As one can see, the particular predicates

p cd == {1, 1}



1 (left < right)
2 ∧ (idx1 <= ((left + right) / 2))
3 ∧ (data[idx1] >= data[idx2])
4 ∧ (idx2 <= right)

Figure 10. Static path condition for mergesort

and
((p cd[0] & 0x10) , 0)

contradict each other, so that the given block evaluates to false.
The same goes with the other blocks and we get the expected result
false. The path condition cannot be fulfilled; the necessary path
was not taken. This result proves that the keyboard buffer had no
influence on the output presented to the consumer.

In another scenario, the input p_cd = {0xff, ’+’} (instead
of line 9) has been traced. Upon entering ‘+’ on the keyboard, the
displayed value is too high. With the dynamic path condition the
detection of the illicit influence is done automatically: Figure 9
shows the path condition for the adapted program based on the
dynamic rather than the static chop. With the traced input one
can exactly determine why the illicit information flow took place.
Together with the definition of e_puf[idx] in line 23, adding the
restrictive condition yields:

1 (p_cd[0] == 0xff)
2 ∧ (p_ab[0] == 0)
3 ∧ (p_cd[1] == ’+’)
4 ∧ (idx < 7)

This path condition already shows why there was an illegal in-
formation flow during program execution giving detailed informa-
tion why the program produced incorrect output (the weight on the
machine): The display was influenced by some debug flags and the
input of ‘+’ during the 7 rounds of the for-loop. The programmers
simply had forgotten to remove the debugging code from the fi-
nal version. This information can act as a witness to reproduce the
illicit behavior. In this small example one can easily see that the
calibration factor u_kg is increased in line 26 by such an input. For
larger examples a human would most probably not detect illegal
statements so easily.

As another example, consider the program mergesort from
Figure 12. Figure 10 shows the statically computed path condition
between 999 in line 45 and temp in line 21. This time, using
a dynamic chop does not help strengthening the path condition
as the dynamic chop is identical to the static chop regarding the
paths relevant to the path condition. The dynamic path condition,
however, yields 40 conjunctive blocks, one of which is shown in
Figure 11. Dynamic trace data is again shown in bold. Due to
contradictions within the particular blocks, the condition can be
fully evaluated to false: there was no program state traced which
would have fulfilled the static path condition.

As our examples show, dynamic path conditions are usually a
good deal bigger than their statically computed counterparts, but
also more precise as they hold more information. Each dynamic
path condition is tied to a particular program run, though. If a dy-
namic path condition evaluates to false this does not necessarily
hold for each program execution, especially if user input is in-
volved. But dynamic path conditions are a precise means for find-
ing witnesses for illegal program behavior.

Omission errors
Dynamic slices can only show that some influence took place or
not. Sometimes one would like to know why an expected influence
did not happen during program execution. In literature [2, 7, 20]

1 right == 4
2 ∧ left == 4
3 ∧ data == 1
4 ∧ idx2 == 5
5 ∧ ((left + right) / 2) == 3
6 ∧ idx1 == 3
7 ∧ (left < right)
8 ∧ (idx1 <= ((left + right) / 2))
9 ∧ (data[idx1] >= data[idx2])

10 ∧ (idx2 <= right)

Figure 11. Excerpt of a dynamic path condition for mergesort

several approaches were proposed to enrich the dynamic slice with
the “culpable” control predicates, i.e. those predicates that triggered
a branch to an execution path on which the expected potential
data dependence did not come into effect. But adding only the
predicates to the slice does not reveal what actually went wrong.
Our approach returns the exact conditions for a data flow to happen.
The static path condition augmented with the restrictive clause can
be fed into a constraint solver to detect the contradictions between
the variable trace and the values expected by the predicates. In
Figure 11, the subclauses 1 and 2 contravene the sub-clause 7. That
is the reason why the path(s) yielding that conjunctive block have
not been executed. As pointed out in the description of mergesort,
the dynamic chop is identical to the static chop. Adding only the
control predicates as proposed by previous solutions would just
reveal the conditions shown in Figure 10. The user would have
to find those conditions in the slice and interpret them to find
the information he or she was really looking for: the condition in
Figure 11. The dynamic path conditions thus helps localizing flaws
in the program by detecting contradictions between expected and
actual execution paths.

7. Related Work
Correctly and efficiently collecting trace data is a non-trivial task.
Several solutions have been proposed in literature:

Venkatesh [19] implemented a low-level approach for tracing
C programs. His prototype implementation called SLICE instru-
ments the source code to write a program trace during execution.
With this experience, the authors recommend object-code instru-
mentation for future implementations together with several reasons.
Nonetheless, this implementation is faster than tracing with a tradi-
tional debugger.

Zhang et al. [24] follow a different low-level approach to create
a program trace: The program source is compiled with the Trimaran
system, a compiler for the Explicitly Parallel Instruction Comput-
ing (EPIC). An interpreter takes the generated object code and cre-
ates the program trace during execution. Since C programs are nor-
mally not interpreted, this approach is valid mostly for theoretical
evaluations.

All low-level approaches usually do not slow down program
execution as much as a debugger does. However, as our work is
based on the static dependence graph which must be mappable to
source, these approaches did not suit our needs.

Dynamic program slicing has been a topic in active research for
several years now. Various approaches, either for dynamic slicing
on its own, or combined with static elements have been proposed.
To mention all of them would be out of scope of this work.

Chen et al. [3] describe a dynamic slicing algorithm that is
based on a static PDG providing the information where to set break
points for the debugger. The static dependence graph is confined



1 int data[100];
2 int temp[100];
3

4 void move (int *from, int fst, int lst,
5 int *to, int idx) {
6 while (fst <= lst)
7 to[idx++] = from[fst++];
8 }
9

10 void merge (int fst, int mid, int lst) {
11 int idx, idx1, idx2;
12

13 idx = 0;
14 idx1 = fst;
15 idx2 = mid + 1;
16

17 while ((idx1 <= mid) && (idx2 <= lst)) {
18 if (data[idx1] < data[idx2])
19 temp[idx++] = data[idx1++];
20 else
21 temp[idx++] = data[idx2++];
22 }
23

24 if (idx1 > mid)
25 move (data, idx2, lst, temp, idx);
26 else
27 move (data, idx1, mid, temp, idx);
28

29 move (temp, 0, lst - fst, data, fst);
30 }
31

32 void mergesort (int left, int right) {
33 int m;
34 m = (left + right) / 2;
35 if (left < right) {
36 mergesort (left, m);
37 mergesort (m + 1, right);
38 merge (left, m, right);
39 }
40 }
41

42 int main () {
43 int i;
44

45 data[0] = 999;
46 data[1] = 1;
47 data[2] = 23;
48 data[3] = 55;
49 data[4] = 44;
50

51 mergesort (0, 4);
52

53 for (i = 0; i < 5; ++i) {
54 printf ("%d ", data[i]);
55 }
56 printf ("\n");
57

58 return 0;
59 }

Figure 12. mergesort

to the nodes and edges that have been visited to build the dynamic
dependence graph. Slicing is done following all edges in that graph.

Tip [17] embarks on a different strategy: He uses the abstract
syntax tree (AST) instead of a dependence graph and interprets the
program. The approach is language independent but only available
for the custom-built language “L”.

Zhang et al. recently proposed another way to reduce the vast
amount of data that is stored in the program trace. They compute
the dynamic slices during program execution and store them in
binary decision diagrams (BDDs) [23].

Wang et al. [20] presented a dynamic slicing technique for Java
that compresses the program trace on-the-fly and obtains two to
three orders of magnitude compression with little overhead. A loss-
less compression algorithm finds a high repetition pattern in the se-
quence of (memory and control) addresses captured by the tracer
separately. They also propose a dynamic slicing algorithm which
operates directly on the compressed data and can thus save the un-
compressing time. Such an algorithm may not only be suitable for
languages with extensive pointer usage. We expect the repetition
pattern for our variable trace to yield a similar compression rate.
Since the slicing algorithm runs on the compressed data with no
dynamic dependence graph used, multiple slicing requests require
traversing the trace multiple times at a significant time overhead.

Recent work by Jhala has been focusing on path slicing [9]. It
takes as input one particular path in the CFG and eliminates all the
operations that are irrelevant towards the reachability of the target
location. The result is a sufficient condition for the reachability of
the target location, its infeasibility is sufficient for the infeasibil-
ity of the path. The technique does not work on the PDG but on
the CFG only. It has shown effective for elimination of counterex-
amples provided by the model checker Blast. For our application
this approach does not seem beneficial as it needs to check every
single path on its own, while path conditions produce a necessary
condition for all paths between two statements.

8. Summary and Future Work
This ongoing work has shown that dynamic tracing data can yield
detailed reasons for or against a possible information flow from one
statement to another. Especially in recently discovered applications
of dynamic slicing, like improving software quality and security,
such a condition may be able to rule out an undesirable or even
illegal influence between two statements. If the condition cannot
be evaluated to false, our approach yields precise information, why
the information flow took place: A constraint solver will reduce the
path condition to input values that triggered the illegal information
flow. Those values form a witness for reconstruction of illegal
influences.

Our approach presented two possibilities to refine a static path
condition: First, dynamic slicing (more precisely chopping) greatly
reduces the number of control paths. As these paths form the basis
of the path condition computation, the number of its subclauses
diminish. Second, the variable trace is transformed to a logical
formula, the restrictive clause, which is conjunctively linked to the
path condition. Combining these methods yields the greatest effect.

Nonetheless, the second approach is applicable even in the case
that the variable trace is fragmentary. Whereas a dynamic slice
would most probably yield incorrect dependences, the restrictive
clause formed of a partial variable trace is still conservative. This
corresponds to the principle of the flight recorder, which, even
if defect, reveals valuable information to determine the problem
cause.

The research on dynamic program slicing has not stopped. To
make dynamic slicing applicable for more realistic programs, the
size of the dynamic dependence graph can be reduced drastically.
The recent work of Zhang and Gupta [23] shows a technique to



to so: Their approach basically augments the dynamic dependence
graph with pre-computed dependence edges determined by static
analysis. These static dependence edges do not have to wear labels,
hence all dynamic edges can be folded to a single static edge. We
plan to improve our algorithms in such a way, especially as our
fine-grained dependence trace contains lots of local dependences
for edge sharing and the trace uses the static dependence graph
already as input. Problems arising from third party library code and
statements containing multiple method calls can be remedied that
way as well.

Furthermore, we want to extend this work to the Java slicer [8],
which recently has been integrated into ValSoft. As a necessary
step towards that task we will augment the path condition generator
to Java peculiarities. Dynamic slicers for Java like [20] are just
becoming mature and can be integrated into our tools.

With Delta Debugging [4, 22], (visible) program behavior can
be reduced to states of program variables. This technique could be
used to refine path conditions even for the case that a program trace
is unavailable.Therefore, we will try to combine these techniques
for further investigation.

While this work is still in progress, we expect to apply it to
a broader range of case studies. In particular we hope to obtain
commercial safety-critical C programs, and we will extend this
approach to Java, which becomes more and more important, es-
pecially as nearly every mobile phone contains a virtual machine
nowadays and the threat of circulating malicious code soars.
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