
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Exception Support in a
Graph-Based Intermediate

Representation

Bachelorarbeit von

Jonas Haag

an der Fakultät für Informatik

Call

Proj X X_except Proj X X_regular

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr.-Ing. Jörg Henkel
Betreuende Mitarbeiter: Dipl.-Inform. Sebastian Buchwald

Dipl.-Inform. Manuel Mohr

Bearbeitungszeit: 11. Januar 2016 – 31. April 2016

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Copyright c© 2016 Jonas Haag

Permission to use, copy, modify, and/or distribute this document for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies:

The document is provided “as is” and the author disclaims all warranties with
regard to this document including all implied warranties of merchantability and
fitness. In no event shall the author be liable for any special, direct, indirect, or
consequential damages or any damages whatsoever resulting from loss of use, data
or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of this document.

Abstract
Exceptions are a well-established technique for handling errors in computer programs.
Compilers and intermediate representations must provide special support for excep-
tion handling. In this work we present a model for representation of exceptional
control flow in the graph-based intermediate representation Firm and implement
it in the libFirm compiler. To verify our implementation, we integrate it into the
bytecode2firm Java compiler.

Ausnahmen sind eine verbreitete Technik zur Fehlerbehandlung in Computerpro-
grammen. Sie bedarf in Compilern und Zwischenrepräsentationen dedizierter Un-
terstützung. In dieser Arbeit präsentieren wir ein Modell zur Repräsentation des
Kontrollflusses von Ausnahmen in der Graph-basierten Zwischenrepräsentation Firm
und implementieren es im Compiler libFirm. Wir verifizieren unsere Implemen-
tierung durch Integration in den Java-Compiler bytecode2firm.

Contents

1 Introduction 7

2 Preliminaries 9
2.1 Compilers and Intermediate Representations 9

2.1.1 Static Single Assignment Form 9
2.1.2 Dependency Graphs . 10
2.1.3 The Firm Intermediate Representation 11
2.1.4 LibFirm and Related Projects 13

2.2 The Call Stack . 13
2.2.1 Calling Convention . 13
2.2.2 Stack Unwinding . 14

2.3 Exceptions and PEIs . 14
2.3.1 Zero Cost Exceptions . 18
2.3.2 bytecode2firm Landing Pad Design 18

3 Design and Implementation 23
3.1 Representation of Exception Flow in libFirm 23

3.1.1 Jump Instruction After Calls 25
3.1.2 The Inline Optimization . 26
3.1.3 Ignoring Exception Edges in the X87 Simulator 31

3.2 Implementation of Java Exception Handling 31
3.2.1 Analysis of our Design . 34

3.3 DWARF Unwind Information . 35
3.3.1 Other Callee-Save Registers 36

4 Evaluation 39

5 Conclusion and Further Work 43

6 Related Work 45

5

1 Introduction

Thorough and accurate error handling is one of the most important drivers for high
software quality. It prevents software from ending up in unwanted state and provides
backup strategies for erroneous or otherwise unforeseen circumstances.

Most modern programming languages dedicate special syntax and semantics to error
handling. In object-oriented languages this is usually realized with exceptions. A
function that does not know how to deal with a certain situation may throw an
exception object. Control flow is then transferred to the place the function has been
called from, expecting that the caller (or any of the caller’s callers, etc.) know how
to deal with the situation.

Since exceptions change the control flow of a program, it is necessary to know for
compilation whether an operation may throw an exception. Compilers and (perhaps
more importantly) intermediate representations (IRs) must therefore include special
support for exceptions.

Having its roots in compilation of the C programming language, the graph-based
intermediate representation Firm as implemented by libFirm does not contain the
concept of exceptions.

In this work we present a model for representation of exception flow in graph-
based IRs, and in the Firm intermediate presentation in particular. We provide a
description of our model in chapter 3. We implement it in libFirm and two of its
frontends, cparser (C) and bytecode2firm (Java), and add the -fexceptions
flag to the cparser frontend to enable exception representation. In bytecode2firm
we enable exception representation by default. We also develop an exception handling
runtime for the bytecode2firm frontend.

In chapter 4 we evaluate our model and our implementation using the well-known
SPEC benchmark suite. We compare the performance of programs built by cparser
with and without the -fexceptions flag enabled. Our benchmarks show that it has
some noticeable but small negative effect on program performance.

7

2 Preliminaries

2.1 Compilers and Intermediate Representations

2.1.1 Static Single Assignment Form

Compilers are typically split into three components. The input program is first
parsed by the frontend to an abstract syntax tree (AST). The backend deals with code
generation for the target language (machine code or another high-level programming
language). Between frontend and backend the input program often undergoes multiple
transformation and optimization steps. These are part of the third component, the
middleend.

As performing transformations on the syntax representation of the input program
would be too cumbersome, the frontend first translates it to another representation.
This representation is called an intermediate representation (IR). Unlike the abstract
syntax tree it focuses less on the syntactical and more on the semantic aspects of
the input program [1].

State-of-the-art intermediate representations for imperative programming languages
are based on Static Single Assignment (SSA) form, which simplifies many optimiza-
tions [2]. A program is in SSA form if and only if each name (“variable”) is assigned
exactly once, i.e. we can identify its value with its definition.

Imperative programs are generally not written in SSA form. To obtain an input
program’s SSA representation, it must therefore be translated to such. This transfor-
mation is called SSA construction. It is based on the idea of renaming the variables
in the program so that each variable has a unique place where it is assigned (i.e.,
defined). Consider the simple example program in figure 2.1. There the two as-
signments to a have been changed to assign to a_1 and a_2; thus, the transformed
program is in SSA form.

However, this raises the question of how to translate code that uses the a variable
after the assignment in the source program. The a variable could refer to any of its
definitions. This depends on which branch is taken when the program is executed.

If we do not know which of the two SSA versions of the variable will hold the correct
value when the program is executed, how should we translate foo(a)? In SSA, this
is accounted for by an artificial operation called a Φ function. It “selects” the correct

9

2.1. COMPILERS AND INTERMEDIATE REPRESENTATIONS

definition depending on the actual control flow of the executed program. Note that
computers cannot actually execute Φ functions; they must therefore be removed
before code generation in a process called SSA destruction.

if ... {
a = 1;

} else {
a = 2;

}
foo(a);

(a) Original program

if ... {
a_1 = 1;

} else {
a_2 = 2;

}
foo(?);

(b) How should we translate
foo(a)?

if ... {
a_1 = 1;

} else {
a_2 = 2;

}
a_3 = Φ(a_1, a_2);
foo(a_3);

(c) SSA form

Figure 2.1: SSA representation of a simple program.

2.1.2 Dependency Graphs

In SSA-based intermediate representations, names are identified with their unique
definition. We may thus replace any occurrence of a name with its value. The
intermediate representation can then do aside with the concept of variables and names
altogether. The result of this is an IR that explicitly models all data dependencies: All
operations refer directly to their operands’ definitions. We obtain what is essentially
a graph of data dependencies:

if ... {
a_1 = 1;

} else {
a_2 = 2;

}
a_3 = Φ(a_1, a_2);
foo(a_3);

1

2

Φ(,);
foo();

The idea of dependency graphs forms the basis for the work of Trapp on explicit
dependency graphs (EDGs) [3]. In addition to data dependencies Trapp’s EDGs also
contain explicit control-flow and memory dependencies. Control-flow is represented
using classic control-flow graphs. Blocks are linked to their control-flow predecessors.
Memory dependencies are modeled using a special “memory” output of operations
that may cause side effects. Details on EDGs may be found in [3].

10

2.1. COMPILERS AND INTERMEDIATE REPRESENTATIONS

2.1.3 The Firm Intermediate Representation

Firm [4] is an intermediate representation based on the work of Trapp [3]. It works
exclusively on SSA form and can be used to represent a program in the middleend
and backend stages of compilation, including code generation. Firm graphs are a
form of explicit dependency graphs.

Each of the input program’s functions is represented by an EDG. We introduce the
structure of Firm graphs with the help of a small example program provided in
figure 2.2.

Operations such as arithmetic, comparisons and control-flow statements are repre-
sented as vertices in the graph. Data and control-flow dependencies are represented
as input edges. They refer to the outputs of other vertices. All operations belong to
exactly one basic block, which is represented as another, special block vertex.

Operations may have more than one output. For example the Start vertex in our
example has two outputs M and Targs, where M is the initial memory state and
Targs is a tuple of function parameters. These outputs are combined into a tuple
(M,Targs). Tuple entries may be accessed using a special Proj instruction. In our
example the vertex Proj Is Arg 0 72 selects the int argc parameter from the
tuple of function parameters.

Firm graphs employ a type system that assigns a mode to every vertex. Built-in
modes include T (tuple), M (memory state, blue vertices), P (pointer), Is (signed
integer) and b (bit). Control-flow operations have mode X (red vertices).

Operations that access memory have a special mode M output that is the program’s
memory state after their execution. In our example, Load[p64] 93 reads data from,
and Call 96 may write to memory. The behavior of the program clearly depends
on the order these operations are executed in. To encode the correct execution order
in the graph, the call operation is made dependent on the load operation’s memory
state.

11

2.1. COMPILERS AND INTERMEDIATE REPRESENTATIONS

void f(char *);

int main(int argc, char *[]argv)
{

if (argc >= 0) {
f(argv[0]);

}
return 0;

}

End Block 63

End 64

Block 81

Proj M M 97

Call 96

Address &f p64 83Proj M M 94 Proj p64 res 95

Load[p64] 93

Jmp 115

Block 116

Return 119

Const 0x0 Is 76Phi 117

Start Block 65

Proj M M 70

Proj p64 Arg 1 73

Proj X false 80 Proj X true 79

Cond 78

Cmp b greater 77

Const 0x0 Is 76Proj Is Arg 0 72

Proj T T_args 69

Start 67

0

0 1

0

0

0

0 0

0

0 1

0

0

0

1

0

0 1

01

0

0 12

0 0

01

1

Figure 2.2: A small C program and its Firm graph.

12

2.2. THE CALL STACK

2.1.4 LibFirm and Related Projects

libFirm [5] is a Free [6] implementation of the Firm intermediate representation.
It is written in the C programming language and features an extensive set of
target-independent optimizations and code generation backends for the x86, AMD64,
SPARC and ARM architectures.

Several frontends exist for libFirm, the perhaps most actively developed one being
cparser [7] for the C programming language. Other frontends include byte-
code2firm, which supports translation of Java bytecode [8] to Firm graphs, and
X10 [9].

2.2 The Call Stack

Procedure calls are usually implemented using a runtime stack of call frames called
the call stack. A procedure’s call frame is put onto the call stack when the procedure
is entered, kept on stack while it executes and removed from the stack when the
procedure is left. The call frame holds various data that is required for the procedure
to run, like the parameters it has been called with and the local variables it has
created. It also contains a return address, i.e. the address of the code that should
be executed after the procedure, which typically is the instruction after the call site
(the address of the call instruction) [1].

2.2.1 Calling Convention

The call stack is usually implemented by compilers using a special stack pointer
register whose value is shared among all procedures and may be freely adjusted
to push or pop values onto or from the stack. When a procedure is left the stack
pointer value is reverted to its value at entry of the procedure as to not interfere
with the caller. This poses a problem if the amount of data pushed onto the stack is
unknown at compile time, because in that case the compiler also cannot know by
which amount the stack pointer has to be changed when leaving the procedure. In C,
this situation may arise when using the alloca function or a variable-length array
(whose size is determined at runtime).

To solve the problem of unknown stack frame sizes, an additional base pointer is
used that holds the value of the stack pointer just after the procedure was entered.
It too is stored in a special register called the base pointer register. Upon exit of the
procedure the stack pointer is restored from the base pointer register. Since the caller
likely also uses the base pointer register for this very same purpose, the “old” base
pointer value is kept on the call stack so that it can be restored when leaving the
procedure. Saving the base pointer register value in memory, and generally saving

13

2.3. EXCEPTIONS AND PEIS

any register value in memory, is also called spilling, and the address where it is saved
is called spill slot.

These low-level details of how to create and destroy stack frames are part of a
standard called the calling convention. Many different calling conventions exists; the
one we described above is the most commonly used one and a de facto standard for
the X86 architecture [10].

2.2.2 Stack Unwinding

Debuggers (and other tools, as we will see in the next section) can use call frames to
walk the call stack. In particular, they can “go back in time” to see what caused
a particular procedure to be called (“trace back”), which may help understanding
errors in the program. This is called stack unwinding.

2.3 Exceptions and PEIs

In programming, exception handling is used to cope with unexpected or unlikely
events that happen to a computer system running a program. This may include
illegal computations like division by zero resulting from bugs in the program or user
input that has not been validated sufficiently thoroughly, access to files and data
that do not exist, and other domain specific unlikely or error conditions.

Exceptions remove the necessity of explicit error handling as known from programming
languages such as C. In C, an error in a subroutine is typically indicated by a nonzero
or negative return value, while the actual result of the subroutine is written to a
memory address specified by the caller. As an example, a C program that uses the
read syscall must check for error at every call site. This gets particularly cumbersome
if such calls are made in multiple places in the code (figure 2.3a). Compare this to
equivalent code written in the Java programming language, which supports exception
handling (figure 2.3b). Another issue with explicit error handling is that if forgotten
the program may behave in unexpected ways and even be vulnerable to attacks.

We provide an example of “real world” exception handling code in figure 2.4. It
shows excerpts from the source code of Java Development Kit 8.

There are many notions of exceptions in the literature. In this paper we use the
term “exception handling” as a shorthand for structured, non-resumable exception
handling as described in [11]. In structured, non-resumable exception handling, a
function that does not know how to deal with a certain erroneous or otherwise
unexpected situation may throw an exception. Control is then transferred to the
place the function has been called from, expecting that the caller know how to deal
with the situation. This step is repeated until the end of the call chain is reached, in

14

2.3. EXCEPTIONS AND PEIS

ssize_t bytes_read;
bytes_read = read(...);
if (bytes_read < 0) {

/* Error handling */
...

} else {
...
while (...) {

ssize_t tmp = read(...);
if (tmp < 0) {

/* Error handling */
...

} else {
bytes_read += tmp;
...

}
}

}
(a) Explicit error handling in C.

int bytes_read;
try {

bytes_read = f.read(...);
...
while (...) {

bytes_read += f.read(...);
...

}
} catch (IOException err) {

/* Error handling */
...

}

(b) Implicit error handling using exceptions in
Java.

which case the program is aborted, or until a caller indicates that it knows how to
handle the exception. The latter is called catching an exception, and the code that
deals with the caught exception is called landing pad.

In object oriented programming languages exceptions are usually objects, and landing
pads define which types of exception objects they can handle (catch type). The list
of landing pads that may catch an exception is then restricted to those matching the
type of the exception object that has been thrown. Here, a landing pad “matches”
an exception (or type thereof) if the exception type is compatible to the landing
pad’s catch type.

The landing pad code has the following options to proceed with the exception
situation. First, if the exception was caused by some temporary condition like a
network outage, the landing pad may simply try to run the exact same code a second
time. Second, if there’s some other way to properly deal with the situation, like
falling back to some default value, or displaying a error message, the landing pad
may fully resolve the exceptional case and resume operation of the program. Lastly,
if the landing pad does not know how to recover from the situation (this cannot
always be known upfront), it may rethrow the exception, in which case the exception
handling routine described above is continued.

Some programming languages provide a special finally instruction that is guaranteed
to be executed whenever the corresponding try block is left. In particular, it is
executed if an exception is raised in the try block. This is why it is commonly used
to clean up resources used by the calling function (e.g. temporary files or database
connections). It is a shorthand for catching all possible exceptions, doing the cleanup,
and then rethrowing the exception.

15

2.3. EXCEPTIONS AND PEIS

Since exceptions change control flow, it is necessary to know for compilation whether
an operation may throw an exception or not. This includes calls to other functions
that can throw unhandled exceptions. We therefore make the following definition.

Definition (“throws”, Potentially Excepting Instruction). A function or piece of
code “may throw” (“throws”) if and only if an exception that is not immediately
caught can be thrown by the function or by any function it calls.

A call to a function that may throw or some other instruction that may invoke a
piece of code that may throw is called a Potentially Excepting Instruction (PEI).

16

2.3. EXCEPTIONS AND PEIS

/* From: java/nio/files/File.java */
boolean isSymbolicLink(Path path) {

try {
return readAttributes(path, ...).isSymbolicLink();

} catch (IOException ioe) {
return false;

}
}

void createAndCheckIsDirectory(Path dir, ... attrs) throws IOException {
try {

createDirectory(dir, attrs);
} catch (FileAlreadyExistsException x) {

if (!isDirectory(dir, ...))
throw x;

}
}

/* From: java/util/concurrent/ArrayBlockingQueue.java */
ArrayBlockingQueue(int capacity, ..., Collection<? extends E> c) {

...
this.items = new Object[capacity];
this.lock.lock();
try {

...
try {

for (E e : c) {
...
items[i++] = e;

}
} catch (ArrayIndexOutOfBoundsException ex) {

throw new IllegalArgumentException();
}
...

} finally {
this.lock.unlock();

}
}

Figure 2.4: Exception handling examples from Java Development Kit 8.
The isSymbolicLink method falls back to a default answer of false in case of
an exception. The createAndCheckIsDirectory method tries to create a new
directory of the given path. If a file already exists at that path, an exception is
thrown. The exception is re-thrown if the existing file is not a directory; otherwise,
it is ignored. The ArrayBlockQueue constructor creates a new array with given
capacity and fills it with the entries of some given collection. If at some point of the
copy operation the array runs out of space, an ArrayIndexOutOfBoundsException
is thrown, which is turned into an IllegalArgumentException, indicating to the
caller that the specified capacity is inadequate. The constructor code also shows an
example of finally usage. Here it is used to ensure that the lock that was obtained
earlier in the code is properly released in all cases.

17

2.3. EXCEPTIONS AND PEIS

2.3.1 Zero Cost Exceptions

Exceptions are commonly implemented using a technique called Zero Cost Exceptions
in compilers (GCC, Clang [12], [13], . . .). It is the de facto standard for low-level
exception implementation.

The main idea of Zero Cost Exceptions is that exceptions should add negligible
runtime overhead if no throwing code paths are ran into (hence the name). Due to
their nature of modeling the exceptional case, the runtime performance of actually
throwing and catching exceptions (including walking the call chain etc.) does not
have to be heavily optimized. Note that for programming languages that feature
subtyping [14] we cannot do aside with runtime support for exception handling (and
thus runtime overhead) entirely. This is because in general it is not possible to decide
at compile time which landing pad is to be used for a PEI.

Many compilers implement Zero Cost Exception Handling in a way compatible to the
Itanium Exception Handling ABI [15]. It separates the runtime exception handling
implementation into two independent parts:

• A so-called unwind library that knows how walk the low-level representation of
the call chain (call stack).

• A personality routine that encodes the language-specific parts of the exception
handling process like knowing how to find and select the correct landing pads.

libunwind [16] is a Free unwind library implementation with support for many CPU
architectures.

A common way to implement the personality routine is to add an exception table to
the machine code of any function or method that contains some kind of exception
handling. For example, the GNU Compiler Collection and the Clang compiler use a
proprietary table layout based on the DWARF .eh_frame format. When asked by
the unwind library to determine if there is any suitable landing pad in the current
call frame, the personality routine can do a lookup in the exception table. The
exception table holds a list of landing pads and the types of exceptions that they
can deal with.

2.3.2 bytecode2firm Landing Pad Design

We explain how bytecode2firm represents catch blocks as landing pads (i.e., basic
blocks) in Firm.

First consider the simple case of an isolated throw statement—one that is not in
scope of a Java try block—in figure 2.5. Since there cannot be any other matching
landing pad in the same method, runtime exception handling must always be invoked,

18

2.3. EXCEPTIONS AND PEIS

to look for matching landing pads further up the call chain. This is represented by
bytecode2firm as a call into a special function firm_personality.

void isolated() {
throw new

UncaughtException();
}

(a) Source program

End

End Block

Raise

“new UncaughtException()”

Proj X X_except

(b) Intermediate
graph

End

End Block

Call

Proj X X_except

Address &firm_personality“new UncaughtException()”

(c) Lowered graph

Figure 2.5: Isolated Java throw statements always directly invoke runtime exception
handling. Note that throw statements are represented as Raise vertices
in the intermediate graph, and are later lowered to a Call to runtime
exception handling.

Another simple case is if a throw statement is surrounded by a try block and its
matching landing pad is known at compile-time. The throw statement can then
simply be translated to a jump to that landing pad (see figure 2.6).

Java allows for multiple catch clauses in each try block. bytecode2firm employs
a chain of type checks using Java’s instanceof machinery to select the correct target
at runtime. In fact, the current implementation always adds a Jump to the beginning
of the type-check chain, even if some exception types are known to never match a
certain operation. In figure 2.7 we give an outline of a landing pad with instance
checks. There we also account for the case that none of the catch types matches
the exception: In this case bytecode2firm resorts to runtime exception handling
to look for a matching handler in the calling frame. To accomplish this, it adds a
“fallback” call to firm_personality at the end of each landing pad.

19

2.3. EXCEPTIONS AND PEIS

void knownLandingpad() {
try {

if ... {
throw new CaughtException();

} else {
...

}
} catch (CaughtException exc) {

/* Landing pad */
...

}
}

(a) Source program

End

End Block

Jmp

“new CaughtException()”

Cond

…

Landing pad

…

Proj X true Proj X false

(b) Intermediate/lowered graph

Figure 2.6: If a throw statement’s landing pad is known at compile time, it can be
lowered to a jump to the landing pad.

20

2.3. EXCEPTIONS AND PEIS

void foo() throws CaughtException1, CaughtException2, UncaughtException;

public void multipleCatch() throws UncaughtException {
try {

foo();
} catch (CaughtException1 exc) { /* Landing pad 1 */

...
} catch (CaughtException2 exc) { /* Landing pad 2 */

...
}

}
(a) Source program

…
Call

Address &foo

Proj X X_except Proj X X_regular

InstanceOf

Address &CaughtException1

Address &exception

Cond

Proj X true Proj X false

Return

…
Landing pad 1

Call

Proj X X_except

Address &firm_personality

InstanceOf

Address &CaughtException2

Cond

Proj X true Proj X false

Return

…
Landing pad 2

End

End Block

(b) Lowered graph

Figure 2.7: Multiple catch clauses are translated into a chain of type checks.

21

3 Design and Implementation

The main goals of our work are twofold. First, we want to adapt libFirm so that
it can represent exception flow in Firm graphs. This is described in section 3.1:
Representation of Exception Flow in libFirm. Second, we want to add exception
support to bytecode2firm, which also implicitly verifies that exception support
in libFirm functions correctly. This is described in section 3.2: Implementation of
Java Exception Handling.

For testing purposes, we extend cparser with exception flow representation as well.
This may also serve as a basis for C++ support in cparser in the future.

3.1 Representation of Exception Flow in libFirm

Several kinds of PEIs exist in the C and Java programming languages:

• Read or write access to memory may fail for illegal memory addresses.

• Arithmetic may underflow or overflow, or divide by zero.

• Function calls except if their callees except.

• throw statement are used to manually trigger an exception.

• . . .

The effect of an exception triggered by a PEI largely depends on the type of the
PEI (see list above) and on the input language semantics. For instance, a program
written in the C programming language that tries to dereference a null pointer—
and in general access any illegal memory address—is usually terminated by the
operating system immediately. In contrast, a null pointer dereference in the Java
programming language throws a NullPointerException. Similarly, an integer
division by zero throws an ArithmeticException in Java, whereas it has undefined
behavior in C [17].

Indeed, there exists no runtime mechanism for catching exceptions thrown by a PEI
in the C programming language. In addition, bytecode2firm does not handle any
of the implicit exceptions that can be thrown by a PEI in Java (like null pointer
dereference, illegal array index access, division by zero). Therefore, in this work we

23

3.1. REPRESENTATION OF EXCEPTION FLOW IN LIBFIRM

only consider explicit throw statements and calls to functions containing such. We
ignore the fact that other instructions may implicitly throw an exception.

We use a classic approach to represent the fact that a throwing call may change
control of a program: We make it a control-flow operation in the Firm graph, similar
to the If and jump instructions, by adding two new mode_X outputs, X_regular and
X_except. They represent the “regular” (no exception thrown) and exceptional cases.
Code that follows the call in the regular case is put into a new basic block that is
connected to the call’s X_regular output through a mode_X Proj instruction; code
that should be executed in case an exception was thrown is put into a new basic
block connected to the X_except output.

If no landing pad has been given for the call, or the language does not support
specifying landing pads in the first place (e.g. C code compiled with -fexceptions),
then we directly route the call’s X_except output to the graph’s end block.

If the program has one or more landing pads associated with the throwing call, they
are placed in the X_except block. We will discuss the structure of these landing pad
blocks in section 3.2: Implementation of Java Exception Handling.

In figure 3.1 we show the Firm graph of the C program from figure 2.2 compiled
with -fexceptions and illustrate how the graph would look if we had a landing pad
to represent.

Note that despite the fact that from a Firm graph it might look like X_except
control flow is translated to a simple jump instruction in the code generation phase,
this is generally not the case. In section 2.3.1: Zero Cost Exceptions we describe a
common technique to implement exceptions that involves a special unwind library
and a language-specific personality routine. The representation of exception flow
described in this chapter is unconcerned with the details of how exceptions are
implemented in the code generation phase.

The addition of the X_regular and X_except outputs alone gives raise to a multiple
considerations that have to made in the various phases of our implementation
libFirm, some of which we will discuss in the following.

24

3.1. REPRESENTATION OF EXCEPTION FLOW IN LIBFIRM

End Block 63

End 64

Block 81

Proj X X_except 98Proj X X_regular 99

Call 96

Block 121

1

01

00

(a) Without landing pad

End Block 63

End 64

Block 81

Proj X X_except 98Proj X X_regular 99

Call 96

Block 121

1

01

00

1

1

Landing pad

…

(b) With landing pad

Figure 3.1: Firm graph of C program from figure 2.2 compiled with -fexceptions.

3.1.1 Jump Instruction After Calls

We have just seen that the code that should be executed after a throwing call is
placed in a different basic block (the X_regular block). Code generation therefore
needs to insert a jump instruction after the call (unless we can “fall through” to
the next basic block). No such instruction is inserted for changing control flow to
the X_except block for the reasons described in the introduction to section 3.1:
Representation of Exception Flow in libFirm.

To implement this change, we defined a custom emitter for Call instructions in each
of the backends (in the file <architecture>_emitter.c).

_main:
...
call _f
jmp L1

... other blocks ...
.L1: # End block

...
ret

25

3.1. REPRESENTATION OF EXCEPTION FLOW IN LIBFIRM

void o1() {
inl();
...

}
(a) Source code

…

End

End Block

Call

Address &inl

Proj X X_except Proj X X_regular

Start

Start Block

(b) Intermediate graph

Figure 3.2: Outline of G1.

3.1.2 The Inline Optimization

The inlining optimization replaces a call to a function with the called function’s body.
This removes the runtime overhead that comes with function calls such as copying
the call arguments onto the stack and branching to some other code location (which
may hurt CPU cache performance). It also allows for subsequent optimization of the
code that results from the inlining process.

Some special considerations have to be made with respect to inlining functions
that contain exception control flow. Consider the two Firm graphs G1 and Ginl in
figures 3.2 and 3.3.

Ginl makes three calls that may cause an exception to be thrown:

• A call to f. The landing pad attached through Ef catches the exception thrown
by f and allows Ginl to return without an exception.

• A call to g. The landing pad attached through Eg does some cleanup but leaves
Ginl with an exception.

• A call to h. It has no landing pad attached and always leaves Ginl with an
exception.

Now, when inlining graph Ginl into G1, how should we proceed with the Ef , Eg, Eh

X_except edges?

First note that the Ef branch should not actually be considered exception flow from
the inliner’s point of view as it ends in a normal Return vertex. The exception has
been handled entirely inside Ginl and control flow continues normally. On the other
hand, Ginl may be left through the Eg and Eh edges with an exception, from which it
follows that G1 too must be expected to have exception flow (since it does not catch

26

3.1. REPRESENTATION OF EXCEPTION FLOW IN LIBFIRM

the exceptions thrown by g and h in Ginl). We can represent this fact by connecting
the Eg and Eh branches to the resulting graph’s end block, as shown in figure 3.4.

A limitation of this approach is that it does not help us if in addition to the landing
pads in Ginl we also have landing pads in the outer graph. Consider G2 in figure 3.5,
which has a landing pad itself. How can we include this in the resulting graph?

Let use recall the behavior that is expected from the control flow of the original
graph G2 in case an exception is thrown in inl: We expect it to be transferred to
the call’s landing pad in any case, regardless of any other exception handling that
may have happened inside the callee Ginl. We can also be sure that if an exception
is thrown in the callee, control will come from one of its exception edges (Eg, Eh).
Therefore, we simply connect the callee’s exception edges to the “outer” landing pad
that is incident to the call that is being inlined. Since by inlining that call vanishes,
we do not copy the edge that connected the outer landing pad over to the inlined
graph.

The final inline result graph is shown in figure 3.6.

27

3.1. REPRESENTATION OF EXCEPTION FLOW IN LIBFIRM

void inl() {
try {

f();
try {

g();
h();
...

} catch (Exception e) {
cleanup();
throw e;

}
} catch ... {

...
return;

}
}

(a) Source code

Call

Address &f

Proj X X_except Proj X X_regular

Return

Call

Address &g

End

Start

Proj X X_except Proj X X_regular

Call

Address &cleanup

Raise

Proj X X_except

…

Ef Eg Eh

Start Block

End Block

…

Call

Address &h

Proj X X_except Proj X X_regular

(b) Intermediate graph

Figure 3.3: Outline of Ginl that is to be inlined.

28

3.1. REPRESENTATION OF EXCEPTION FLOW IN LIBFIRM

…

End

End Block

Start

Start Block

Call

Address &f

Proj X X_except Proj X X_regular

Return

Call

Address &g

Proj X X_except Proj X X_regular

Call

Address &cleanup

Raise

Proj X X_except

…

…

Call

Address &h

Proj X X_except Proj X X_regular

Ginl
Figure 3.4: Ginl inlined
into G1 with exception
edges simply connected to
the end block. The el-
lipsis inside the grey area
represent code that fol-
lows the call to h in Ginl;
the ellipsis outside it rep-
resent code that follows
the call to inl in G1.

void o2() {
try {

inl();
...

} catch ... {
/* Outer landing pad */
...

}
}

(a) Source code

Return

…
Outer Landing Pad

…

Call

Address &inl

Proj X X_except Proj X X_regular

Start

Start Block

End

End Block

(b) Intermediate graph

Figure 3.5: Outline of G2.

29

3.1. REPRESENTATION OF EXCEPTION FLOW IN LIBFIRM

…

End

End Block

Return

…
Outer Landing Pad

Start

Start Block

Call

Address &f

Proj X X_except Proj X X_regular

Return

Call

Address &g

Proj X X_except Proj X X_regular

Call

Address &cleanup

Raise

Proj X X_except

…

…

Call

Address &h

Proj X X_except Proj X X_regular

Ginl

Figure 3.6: Ginl inlined into G2 with exception edges connected to the “outer”
landing pad.

30

3.2. IMPLEMENTATION OF JAVA EXCEPTION HANDLING

3.1.3 Ignoring Exception Edges in the X87 Simulator

Intel’s X87 [18] instruction set is a subset of the X86 architecture for fast floating
point operations. All X87 instructions work on a so-called Floating Point Stack, that
is, a set of registers exclusively used for floating point operations. X87 computations
pop their operands from and push their result to the floating point stack. Compilers
must therefore “wrap” X87 computations with code that pushes operands onto the
stack from main memory and pops the result from the stack back to main memory.

LibFirm’s X86 backends support X87 instructions for sped up floating point com-
putations. It is implemented using a technique called X87 simulator. The simulator
walks through the instructions of all basic blocks in the Firm graph and computes
the changes done to the floating point stack. Every block has a begin and end stack
state. Simulation starts with an empty stack for the start block, but the there may
be blocks whose initial stack is non-empty when the simulator reaches them. This
happens if control is transferred to those blocks at a point in the program where
the floating point stack is not empty. In particular, every block begins with its
predecessor’s stack state.

If a block has multiple predecessors then it has to be made sure that the floating
point values used by that block lie on the stack in same order regardless of from
which predecessor block control has been transferred. This problem is solved by
permuting the floating point stack at the end of the predecessor block if necessary.

A special case arises for basic blocks that are landing pads. When a landing pad is
entered, the callee that threw the exception was left by a call to runtime exception
handling (firm_personality). X86 calling conventions require that the floating
point stack be empty before a call. Thus, unlike “normal” blocks, a landing pad’s
initial stack state must always be expected to be empty.

We satisfy this requirement by special-casing X_except edges in the X87 simulator
(x86_x87.c).

3.2 Implementation of Java Exception Handling

We want to use bytecode2firm to compile and execute Java programs that involve
(runtime) exception handling. For this, we must translate catch blocks into libFirm
landing pads, and we must translate throw statements into a low-level equivalent that
invokes runtime exception handling. For translation of catch blocks we incorporated
the solution we presented in section 2.3.2. We now present our implementation of
runtime exception handling.

Runtime exception handling deals with the situation that an exception is thrown that
is not caught immediately: In particular, as described in section 2.3.2, there exists

31

3.2. IMPLEMENTATION OF JAVA EXCEPTION HANDLING

no matching landing pad in the same call frame. So, we must extend our search to
the previous call frame. If we find a matching landing pad in the previous frame, we
can continue execution at that landing pad. Otherwise, the search is continued in
the previous-but-one frame, etc., until we either find a matching landing pad or we
have reached the top of the call chain. In this case the program is simply aborted.

We use libunwind as a framework for this exception handling process. It already
deals with walking the call chain and knows how to resume our program at a landing
pad. For each frame libunwind sees during its walk, we check if that frame contains
a landing pad matching the thrown exception. This is done using an exception table
that is placed in the LSDA (Language Specific Data Area) section of the frame. If
the lookup is successful, we instruct libunwind to resume execution of the program
at the place we looked up in the table.

Note that a successful table lookup does not guarantee that the target landing pad
actually matches the exception—this is checked using the chain of instanceof checks
described in section 2.3.2 and may very well result in runtime exception handling
being called again. Put another way, the table merely serves as way to find the
beginning of the type-check chain.

Our exception table uses a simple proprietary format: it maps the addresses of PEIs
to the addresses of their unique associated landing pads. To look up a landing pad
in the unwind process, we perform a linear search in the exception table using the
instruction pointer of the current call frame as key, and, if the lookup succeeds,
resume execution at the landing pad’s address.

In figure 3.7 we provide an example exception table. An outline of the Java source
program is shown in figure 3.7a. It contains three calls to f, h and g. Exceptions
thrown in f are being taken care of in landing pads 1 and 2; exceptions thrown in
g and h in landing pads 3 and 4. As we have already seen in the previous section,
runtime exception handling always starts the “type search” in the first landing pad
provided for each call site. Here we first look at landing pad 1 for the call to f and
at landing pad 3 for the calls to g and h (see table figure 3.7b). Figure 3.7c shows
how the exception table is represented in assembly code. It also outlines the exact
binary representation of the table, which is a “quad” (8 byte unsigned integer) for
the number of entries in the table, followed by that many key-value pairs of size 2 · 8
byte each.

32

3.2. IMPLEMENTATION OF JAVA EXCEPTION HANDLING

public void tableExample() {
try {

f();
} catch ... { /* Landing pad 1 */
} catch ... { /* Landing pad 2 */
}

try {
g();
h();

} catch ... { /* Landing pad 3 */
} catch ... { /* Landing pad 4 */
}

}
(a) Outline of source program

Call Resumption Target
f() Landing pad 1
g() Landing pad 3
h() Landing pad 3

(b) Exception table

void Test::tableExample()
_tableExample:

...
call _f

.LE114: ...
call _g

.LE115: ...
call _h

.LE116: ...

.L616: # Landing pad 1
...

.L615: # Landing pad 3
...

___tableExample_LSDA:
Number of entries
.quad 3
Handler for "Call f": Landing pad 1
.quad .LE114
.quad .L616
Handler for "Call g": Landing pad 3
.quad .LE115
.quad .L615
Handler for "Call h": Landing pad 3
.quad .LE116
.quad .L615

(c) Outline of generated assembly code with exception table

Figure 3.7: Exception table example.

33

3.2. IMPLEMENTATION OF JAVA EXCEPTION HANDLING

3.2.1 Analysis of our Design

Our exception handling model supports all Java exception handling features, including
multiple catch and finally clauses, re-throwing exceptions and recursion. Our
exception table layout is much simpler than the ones other compilers like GCC use.
Indeed, while other compilers usually encode exception class identifiers and action
types (catch, finally), our design almost completely separates Java exception
handling semantics from the libFirm library. Selection of the correct landing pad is
encoded in a way that is transparent for the compiler. We need only provide the
compiler with a target block at which the program should continue to execute in
case of an exception for each PEI.

The disadvantage of this approach is that no structured data about catch (and
finally) clauses is available. For example, it is impossible to decide if a certain
exception will be caught without executing its matching landing pads. This also
means that runtime exception handling must always execute all instanceof checks
that appear on its way up the call chain. In addition, the exception table format
used by GCC and Clang is more compact and thus uses less overall space in the
target binary. This is mainly due to their usage of instruction address ranges as keys
in the exception table, an optimization we do not yet employ.

On the other hand, we can use binary search in our runtime exception handling
algorithm to find the correct landing pad. Therefore, if T is the number of PEIs in
a try block, at most lg T steps are necessary to find the beginning of the correct
type-check chain for a PEI. Finding a matching catch clause may then require up
to C checks, where C is the number of catch clauses in the PEI’s surrounding try
block. Let R further be the maximum recursion depth of the program. Together we
get a runtime error handling complexity of

O(lg T · C ·R).

An entry in the exception table takes up eight bytes for each of key and value of the
entry. The table also has a header of eight bytes size. Together, we get an exception
table size of

T ∗ 16B + 8B.

34

3.3. DWARF UNWIND INFORMATION

3.3 DWARF Unwind Information

In section 2.2: The Call Stack we described how stack unwinding is related to the
call stack and calling convention that is used by the compiler. In particular, an
unwind library needs to be able to retrieve each call frame’s predecessor stack and
base pointers in order to walk “back in time”.

We use the Call Frame Information (CFI) assembler directives specified in the
DWARF standard to provide the following information for all call frames:

• The start and end addresses of the procedure’s assembly code.

• The value of the stack pointer at the point of entry into the procedure (“old
value”).

• The value of the base pointer at the point of entry into the procedure (“old
value”).

For start and end addresses, the assembly code of each procedure is surrounded by
.cfi_startproc and .cfi_endproc directives (figure 3.8).

For the old stack pointer value we use the .cfi_def_cfa directive. It defines the
Canonical Frame Address (CFA), which is the value of the stack pointer at the call
site in the previous call frame (i.e. the stack pointer before the call instruction
in the previous frame). Its value is generally one machine word off from the stack
pointer at procedure entry; thus it is trivial to compute that value from the CFA.
It is given either relative to the base pointer in the current call frame, or, if the
frame pointer is omitted (e.g. by using the -fomit-frame-pointer compiler option),
relative to the stack pointer in the current frame. As the base pointer typically
does not change within a procedure’s code, only one .cfi_def_cfa directive per
procedure is necessary if using a base pointer. If the Canonical Frame Address is
given stack-pointer relative, a directive is necessary for each stack pointer change.
See figure 3.9 for an example of the two cases.

The base pointer spill slot can be specified using the .cfi_offset directive. It is
given CFA-relative (figure 3.10).

_main:
.cfi_startproc
pushq %rbp
...
popq %rbp
retq
.cfi_endproc

Figure 3.8: Assembly code of a C main procedure with CFI start and end addresses.

35

3.3. DWARF UNWIND INFORMATION

_main:
.cfi_startproc
pushq %rbp
movq %rsp, %rbp
.cfi_def_cfa %rbp, 16
...
retq
.cfi_endproc

(a) With base pointer
(no -fomit-frame-pointer)

_main:
.cfi_startproc
subq $56, %rsp
.cfi_def_cfa_offset 64
addq $16, %rsp
.cfi_def_cfa_offset 48
...
retq
.cfi_endproc

(b) Without base pointer
(-fomit-frame-pointer)

Figure 3.9: Canonical Frame Address directive with and without base pointer.

_main:
.cfi_startproc
pushq %rbp
.cfi_offset %rbp, -16
movq %rsp, %rbp
.cfi_def_cfa %rbp, 16
...
retq
.cfi_endproc

Figure 3.10: Spill slot of old base pointer value given through .cfi_offset direc-
tive.

3.3.1 Other Callee-Save Registers

To be able to resume execution in an arbitrary call frame—as needed in section 3.2:
Implementation of Java Exception Handling—we must restore the state of registers
when that call frame was active. Above we explain how we provide the old states of
the stack and base pointer registers to an unwinder using Call Frame Information.
In addition, we need to restore the values of all other callee-save registers.

These values are necessary for regular execution of the program, too: When a stack
frame is left, the procedure must restore the caller’s state of callee-save registers.
Therefore, if a callee-save register is modified in a procedure, it is spilled before
modification, so its original value can be retrieved on procedure exit.

For an unwinder to be able to restore callee-saved registers, it needs to know the
spill slots used by the procedure. This information is typically provided by extending
the use of .cfi_offset directives to all callee-save registers. However, this requires
that spill slots are unique in procedure, i.e. a register is always spilled to the same
slot. To illustrate this point, consider the assembly code in 3.11.

Execution always starts at A, then branches to either B or C and finally calls some_PEI
in D. Note that different spill slots for the r12 register are used in B and C. Now, if

36

3.3. DWARF UNWIND INFORMATION

A:
...
je B
jmp C

B:
mov %r12, -8(%rbp)
.cfi_offset %rbp, -16
jmp D

C:
mov %r12, -16(%rbp)
.cfi_offset %rbp, -24
jmp D

D:
call some_PEI

Figure 3.11: Non-unique register spill slots generated by libFirm.

we were to unwind the call stack from some_PEI, which of the spill slots should we
expect to find r12 at?

Contrary to other compilers, libFirm’s spilling implementation does not guarantee
unique spill slots1, so we cannot use Call Frame Information for providing callee-
saves.

As a workaround, we force a reload of all callee-save registers before any call to
runtime exception handling.

1There may exist branches in the procedure that do not modify certain registers, making spills of
those registers redundant. Other compilers employ an optimization called shrink wrapping that
removes the redundant spills from those branches. In libFirm this optimization is inherent and
cannot be disabled.

37

4 Evaluation

We compare the SPEC CPU2000 [19] performance of libFirm proper with our
development branch. CPU2000 is a suite of macro benchmarks for comparison
of CPU and compiler performance. It consists of several medium-sized integer
and floating point benchmark programs whose performance is evaluated using a
standardized set of input data.

For C code compiled without -fexceptions, we expect our branch to have no signifi-
cant slowdown, since the changes made should have no effect on compilation without
exception support. A small slowdown is expected for compilation with -fexceptions:
Some optimizations limit their work to block level, and since -fexceptions adds a
new X_regular block for every PEI, fewer instructions overall are covered by these
optimizations.

The benchmarks were run on an Intel Core i7 2600 (quadcore, 3.40 GHz) machine
with 16 GB RAM, using the cparser frontend. We ran the suite three times, each of
which already executes each benchmark three times. Table 4.1 shows our benchmark
results. Runtime is given in arithmetic mean seconds of the three runs.

As expected, there is a slight performance decrease of 0.6% average when -fexceptions
is enabled. The time it takes to compile all programs of the SPEC CPU2000 suite
increases by about 10.6% average (2.3% standard deviation) when -fexceptions
is enabled. In table 4.2 we provide some other basic metrics of the assembly code
generated by our branch with and without exceptions enabled.

To evaluate the effect of exception support on Java programs, we obtained some basic
statistics on the graphs constructed by bytecode2firm using libFirm’s statev
module. We used the test cases provided with the bytecode2firm test suite as
basis for our statistics. None of the cases involve exception handling; thus they
are suitable for assessing the effect of our exception representation model in Firm
graphs. We expect the number of basic blocks to increase compared to compilation
without exceptions, and the number of instructions per basic block to decrease by a
factor of roughly 3 (see chapter 6: Related Work).

Table 4.3 shows a comparison of the graphs constructed by bytecode2firm with
exception support enabled and disabled. The expected decrease of instructions per
basic block can be seen on the very right; it averages 2.4. We also see a standard
deviation of 3.15 that is larger than the mean—it is due to the fact that the code
samples we used are not representative for “real world” Java programs. We cannot

39

Table 4.1: SPEC CPU2000 results (Mean runtime in seconds; less is better).
“Baseline” is performance without -fexceptions. σ is the sample standard

deviation runtime of 100 benchmark runs. Statistically confidence of runtime change
is given by p values on right.

Benchmark Baseline -fexceptions Change
Runtime σ Runtime σ Runtime p Value

164.gzip 62.74 0.20 62.47 0.17 -0.43% 0.000
175.vpr 47.06 0.38 46.78 0.28 -0.59% 0.000
176.gcc 23.52 0.12 23.15 0.09 -1.57% 0.000
177.mesa 58.82 0.58 58.72 0.25 -0.16% 0.116
179.art 28.04 0.17 28.59 0.48 1.96% 0.000
181.mcf 22.60 0.19 22.56 0.18 -0.15% 0.191
183.equake 30.67 0.55 30.41 0.28 -0.84% 0.000
186.crafty 28.72 0.11 28.65 0.11 -0.25% 0.000
188.ammp 92.65 0.73 92.68 0.90 0.03% 0.700
197.parser 60.67 0.16 60.76 0.16 0.16% 0.000
253.perlbmk 56.13 0.16 56.57 0.16 0.78% 0.000
254.gap 28.49 0.22 31.05 0.14 8.98% 0.000
255.vortex 43.48 0.32 43.79 0.38 0.72% 0.000
256.bzip2 49.81 0.22 49.30 0.26 -1.02% 0.000
300.twolf 66.40 0.28 67.58 0.30 1.78% 0.000

Geometric mean 0.6%

Table 4.2: -fexceptions assembly code metrics.
“Baseline” is performance without -fexceptions.

Metric Baseline -fexceptions

basic blocks 164 139 170 526 (+3.9%)
instructions 1 612 577 1 648 548 (+2.2%)
Jump instructions 81 648 86 786 (+6.3%)
instructions/block (mean) 9.82 9.67 (-1.5%)

40

Table 4.3: Comparison of Firm graphs constructed by bytecode2firm with and
without exception support.

Test case With exceptions Without exceptions Change
Blocks Insns Insns

Block Blocks Insns Insns
Block

Insns
Block

AccessStaticVariable 4 57 14.3 2 47 23.5 1.7
Arrays 507 3784 7.5 290 3148 10.9 1.5
Classes 17 144 8.5 6 109 18.2 2.1
ControlFlow 621 3794 6.1 343 3187 9.3 1.5
CreateObject 16 120 7.5 2 88 44.0 5.9
EntityCopies 11 121 11.0 5 97 19.4 1.8
HelloWorld42 3 23 7.7 1 14 14.0 1.8
InstanceOf 335 2254 6.7 252 2027 8.0 1.2
InstanceVars 254 1977 7.8 91 1550 17.0 2.2
InvokeX 222 1879 8.5 29 1484 51.2 6.1
OOO 31 376 12.1 10 319 31.9 2.6
PrimArith 672 4397 6.5 269 3703 13.8 2.1
SimpleArrayTest 12 90 7.5 7 71 10.1 1.4
SimpleCall 6 65 10.8 2 48 24.0 2.2
Strings 54 419 7.8 3 307 102.3 13.2

Geometric mean 2.40
Standard deviation 3.15

use a more representative sample due to the limited number of Java programs that
bytecode2firm can translate correctly.

We did not study the performance implications of exception support due to the
lack of Java benchmarks that bytecode2firm can compile. This is left for further
work.

41

5 Conclusion and Further Work

We have presented our model for representation of exception flow in the Firm
intermediate representation. In our model, potentially excepting instructions (PEIs)
end their basic blocks and split control flow into exceptional and regular (no exception
thrown) branches. The addition of our exception representation to the libFirm
compiler did not require substantial refactoring: the largest change we had to make
was the adaption of libFirm’s inline optimization process with respect to how
exception edges are handled. In total, of libFirm’s roughly 115 000 lines of code,
we changed less than one percent.

We showed that our model can be used to represent “real world” exception handling
by integrating it into the bytecode2firm Java compiler. We also implemented
a exception handling runtime on the basis of our Firm exception representation.
It uses an exception table that is a simple map of PEI addresses to their unique
associated landing pads. With our changes, bytecode2firm can be used to compile
Java programs that involve (runtime) exception handling.

Our experimental shows that our representation can cause a significantly smaller
instruction/basic-block density. In particular, our measurements show a 2.4 times
smaller mean density for Java programs.

In code generation, we must insert a jump instruction after a PEI if and only if the
PEI’s regular successor block is not scheduled directly after the PEI’s containing
block. In the future, libFirm’s block schedulers may be adapted so that regular
successor blocks are preferably scheduled directly after PEIs, making the jump
instruction redundant.

Our SPEC2000 benchmarks show that C programs compiled with -fexceptions
(which enables exception representation in cparser) have slightly worse performance
than programs compiled without the flag enabled. Analysis of the generated machine
code shows that the two main causes for the slowdown are the jump instructions
explained above, and a combination of other peephole optimizations that were missed
due to smaller basic blocks. We believe that these optimizations can be adapted
accordingly, which remains for future work.

Both bytecode2firm’s exception handling runtime and exception table generation
in libFirm benefit from the simplicity of our exception table format. The runtime
type-checks, however, are costly; they will easily dominate the overall cost for
runtime exception handling in most cases. Performance of exception handling may

43

be improved in the future by adopting an exception table format similar to the
one GCC uses. It encodes the types of exceptions that are caught by a particular
handler, making most of the type checks redundant.

The number of type checks that have to be done by the exception handling runtime
may further be reduced using static analysis. In particular, our implementation tests
all catch clauses for a match that it “sees” when walking the call chain. Static
analysis could provide us with different “entry points” into the type-check process.

44

6 Related Work

In their work on Marmot [20], Fitzgerald et al. model exception flow as control
flow edges originating at blocks rather than operations. Any block that contains a
PEI has an edge to each of the block’s landing pads, i.e. an edge for each type of
exception to be caught. PEIs do not end basic blocks. Exception edges have different
semantics than normal control-flow edges: While normal edges have a unique source
and destination, exception edges have as source all PEIs in the block. For runtime
support, Fitzgerald et al. use an instruction pointer range based approach similar to
the one we employ.

The advantage of the approach taken with Marmot is that block-level optimizations
can generally give better results. However, it complicates SSA construction and
data-flow analysis like computation of dominance frontiers. In addition, block-level
exception edges are too coarse-grained for some of Marmot’s analyses, requiring an
additional bit-vector of exception information about each operation in a block.

A similar approach was taken by Choi et al. with Factored Control Flow Graphs
(FCFGs) [21]. They are similar to the graphs used in the Marmot system in that
they use block-level exception edges. FCFGs too require that PEIs be special-cased
in data-flow analysis. Choi et al. show that FCFGs reduce the number of basic blocks
necessary to represent Java programs by a factor of roughly 3. However they do not
compare performance of their Java compiler “Jalapeño” with and without FCFGs,
neither do they present benchmarks for Java programs compiled with Jalapeño.

The Java HotSpot compiler [13, chapter 2.5] uses the same concept.

In the initial design of the Firm intermediate representation, PEIs also do not end
the basic block. Instead an abstract variable Except is used to group operations
that are enclosed by a try block [3, 22]. Operations in a protected region (try
block in the source language) depend on a common Except instance that marks
the beginning and end of the protected region. This guarantees that the grouped
operations cannot be moved out of the protected region. If the input language puts
further restrictions on the order of the operations in the protected region, this can
be modeled by introducing additional definitions of Except variables. For example
the Java programming language defines precise exceptions which require that the
operations in a try be kept in the order they are given in the input program.

45

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Techniques.
Addison wesley, 1986.

[2] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value numbers
and redundant computations,” in Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL
’88. New York, NY, USA: ACM, 1988, pp. 12–27. [Online]. Available:
http://doi.acm.org/10.1145/73560.73562

[3] M. Trapp, “Optimierung objektorientierter Programme. Übersetzungstechniken,
Analysen und Transformationen.” Ph.D. dissertation, Oct. 2001.

[4] M. Braun, S. Buchwald, and A. Zwinkau, “Firm—a graph-based intermediate
representation,” Karlsruhe Institute of Technology, Tech. Rep. 35, 2011.
[Online]. Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025470

[5] G. Lindenmaier, “libFIRM – a library for compiler optimization research
implementing FIRM,” Tech. Rep. 2002-5, Sep. 2002. [Online]. Available:
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1717

[6] “What is free software and why is it so important for society?” [Online].
Available: https://www.fsf.org/about/what-is-free-software

[7] M. Braun, C. Mallon et al., “cparser - a C99-frontend.” [Online]. Available:
http://pp.ipd.kit.edu/git/cparser/

[8] “Java language and virtual machine specifications.” [Online]. Available:
https://docs.oracle.com/javase/specs/

[9] M. Braun, S. Buchwald, M. Mohr, and A. Zwinkau, “An X10 compiler for
invasive architectures,” Karlsruhe Institute of Technology, Tech. Rep. 9, 2012.
[Online]. Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112

[10] A. Fog, “Calling conventions for different C++ compilers and operating
systems,” Tech. Rep., Dec. 2015. [Online]. Available: http://agner.org/optimize/
calling_conventions.pdf

[11] B. Stroustrup, The C++ Programming Language, 3rd ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000.

47

http://doi.acm.org/10.1145/73560.73562
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025470
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1717
https://www.fsf.org/about/what-is-free-software
http://pp.ipd.kit.edu/git/cparser/
https://docs.oracle.com/javase/specs/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112
http://agner.org/optimize/calling_conventions.pdf
http://agner.org/optimize/calling_conventions.pdf

Bibliography

[12] “Exception handling in LLVM.” [Online]. Available: http://llvm.org/docs/
ExceptionHandling.html

[13] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and
D. Cox, “Design of the Java HotSpotTM client compiler for Java 6,” ACM
Transactions on Architecture and Code Optimization, vol. 5, no. 1, pp. 7:1–7:32,
May 2008. [Online]. Available: http://doi.acm.org/10.1145/1369396.1370017

[14] J. Reynolds, Theories of Programming Languages. Cambridge University Press,
1998. [Online]. Available: https://books.google.de/books?id=X_ToAwAAQBAJ

[15] “Itanium C++ ABI: Exception handling, revision 1.22.” [Online]. Available:
https://mentorembedded.github.io/cxx-abi/abi-eh.html

[16] “The libunwind project.” [Online]. Available: http://www.nongnu.org/
libunwind/

[17] I. Jtc, “Sc22/wg14. iso/iec 9899: 2011,” Information technology—Programming
languages—C. http://www. iso. org/iso/iso_catalogue/catalogue_ tc/cata-
logue_detail. htm, 2011.

[18] “Intel 64 and IA-32 architectures software developer’s manual volume
1: Basic architecture,” Tech. Rep., May 2011. [Online]. Available:
http://download.intel.com/design/processor/manuals/253665.pdf

[19] “Standard performance evaluation corporation.” [Online]. Available: https:
//spec.org/

[20] R. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaard, and D. Tarditi, “Marmot:
An optimizing compiler for java,” Software-Practice and Experience, vol. 30,
no. 3, pp. 199–232, 2000.

[21] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, “Efficient and precise modeling
of exceptions for the analysis of java programs,” in ACM SIGSOFT Software
Engineering Notes, vol. 24, no. 5. ACM, 1999, pp. 21–31.

[22] M. Trapp, G. Lindenmaier, and B. Boesler, “Documentation of the
intermediate representation FIRM,” Universität Karlsruhe, Fakultät für
Informatik, Tech. Rep. 1999-14, Dec 1999. [Online]. Available: http:
//www.info.uni-karlsruhe.de/papers/firmdoc.ps.gz

48

http://llvm.org/docs/ExceptionHandling.html
http://llvm.org/docs/ExceptionHandling.html
http://doi.acm.org/10.1145/1369396.1370017
https://books.google.de/books?id=X_ToAwAAQBAJ
https://mentorembedded.github.io/cxx-abi/abi-eh.html
http://www.nongnu.org/libunwind/
http://www.nongnu.org/libunwind/
http://download.intel.com/design/processor/manuals/253665.pdf
https://spec.org/
https://spec.org/
http://www.info.uni-karlsruhe.de/papers/firmdoc.ps.gz
http://www.info.uni-karlsruhe.de/papers/firmdoc.ps.gz

Erklärung

Hiermit erkläre ich, Jonas Haag, dass ich die vorliegende Bachelorarbeit selbstständig
verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht
und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis beachtet
habe.

Ort, Datum Unterschrift

49

	Introduction
	Preliminaries
	Compilers and Intermediate Representations
	Static Single Assignment Form
	Dependency Graphs
	The Firm Intermediate Representation
	LibFirm and Related Projects

	The Call Stack
	Calling Convention
	Stack Unwinding

	Exceptions and PEIs
	Zero Cost Exceptions
	bytecode2firm Landing Pad Design

	Design and Implementation
	Representation of Exception Flow in libFirm
	Jump Instruction After Calls
	The Inline Optimization
	Ignoring Exception Edges in the X87 Simulator

	Implementation of Java Exception Handling
	Analysis of our Design

	DWARF Unwind Information
	Other Callee-Save Registers

	Evaluation
	Conclusion and Further Work
	Related Work

