
An Improved Slicer for Java

Christian Hammer
Universität Passau

Lehrstuhl Softwaresysteme

hammer@fmi.uni-passau.de

Gregor Snelting
Universität Passau

Lehrstuhl Softwaresysteme

snelting@fmi.uni-passau.de

ABSTRACT
We present an improved slicing algorithm for Java. The best
algorithm known so far, first presented in [11], is not always
precise if nested objects are used as actual parameters. The
new algorithm presented in this paper always generates cor-
rect and precise slices, but is more expensive in general.

We describe the algorithms and their treatment of objects
as parameters. In particular, we present a new, safe crite-
rion for termination of unfolding nested parameter objects.
We then compare the two algorithms by providing measure-
ments for a benchmark of Java and JavaCard programs.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

General Terms
Algorithms

Keywords
Static Program Slicing, Java, Object Trees

1. INTRODUCTION
Slicing is a program analysis technique useful for many ap-
plications. Research in program slicing has produced sys-
tems such as CodeSurfer [19] or VALSOFT [7, 16], which
can slice realistic programs written in the full C language
with reasonable precision and performance. Naturally, one
also wants to use slicers for C++ or Java. Such a slicer has
to deal with objects, inheritance and dynamic dispatch.

One popular method to implement slicing is the construction
of the Program Dependence Graph (PDG). The PDG rep-
resents the statements or predicates in a program as nodes,
and possible influences as edges. Horwitz [5] extended this
approach to interprocedural slicing; they introduced the Sys-

tem Dependence Graph (SDG) and developed a two-phase
slicing algorithm for procedural programs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’04, June 7-8, 2004, Washington, DC, USA.
c©ACM, 2004. This is the author’s version of the work. It is posted here

by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in Proc. PASTE’04.

Several extensions of the SDG to object-oriented features
were proposed, and all of them were capable of handling
dynamic dispatch and inheritance [9, 6, 24, 11, 23, 12, 22,
3]. Usually, dynamic dispatch is treated similar to function
pointers in C [4]. Today, approximation of dynamic dispatch
in slicers for object-oriented languages is reasonable precise
and efficient, thanks to powerful call-graph and points-to
analysis algorithms supporting SDG construction.

But there is another issue which has not been addressed
properly. Very often, objects are passed as actual parame-
ters to methods. But existing proposals for modeling objects
as parameters are either insufficient to deal with recursive
data structures, or they cannot distinguish field instances
for individual objects (that is, dependencies concerning ob-
ject fields are not object-sensitive). This makes slicing either
incorrect (too small) or imprecise (too big).

In this paper, we present a new algorithm for dealing with
objects as parameters, and compare it to the most sophis-
ticated alternative published so far [11]. The latter intro-
duced partial object-sensitivity for parameter objects, which
increased precision as compared to these author’s earlier al-
gorithm [9]. Unfortunately, [11] is not explicit about the
treatment of certain dependencies missed by the algorithm
in [9], and experiences with an implementation have not
been reported.

Our new algorithm is based on a safe criterion for termina-
tion of unfolding of parameter objects. It never misses any
dependencies and is more precise than [11].

2. STRATEGIES FOR A JAVA SDG
In the following, we assume some general familiarity with
slicing technology, as presented for example in [20].

Intraprocedural PDGs can easily be constructed for method
bodies, using the well-known algorithms from the literature.
Interprocedural slicing however is more tricky. While SDGs
in general are well understood, dynamic dispatch and ob-
jects as method parameters make SDG construction more
difficult. Treatment of dynamic dispatch is well known:
possible targets of method calls are approximated statically
(e.g. using points-to information), and for all possible target
methods the standard interprocedural SDG construction is
done.

Method parameters are another issue. SDGs support call-
by-value-result parameters, and use one SDG node per in-



class A {
int x, y;
A(int i) { x = i; }

}

class B {
A a;
B() { a = new A(2); }
int foo() { return bar(a); }
static int bar(A a) { return a.x; }
public static void main(String[] args) {
B b = new B();
int z = b.foo();

}
}

class C {
C f;
public static void main(String[] args) {
C c = new C();
C.rec(c);
C x = c.f;
C y = x.f;

}
static void rec(C c) {
c.f = new C();
C x = c.f;
x.f = c;

}
}

Figure 1: An example program

resp. out-parameter. Java supports only call-by-value; in
particular, for reference types the object reference is passed
to the method. However field values stored in actual pa-
rameter objects may be changed during a method call. Such
possible field changes have to be made visible in the SDG by
adding modified fields to the formal-out parameters. This
idea was already described by Larsen and Harrold [9].

Later, Liang and Harrold [11] proposed to improve preci-
sion by making the dependency analysis partially object-
sensitive. They represent parameter objects as trees: the
root of the tree is the actual parameter; the next level repre-
sents all fields which might be read or written in the method
or in methods called in it. If such a field contains a refer-
ence to another object, its fields are added below the node
representing that object and so on. Eventually, basic data
types are obtained as leafs.

Liang proposed to restrict the tree depth for C++ objects
and relies on points-to analysis for object references. This
trick is called “k-limiting” [14]. It will miss dependencies
between recursive data structures if no other (perhaps less
precise) fallback mechanism for deeply nested objects is in
place. Traditionally, k-limiting preserves soundness by pro-
viding an additional “summary node” which approximates
all dependences for levels > k. However, [11] is not ex-
plicit about treatment of such dependencies; it only states
that the simpler mechanism from [9] cannot even represent
nested parameter objects.

This work presents a different approach: Instead of limit-
ing the tree level, we unfold the tree completely. As this is
not possible for recursive data structures, we present a con-

dition for safe termination of unfolding. The condition is
based on points-to information. This method keeps all trees
finite but guarantees that no dependencies are lost. Points-

to information is also used to constrain run-time targets of
method calls. As a by-product, a call graph is extracted.1

But even the best points-to analysis will not resolve all ob-
ject polymorphism, and the object trees must represent all
possible run-time types of an object. In contrast to [11] we
do not represent polymorphic objects as a set of trees, but
as one “merged” tree. To disambiguate fields with the same
name but defined in different classes we use the fully quali-
fied field name. Thus merging does not reduce the precision
of the final SDG; it just reduces its size.

Similarly, we use just one SDG node per method call even
if dynamic dispatch is possible. For every method that –
according to the call graph – might be called at runtime, we
add a call edge to the entry of this method. Object param-
eters are represented as trees in the same way as for non-
virtual methods. Thus we determine one actual-in tree node
for every field that might be referenced in the (indirectly)
called methods, and one actual-out tree node for every field
that might be modified during method execution.

The method entry vertex analogously contains one formal-in
tree node for every field which might be referenced, and one
formal-out tree node for every field which might be modified
in the method. For a virtual method call this means that
there is not exactly one actual node for every formal node:
Different (re)definitions of virtual methods may very well
access a different set of fields of a parameter. Thus, every
actual tree is a union of all corresponding formal trees of all
possibly called methods in the approach presented here.

3. ALGORITHMIC DETAILS
Figure 1 presents a small Java program which will be used
in the following technical descriptions.2

The computation of the trees representing parameter objects
is similar to side-effect analysis [13]. Initially only the tree’s
roots are present at method entry and call nodes. Next, an
intraprocedural analysis determines fields which are possi-
bly defined or referenced in the method. Finally, trees are
propagated interprocedurally through call sites and method
bodies.

3.1 Intra-Procedural Step
Our analysis is based on an intermediate representation (IR)
generated from bytecode. The IR contains the following
quadruples (Quads) for field access:

dest = ref.field (GET), ref.field = source (SET)3

We iterate over these Quads until we reach a fixed point: For
the object reference ref we determine the set al of aliased
input nodes (formal-in or the actual-out SDG nodes model-
ing the returned value). For every node in al we assure that
a child node f for the field field is present. If a SET Quad

1The precision of the call graph depends on the precision of
the points-to information, thus we cannot compare our call
graph to those generated by e.g. XTA [21].
2In the following, the term field will mean non-static field if
not stated otherwise. As usual, static fields are transformed
into additional parameters.
3We handle the corresponding array Quads like an access to
a field with name []. Array indices are ignored, which yields
a conservative approximation.



Figure 2: SDG for class B. Shaded nodes are cut off by 1-limiting.

is processed and the new node is part of a formal-in tree, we
also have to add formal-out nodes to represent the induced
side-effect. This is achieved by copying the whole path from
r to f to the formal-out node corresponding to r (if it is not
yet present we add one).

If a field which could be modified holds a reference to an
object, all the fields of that object could be modified as well
when the reference changes. Thus the latter fields must be
added recursively to the object tree.

As a simple example, consider figure 2 (right). It shows the
PDG for B.bar which returns the field x of the parameter
object a. Thus, a field node has been added to the param-
eter node representing a. Furthermore, the field x is set in
the constructor of class A (left in the figure). The (formal-
out) nodes on the right have been added as a result of the
corresponding SET instruction in the IR.4

3.2 The Unfolding Criterion
Liang and Harrold [11] already pointed out that in the pres-
ence of recursive data structures the object trees cannot be
unfolded until all leaves are primitive types. As mentioned
earlier, their solution, namely to limit the depth to a fixed
level, is unsatisfactory. In our approach we unfold the tree
until we reach a fixed point with respect to the aliasing situa-
tion of the containing object. Thus we obtain a safe criterion
telling us whether further unfolding can be stopped without
loosing dependencies. The criterion is based on points-to
information and works as follows.

Criterion
Let pt(x) be the points-to set for an object reference x. A

node for field f need not be added to a parent node p in the

object tree, if the path from the root r to p contains another

node p′ 6= p where pt(p) = pt(p′), and p′ already has a child

node for field f . If pt(p) = pt(p′), but p′ does not yet have

a child for f , f is added to p′.

The correctness of the criterion becomes clear when consid-
ering how data dependences between field parameter nodes
are computed. Every field parameter node represents a SET

4Note that there are no corresponding formal-in nodes on
the left of this graph as the memory for the object is unini-
tialized before the call to the constructor.

Figure 3: PDG for “main” including object trees.

of a field in a parameter object. A subsequent use of the field
represents a corresponding GET. Data dependences between
such fields are computed according to [5]: A PDG has a data
dependency edge from node n1 to node n2 due to field de-
pendencies iff all the following conditions hold:

• n1 is a node that defines the field f of variable x

• n2 is a vertex that uses the field f of variable y

• x and y are potential aliases

• control flow can reach n2 after n1 via a path in the
CFG along which is no intervening definition of f and

• equality of the field f with respect to name and its
defining class

This edge is then necessary for the PDG to be a conservative
approximation. A definition of f is intervening iff there is
a must-aliasing relation between x and the variable z which
the field f in the definition belongs to (e.g. if x and z are
the same variables or just renamed).

If a field node for f was added to p while pt(p) = pt(p′),
then the data dependencies rooted in the f child of p′ would



be identical to those rooted in the f child of p. Hence the f

child of p can be omitted.

As an example, consider figure 3 (lower), which shows the
PDG for C.rec. The points-to set of c contains only the new
statement in C.main, while the points-to set of field f in c

contains only the new instruction in C.rec. Both k-limiting
and our algorithm add the first level field. The second level
is added in our approach as the points-to sets of the root and
the first level node are not equal. A third level is not added
as the points-to sets of the c and c.f.f nodes are equal.
The root already has a child node for f. Adding the field f

a third time, would just result in the same dependences as c
has because of the aliasing situation. In contrast, k-limiting
would cut off the trees and miss the shaded nodes, hence
dependences and slices would be incomplete.

3.3 Interprocedural Step
Until now we have only assured that a formal-in or actual-
out parameter node exists in the SDG for all the fields refer-
enced or written directly in the analyzed method. As there
has to be an actual parameter node for every formal param-
eter node we have to copy 1. formal-in nodes to actual-in
parameter nodes, 2. formal-out nodes to actual-out param-
eter nodes, and 3. the tree rooted in the actual-out param-
eter node representing the returned value to the formal-out
parameter nodes modeling the return value of the called
methods.

This can be seen in figure 2 where the formal-in parameter
tree of B.bar has been copied to an actual-in parameter tree
of the call to bar. The formal-out tree in A.init based in
the this pointer has been copied to the actual-out tree of
the constructor call in B.init. No object is returned in this
example, so the node z = b.foo() needs not to be copied
to the node return bar(a).

After these trees have been copied, they represent either new
references to fields (actual-in and formal-out) or they are
new definitions (actual-out nodes representing side-effects).
In both cases we have to propagate the new nodes intra-
procedurally the way we did in section 3.1 but this time only
the usages and definitions arising of parameter nodes have
to be considered. After that, the propagated nodes have
to be copied again. So we iterate over this inter-procedural
step until we reach a fixed point.

In our example SDG, the actual-in node int x of B.foo is
copied to the formal-in parameter node A a and then to the
actual-in tree of the call to b.foo of main. Conversely, the
actual-out node of int x in the constructor of B is copied
to the formal-out tree in the constructor and then to an
actual-out tree of the constructor call in main.

3.4 Data Dependence Computation
After the interprocedural step we have the complete signa-
ture, including modified (static) fields, of all methods called
from main.5 Thus all data dependences can now be com-
puted easily.

5Static initializers have to be added as extra root methods
if access to a field or a method of that class is encountered.
Static variables defined or used in the root methods have to
be connected assuming no particular execution order.

According to the definition of data dependence for fields,
the definitions arising of SET-Quads and parameter nodes
and uses arising of GET-Quads and parameter nodes are
computed similarly to the procedural case. A fixed point it-
eration over the CFG reveals the reaching definitions. Alias-
ing information and the field name determine if there is a
possible data dependence.

3.5 Implementation
We implemented our new algorithm, as well as the algo-
rithm from [11], using the FLEX/Harpoon framework [1].
The FLEX points-to analysis was not used as it needs a
pre-computed call graph; and as it is flow- and context-
sensitive, it does not really scale. Thus we implemented a
flow- and context-insensitive analysis following the propos-
als of Lhotak [10]. We do however use the FLEX SSA form
and IR.

The call graph is based on points-to information and is used
to approximate all methods which can be targets of dynamic
dispatch. For every such method, summary edges are com-
puted using the algorithm by Reps et al [15]. In order to
improve precision, edges in object trees are not followed dur-
ing the computation of summary edges. Instead, only the
(already calculated) summary and data dependences leav-
ing a formal-in node are included into the possible paths
inducing a summary edge. Including tree edges would in-
duce spurious summary edges between a parent node and
nodes which are targets of its children’s summary edges.

The object trees as described in section 3.2 and the object
trees as described in [11] share the same implementation.
The only difference is that for the Liang/Harrold version
the trees are cut off at level 1 or level 2.

As of today, our slicer can handle full Java except threads.
A well-known problem however are the libraries, which in
Java lead to an excessive scaling problem: as of JDK 1.4.2,
even the simplest “Hello world” program loads 248 library
classes! Thus we currently leave out libraries, which can
have the effect that dependencies through library code are
missing (providing stubs for the whole API is very expensive
and was not done so far). We did however provide stubs for
the JavaCard language, which has a much smaller API.

The reader must be aware that our implementation does not
have a fallback mechanism for cut-off parameter trees, mak-
ing this particular implementation of k-limiting unsound
(dependencies can be missing). Liang & Harrold most cer-
tainly did not have an unsound algorithm in mind, but un-
fortunately it is unclear what their implementation really
does. We plan to integrate Liang’s fallback mechanism as
soon as we find out how it works.

4. EMPIRICAL EVALUATION
We measured average slice size for a series of benchmark
programs (see table 1). Most programs are small student
programs with an average size of 1kLoc; two are medium-
sized JavaCard applets. The student programs use very few
API calls, thus leaving out the libraries does not miss many
dependences. The “Wallet” applet is from http://www.java

world.com/javaworld/jw-07-1999/jw-07-javacard.html,
the “Purse” applet is from the “Pacap” case study [2]. Both
applet SDGs contain all the JavaCard API PDGs.



Name LOC Nodes Edges Slices Avg. size Level 2 Level 1 Time Summary
Enigma 922 2132 4740 724 661 638 631 5 1
Lindenmayer System 490 2601 195552 274 512 330 302 5 10
Union Find 1542 13169 990069 1440 9987 3205 2046 36 103
Plane-Sweep 1188 14129 386507 1006 3566 1739 1317 24 13
Network Flow 960 1759 3440 747 257 257 257 6 1
Library Admin 618 2281 4999 679 330 325 312 4 1
TSP 1383 6102 15430 1533 2187 2141 2033 15 2
SemiThue System 909 19976 595362 607 7855 780 529 24 33
JavaCard Wallet 252 21274 87726 3038 9201 8440 7179 16 19
JavaCard Purse 9835 184590 1484975 10620 109093 70093 55835 277 2338

Table 1: Data for benchmark programs

For every program, the LOC and SDG size (nodes and edges)
is given, as well as the number of slices per program. Slices
were selected by choosing a random SDG node as a starting
point for a backwards slice. The average slice size (in nodes)
is given for our algorithm as well as for the 1-limiting and
2-limiting. For the slice size, only true instruction nodes are
counted in order to make the comparison independent from
additional parameter nodes. The time for SDG construc-
tion is presented together with the time for summary edges.
The latter is measured separately as it is based on an O(n3)
algorithm.

There are no separate time measurements for k-limiting, as
its implementation is based on the implementation of our
algorithm. In fact we compare our algorithm to unsound
k-limiting (where k = 1 or k = 2). This leads to missing de-
pendencies between deeply nested fields, and our evaluation
was designed to empirically check the effects.

The comparison reveals the following results. For half of
the programs, the average slice size is roughly the same.
A look at the source code reveals that these programs do
not use many objects as actual parameters. For the other
half of the programs, there are dramatic differences in aver-
age slice size: unsound k-limiting misses between 30% and
90% of the slice nodes determined by our algorithm – and
the level 1 version behaves quite the same as the level 2
version. This indicates that many dependencies are due to
fields in deeply nested parameter objects, making an un-
sound k-limiting quite problematic.

But could it be that unsound k-limiting looks so incorrect
because our slicer is imprecise, hence the difference in slice
size looks bigger than it really is? This argument is however
not valid. Remember that in fact all three slicing algorithms
as used in the comparison are based on the same implemen-
tation. The only difference is that either full trees are used,
or trees are cut off at level 1 resp. level 2. All other im-
precision due to points-to analysis, call graph construction,
or other factors are the same in all algorithms. Thus the
differences in slice size stem solely from the tree cut-off and
its subsequent missing dependencies.

It would be very interesting to repeat the comparison us-
ing a version of the Liang/Harrold algorithm which uses an
object-insensitive approximation for deeply nested objects,
that is a sound k-limiting. Due to lack of time, we have not
been able to perform this second evaluation.

5. RELATED WORK
One early approach to object-oriented slicing was the work
by Larsen and Harrold [9]. This approach represents fields
of object parameters as extra (scalar) parameters and thus
merges all fields of different objects. This results in a more
conservative approximation, as the approach is not object
sensitive.

There were several proposals of Java implementations based
on the Larsen/Harrold work: Kovács et al. [6] tried to im-
plement a Java slicer based on that representation, which
was slightly adapted for Java. Zhao [24] also bases his pro-
posal on the Larsen/Harrold work. As already proposed
by Malloy [12], he included “membership dependences” and
“inheritance dependences”. Eventually Liang [11] pointed
out that Larsen’s approach is insufficient: Fields passed to
other method calls cannot be represented.

Walkingshaw [23] implemented a SDG generator for sequen-
tial Java using the SOOT framework. Exceptions are not
yet represented. Like our approach, it is object sensitive for
field dependencies, but no algorithm to compute the object
trees was given. In addition to our SDG, his graph contains
membership dependences and inheritance dependences as
proposed in [12]. For non-executable slices, the latter are
not necessary as they do not increase the precision of the
slice. Thus in our SDG membership and inheritance depen-
dences are omitted.

Tonella [22] already proposed to use the results of a flow-
insensitive points-to analysis to resolve the runtime types
of an object but did not differentiate the fields of distinct
objects. Thus his approach is object-insensitive and lacks
precision.

The Bandera [3] project uses a Java slicer to automatically
reduce the size of the transition system for model checking
of Java source code. The Bandera slicer is designed as a
model checker front-end, not as a tool for program analysis.

CodeSurfer [19] contains an alpha version slicer for C++.
A Java version is planned. As of today, nothing is known
about the precision of Codesurfer for C++.



6. CONCLUSION AND FUTURE WORK
We presented a new slicing algorithm for Java, which in-
cludes all dependencies between fields of nested objects but
is more precise than previous algorithms. Improving [11], we
described how to compute the full tree structures for param-
eter objects, and presented a criterion for safe termination
of the tree unfolding process.

Comparing our algorithm to earlier algorithms, it turns out
that the earlier slicers are either less precise, or can miss a
substantial amount of the dependencies induced by nested
objects, if deeply nested field dependencies are not approxi-
mated properly. In this workshop contribution, we did how-
ever not yet include a comparison with an implementation
of the algorithm from [11] which approximates deeply nested
field dependencies.

It turns out that a good points-to analysis is a prerequisite
for computing the object trees and applying our unfolding
criterion. It can be employed to approximate the call graph
of the analyzed program, and to identify possible aliasing
situations. The better the results of the points-to analysis,
the more precise slices will be. We are convinced that a
context-sensitive points-to analysis must be used for maxi-
mal slicing precision, and are currently integrating such an
algorithm.

Our work is not finished at this point. As mentioned above,
we will repeat our experiments using an approximation for
cut-off trees in the Liang/Harrold algorithm. Furthermore,

• we plan to use our slicer for analysis of information
flow [17] in safety-critical systems;

• we plan to augment slices with path conditions as de-
scribed in [16];

• we plan to integrate Krinke’s slicing algorithm for multi-
threaded programs [8];

• we plan to implement approximation algorithms for
the full Java API.

Our slicer will be integrated into the VALSOFT project,
which is a program analysis tool for information flow in
safety-critical software [18]. We believe that such tools will
become more and more important with the increasing ac-
ceptance of Java for safety-critical applications.

Acknowledgement. Jens Krinke and the anonymous re-
viewers contributed valuable comments.

7. REFERENCES
[1] C. S. Ananian. The static single information form. Master’s

thesis, MIT, September 1999. Tech. Report
MIT-LCS-TR-801.

[2] P. Bieber, J. Cazin, A. E. Marouani, P. Girard, J.-L. Lanet,
V. Wiels, and G.Zanon. The PACAP prototype: a tool for
detecting Java Card illegal flow. In Java Card Forum,
Cannes, France, Sept. 2000.

[3] M. B. Dwyer and J. Hatcliff. Slicing software for model
construction. In Partial Evaluation and Semantic-Based
Program Manipulation, pages 105–118, 1999.

[4] R. Ghiya and L. Hendren. A shape analysis for
heap-directed pointers in C. In Proc. 23rd Principles of
Programming Languages, pages 1–15, 1996.

[5] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. In Proceedings of the
ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation, volume 23, pages
35–46, Atlanta, GA, June 1988.

[6] G. Kovács, F. Magyar, and T. Gyimóthy. Static slicing of
java programs. Technical Report TR-96-108, József Attila
University, Hungary, 1996.

[7] J. Krinke. Advanced Slicing of Sequential and Concurrent
Programs. PhD thesis, Univ. of Passau, Germany, 2003.

[8] J. Krinke. Context-sensitive slicing of concurrent programs.
In Proc. FSE/ESEC, pages 178–187, 2003.

[9] L. Larsen and M. J. Harrold. Slicing object-oriented
software. In Proceedings of the 18th international
conference on Software engineering, pages 495–505, 1996.

[10] O. Lhoták. Spark: A flexible points-to analysis framework
for java. Master’s thesis, McGill University, Montreal,
Canada, February 2003.

[11] D. Liang and M. J. Harrold. Slicing objects using system
dependence graphs. In ICSM, pages 358–367, 1998.

[12] B. A. Malloy, J. D. McGregor, A. Krishnaswamy, and
M. Medlkonda. An extensible program representation for
object-oriented software. ACM SIGPLAN Notices,
29(12):38–47, 1994.

[13] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for
java. In Proceedings of the international symposium on
Software testing and analysis (ISSTA’02, pages 1–11,
Roma, Italy, 2002.

[14] S. Muchnick and N. Jones. Program Flow Analysis.
Prentice Hall, 1981.

[15] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up
slicing. In Proceedings of the ACM SIGSOFT ’94
Symposium on the Foundations of Software Engineering,
pages 11–20, 1994.

[16] T. Robschink and G. Snelting. Efficient path conditions in
dependence graphs. In Proceedings International
ACM/IEEE Conference on Software Engineering
(ICSE’02), pages 478–488, Orlando, FL, May 2002.

[17] A. Sabelfeld and A. Myers. Language-based
information-flow security. IEEE Journal on Selected Areas
in Communications, 21(1), January 2003.

[18] G. Snelting, T. Robschink, and J. Krinke. Efficient path
conditions in dependence graphs for software safety
analysis. Submitted for publication, 2003.

[19] T. Teitelbaum. Code surfer user guide and reference.
Technical report, Gramma Tech Product Documentation,
2001.
http://www.grammatech.com/csurf-doc/manual.html.

[20] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[21] F. Tip and J. Palsberg. Scalable propagation-based call
graph construction algorithms. In Proc. OOPSLA, pages
281–293, 2000.

[22] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Flow
insensitive c++ pointers and polymorphism analysis and
its application to slicing. In International Conference on
Software Engineering, pages 433–443, 1997.

[23] N. Walkinshaw, M. Roper, and M. Wood. The java system
dependence graph. In SCAM, 2003.

[24] J. Zhao. Dependence analysis of java bytecode. In
Proceedings of the 24th IEEE Annual International
Computer Software and Applications Conference, pages
486–491, October 2000.


