
1

Selective Lambda Lifting

SEBASTIAN GRAF, Karlsruhe Institute of Technology, Germany
SIMON PEYTON JONES,Microsoft Research, UK

Lambda lifting is a well-known transformation, traditionally employed for compiling functional programs to
supercombinators. However, more recent abstract machines for functional languages like OCaml and Haskell
tend to do closure conversion instead for direct access to the environment, so lambda lifting is no longer
necessary to generate machine code.

We propose to revisit selective lambda lifting in this context as an optimising code generation strategy
and conceive heuristics to identify beneficial lifting opportunities. We give a static analysis for estimating
impact on heap allocations of a lifting decision. Performance measurements of our implementation within the
Glasgow Haskell Compiler on a large corpus of Haskell benchmarks suggest modest speedups.

CCS Concepts: • Software and its engineering→ Compilers; Functional languages; Procedures, functions
and subroutines;

Additional Key Words and Phrases: Haskell, Lambda Lifting, Spineless Tagless G-machine, Compiler Opti-
mization

ACM Reference Format:
Sebastian Graf and Simon Peyton Jones. 2019. Selective Lambda Lifting. Proc. ACM Program. Lang. 1, ICFP,
Article 1 (January 2019), 17 pages.

1 INTRODUCTION
The ability to define nested auxiliary functions referencing variables from outer scopes is essential
when programming in functional languages. Take this Haskell function as an example:

f a 0 = a
f a n = f (g (n ‘mod‘ 2)) (n − 1)
where
g 0 = a
g n = 1 + g (n − 1)

To generate code for nested functions like g, a typical compiler either applies lambda lifting or
closure conversion. The Glasgow Haskell Compiler (GHC) chooses to do closure conversion [Peyton
Jones 1992]. In doing so, it allocates a closure for g on the heap, with an environment containing
an entry for a. Now imagine we lambda lifted g before closure conversion:

g↑ a 0 = a
g↑ a n = 1 + g↑ a (n − 1)

f a 0 = a
f a n = f (g↑ a (n ‘mod‘ 2)) (n − 1)

The closure for g and the associated heap allocation completely vanished in favour of a few more
arguments at the call site! The result looks much simpler. And indeed, in concert with the other
optimisations within GHC, the above transformation makes f effectively non-allocating, resulting
in a speedup of 50%.

Authors’ addresses: Sebastian Graf, Karlsruhe Institute of Technology, Karlsruhe, Germany, sebastian.graf@kit.edu; Simon
Peyton Jones, Microsoft Research, Cambridge, UK, simonpj@microsoft.com.

2019. 2475-1421/2019/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

https://doi.org/

1:2 Sebastian Graf and Simon Peyton Jones

So should we just perform this transformation on any candidate? We have to disagree. Consider
what would happen to the following program:

f :: [Int] → [Int] → Int → Int
f a b 0 = a
f a b 1 = b
f a b n = f (g n) a (n ‘mod‘ 2)
where
g 0 = a
g 1 = b
g n = n : h
where
h = g (n − 1)

Because of laziness, this will allocate a thunk for h. Closure conversion will then allocate an
environment for h on the heap, closing over g. Lambda lifting yields:

g↑ a b 0 = a
g↑ a b 1 = b
g↑ a b n = n : h

where
h = g↑ a b (n − 1)

f a b 0 = a
f a b 1 = b
f a b n = f (g↑ a b n) a (n ‘mod‘ 2)

The closure for g is gone, but h now closes over n, a and b instead of n and g. Moreover, this
h-closure is allocated for each iteration of the loop, so we have reduced allocation by one closure
for g, but increased allocation by one word in each of N allocations of h. Apart from making f
allocate 10% more, this also incurs a slowdown of more than 10%.

So lambda lifting is sometimes beneficial, and sometimes harmful: we should do it selectively. This
work is concerned with identifying exactly when lambda lifting improves performance, providing
a new angle on the interaction between lambda lifting and closure conversion. These are our
contributions:

• We derive a number of heuristics fueling the lambda lifting decision from concrete operational
deficiencies in section 3.

• Integral to one of the heuristics, in section 4 we provide a static analysis estimating closure
growth, conservatively approximating the effects of a lifting decision on the total allocations
of the program.

• We implemented our lambda lifting pass in the Glasgow Haskell Compiler as part of its
optimisation pipeline, operating on its Spineless Tagless G-machine (STG) language. The
decision to do lambda lifting this late in the compilation pipeline is a natural one, given that
accurate allocation estimates aren’t easily possible on GHC’s more high-level Core language.

• We evaluate our pass against the nofib benchmark suite (section 6) and find that our static
analysis soundly predicts changes in heap allocations. The measurements confirm the rea-
soning behind our heuristics in section 3.

Our approach builds on and is similar to many previous works, which we compare to in section 7.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

Selective Lambda Lifting 1:3

Variables f ,д,x ,y ∈ Var

Expressions e ∈ Expr F x Variable
| f x Function call
| let b in e Recursive let

Bindings b ∈ BindF f = r

Right-hand sides r ∈ Rhs F λx → e

Programs p ∈ Prog F f x = e; e ′

Fig. 1. An STG-like untyped lambda calculus

2 OPERATIONAL BACKGROUND
Typically, the choice between lambda lifting and closure conversion for code generation is mutually
exclusive and is dictated by the targeted abstract machine, like the G-machine [Kieburtz 1985] or
the Spineless Tagless G-machine [Peyton Jones 1992], as is the case for GHC.

Let’s clear upwhat wemean by doing lambda lifting before closure conversion and the operational
effect of doing so.

2.1 Language
Although the STG language is tiny compared to typical surface languages such as Haskell, its
definition [Marlow and Jones 2004] still contains much detail irrelevant to lambda lifting. This
section will therefore introduce an untyped lambda calculus that will serve as the subject of
optimisation in the rest of the paper.

2.1.1 Syntax. As can be seen in fig. 1, we extended untyped lambda calculus with let bindings, just
as in Johnsson [1985]. Inspired by STG, we also assume A-normal form (ANF) [Sabry and Felleisen
1993]:

• Every lambda abstraction is the right-hand side of a let binding
• Arguments and heads in an application expression are all atomic (e.g., variable references)

Throughout this paper, we assume that variable names are globally unique. Similar to Johnsson
[1985], programs are represented by a group of top-level bindings and an expression to evaluate.

Whenever there’s an example in which the expression to evaluate is not closed, assume that free
variables are bound in some outer context omitted for brevity. Examples may also compromise on
adhering to ANF for readability (regarding giving all complex subexpressions a name, in particular),
but we will point out the details if need be.

2.1.2 Semantics. Since our calculus is a subset of the STG language, its semantics follows directly
from Marlow and Jones [2004].
An informal treatment of operational behavior is still in order to express the consequences of

lambda lifting. Since every application only has trivial arguments, all complex expressions had
to be bound to a let in a prior compilation step. Consequently, heap allocation happens almost
entirely at let bindings closing over free variables of their RHSs, with the exception of intermediate
partial applications resulting from over- or undersaturated calls.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

1:4 Sebastian Graf and Simon Peyton Jones

Put plainly: If we manage to get rid of a let binding, we get rid of one source of heap allocation
since there is no closure to allocate during closure conversion.

2.2 Lambda Lifting vs. Closure Conversion
The trouble with nested functions is that nobody has come up with concrete, efficient computing
architectures that can cope with them natively. Compilers therefore need to rewrite local functions
in terms of global definitions and auxiliary heap allocations.
One way of doing so is in performing closure conversion, where references to free variables

are lowered as field accesses on a record containing all free variables of the function, the closure
environment. The environment is passed as an implicit parameter to the function body, which in
turn is insensitive to lexical scope and can be floated to top-level. After this lowering, all functions
are then regarded as closures: A pair of a code pointer and an environment.

let f = λa b → ...x ... y ...
in f 4 2

CC f
===⇒

data EnvF = EnvF {x :: Int, y :: Int }
f ⋆ env a b = ...x env ... y env ...;
let f = (f ⋆, EnvF x y)
in (fst f) (snd f) 4 2

Closure conversion leaves behind a heap-allocated let binding for the closure1.
Compare this to how lambda lifting gets rid of local functions. Johnsson [1985] introduced it for

efficient code generation of lazy functional languages to G-machine code [Kieburtz 1985]. Lambda
lifting converts all free variables of a function body into parameters. The resulting function body
can be floated to top-level, but all call sites must be fixed up to include its former free variables.

let f = λa b → ...x ... y ...
in f 4 2

LL f
===⇒

f ↑ x y a b = ...x ... y ...;
f ↑ x y 4 2

The key difference to closure conversion is that there is no heap allocation at f ’s former definition
site anymore. But earlier we saw examples where doing this transformation does more harm than
good, so the plan is to transform worthwhile cases with lambda lifting and leave the rest to closure
conversion.

3 WHEN TO LIFT
Lambda lifting is always a sound transformation. The challenge is in identifying when it is beneficial
to apply. This section will discuss operational consequences of our lambda lifting pass, clearing up
the requirements for our transformation defined in section 5. Operational considerations will lead
to the introduction of multiple criteria for rejecting a lift, motivating a cost model for estimating
impact on heap allocations.

3.1 Syntactic Consequences
Deciding to lambda lift a binding let f = λa b c → e in e’ where x and y occur free in e, has the
following consequences:
(S1) It replaces the let expression by its body.
(S2) It creates a new top-level definition f ↑.
(S3) It replaces all occurrences of f in e’ and e by an application of f ↑ to its former free variables

x and y2.
(S4) The former free variables x and y become parameters of f ↑.

1Note that the pair and the EnvF can and will be combined into a single heap object in practice.
2This will also need to give a name to new non-atomic argument expressions mentioning f . We’ll argue in section 3.2 that
there is hardly any benefit in allowing these cases.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

Selective Lambda Lifting 1:5

3.2 Operational Consequences
We now ascribe operational symptoms to combinations of syntactic effects. These symptoms justify
the derivation of heuristics which will decide when not to lift.

Argument occurrences. Consider what happens if f occurred in the let body e’ as an argument
in an application, as in g 5 x f . (S3) demands that the argument occurrence of f is replaced
by an application expression. This, however, would yield the syntactically invalid expression
g 5 x (f ↑ x y). ANF only allows trivial arguments in an application!

Thus, our transformation would have to immediately wrap the application in a partial application:
g 5 x (f ↑ x y) =⇒ let f’ = f ↑ x y in g 5 x f’. But this just reintroduces at every call site the
very allocation we wanted to eliminate through lambda lifting! Therefore, we can identify a first
criterion for non-beneficial lambda lifts:

(C1) Don’t lift binders that occur as arguments

A welcome side-effect is that the application case of the transformation in section 5 becomes
much simpler: The complicated let wrapping becomes unnecessary.

Closure growth. (S1) means we don’t allocate a closure on the heap for the let binding. On the
other hand, (S3) might increase or decrease heap allocation, which can be captured by a metric we
call closure growth. This is the essence of what guided our examples from the introduction. We’ll
look into a simpler example:

let f = λa b → ...x ... y ...
g = λd → f d d + x

in g 5
lift f
===⇒

f ↑ x y a b = ...;
let g = λd → f ↑ x y d d + x
in g 5

Should f be lifted? Just counting the number of variables occurring in closures, the effect of
(S1) saved us two slots. At the same time, (S3) removes f from g’s closure (no need to close over
the top-level constant f ↑), while simultaneously enlarging it with f ’s former free variable y . The
new occurrence of x doesn’t contribute to closure growth, because it already occurred in g prior to
lifting. The net result is a reduction of two slots, so lifting f seems worthwhile. In general:

(C2) Don’t lift a binding when doing so would increase closure allocation

Note that this also includes handling of let bindings for partial applications that are allocated
when GHC spots an undersaturated call to a known function.

Estimation of closure growth is crucial to achieving predictable results. We discuss this further
in section 4.

Calling convention. (S4) means that more arguments have to be passed. Depending on the target
architecture, this entails more stack accesses and/or higher register pressure. Thus

(C3) Don’t lift a binding when the arity of the resulting top-level definition exceeds the number of
available argument registers of the employed calling convention (e.g., 5 arguments for GHC
on AMD64)

One could argue that we can still lift a function when its arity won’t change. But in that case,
the function would not have any free variables to begin with and could just be floated to top-level.
As is the case with GHC’s full laziness transformation, we assume that this already happened in a
prior pass.

Turning known calls into unknown calls. There’s another aspect related to (S4), relevant in
programs with higher-order functions:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

1:6 Sebastian Graf and Simon Peyton Jones

let f = λx → 2 ∗ x
mapF = λxs → case xs of
(x : xs’) → ...f x ... mapF xs’ ...
[] → ...

in mapF [1 . . n]

lift mapF
======⇒

mapF ↑ f xs = case xs of
(x : xs’) → ...f x ... mapF ↑ f xs’ ...
[] → ...;

let f = λx → 2 ∗ x
in mapF ↑ f [1 . . n]

Here, there is a known call to f in mapF that can be lowered as a direct jump to a static address
[Marlow and Jones 2004]. This is similar to an early bound call in an object-oriented language.
After lifting mapF , f is passed as an argument to mapF ↑ and its address is unknown within

the body of mapF ↑. For lack of a global points-to analysis, this unknown (i.e. late bound) call
would need to go through a generic apply function [Marlow and Jones 2004], incurring a major
slow-down.
(C4) Don’t lift a binding when doing so would turn known calls into unknown calls

Sharing. Consider what happens when we lambda lift an updatable binding, like a thunk3:
let t = λ → x + y
addT = λz → z + t

in map addT [1 . . n]
lift t
==⇒

t x y = x + y ;
let addT = λz → z + t x y
in map addT [1 . . n]

The addition within t prior to lifting will be computed only once for each complete evaluation of
the expression. Compare this to the lambda lifted version, which will re-evaluate t n times!
In general, lambda lifting updatable bindings or constructor bindings destroys sharing, thus

possibly duplicating work in each call to the lifted binding.
(C5) Don’t lift a binding that is updatable or a constructor application

4 ESTIMATING CLOSURE GROWTH
Of the criteria above, (C2) is quite important for predictable performance gains. It’s also the most
sophisticated, because it entails estimating closure growth.

4.1 Motivation
Let’s revisit the example from above:

let f = λa b → ...x ... y ...
g = λd → f d d + x

in g 5
lift f
===⇒

f ↑ x y a b = ...x ... y ...;
let g = λd → f ↑ x y d d + x
in g 5

We concluded that lifting f would be beneficial, saving us allocation of two free variable slots.
There are two effects at play here. Not having to allocate the closure of f due to (S1) leads to a
benefit once per activation. Simultaneously, each occurrence of f in a closure environment would
be replaced by the free variables of its RHS. Replacing f by the top-level f ↑ leads to a saving of one
slot per closure, but the free variables x and y each occupy a closure slot in turn. Of these, only y
really contributes to closure growth, because x was already free in g before.

This phenomenon is amplifiedwhenever allocation happens under a lambda that is calledmultiple
times (a multi-shot lambda [Sergey et al. 2014]), as the following example demonstrates:

let f = λa b → ...x ... y ...
g = λd →

let h = λe → f e e
in h x

in g 1 + g 2 + g 3

lift f
===⇒

f ↑ x y a b = ...x ... y ...;
let g = λd →

let h = λe → f ↑ x y e e
in h x

in g 1 + g 2 + g 3

3Assume that all nullary bindings are memoised.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

Selective Lambda Lifting 1:7

Is it still beneficial to lift f ? Following our reasoning, we still save two slots from f ’s closure, the
closure of g doesn’t grow and the closure of h grows by one. We conclude that lifting f saves us
one closure slot. But that’s nonsense! Since g is called thrice, the closure for h also gets allocated
three times relative to single allocations for the closures of f and g.
In general, h might be defined inside a recursive function, for which we can’t reliably estimate

how many times its closure will be allocated. Disallowing to lift any binding which is closed over
under such a multi-shot lambda is conservative, but rules out worthwhile cases like this:

let f = λa b → ...x ... y ...
g = λd →

let h1 = λe → f e e
h2 = λe → f e e + x + y

in h1 d + h2 d
in g 1 + g 2 + g 3

lift f
===⇒

f ↑ x y a b = ...x ... y ...;
let g = λd →

let h1 = λe → f ↑ x y e e
h2 = λe → f ↑ x y e e + x + y

in h1 d + h2 d
in g 1 + g 2 + g 3

Here, the closure of h1 grows by one, whereas that of h2 shrinks by one, cancelling each other
out. Hence there is no actual closure growth happening under the multi-shot binding g and f is
good to lift.
The solution is to denote closure growth in Z∞ = Z ∪ {∞} and account for positive closure

growth under a multi-shot lambda by ∞.

4.2 Design
Applied to our simple STG language, we can define a function cl-gr (short for closure growth) with
the following signature:

cl-gr () : P(Var) → P(Var) → Expr → Z∞

Given two sets of variables for added (superscript) and removed (subscript) closure variables,
respectively, it maps expressions to the closure growth resulting from

• adding variables from the first set everywhere a variable from the second set is referenced
• and removing all closure variables mentioned in the second set.

There’s an additional invariant: We require that added and removed sets never overlap.
In the lifting algorithm from section 5, cl-gr would be consulted as part of the lifting decision to

estimate the total effect on allocations. Assuming we were to decide whether to lift the binding
group g out of an expression let g = λx → e in e′4, the following expression conservatively
estimates the effect on heap allocation of performing the lift:

cl-grα
′(g1)

{g }
(let g = λα ′(g1) x → e in e′) −

∑
i

1 +
��fvs(gi) \ {g}��

The required set of extraneous parameters [Morazán and Schultz 2008] α ′(g1) for the binding
group contains the additional parameters of the binding group after lambda lifting. The details of
how to obtain it shall concern us in section 5. These variables would need to be available anywhere
a binder from the binding group occurs, which justifies the choice of {g} as the subscript argument
to cl-gr.
Note that we logically lambda lifted the binding group in question without fixing up call sites,

leading to a semantically broken program. The reasons for that are twofold: Firstly, the reductions
in closure allocation resulting from that lift are accounted separately in the trailing sum expression,
capturing the effects of (S1): We save closure allocation for each binding, consisting of the code
pointer plus its free variables, excluding potential recursive occurrences. Secondly, the lifted binding
4We only ever lift a binding group wholly or not at all, due to (C4) and (C1).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

1:8 Sebastian Graf and Simon Peyton Jones

cl-gr () : P(Var) → P(Var) → Expr → Z∞

cl-grφ
+

φ− (x) = 0 cl-grφ
+

φ− (f x) = 0

cl-grφ
+

φ− (let bs in e) = cl-gr-bindφ
+

φ− (bs) + cl-grφ
+

φ− (e)

cl-gr-bind () : P(Var) → P(Var) → Bind → Z∞

cl-gr-bindφ
+

φ− (f = r) =
∑
i

growthi + cl-gr-rhs
φ+
φ− (ri) νi =

��fvs(f i) ∩ φ−
��

growthi =

{��φ+ \ fvs(f i)�� − νi , if νi > 0
0, otherwise

cl-gr-rhs () : P(Var) → P(Var) → Rhs → Z∞

cl-gr-rhsφ
+

φ− (λx → e) = cl-grφ
+

φ− (e) ∗ [σ ,τ] n ∗ [σ ,τ] =

{
n ∗ σ , n < 0
n ∗ τ , otherwise

σ =

{
1, e entered at least once
0, otherwise

τ =

0, e never entered
1, e entered at most once
1, RHS bound to a thunk
∞, otherwise

Fig. 2. Closure growth estimation

group isn’t affected by closure growth (where there are no free variables, nothing can grow or
shrink), which is entirely a symptom of (S3). Hence, we capture any free variables of the binding
group in lambdas.

Following (C2), we require that this metric is non-positive to allow the lambda lift.

4.3 Implementation
The definition for cl-gr is depicted in fig. 2. The cases for variables and applications are trivial,
because they don’t allocate. As usual, the complexity hides in let bindings and its syntactic compo-
nents. We’ll break them down one layer at a time by delegating to one helper function per syntactic
sort. This makes the let rule itself nicely compositional, because it delegates most of its logic to
cl-gr-bind.
cl-gr-bind is concerned with measuring binding groups. Recall that the added and removed set

never overlap. The growth component then accounts for allocating each closure of the binding
group. Whenever a closure mentions one of the variables to be removed (i.e. φ−, the binding group
{д} to be lifted), we count the number of variables that are removed in ν and subtract them from
the number of variables in φ+ (i.e. the required set of the binding group to lift α ′(д1)) that didn’t
occur in the closure before.
The call to cl-gr-rhs accounts for closure growth of right-hand sides. The right-hand sides of

a let binding might or might not be entered, so we cannot rely on a beneficial negative closure
growth to occur in all cases. Likewise, without any further analysis information, we can’t say if

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

Selective Lambda Lifting 1:9

a right-hand side is entered multiple times. Hence, the uninformed conservative approximation
would be to return∞ whenever there is positive closure growth in a RHS and 0 otherwise.

That would be disastrous for analysis precision! Fortunately, GHC has access to cardinality
information from its demand analyser [Sergey et al. 2014]. Demand analysis estimates lower
and upper bounds (σ and τ above) on how many times a RHS is entered relative to its defining
expression.
Most importantly, this identifies one-shot lambdas (τ = 1), under which case a positive closure

growth doesn’t lead to an infinite closure growth for the whole RHS. But there’s also the beneficial
case of negative closure growth under a strictly called lambda (σ = 1), where we gain precision by
not having to fall back to returning 0.

One final remark regarding analysis performance: cl-gr operates directly on STG expressions.
This means the cost function has to traverse whole syntax trees for every lifting decision.

We remedy this by first abstracting the syntax tree into a skeleton, retaining only the information
necessary for our analysis. In particular, this includes allocated closures and their free variables, but
also occurrences of multi-shot lambda abstractions. Additionally, there are the usual “glue operators”,
such as sequence (e.g., the case scrutinee is evaluated whenever one of the case alternatives is),
choice (e.g., one of the case alternatives is evaluated mutually exclusively) and an identity (i.e.
literals don’t allocate). This also helps to split the complex let case into more manageable chunks.

5 TRANSFORMATION
The extension of Johnsson’s formulation [Johnsson 1985] to STG terms is straight-forward, but it’s
still worth showing how the transformation integrates the decision logic for which bindings are
going to be lambda lifted.
Central to the transformation is the construction of the minimal required set of extraneous

parameters α(f) [Morazán and Schultz 2008] of a binding f .
It is assumed that all variables have unique names and that there is a sufficient supply of fresh

names from which to draw. In fig. 3 we define a side-effecting function, lift, recursively over the
term structure.

As its first argument, lift takes an Expander α , which is a partial function from lifted binders to
their required sets. These are the additional variables we have to pass at call sites after lifting. The
expander is extended every time we decide to lambda lift a binding, its role is similar to the Ef set
in Johnsson [1985]. We write domα for the domain of α and α[x 7→ S] to denote extension of the
expander function, so that the result maps x to S and all other identifiers by delegating to α .
The second argument is the expression that is to be lambda lifted. A call to lift results in an

expression that no longer contains any bindings that were lifted. The lifted bindings are emitted as
a side-effect of the let case, which merges the binding group into the top-level recursive binding
group representing the program. In a real implementation, this would be handled by carrying
around aWriter effect. We refrained from making this explicit in order to keep the definition simple.

5.1 Variables
In the variable case, we check if the variable was lifted to top-level by looking it up in the supplied
expander mapping α and if so, we apply it to its newly required extraneous parameters.

5.2 Applications
As discussed in section 3.2 when motivating (C1), handling function application correctly is a little
subtle. Consider what happens when we try to lambda lift f in an application like g f x : Changing

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

1:10 Sebastian Graf and Simon Peyton Jones

lift () : Expander → Expr → Expr

liftα (x) =

{
x , x < domα

x α(x), otherwise
liftα (f x) = liftα (f) x

liftα (let bs in e) =

{
liftα ′(e), bs is to be lifted as lift-bindα ′(bs)

let lift-bindα (bs) in liftα (e) otherwise
where

α ′ = add-rqs(bs,α)

add-rqs(,) : Bind → Expander → Expander

add-rqs(f = r ,α) = α
[
f 7→ rqs

]
where

rqs =
⋃
i

expandα (fvs(ri)) \ { f }

expand () : Expander → P(Var) → P(Var)

expandα (V) =
⋃
x ∈V

{
{x}, x < domα

α(x), otherwise

lift-bind () : Expander → Bind → Bind

lift-bindα (f = λx → e) =

{
f = λx → liftα (e) f1 < domα

f = λα(f)x → liftα (e) otherwise

Fig. 3. Lambda lifting

the variable occurrence of f to an application would be invalid because the first argument in the
application to g would no longer be a variable.

Our transformation enjoys a great deal of simplicity because it crucially relies on the adherence
to (C1), meaning we never have to think about wrapping call sites in partial applications binding
the complex arguments.

5.3 Let Bindings
Hardly surprisingly, the meat of the transformation hides in the handling of let bindings. It is at
this point that some heuristic (that of section 3, for example) decides whether to lambda lift the
binding group bs wholly or not. For this decision, it has access to the extended expander α ′, but not
to the binding group that would result from a positive lifting decision lift-bindα ′(bs). This makes
sure that each syntactic element is only traversed once.

How does α ′ extend α? By calling out to add-rqs in its definition, it will also map every binding
of the current binding group bs to its required set. Note that all bindings in the same binding group
share their required set. The required set is the union of the free variables of all bindings, where
lifted binders are expanded by looking into α , minus binders of the binding group itself. This is a

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

Selective Lambda Lifting 1:11

conservative choice for the required set, but we argue for the minimality of this approach in the
context of GHC in section 5.4.

With the domain of α ′ containing bs , every definition looking into that map implicitly assumes
that bs is to be lifted. So it makes sense that all calls to lift and lift-bind take α ′ when bs should be
lifted and α otherwise.
This is useful information when looking at the definition of lift-bind, which is responsible for

abstracting the RHS e over its set of extraneous parameters when the given binding group should
be lifted. Which is exactly the case when any binding of the binding group, like f1, is in the domain
of the passed α . In any case, lift-bind recurses via lift into the right-hand sides of the bindings.

5.4 Regarding Optimality
Johnsson [1985] constructed the set of extraneous parameters for each binding by computing the
smallest solution of a system of set inequalities. Although this runs in O(n3) time, there were several
attempts to achieve its optimality wrt. the minimal size of the required sets with better asymptotics.
As such, Morazán and Schultz [2008] were the first to present an algorithm that simultaneously
has optimal runtime in O(n2) and computes minimal required sets.
That begs the question whether the somewhat careless transformation in section 5 has one or

both of the desirable optimality properties of the algorithm by Morazán and Schultz [2008].
For the situation within GHC, we loosely argue that the constructed required sets are minimal:

Because by the time our lambda lifter runs, the occurrence analyser will have rearranged recursive
groups into strongly connected components with respect to the call graph, up to lexical scoping.
Now consider a variable x ∈ α(f i) in the required set of a let binding for the binding group f . We’ll
look into two cases, depending on whether x occurs free in any of the binding group’s RHSs or not.

Assume that x < fvs(f j) for every j . Then x must have been the result of expanding some function
g ∈ fvs(f j), with x ∈ α(g). Lexical scoping dictates that g is defined in an outer binding, an ancestor
in the syntax tree, that is. So, by induction over the pre-order traversal of the syntax tree employed
by the transformation, we can assume that α(g) must already have been minimal and therefore
that x is part of the minimal set of f i if g would have been prior to lifting g. Since g ∈ fvs(f j) by
definition, this is handled by the next case.
Otherwise there exists j such that x ∈ fvs(f j). When i = j, f i uses x directly, so x is part of the

minimal set.
Hence assume i , j. Still, f i needs x to call the current activation of f j , directly or indirectly.

Otherwise there is a lexically enclosing function on every path in the call graph between f i and f j
that defines x and creates a new activation of the binding group. But this kind of call relationship
implies that f i and f j don’t need to be part of the same binding group to begin with! Indeed, GHC
would have split the binding group into separate binding groups. So, x is part of the minimal set.

An instance of the last case is depicted in fig. 4. h and g are in the indirect call relationship
of f i and f j above. Every path in the call graph between g and h goes through f , so g and h
don’t actually need to be part of the same binding group, even though they are part of the same
strongly-connected component of the call graph. The only truly recursive function in that program
is f . All other functions would be nested let bindings (cf. the right column of the fig. 4) after GHC’s
middleend transformations, possibly in lexically separate subtrees. The example is due to Morazán
and Schultz and served as a prime example in showing the non-optimality of the call graph-based
algorithm in Danvy and Schultz [2002].
Generally, lexical scoping prevents coalescing a recursive group with their dominators in the

call graph if the dominators define variables that occur in the group. Morazán and Schultz gave

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

1:12 Sebastian Graf and Simon Peyton Jones

f x y = ...g ... h ...
where
g... = ...x ... i ...
h... = ...y ... f ...
i... = ...f ...

Haskell function

f x,y

дx hy

i

Call graph

f x y =
...

let g... = let i... = ...in ...
in g
...

let h... = ...
in h
...

Intermediate code produced by
GHC

Fig. 4. Example from Morazán and Schultz [2008]

convincing arguments that this was indeed what makes the quadratic time approach from Danvy
and Schultz [2002] non-optimal with respect to the size of the required sets.
Regarding runtime: Morazán and Schultz made sure that they only need to expand the free

variables of at most one dominator that is transitively reachable in the call graph. We think it’s
possible to find this lowest upward vertical dependence in a separate pass over the syntax tree, but
we found the transformation to be sufficiently fast even in the presence of unnecessary variable
expansions for a total of O(n2) set operations, or O(n3) time. Ignoring needless expansions, which
seem to happen rather infrequently in practice, the transformation performs O(n) set operations
when merging free variable sets.

6 EVALUATION
In order to assess the effectiveness of our new optimisation, we measured the performance on the
nofib benchmark suite [Partain and Others 1992] against a GHC 8.6.1 release56.
We will first look at how our chosen parameterisation (i.e. the optimisation with all heuristics

activated as advertised) performs in comparison to the baseline. Subsequently, we will justify the
choice by comparing with other parameterisations that selectively drop or vary the heuristics of
section 3.

6.1 Effectiveness
The results of comparing our chosen configuration with the baseline can be seen in fig. 5.

We remark that our optimisation did not increase heap allocations in any benchmark, for a total
reduction of 0.9%. This proves we succeeded in designing our analysis to be conservative with
respect to allocations: Our transformation turns heap allocation into possible register and stack
usage without a single regression.
Turning our attention to runtime measurements, we see that a total reduction of 0.7% was

achieved. Although exploiting the correlation with closure growth payed off, it seems that the
biggest wins in allocations don’t necessarily lead to big wins in runtime: Allocations of n-body
were reduced by 20.2% while runtime was barely affected. However, at a few hundred kilobytes,
n-body is effectively non-allocating anyway. The reductions seem to hide somewhere in the base
library. Conversely, allocations of lambda hardly changed, yet it sped up considerably.

5https://github.com/ghc/ghc/tree/0d2cdec78471728a0f2c487581d36acda68bb941
6Measurements were conducted on an Intel Core i7-6700 machine running Ubuntu 16.04.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

https://github.com/ghc/ghc/tree/0d2cdec78471728a0f2c487581d36acda68bb941

Selective Lambda Lifting 1:13

Program Bytes allocated Runtime

awards -0.2% +2.4%
cryptarithm1 -2.8% -8.0%
eliza -0.1% -5.2%
grep -6.7% -4.3%
knights -0.0% -4.5%
lambda -0.0% -13.5%
mate -8.4% -3.1%
minimax -1.1% +3.8%
n-body -20.2% -0.0%
nucleic2 -1.3% +2.2%
queens -18.0% -0.5%
... and 94 more

Min -20.2% -13.5%
Max 0.0% +3.8%
Geometric Mean -0.9% -0.7%

Fig. 5. GHC baseline vs. late lambda lifting

Program Bytes allocated Runtime

bspt -0.0% +3.8%
eliza -2.6% +2.4%
gen_regexps +10.0% +0.1%
grep -7.2% -3.1%
integrate +0.4% +4.1%
knights +0.1% +4.8%
lift -4.1% -2.5%
listcopy -0.4% +2.5%
maillist +0.0% +2.8%
paraffins +17.0% +3.7%
prolog -5.1% -2.8%
wheel-sieve1 +31.4% +3.2%
wheel-sieve2 +13.9% +1.6%
... and 92 more

Min -7.2% -3.1%
Max +31.4% +4.8%
Geometric Mean +0.4% -0.0%

Fig. 6. Late lambda lifting with vs. without (C2)

In queens, 18% fewer allocations did only lead to a mediocre 0.5%. Here, a local function closing
over three variables was lifted out of a hot loop to great effect on allocations, barely affecting
runtime. We believe this is due to the native code generator of GHC, because when compiling with
the LLVM backend we measured speedups of roughly 5%.
The same goes for minimax: We couldn’t reproduce the runtime regressions with the LLVM

backend.

6.2 Exploring the design space
Now that we have established the effectiveness of late lambda lifting, it’s time to justify our
particular variant of the analysis by looking at different parameterisations.

Referring back to the five heuristics from section 3.2, it makes sense to turn the following knobs
in isolation:

• Do or do not consider closure growth in the lifting decision (C2).
• Do or do not allow turning known calls into unknown calls (C4).
• Vary the maximum number of parameters of a lifted recursive or non-recursive function (C3).

Ignoring closure growth. Figure 6 shows the impact of deactivating the conservative checks for
closure growth. This leads to big increases in allocation for benchmarks like wheel-sieve1, while it
also shows that our analysis was too conservative to detect worthwhile lifting opportunities in grep
or prolog. Cursory digging reveals that in the case of grep, an inner loop of a list comprehension
gets lambda lifted, where allocation only happens on the cold path for the particular input data of
the benchmark. Weighing closure growth by an estimate of execution frequency [Wu and Larus
1994] could help here, but GHC does not currently offer such information.

The mean difference in runtime results is surprisingly insignificant. That raises the question
whether closure growth estimation is actually worth the additional complexity. We argue that

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

1:14 Sebastian Graf and Simon Peyton Jones

Program Runtime

digits-of-e1 +1.2%
gcd +1.3%
infer +1.2%
mandel +2.7%
mkhprog +1.1%
nucleic2 -1.3%
... and 99 more

Min -1.3%
Max +2.7%
Geometric Mean +0.1%

Fig. 7. Late lambda lifting with vs. without (C4)

Program Runtime
4–4 5–6 6–5 8–8

digits-of-e1 +0.2% -2.2% -3.2% +0.5%
hidden -0.1% +3.3% +0.9% +4.2%
integer +2.7% +3.7% +2.1% +3.1%
knights +5.0% -0.3% +0.2% -0.1%
lambda +7.1% -0.8% -1.5% -1.6%
maillist +3.3% +2.7% +0.9% +1.8%
minimax -1.9% +0.6% +3.1% +0.7%
rewrite +1.9% -1.0% +3.2% -1.6%
wheel-sieve1 +3.1% +3.2% +3.2% -0.1%
... and 96 more

Min -2.8% -2.2% -3.2% -1.6%
Max +7.1% +3.7% +3.2% +4.2%
Geometric Mean +0.2% +0.2% +0.1% +0.1%

Fig. 8. Late lambda lifting 5–5 vs. n–m (C3)

unpredictable increases in allocations like in wheel-sieve1 are to be avoided: It’s only a matter of
time until some program would trigger exponential worst-case behavior.

It’s also worth noting that the arbitrary increases in total allocations didn’t significantly influence
runtime. That’s because, by default, GHC’s runtime system employs a copying garbage collector,
where the time of each collection scales with the residency, which stayed about the same. A typical
marking-based collector scales with total allocations and consequently would be punished by giving
up closure growth checks, rendering future experiments in that direction infeasible.

Turning known calls into unknown calls. In fig. 7 we see that turning known into unknown calls
generally has a negative effect on runtime. By analogy to turning statically bound to dynamically
bound calls in the object-oriented world this outcome is hardly surprising. There is nucleic2,
but we suspect that its improvements are due to non-deterministic code layout changes in GHC’s
backend.

Varying the maximum arity of lifted functions. Figure 8 shows the effects of allowing different
maximum arities of lifted functions. Regardless whether we allow less lifts due to arity (4–4) or
more lifts (8–8), performance seems to degrade. Even allowing only slightly more recursive (5–6)
or non-recursive (6–5) lifts doesn’t seem to pay off.
Taking inspiration in the number of argument registers dictated by the calling convention on

AMD64 was a good call.

7 RELATED AND FUTUREWORK
7.1 Related Work
Johnsson [1985] was the first to conceive lambda lifting as a code generation scheme for functional
languages. We deviate from the original transformation in that we regard it as an optimisation pass
by only applying it selectively and default to closure conversion for code generation.
Johnsson constructed the required set of free variables for each binding by computing the

smallest solution of a system of set inequalities. Although this runs in O(n3) time, there were
several attempts to achieve its optimality (wrt. the minimal size of the required sets) with better

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

Selective Lambda Lifting 1:15

asymptotics. As such, Morazán and Schultz [2008] were the first to present an algorithm that
simultaneously has optimal runtime in O(n2) and computes minimal required sets. In section 5.4 we
compare to their approach. They also give a nice overview over previous approaches and highlight
their shortcomings.
Operationally, an STG function is supplied a pointer to its closure as the first argument. This

closure pointer is similar to how object-oriented languages tend to implement the this pointer.
From this perspective, every function in the program already is a supercombinator, taking an
implicit first parameter. In this world, lambda lifting STG terms looks more like an unpacking
of the closure record into multiple arguments, similar to performing Scalar Replacement [Carr
and Kennedy 1994] on the this parameter or what the worker-wrapper transformation [Gill and
Hutton 2009] achieves. The situation is a little different to performing the worker-wrapper split in
that there’s no need for strictness or usage analysis to be involved. Similar to type class dictionaries,
there’s no divergence hiding in closure records. At the same time, closure records are defined with
the sole purpose of carrying all free variables for a particular function, hence a prior free variable
analysis guarantees that the closure record will only contain free variables that are actually used in
the body of the function.

Peyton Jones [1992] anticipates the effects of lambda lifting in the context of the STG machine,
which performs closure conversion for code generation. He comes to the conclusion that direct
accesses into the environment from the function body result in less movement of values from heap
to stack.
The idea of regarding lambda lifting as an optimisation is not novel. Tammet [1996] motivates

selective lambda lifting in the context of compiling Scheme to C. Many of his liftability criteria
are specific to Scheme and necessitated by the fact that lambda lifting is performed after closure
conversion, in contrast to our work, where lambda lifting happens prior to closure conversion.

Our selective lambda lifting scheme follows an all or nothing approach: Either the binding is lifted
to top-level or it is left untouched. The obvious extension to this approach is to only abstract out
some free variables. If this would be combined with a subsequent float out pass, abstracting out the
right variables (i.e. those defined at the deepest level) could make for significantly fewer allocations
when a binding can be floated out of a hot loop. This is very similar to performing lambda lifting
and then cautiously performing block sinking as long as it leads to beneficial opportunities to drop
parameters, implementing a flexible lambda dropping pass [Danvy and Schultz 2000].
Lambda dropping [Danvy and Schultz 2000], or more specifically parameter dropping, has a

close sibling in GHC in the form of the static argument transformation [Santos 1995] (SAT). As
such, the new lambda lifter is pretty much undoing SAT. We believe that SAT is mostly an enabling
transformation for the middleend, useful for specialising functions for concrete static arguments. By
the time our lambda lifter runs, these opportunities will have been exploited. Due to its specialisation
effect, SAT turns unknown into known calls, but in (C4) we make sure not to undo that.
SAT has been known to yield mixed results for lack of appropriate heuristics deciding when

to apply it7. The challenge is in convincing the inliner to always inline a transformed function,
otherwise we end up with an operationally inferior form that cannot be optimised any further
by call-pattern specialisation [Jones 2007], for example. In this context, selective lambda lifting
ameliorates the operational situation, but can’t do much about the missed specialisation opportunity.

7.2 Future Work
In section 6 we concluded that our closure growth heuristic was too conservative. In general,
lambda lifting STG terms pushes allocations from definition sites into any closures of let bindings

7https://gitlab.haskell.org/ghc/ghc/issues/9374

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

https://gitlab.haskell.org/ghc/ghc/issues/9374

1:16 Sebastian Graf and Simon Peyton Jones

that nest around call sites. If only closures on cold code paths grow, doing the lift could be beneficial.
Weighting closure growth by an estimate of execution frequency [Wu and Larus 1994] could help
here. Such static profiles would be convenient in a number of places, for example in the inliner or
to determine viability of exploiting a costly optimisation opportunity.

We find there’s a lack of substantiated performance comparisons of closure conversion to lambda
lifting for code generation on modern machine architectures. It seems lambda lifting has fallen out
of fashion: GHC and the OCaml compiler both seem to do closure conversion. The recent backend
of the Lean compiler makes use of lambda lifting for its conceptual simplicity.

8 CONCLUSION
We presented selective lambda lifting as an optimisation on STG terms and provided an imple-
mentation in the Glasgow Haskell Compiler. The heuristics that decide when to reject a lifting
opportunity were derived from concrete operational considerations. We assessed the effectiveness
of this evidence-based approach on a large corpus of Haskell benchmarks to conclude that our
optimisation sped up average Haskell programs by 0.7% in the geometric mean and reliably reduced
the number of allocations.
One of our main contributions was a conservative estimate of closure growth resulting from a

lifting decision. Although prohibiting any closure growth proved to be a little too restrictive, it
still prevents arbitrary and unpredictable regressions in allocations. We believe that in the future,
closure growth estimation could take static profiling information into account for more realistic
and less conservative estimates.

ACKNOWLEDGMENTS
We’d like to thank Martin Hecker, Maximilian Wagner, Sebastian Ullrich and Philipp Krüger for
their proofreading. We are grateful for the pioneering work of Nicolas Frisby in this area.

REFERENCES
Steve Carr and Ken Kennedy. 1994. Scalar replacement in the presence of conditional control flow. Software: Practice and

Experience (1994). https://doi.org/10.1002/spe.4380240104
Olivier Danvy and Ulrik P. Schultz. 2000. Lambda-dropping: Transforming recursive equations into programs with block

structure. Theoretical Computer Science (2000). https://doi.org/10.1016/S0304-3975(00)00054-2
Olivier Danvy and Ulrik P. Schultz. 2002. Lambda-lifting in quadratic time. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 2441. 134–151. https://doi.org/
10.1007/3-540-45788-7

Andy Gill and Graham Hutton. 2009. The worker / wrapper transformation. 19, 2 (2009), 227–251. https://doi.org/10.1017/
S0956796809007175

Thomas Johnsson. 1985. Lambda lifting: Transforming programs to recursive equations. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 201 LNCS. 190–203.
https://doi.org/10.1007/3-540-15975-4_37

Simon Peyton Jones. 2007. Call-pattern specialisation for haskell programs. ACM SIGPLAN Notices (2007). https:
//doi.org/10.1145/1291220.1291200

Richard B. Kieburtz. 1985. The G-machine: A fast, graph-reduction evaluator. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/3-540-15975-4_
50

Simon Marlow and Simon Peyton Jones. 2004. Making a fast curry. In Proceedings of the ninth ACM SIGPLAN international
conference on Functional programming - ICFP ’04. 4. https://doi.org/10.1145/1016850.1016856

Marco T. Morazán and Ulrik P. Schultz. 2008. Optimal lambda lifting in quadratic time. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 5083 LNCS. 37–56.
https://doi.org/10.1007/978-3-540-85373-2_3

Will Partain and Others. 1992. The nofib benchmark suite of Haskell programs. Proceedings of the 1992 Glasgow Workshop
on Functional Programming (1992), 195–202.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

https://doi.org/10.1002/spe.4380240104
https://doi.org/10.1016/S0304-3975(00)00054-2
https://doi.org/10.1007/3-540-45788-7
https://doi.org/10.1007/3-540-45788-7
https://doi.org/10.1017/S0956796809007175
https://doi.org/10.1017/S0956796809007175
https://doi.org/10.1007/3-540-15975-4_37
https://doi.org/10.1145/1291220.1291200
https://doi.org/10.1145/1291220.1291200
https://doi.org/10.1007/3-540-15975-4_50
https://doi.org/10.1007/3-540-15975-4_50
https://doi.org/10.1145/1016850.1016856
https://doi.org/10.1007/978-3-540-85373-2_3

Selective Lambda Lifting 1:17

Simon L. Peyton Jones. 1992. Implementing lazy functional languages on stock hardware: The Spineless Tagless G-machine.
Journal of Functional Programming (1992). https://doi.org/10.1017/S0956796800000319

Amr Sabry and Matthias Felleisen. 1993. Reasoning about Programs in Continuation-Passing Style. (1993).
Adré Luís De Medeiros Santos. 1995. Compilation by Transformation in Non-Strict Functional Languages. Ph.D. Dissertation.
Ilya Sergey, Dimitrios Vytiniotis, and Simon Peyton Jones. 2014. Modular, Higher-order Cardinality Analysis in Theory

and Practice. Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2014),
335–347. https://doi.org/10.1145/2535838.2535861

Tanel Tammet. 1996. Lambda-lifting as an optimization for compiling Scheme to C. (1996).
Youfeng Wu and James R. Larus. 1994. Static branch frequency and program profile analysis. Professional Engineering (1994).

https://doi.org/10.1109/MICRO.1994.717399

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2019.

https://doi.org/10.1017/S0956796800000319
https://doi.org/10.1145/2535838.2535861
https://doi.org/10.1109/MICRO.1994.717399

	Abstract
	1 Introduction
	2 Operational Background
	2.1 Language
	2.2 Lambda Lifting vs. Closure Conversion

	3 When to lift
	3.1 Syntactic Consequences
	3.2 Operational Consequences

	4 Estimating Closure Growth
	4.1 Motivation
	4.2 Design
	4.3 Implementation

	5 Transformation
	5.1 Variables
	5.2 Applications
	5.3 Let Bindings
	5.4 Regarding Optimality

	6 Evaluation
	6.1 Effectiveness
	6.2 Exploring the design space

	7 Related and Future Work
	7.1 Related Work
	7.2 Future Work

	8 Conclusion
	Acknowledgments
	References

