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Abstract

This work is concerned with the field of static program analysis —in
particular with analyses aimed to guarantee certain security properties
of programs, like confidentiality and integrity. Our approach uses so-
called dependence graphs to capture the program behavior as well as the
information flow between the individual program points. Using this
technique, we can guarantee for example that a program does not reveal
any information about a secret password.

In particular we focus on techniques that improve the dependence
graph computation —the basis for many advanced security analyses.
We incorporated the presented algorithms and improvements into our
analysis tool Joana and published its source code as open source. Several
collaborations with other researchers and publications using Joana
demonstrate the relevance of these improvements for practical research.

This work consists essentially of three parts. Part 1 deals with improve-
ments in the computation of the dependence graph, Part 2 introduces a
new approach to the analysis of incomplete programs and Part 3 shows
current use cases of Joana on concrete examples.

In the first part we describe the algorithms used to compute a de-
pendence graph, with special attention to the problems and challenges
that arise when analyzing object-oriented languages such as Java. For
example we present an analysis that improves the precision of detected
control flow by incorporating the effects of exceptions. The main im-
provement concerns the way side effects —caused by communication
over methods boundaries— are modelled. Dependence graphs capture
side effects —memory locations read or changed by a method— in the
form of additional nodes called parameter nodes. We show that the
structure and computation of these nodes have a huge impact on both
the precision and scalability of the entire analysis. The so-called parameter
model describes the algorithms used to compute these nodes. We explain
the weakness of the old parameter model based on object-trees and present
our improvements in form of a new model using object-graphs. The new
graph structure merges redundant information of multiple nodes into a
single node and thus reduces the number of overall parameter nodes
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significantly — which in turn speeds up the analysis without sacrificing
the precision of the resulting dependence graph. Theses changes are
already visible when analyzing smaller programs with a few thousand
lines of code: We achieve on average a 8 times faster runtime while the
precision of the result remains intact and is usually even enhanced. The
differences are even more pronounced for larger programs. Some of our
test cases and all tested programs larger then 20,000 lines of code could
only be analyzed with the object-graph parameter model. Due to these
enhancements Joana is now able to analyze much larger programs and
also profits from enhanced precision with smaller programs.

In the second part we tackle the problem that security analyses based
on dependence graphs previously required a whole program in order
to compute. For example it was impossible to preprocess or analyze
program parts like library code without knowledge of the application
code using it. We discovered a monotonicity property in the current
analysis that allows us to reuse analysis results from a program part at a
given usage point to conservatively approximate the expected results at
another point without the need to reanalyze the program part. Due to
monotonicity we are able to make valid statements about the security
properties of a program part in general, without knowledge of its usage
points. It also allows us to preprocess program parts in form of a modular
dependence graph in a way that can be adjusted later on to a concrete usage
point. We define the monotonicity property in detail and outline a proof
of its correctness. Based on this observation, we develop an approach
to preprocess program parts with modular dependence graphs. As the
precise computation of modular dependence graphs can become very
costly, we developed an algorithm based on so-called access paths to
improve scalability. Finally, we sketch a proof showing the presented
algorithm in fact always computes a conservative approximation of
the modular graph and therefore any security analysis performed on a
modular graph remains sound.

The third part contains successful applications of Joana. We present
the results of a cooperation with Ralf Küsters from the University of
Trier. We explain how our security tool Joana is used in general and also
how —in combination with other security tools and techniques— we
were able to proof cryptographic security properties for Java programs
— a task previously not possible for tools based purely on information
flow control. These applications show how the usability improvements

x



of Joana —developed in the context of this work— considerably reduce
the effort required to setup the analysis. We also explain how our
precision enhancements were crucial for the successful analysis of these
applications.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem Gebiet der statischen Pro-
grammanalyse — insbesondere betrachten wir Analysen, deren Ziel es ist,
bestimmte Sicherheitseigenschaften, wie etwa Integrität und Vertraulich-
keit, für Programme zu garantieren. Hierfür verwenden wir sogenannte
Abhängigkeitsgraphen, welche das potentielle Verhalten des Programms
sowie den Informationsfluss zwischen einzelnen Programmpunkten
abbilden. Mit Hilfe dieser Technik können wir sicherstellen, dass z.B. ein
Programm keinerlei Information über ein geheimes Passwort preisgibt.

Im Speziellen liegt der Fokus dieser Arbeit auf Techniken, die das
Erstellen des Abhängigkeitsgraphen verbessern, da dieser die Grundlage
für viele weiterführende Sicherheitsanalysen bildet. Die vorgestellten
Algorithmen und Verbesserungen wurden in unser Analysetool Joana
integriert und als Open-Source öffentlich verfügbar gemacht. Zahlreiche
Kooperationen und Veröffentlichungen belegen, dass die Verbesserungen
an Joana auch in der Forschungspraxis relevant sind.

Diese Arbeit besteht im Wesentlichen aus drei Teilen. Teil 1 befasst sich
mit Verbesserungen bei der Berechnung des Abhängigkeitsgraphen, Teil 2
stellt einen neuen Ansatz zur Analyse von unvollständigen Programmen
vor und Teil 3 zeigt aktuelle Verwendungsmöglichkeiten von Joana an
konkreten Beispielen.

Im ersten Teil gehen wir detailliert auf die Algorithmen zum Erstellen
eines Abhängigkeitsgraphen ein, dabei legen wir besonderes Augenmerk
auf die Probleme und Herausforderung bei der Analyse von Objekt-
orientierten Sprachen wie Java. So stellen wir z.B. eine Analyse vor,
die den durch Exceptions ausgelösten Kontrollfluss präzise behandeln
kann. Hauptsächlich befassen wir uns mit der Modellierung von Seiten-
effekten, die bei der Kommunikation über Methodengrenzen hinweg
entstehen können. Bei Abhängigkeitsgraphen werden Seiteneffekte, also
Speicherstellen, die von einer Methode gelesen oder verändert werden,
in Form von zusätzlichen Knoten dargestellt. Dabei zeigen wir, dass die
Art und Weise der Darstellung, das sogenannte Parametermodel, enormen
Einfluss sowohl auf die Präzision als auch auf die Laufzeit der gesamten
Analyse hat. Wir erklären die Schwächen des alten Parametermodels,
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das auf Objektbäumen basiert, und präsentieren unsere Verbesserungen
in Form eines neuen Modells mit Objektgraphen. Durch das gezielte
Zusammenfassen von redundanten Informationen können wir die An-
zahl der berechneten Parameterknoten deutlich reduzieren und zudem
beschleunigen, ohne dabei die Präzision des resultierenden Abhängig-
keitsgraphen zu verschlechtern. Bereits bei kleineren Programmen im
Bereich von wenigen tausend Codezeilen erreichen wir eine im Schnitt
8-fach bessere Laufzeit — während die Präzision des Ergebnisses in der
Regel verbessert wird. Bei größeren Programmen ist der Unterschied
sogar noch deutlicher, was dazu führt, dass einige unserer Testfälle und
alle von uns getesteten Programme ab einer Größe von 20000 Codezeilen
nur noch mit Objektgraphen berechenbar sind. Dank dieser Verbesse-
rungen kann Joana mit erhöhter Präzision und bei wesentlich größeren
Programmen eingesetzt werden.

Im zweiten Teil befassen wir uns mit dem Problem, dass bisherige,
auf Abhängigkeitsgraphen basierende Sicherheitsanalysen nur voll-
ständige Programme analysieren konnten. So war es z.B. unmöglich,
Bibliothekscode ohne Kenntnis aller Verwendungsstellen zu betrachten
oder vorzuverarbeiten. Wir entdeckten bei der bestehenden Analyse
eine Monotonie-Eigenschaft, welche es uns erlaubt, Analyseergebnisse
von Programmteilen auf beliebige Verwendungsstellen zu übertragen.
So lassen sich zum einen Programmteile vorverarbeiten und zum an-
deren auch generelle Aussagen über die Sicherheitseigenschaften von
Programmteilen treffen, ohne deren konkrete Verwendungsstellen zu
kennen. Wir definieren die Monotonie-Eigenschaft im Detail und skizzie-
ren einen Beweis für deren Korrektheit. Darauf aufbauend entwickeln
wir eine Methode zur Vorverarbeitung von Programmteilen, die es uns
ermöglicht, modulare Abhängigkeitsgraphen zu erstellen. Diese Graphen
können zu einem späteren Zeitpunkt der jeweiligen Verwendungsstelle
angepasst werden. Da die präzise Erstellung eines modularen Abhän-
gigkeitsgraphen sehr aufwendig werden kann, entwickeln wir einen
Algorithmus basierend auf sogenannten Zugriffspfaden, der die Skalier-
barkeit verbessert. Zuletzt skizzieren wir einen Beweis, der zeigt, dass
dieser Algorithmus tatsächlich immer eine konservative Approximation
des modularen Graphen berechnet und deshalb die Ergebnisse darauf
aufbauender Sicherheitsanalysen weiterhin gültig sind.

Im dritten Teil präsentieren wir einige erfolgreiche Anwendungen
von Joana, die im Rahmen einer Kooperation mit Ralf Küsters von der

xiv



Universität Trier entstanden sind. Hier erklären wir zum einen, wie
man unser Sicherheitswerkzeug Joana generell verwenden kann. Zum
anderen zeigen wir, wie in Kombination mit weiteren Werkzeugen und
Techniken kryptographische Sicherheit für ein Programm garantiert
werden kann — eine Aufgabe, die bisher für auf Informationsfluss ba-
sierende Analysen nicht möglich war. In diesen Anwendungen wird
insbesondere deutlich, wie die im Rahmen dieser Arbeit vereinfachte
Bedienung die Verwendung von Joana erleichtert und unsere Verbes-
serungen der Präzision des Ergebnisses die erfolgreiche Analyse erst
ermöglichen.

xv





In the one and only true way. The object-oriented
version of ’Spaghetti code’ is, of course, ’Lasagna
code’. (Too many layers).

Roberto Waltman 1
Introduction

This thesis presents improvements for algorithms mainly used in static
security analyses. Most of this work is also relevant for other program
analyses that are concerned with a conservative approximation of pro-
gram semantics and method side-effects. However we are going to focus
on the benefits our work provides for software security analyses — more
specifically information flow security.

Software security is concerned about three main program properties:
Availability, confidentiality and integrity.

Availability describes the property that a program should be able to
process user requests in a reasonable amount of time, no matter how
the requests are structured. A well known example of attacks to
web-based applications are denial-of-service attacks, which aim to
put so much load on the application, that subsequent requests time
out and cannot be answered by the application.

Confidentiality is concerned with the treatment of secret information.
Confidentiality is assured when an attacker cannot gain any meaning-
ful information about secret values, such as passwords, by observing
publicly visible channels, such as network communication.

Integrity is a concept dual to confidentiality. It concerns the treatment
of publicly accessible information and input. An Attacker should not
be able to alter sensitive parts of program behavior or data, through
unauthorized inputs. Common attack techniques to integrity are
buffer-overflow and string-format attacks, where insufficient input
validation is exploited to execute arbitrary code.
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1.1 Information flow control

Information flow control (IFC) tackles the latter two security properties
that both address the treatment of information inside a program: Confi-
dentiality and integrity.

IFC has been intensely studied for more than 25 years. Many advances
were made in formalizing and proving the foundations of information
flow that gave rise to specific attacker models and precise definitions
of security properties. These foundations help to understand and
reason about the security of a program and the inner semantics of
information flow. Early work on IFC has been done by Denning and
Denning [25, 26] and was later extended with an intuitive definition of
standard noninterference by Goguen and Meseguer [32, 33].

1.1.1 Example: A program with illegal information flow

1 public class InformationFlowLeaks {
2

3 static int l, h;
4

5 public static void main(String[] argv) {
6 h = inputPIN(); // secret (HIGH)
7 if (h < 1234)
8 print(0); // indirect leak
9 l = h;

10 print(l); // direct leak
11 }
12

13 }

Figure 1.1: A small program with illegal information flow.

Figure 1.1 shows a small example of a program that violates confiden-
tiality. We assume that method inputPIN returns secret information and
method print produces publicly visible output. In this case the example
contains two information leaks. A direct leak in l. 10 where the value of
the secret pin is directly printed to public output and an indirect leak in
l. 8 where the secret value decides if a certain output occurs.

In this example the program allows an attacker to infer information
about the secret value through observation of its public visible behavior
—the program output. In case of the indirect leak he knows that the value

2
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is < 1234 in case “0” is printed and >= 1234 otherwise. Hence he gained
some information. In case of the direct leak the confidentiality violation
is worse, as the actual secret is printed. However the severity of an
information leak is not the main focus of information flow control. IFC
aims to guarantee the absence of any kind of leak and hence to discover
any leak, no matter how minuscule it may seem —a main difference to
bug-finding tools. The decision on the severity of discovered leaks is left
to the user. He may then choose to ignore or repair the leak or perform
an additional analysis.

1.1.2 Attacker model

Our security analysis assumes an attacker model that is considered stan-
dard in the information flow community. This attacker has knowledge of
the program source code. He can observe all input and output marked as
public and can influence public input. He cannot observe or tamper with
secret input. He is aware of history and can combine the observations of
multiple runs to gain additional information. The attacker has no access
to the actual hardware that executes the program, so he can’t abuse
physical side-channels. He is also not aware of time and timing related
issues. Hence our analysis does not cover these type of information
leaks based on timing of physical side-channels. It should be used in
combination with other security tools specialized in detection of such
side-channels to maximize security. As they are not part of our attacker
model, we consider physical and timing side-channels out of scope for
this work.

1.1.3 Noninterference and low-deterministic security

Noninterference is a central property for information flow control in
the context of sequential programs. Intuitively, a program working on
public and secret data is not allowed to change its publicly observable
behavior when the secret data is changed. This way it is impossible
for an attacker to infer information about the secret data by observing
program behavior.

The standard noninterference of Goguen and Meseguer can be defined
on the level of an abstract automaton that represents the state transitions
of a program [111, 44, 115]. A program is considered noninterferent with

3
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respect to a security level l if it obeys the following rules: Each statement
is labeled with a security level of the information it may process or
influence. The output of the program does not change if all statements
with security level l are deleted.

This definition has some drawbacks for a practical implementation of
a static noninterference analysis: (1) It requires a security label for each
statement and (2) removing arbitrary statements from a program may
render it inexecutable, even if the removed statements do not influence
the output. The noninterference criterion, called low-deterministic security,
by Volpano and Smith [126] however is less general but more practical
than Goguen’s and Meseguer’s. They assign a security level to each
variable of a program. For the sake of simplicity we consider only the
security labels high and low. For every two program states s, s′ and every
program statement c low-deterministic security holds, iff

s �low s′ =⇒ JcKs �low JcKs′

Two program states are considered low-equivalent �low iff all variables
marked as low are mapped to the same value in both states. So s and s′ are
only allowed to differ on the values of high variables. Thus, whenever
two states are low-equivalent, a program statement c is considered
noninterferent, if the value of all low variables after its execution JcK is the
same, no matter what the values of any high variables are. The approach
to information flow control we present in this work has been formalized
and proven to enforce the Volpano-Smith noninterference with the help
of the theorem prover Isabelle [129, 128, 127].

1.1.4 Observational determinism for multithreaded
programs

Low-deterministic security is a simple and intuitive definition, but it is not
without flaws. It assumes input and output only happens at the beginning
and end of a program run and fails to capture interactive systems.
It also does not respect specific additional problems of security for
multithreaded programs, such as execution order and timing. Therefore
extensions such as low-security observational determinism (LSOD) [89, 109]
have been proposed. LSOD requires a deterministic execution order
for all statements that contribute to the program output, which is a

4
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very restrictive demand for a multithreaded program. Giffhorn [29, 31]
provides an excellent overview on the inherent challenges of security
for multithreaded programs and evaluates different noninterference
properties. He also developed and integrated a less restrictive version
of LSOD —called relaxed-LSOD (RLSOD)— based on slicing into our
information flow control tool Joana [30].

1.1.5 Declassification

In general, noninterference and low-deterministic security are too re-
strictive for many applications, as they forbid any kind of information
leak. Sometimes we want to allow certain leakages: For example a
password login system needs to act differently depending if a valid or
invalid password has been entered. Encryption algorithms should be
allowed to return the encrypted secret, but not the plain text —albeit
from an information flow perspective, both contain the same information.
So methods to declassify certain parts of secret information have been
researched: General work on declassification [112,87] aims towards seman-
tically justifiable critera for allowing and handling information leaks. It
categorizes them into the four dimensions: what, who, where and when.
What information is declassified, who is allowed to declassify, where
is the information released in the system, and when is the information
released? Quantitative information flow [23, 21, 88] measures the size of
leaked information in bits which helps to decide on the severity of a leak
and to further specify what parts need to be declassified.

1.1.6 Ideal functionality

An alternative approach to declassification is ideal functionality [75]. With
the help of ideal functionality it suffices to verify noninterference in
order to proof a program cryptographically secure. The absence of
information flow in a variant of the program that contains idealized
versions of encryption implies that the variant with real encryption can
only leak encrypted information. Thus the program is cryptographically
noninterferent even if the real implementation contains leaks. In Chap-
ter 4 we show how to use our analysis tool Joana to successfully proof
computational indistinguishablility with the help of ideal functionality.

5
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1.2 Program slicing and
information flow control

We focus on security analysis through program slicing. Slicing is a concept
first discovered by Weiser [130, 131]. It describes the way a programmer
searches for the cause of a bug. Starting from a statement that did not
yield the desired result —called the slicing criterion— he traces back
though the program looking at statements that may have influenced
the criterion, while ignoring irrelevant program parts. This notion of
influence is closely related to information flow: Information may only
flow to the slicing criterion through statements in the slice. Hence
if the slicing criterion covers all publicly observable operations, the
program is guaranteed to be noninterferent if no statement touching
secret information is in the slice.

1.2.1 Program slicing with dependence graphs

Program slicing can be statically approximated through so-called de-
pendency graphs. Ottenstein and Ottenstein were the first to introduce
graph-based slicing [98]. Since then many improvements have been
developed [27, 105, 108, 70, 44] and graph-based slicing is used for a
wide array of applications such as: Debugging [61, 120] and testing [13],
measuring code complexity [130], model checking [51], or specialized
analyses such as duplicate detection [68]. In this work we focus on
dependence graphs used for information flow control.

1.2.2 Dependence graphs and information flow control

Dependence graphs capture the semantics of a program. Each statement
is represented by a node and edges between statements occur if one
statement may influence the other. Therefore they are well suited
for information flow analysis [117, 1, 10, 133]. Wasserrab and Lohner
even provided a machine-checked proof that noninterference —for
sequential programs— can in fact be guaranteed by graph-based slicing
[129, 128, 127].

Our group researched dependency graphs for information flow
control extensively: Snelting invented path conditions for additional
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precision [117] which were first improved by Robschink [119] and later
on by Lochbihler and Katz [65], Krinke [70] implemented VALSOFT
—the predecessor of Joana— a program slicing analysis for C programs,
Hammer [47,44] implemented the first prototype of Joana—our program
slicing framework for Java programs— which included several optimiza-
tions for object-oriented languages and Giffhorn [29, 31] later extended
Joana for information flow control of multi-threaded programs.

We use an analysis approach inspired by Denning style security
lattices [25]. Instead of only allowing two security levels high and low,
an arbitrary lattice of security levels can be used. This enables a more
fine-grained specification of program security properties and works
well in combination with dependence graphs: Hammer et al. [44, 47]
proposed an approach for IFC with security lattices in dependence graphs,
where only nodes corresponding to input and output statements need
to be labeled. All other statements are labeled automatically through
a sophisticated data flow analysis on the dependence graph. We label
input statements with a provided security level P and output statements
with a required security label R. Then a monotone data flow analysis [60, 66]
propagates the provided security levels along the dependence graph.
Later on we only need to check if any provided security label at an
output statement violates the expected required security label. The data
flow transfer function fn(l) of the security levels at node n is a standard
“kill gen” transfer function:

fn(l) = (l \ kill(n))t gen(n)

with

gen(n) =

P(n) if n is an input statement
⊥ else

and
kill(n) = >

The simplicity of the gen and kill functions shows how elegant graph
based IFC analysis can be defined. The gen function returns the provided
security level for annotated input statements and otherwise returns the
neutral element (⊥) of the t operator. The kill function only returns the
neutral element (>) of the u operator —hence it can be ignored.

7
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In our data flow framework every node n has an incoming security
level in(n) and an outgoing level out(n). The incoming level is computed
by the outgoing levels of the predecessors.

in(n) =
⊔

n′∈preds(n)

out(n′)

The outgoing level is computed from the incoming level and the node’s
transfer function.

out(n) = fn(in(n)) = (in(n) \ kill(n))t gen(n) = in(n)t gen(n)

The fixed-point of the outgoing level of n is also called the actual security
level S(n) of n.

The program is considered secure iff for any output statement n
marked with an required security level R(n) it holds that

S(n) v R(n)

In the remainder of this work we are going to restrict our examples to
the simple standard security lattice low(public) ≤ high(secret). However
this is not a restriction of the presented algorithms, all of them operate
independently of the chosen lattice.

1.2.3 Slicing object-oriented languages

This work heavily focuses on the analysis of statically typed object-
oriented languages. These languages provide some benefits —such as
static types— as well as several drawbacks —such as dynamic dispatch
and side-effects— for a static analysis. Several publications [135, 108]
already tackled the basics of dependency graph computation for object-
oriented languages. We base our work on the results of Hammer
[47, 44, 46]: He proposed a special parameter model to handle method
side-effects, which we are going to improve and extend [35, 36].

Points-to analysis is also an important topic in the object-oriented
setting. We are going to provide a overview of pointer-analysis options
and their influence on dependence graph computation in section §2.5.2
— upcoming section §2.1 starts with a detailed discussion of the typical
problems that occur when analyzing object-oriented languages.

8
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1.2.4 Slicing multithreaded programs

Slicing of dependence graphs can also be used to analyze the security
of multi-threaded programs. Krinke [69] was the first to introduce the
concept of interference dependence between threads, which was later on
used and extended by Nanda [95] and Giffhorn [29]. While our work
provides the basis for multi-threaded dependence graphs, we do not
include the details of the required may-happen-in-parallel (MHP) analysis
[97, 5, 69, 29] and special time-sensitive slicing techniques [95–97, 31, 29]
in this thesis. However, we were able to further improve upon existing
algorithms and incorporate additional lock-sensitivity into our analysis
as a result of the cooperation with the research group of Prof. Müller-
Olm [38].

We do not go into implementation details regarding information flow
control for multi-threaded programs with dependence graphs, however
sections §2.1.9 and §2.2.5 contain a brief summary of the typical problems
and our proposed solutions.

1.3 Contributions

The main contribution of this work is the Joana information flow control
framework [40, 41, 37, 39, 118] available for download under joana.ipd.
kit.edu. Joana is open-source and comes with several GUIs and an API
for developers to include Joana into their own analyses. The framework
has been developed over several years by the program analysis group of
Prof. Gregor Snelting. Previously and currently contributing members
are Christian Hammer, Dennis Giffhorn, Martin Mohr, Martin Hecker and
Jürgen Graf. Joana builds upon the general program analysis framework
WALA (wala.sf.net) —developed by IBM— and consists of a total of
450kLoC: 220kLoC of specialized dependence graph and information
flow algorithms and 230kLoC of program analysis code from WALA.
During this work we developed several extensions and improvements
to the WALA framework, such as support for Android Dalvik bytecode,
exception analysis and many performance and bug fixes.

Currently Joana allows a wide range of analysis options and supports
information flow control for Java and Android programs. It can handle
full Java and Dalvik bytecode —with the exception of some reflection
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constructs. Joana models the effects of multi-threaded execution and
exception handling. Our approach aims at a conservative analysis result
that can guarantee the absence of illegal information flow. Compared
to common widely used bug detection tools like HP Fortify1, IBM
AppScan2 or FindBugs3 —that do not provide a guarantee— our analysis
algorithms are in general more heavy-weight and include many precision
enhancements like object-, flow-, field- and context-sensitivity in order
to minimize false alarms. Still Joana scales for programs up to 100kLoC
— previous to this work the early prototype has only been able to analyze
programs up to 20kLoC. We suggest using Joana for the security critical
kernels of a software system and to apply standard bug detection tools
additionally to the whole system.

So far Joana has been and is successfully used in several collaborations:

• Implementation-level analysis of e-voting systems (Ralf Küsters, Uni-
versity of Trier): Analysis of e-voting systems and IFC treatment
of encrypted messages [75, 76, 73, 72, 71, 74].

• Program-level specification and deductive verification of security prop-
erties - DeduSec (Bernhard Beckert, KIT): Integration of KeY and
Joana [74].

• System-wide data-driven runtime usage control across layers of abstrac-
tion - SADAN (Alexander Pretschner, TU Munich): Improvement
of run-time usage control with static Joana information [85].

• Static code analysis for securing Cordova applications (Achim Brucker,
SAP).

• Secure type systems and deduction - SecDed (Tobias Nipkow, TU
Munich) provides Isabelle support for the machine-checked verifi-
cation of Joana’s IFC machinery, for proofs such as [128].

• Cyber Security Lab (Christian Hammer, Saarland University / CISPA)
general cooperation on the use of the Android front-end for pro-
gram analysis using WALA.

1http://www8.hp.com/us/en/software-solutions/application-security/
2http://www.ibm.com/software/products/en/appscan
3http://findbugs.sourceforge.net/
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• Developing systems with secure information flow - IFlow (Wolfgang
Reif, University of Augsburg) uses Joana as IFC tool [64, 63, 123].

In this thesis we will focus on the following technical contributions
to Joana. In Chapter 2 we discuss the general improvements achieved in
the field of static analysis with dependence graphs, including

• A null-pointer detection analysis for a more precise static approxima-
tion of control flow in presence of exception handling (§2.4.1).

• An interprocedural extension to termination-sensitive control depen-
dencies enabling termination-sensitive IFC analysis (§2.4.2).

• A fine-grained model of field access operations in dependence
graphs providing further precision improvements (§2.4.2).

• A new model for interprocedural side-effects in dependence
graphs [36] (§2.6). The new parameter model includes:

– Object-graphs —an extension of object-trees from Hammer—
that improve memory footprint and runtime of dependence
graph computation. They also tackle the scalability problem of
object-trees for less precise points-to information by merging
duplicate information in subtrees into a single representation
(§2.6.3).

– An optimization of the interprocedural propagation for object-
graphs and -trees that replaces the mutually recursive algo-
rithm of object-trees with 3 non-alternating phases (§2.6.4).

– An evaluation of the influence of parameter model and points-
to analysis on runtime and precision of dependence graph
computation (§2.6.5).

In Chapter 3 we present our new approach to modular information
flow and dependence graph computation for components in unknown
context.

• We define an partial order on the context configurations of a
component that implies a monotonicity property for its analysis
results. This property allows a safe prediction of the components
information flow properties in a given context without the need to
run a context specific analysis (§3.2.2).

11
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• An inference algorithm for relevant context conditions that describe
which modifications to the context can influence the analysis result
(§3.2.3).

• A new language FlowLess to specify required context conditions
and expected information flow for a component (§3.3).

• We introduce the concept of conditional data dependencies that allow
precomputation of dependence graphs for components in any
context (§3.4.2).

• An algorithm based on access paths to approximate conditional data
dependencies (§3.4.3).

• An extension to the summary edge computation algorithm that
copes well with conditional dependencies (§3.4.4).

Finally Chapter 4 contains several case studies that present applications
of Joana.

1.4 Related work

This work is about static program analysis with dependence graphs
and its applications to information flow control. It is —to our best
knowledge— unique in its approach to provide a fully automated
conservative information flow analysis for Java that can guarantee
the absence of any illegal flow. However there are several tools and
publications that can be considered closely related to Joana. These
tools differ in the amount of supported language features, required user
interaction and soundness.

Similarly to Joana, the Indus [103] tool supports concurrent Java and
utilizes several auxiliary analyses to compute dependence graphs. These
are used for slicing in order to reduce the state space in model checking
applications. Unlike Joana, no explicit support for IFC is provided.

Tools like Jif [93, 94] extend Java with security types. The user has to
annotate variables, fields and method signatures with additional labels
that restrict allowed information flow. Then Jif checks the validity of
these annotations in order to detect illegal flow. Since Jif supports security
type inference only for local variables, the user is usually required to

12
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annotate the whole program with security types. This leads to a huge
number of required annotations as it does not suffice —in contrast to
our approach— to only mark program points where information is
read in or written out. Additionally Jif does not support Java features
such as concurrency, therefore we consider Jif or approaches based on
Jif [22] to be less practical, especially when existing code bases need to
be analyzed. Better type inference algorithms for these approaches have
been proposed [116], but as of yet, we are not aware of any practical
implementation for full Java.

Erik Bodden and his group developed multiple tools for dependence
and information flow analysis based on the SOOT program analysis
toolkit4. In general his work is less focused on a strictly conservative
result and aims more towards practical and scalable solutions. In [15]
they present an IFC tool tailored for software production lines that
applies an IFDS/IDE analysis. It is able to cope with conditionally
compiled code efficiently and includes a nice GUI. However this tool can
only detect a very specific kind of information flow, namely direct leaks
through data flow in variables. At this time it cannot detect indirect
flow through branches, data flow through heap allocated objects or any
kind of concurrency related leaks. Another work by Bodden et. al. is
Tamiflex [16] — a tool that helps to analyze the behavior of Java programs
that use reflection. Reflection is a huge threat to any static analysis, as it
allows dynamic loading of classes and almost arbitrary execution of code.
Tamiflex observes the program behavior during multiple executions and
keeps track of any reflection calls. Then it transforms the program into a
variant better suited for static analyses by replacing reflection with the
observed behavior. This approach is obviously not sound, however it is
definitely useful for other analyses like bug detection tools.

Mostly commercial security scanners like AppScan5 fall into the
unsound yet practical bug detection category. Their goal is to analyze
large applications in a short amount of time whilst detecting most of the
security vulnerabilities and pointing out error prone coding practices.
Tripp et al. [124] extend AppScan with a taint analysis for JavaScript.
Their approach is based on the WALA framework and applies hybrid
thin-slicing. Their tool scales well and can detect many security leaks

4http://www.sable.mcgill.ca/soot/
5http://www.ibm.com/software/awdtools/appscan/developer
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in almost arbitrarily large programs with only few false alarms. Due
to thin-slicing they miss indirect information leaks and thus cannot
guarantee noninterference.

Another JavaScript analysis is from Guarnieri et al. [43]. They apply a
demand-driven taint analysis based on access paths to detect direct and
indirect information leaks. Their approach scales well and seems useful
for many real world applications, but it cannot detect any probabilistic
leaks and fails to handle the effects of the eval function — a JavaScript
speciality that allows the execution of dynamically constructed code.

Seth et al. [59] suggest a solution for the sound approximation of the
eval function through a combination of static and dynamic analysis.

The approach by Genaim and Spoto [28] uses abstract interpretation
of Java bytecode to detect illegal information flow. It captures direct as
well as indirect flow, but lacks support for concurrency and precision
features such as object sensitivity.

The KeY [2] tool allows the user to manually specify and verify
arbitrary semantic properties of sequential Java programs and use them
for information flow control [7]. This generally requires a considerable
amount of manually provided JML [19] annotations in the program’s
source code. The benefit of this approach is a very precise analysis
result. In §4.3 and §4.4 we propose to use Key in combination with Joana
in order to get the best of both worlds when analyzing a program for
illegal information flow: A fast and automatic analysis for large parts of
the program with Joana and a very precise manual verification of the
remaining parts with Key.

Related work specific to the modular approach on dependence graph
computation is presented at the start of Chapter 3.
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People think that computer science is the art of ge-
niuses but the actual reality is the opposite, just many
people doing things that build on each other, like a
wall of mini stones.

Donald Knuth 2
Information Flow Control with

System Dependence Graphs for
Object-oriented Languages

2.1 Analyzing object-oriented languages:
Challenges and opportunities

The step from static analysis that can guarantee noninterference for a toy-
like language to an analysis for a real world object-oriented language like
Java raises many different problems in terms of precision and scalability.
In order to retrieve practical usable results we [36, 35], together with
previous work in this area [70, 44, 105], developed and integrated many
optimizations for an object-oriented setting.

Our analysis and optimizations are specifically tailored to the Java
language, but most parts also apply to any other object-oriented setting.
We are going to explain the most challenging parts in implementing
a sound yet precise and scalable analysis for Java in the following
subsections. We use short source code examples to illustrate the common
problems in an information flow scenario. Variables named <SECRET>
are considered to hold secret information that should not be leaked via
a print statement. <PUBLIC> is a placeholder for any data that is public
and may be leaked. Finally <INPUT> represents public user input, that
can be provided by the attacker. So it should not be possible to deduce
information about secret information through altering the input.



CHAPTER 2. INFORMATION FLOW CONTROL WITH SYSTEM
DEPENDENCE GRAPHS FOR OBJECT-ORIENTED LANGUAGES

1 class A {
2 public void foo() {}
3

4 public int bar() {
5 return S.pub;
6 }
7

8 public final void print() {
9 foo();

10 println(bar());
11 }
12 }
13

14 class S {
15 public static int pub = <PUBLIC>;
16 public static int sec = <SECRET>;
17 }

18 class B extends A {
19 public void foo() {
20 S.pub = S.sec;
21 }
22 }
23

24 class Main {
25 public static void main() {
26 A a = new A();
27 B b = new B();
28 // ok
29 a.print();
30 // illegal
31 b.print();
32 a.print();
33 }
34 }

Figure 2.1: A program with a security leak due a side-effect through static fields.

2.1.1 Static variables

The main problem of analyzing Java with static variables is their unlimited
scope. They may be referenced from anywhere in the program and can
result in potentially arbitrary side-effects between otherwise separated
program parts. The example in Figure 2.1 shows how such a side-effect
may lead to illegal information flow.

The example contains two classes A and B, where B extends A and
introduces a side-effect through static fields in method foo. Calling
method print on an instance of class A is safe only as long as the same
method has not been called on an instance of class B. The source code of
class A alone does not suffice to detect this illegal flow. So a change in
another class leads to illegal flow in A. It is hard to predict these kind
of side-effects only through looking at parts of a program. There is for
example no way to detect the side-effect between the multiple calls to
print in the main method. Without knowing about the static variables
they appear to be completely independent.

Almost any Java program uses static variables, if not directly then
at least through code from the runtime library. This library contains a
huge number of classes and side-effects through static fields on itself.
Just keep in mind that e.g. System.out is a static field. An analysis needs
to keep track of all static fields in order to guarantee the detection of all
possible illegal flow. In combination with the huge runtime library this
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leads to serious scalability issues, as we are going to show in the next
subsection.

2.1.2 Runtime libraries

We have shown in the previous Section §2.1.1 that —among other
reasons— side-effects through static fields make it unfeasible to decide
on the noninterference of a single method or program part, without
looking at the whole program. In Java this includes also the quite
large runtime library. E.g. the runtime library of Java 7 contains about
26970 class and interface declarations6 with approximately 980kLoC. It
is bigger than most programs using it. Without any optimizations7 in
place a static analysis of the very basic "Hello World" program finds
22885 classes and 123154 methods potentially involved. To reduce these
large numbers we are going to focus our analysis on the much smaller
runtime libraries of Java 1.4 or Java ME8.

Even with these smaller libraries a static analysis of a medium sized
program with about 10kLoC has to analyze in average a total of 60kLoC,
including the library code used. However the amount of library code
varies greatly from program to program. So some 10kLoC program may
blow up to a total number of 100kLoC lines, while others stay at 15kLoC.
This is also the reason why lines of code as a measurement for program
size can be deceiving.

Another problem of runtime libraries is that they contain calls to
native code. So for some parts there is no actual Java code that can be
analyzed. We use manually crafted stubs in these cases to approximate
the expected behavior instead of just ignoring those calls. However there
is no guarantee that these stubs capture every effect on the program.
This is a limitation of our approach, but to our knowledge no other static
analysis for Java includes native code. Most of them ignore native calls
or even build stubs on the level of library calls, so they don’t even include
any library code.

6Counting actual class files in the runtime jar archives of Java 1.7.0_04-b21 for Mac OSX
7We used a simple rapid type analysis, as more sophisticated approaches did not finish

within a time frame of 15 minutes.
8Java environment for mobile devices
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2.1.3 Static initialization

Static initialization poses two main problems: Firstly due to the large
number of classes in the runtime library, many of them exist and may be
potentially executed and secondly there is a way to exploit the order in
which initializations take place in order to achieve illegal information
flow. The first issue is mainly a scalability problem, which we tackle
more in general with our performance improvements in §2.5. In the
following example we are going to focus on the subtle difficulties of the
order of static initialization in Java.

In order to improve performance, not all static initializers of a Java
program are called at program start. They are called in a lazy fashion the
first time they are needed. The Java language specification [34]9 defines
the following rules for the invocation of static initializers: As long as
class C has not already been initialized, all initializers of C are called, if

• an instance of C is created.

• a static method of C is invoked.

• a static field of C is accessed.

• an assert statement lexically nested within C is executed.

So basically the execution of a static initializer can be triggered by
the runtime behavior of the program, which may depend on secret
information and lead to an information leak.

In the example in Figure 2.2 the values of the static variables B.i1
and C.i2 depend on the order of initialization. If class B is initialized
before C variable B.i1 contains 1 and 2 otherwise. The same holds for
variable C.i2. The main method creates either an instance of class B or
C depending on the user input and the secret value. Even tough those
instances are never used, their creation triggers the corresponding static
initializers. Through observing the output of both println statements
an attacker can decide if the user input was equal to the secret value.
Thus an information leak occurred.

In order to detect these kind of order dependent information leaks, the
process of static initialization needs to be carefully modelled. Currently
our analysis does not contain an adequate model —we assume that all

9Section 12.4.1, page 316ff
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1 class A{
2 public static int val = 1;
3 }
4

5 class B {
6 public static int i1 = A.val++;
7 }
8

9 class C {
10 public static int i2 = A.val++;
11 }

16 class Main {
17 public static void main() {
18 if (<INPUT> == <SECRET>) {
19 // trigger initializer of A and C
20 new C();
21 } else {
22 // trigger initializer of B and C
23 new B();
24 }
25

26 // illegal
27 println(B.i1); // 1 iff input != sec
28 println(C.i2); // 1 iff input == sec
29 }
30 }

Figure 2.2: A program with a security leak due to the order of static initialization.

initializers are called directly upon program start— and cannot detect
these leaks. However this is not a general problem, as such a model can
be integrated straightforwardly by treating each potential initialization
point as a call to the matching initialization methods. To our best
knowledge no other static information flow analysis can detect these
kind of leaks, which leaves this issue open for future work.

2.1.4 Reflection

Reflection is a mechanism in Java that can be used to circumvent almost
any access restrictions and scope limitations. So in general it is a very
hard problem for a static analysis to decide on the possible effects of
an reflection statement. Some analyses [83, 113] try to combine type
information with advanced constant propagation and string analysis for
the text arguments given to reflection calls. In some special cases they
are able to detect the effects of a reflection statement, but this approach
does not work reliably in general, as the arguments may not be constant
at all.

The example in Figure 2.3 demonstrates how a program can use
reflection to read a private member variable and also to alter the value
of a final member. It reads val without regard to the private access
restrictions through a generic field object av. These generic fields can
change the access restrictions of the member they represent, e.g. make a
private field public or even otherwise, and they have full access to the
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1 class A{
2 private int val;
3 public final int pub;
4

5 public A(int val) {
6 this.val = val;
7 this.pub = <PUBLIC>;
8 }
9 }

10 class Main {
11 public static void main() {
12 A a = new A(<SECRET>);
13 Class c = A.class;
14 Field av = c.getDeclaredField("val");
15 av.setAccessible(true);
16 println(av.getInt(a)); // illegal
17 println(a.pub); // ok
18 Field ap = c.getDeclaredField("pub");
19 ap.setAccessible(true);
20 ap.setInt(a, av.getInt(a));
21 println(a.pub); // illegal
22 }
23 }

Figure 2.3: A program with a security leak due to reflection.

value of the member. The program creates another generic field at l. 18
and subsequently uses it to set the value of the final member pub to the
value of the private member val.

This short example demonstrates how reflection can be used to
overcome certain access restrictions on class members. In addition it may
also be used to load classes at runtime and call arbitrary methods. We, as
any other IFC analysis known to us, do not support analysis of programs
with reflection. We argue that a program that needs to ensure its security
should not rely on mechanisms that render the inherent access and type
restrictions of a language useless.

2.1.5 Types and object-fields

Variables cannot only hold values of different types, they can also refer to
objects. Objects themselves may contain an arbitrary number of member
variables, that again may hold values or refer to other objects. So from a
single variable that refers to an object a whole set of transitively reachable
member variables emerges. When we have to decide whether a variable
may contain secret information, it does not suffice to look at its value, we
also need to check the values of all reachable members. The following
example illustrates this problem.

The program in Figure 2.4 contains two node classes NodeA and NodeB
that both have a member val to store a number value and a reference
next pointing to another node object. The member next of class NodeA
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1 class NodeA {
2 public NodeB next;
3 public int val;
4

5 public NodeA(int val) {
6 this.val = val;
7 }
8 }
9 class NodeB {

10 public NodeA next;
11 public int val;
12

13 public NodeB(int val) {
14 this.val = val;
15 }
16 }

17 class Main {
18 public static void main() {
19 NodeA a = new NodeA(<SECRET>);
20 NodeB b = new NodeB(<PUBLIC>);
21 b.next = a;
22 a.next = b;
23

24 // ok
25 println(b.val);
26 // illegal
27 println(a.val);
28 println(b.next.val);
29 // ok
30 println(a.next.val);
31 }
32 }

Figure 2.4: A program with two security leaks due to secret information stored
in object fields.

refers to a node of type NodeB and vice versa. The main method creates
an instance of NodeA to store secret information and an instance of NodeB
to store public information. At the end of l. 22 the next members of both
nodes point respectively to the other node. So the secret value in a.val
can also be accessed through variable b. Even as node b never holds
secret information itself.

A simple IFC analysis would consider that all four println statement
may leak secret information, as they print values from variables a and
b that both can potentially reach the secret value stored in a.val. Our
analysis distinguishes the different fields a variable can access and is
able to show that only the second and the third println statement may
leak secret information. We are going to present this feature called
field-sensitivity in more detail in §2.2.3 and we discuss our approach that
leads to a field-sensitive analysis in §2.6.

2.1.6 Aliasing

Aliasing describes the situation that two different variables or fields may
refer to the same object. A foul effect of aliasing is that any modifications
to a variable does also change all aliased variables. So statements can
have effects on variables they do not directly refer to. These effects are a
common source for programming failures as they are easily overlooked
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1 class A {
2 public B b;
3

4 public A(B b) {
5 this.b = b;
6 }
7 }
8

9 class B {
10 public int val;
11

12 public B(int val) {
13 this.val = val;
14 }
15 }

16 class Main {
17 public static void main() {
18 A a1 = new A(new B(<PUBLIC>));
19 A a2 = new A(new B(<PUBLIC>));
20 println(a1.b.val); // ok
21 println(a2.b.val); // ok
22

23 a2.b.val = <SECRET>;
24 println(a1.b.val); // ok
25 println(a2.b.val); // illegal
26

27 a2.b = a1.b;
28 println(a1.b.val); // ok
29 println(a2.b.val); // ok
30

31 a2.b.val = <SECRET>;
32 println(a1.b.val); // illegal
33 println(a2.b.val); // illegal
34 }
35 }

Figure 2.5: A program with a security leak due to aliasing.

and often unwanted. The following example shows how aliasing can
influence the semantics of seemingly and lexically similar statements.

The main method in Figure 2.5 initially creates two instances of class
A in the variables a1 and a2. At the first two println statements in ll. 20f
both variables are not aliasing and only contain public information. So
these statements do not leak secret information. In the third and fourth
println statements in l. 24 a member reachable from a2 contains secret
information, so the fourth println leaks information. After l. 27 a1 and
a2 are aliasing, the member b of both variables now refers to the instance
created for a1. Thus the following two println statements do not leak
information. At last in l. 31 a member of a2 is set to a secret value.
But now also the value of the member of a1 changes and the following
last two println statements both leak secret information. So even as
the statements in l. 23-l. 25 are syntactically equal to the statements in
l. 31-l. 33 their effect differs and additional leaks occur due to aliasing.

Aliasing is one of the hardest problems to deal with in a static
analysis, as it is in general undecidable [102]. Points-to and alias analysis
try to tackle this problem. They preserve conservative results through
overapproximation. But too coarse-grained approximation can render
the result practically useless, while more fine-grained approaches suffer
from huge impact on runtime and memory consumption. Much research
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1 class A {
2 public boolean foo() {
3 return false;
4 }
5 }
6

7 class B extends A {
8 public boolean foo() {
9 return true;

10 }
11 }

12 class Main {
13 public static void main() {
14 A a = new A();
15 if (<INPUT> == <SECRET>) {
16 a = new B();
17 }
18 if (a.foo()) {
19 // illegal
20 println("input == secret");
21 } else {
22 // illegal
23 println("input != secret");
24 }
25 }
26 }

Figure 2.6: A program with a security leak due to dynamic dispatch.

has been done in this area. We provide an overview of the most important
results in §2.5.2 and show how these results integrate into our IFC analysis
in §2.6.

2.1.7 Dynamic dispatch

Dynamic dispatch is a key feature in every object-oriented language.
It allows objects to act depending on their dynamic type rather than
their static type, by resolving method calls at runtime. Together with
inheritance this feature enables classes to reuse properties and code from
a so-called superclass. Often only a small portion of code needs to be
exchanged while the rest of the functionality can be inherited and does
not need to be rewritten. For example a sorting algorithm that sorts
elements in alphabetical order only differs from an algorithm that sorts
numerically in the way elements are compared. So both sorters can
inherit the main functionality from a sorting algorithm superclass and
only need to replace the compare method.

In the context of information flow, dynamic dispatch may be exploited
to reveal information about the program state. The example in Figure 2.6
shows how an illegal flow of secret information may occur due to
dynamic dispatch.

The program contains two classes A and B, where B is a subclass
of A that overrides its method foo. The main method holds a variable
a of static type A that has —depending on the user input— either the
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dynamic type A or B. So when method foo is called in l. 18 the dynamic
type of a decides which implementation is executed and thus what the
return value of the call is. If the return value is true, we can infer that the
implementation of class B has been called. Hence the dynamic type is B
and therefore the user input was equal to the secret value.

We have shown how dynamic dispatch can lead to subtle illegal
information flow. While it greatly enhances the flexibility and usefulness
of a language, it comes with a steep price for static analyses. The actual
code executed by a dynamically dispatched call depends on the state of
the program at runtime. A static analysis in general can not decide what is
going to be executed and again needs to use conservative approximations
of the effects of the call, by assuming that every potentially valid method
may have been called. With the help of type and points-to information
it is possible to narrow the set of potentially valid methods down to a
more reasonable size, but it remains a big obstacle. Yet it does not suffice
to detect which methods may be called. As the previous example has
shown it is also important to keep track of the reasons why a certain
method is called. Our analysis can detect illegal flow through dynamic
dispatch. In §2.5.3 we explain how our model for method calls respects
these implicit dependencies through dynamic calls.

2.1.8 Exceptions

Java and many other modern object-oriented programming languages
support the use of exceptions. They streamline and simplify error han-
dling by separating error handling code from the core program code.
Whenever an error occurs during a program run, normal execution flow
is interrupted and an exception is raised. Exceptions regularly occur if a
null pointer is dereferenced or an array index is out of bounds. The ex-
ception may be caught by a so called exception handler or lead to program
termination. The programmer can declare an exception handler through
a try-catch block. He can specify which types of exceptions should be
caught and then declare appropriate countermeasures for the current
error in the catch block. Every exception raised from a statement inside
a try block can be caught —including one from a transitively called
method. This mechanism helps to separate the error handling from the
rest of the code and put it in a single place, but it may also be misused as
an inter-procedural goto instruction and can lead to unexpected behavior.
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1 class A {
2 public static A create(int i) {
3 if (i != <SECRET>)
4 return new A();
5

6 return null;
7 }
8

9 public void foo() {}
10 }

11 class Main {
12 public static void main() {
13 A a = A.create(<INPUT>);
14

15 try {
16 a.foo();
17 // illegal
18 println("input != secret");
19 } catch (NullPointerException exc) {
20 // illegal
21 println("input == secret");
22 }
23 }
24 }

Figure 2.7: A program with a security leak due to exceptions.

Exceptions pose a big problem in the scope of information flow,
because they may occur at almost any statement and potentially influence
any statement that is executed afterwards. Every exception throwing
statement can be seen as a conditional goto instruction, that is executed
whenever the conditions for an exception are met. Thus it decides
if execution flows to the next statement or to an exception handler
somewhere else in the program. So the execution of a statement depends
on the exception conditions of all its predecessors. These conditions
are easily overlooked by the programmer as they are only implicit and
not part of the source code. The example in Figure 2.7 shows how an
unexpected leak of secret information may occur due to an exception.

The program contains a method create that returns either a new
instance of class A or null depending on the secret value and input
parameter i. The main method calls create with the user input as
parameter. Whether variable a contains a null reference depends on
the user input and the secret value. This leads to an information leak
in l. 16. Even as the value of a is never read or printed, it decides if a
NullPointerException is thrown upon the call to foo and either l. 18 or
l. 21 executes.

Our analysis fully supports the detection of these kind of leaks. We
discuss exception analysis in §2.4.1 and show that a naive approach leads
to many false alarms. Therefore we introduce a way to reduce these false
alarms by detecting impossible exceptions: For example we analyze if a
referenced value may never be null.

25



CHAPTER 2. INFORMATION FLOW CONTROL WITH SYSTEM
DEPENDENCE GRAPHS FOR OBJECT-ORIENTED LANGUAGES

1 class A extends Thread {
2

3 public int f1;
4 public int f2;
5

6 public A(int f1) {
7 this.f1 = f1;
8 }
9

10 public void run() {
11 print(f1); // possibilistic leak
12 f2 = 23;
13 }
14 }

15 class Main {
16 public static void main() {
17 A a = new A(<PUBLIC>);
18 a.start();
19

20 a.f1 = <SECRET>;
21 for (int i = 0; i < <SECRET>; i++) {
22 // skip
23 }
24 a.f2 = 42;
25

26 print(a.f2); // probabiblistic leak
27 }
28 }

Figure 2.8: A multithreaded program with a possibilistic and a probabilistic
security leak.

2.1.9 Threads

In the age of multi-core processors, concurrent programs become more
and more common. So does the support for concurrent programming in
modern languages. There are multiple approaches to support concurrent
programming, like threads communicating through shared memory
or distributed systems with message passing. We are going to focus
on the concurrency model of most commonly used languages like
Java or C#: Threads with shared memory. As most of the advanced
analysis algorithms for concurrent programs —especially in the context
of information flow— are out of scope for this work, we would like to
point to the excellent dissertation of Dennis Giffhorn [29] for further
details.

We use this subsection to provide a brief overview of the additional
challenges in information flow security for concurrent programs. Con-
currency further complicates the detection of information leaks. In
addition to normal sequential leaks the effects of synchronization, timing
and interference may also lead to illegal flow. So called possibilistic and
probabilistic channels can occur. We explain the difference between these
two channels in a short example.

The program in Figure 2.8 contains two threads: The main thread
starting a the main method and one instance of the thread from class A
started form the main thread at l. 18. Both threads communicate through
the publicly visible fields f1 and f2 of class A. This program contains
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two security leaks — a possibilistic leak in l. 11 and a probabilistic leak
in l. 26.

We inspect the possibilistic leak first. A possiblistic leak is a statement
that may or may not leak secret information, depending on the interleav-
ing between threads. In this case l. 11 prints the value of f1. This field
is initialized with public information in l. 17 and later in l. 20 replaced
with secret information. Thus the run method of thread A prints secret
information if the main thread has already executed l. 20 before thread
A reaches l. 11.

The probabilistic leak is even more delicate, as it is easily overlooked.
These leaks occur when the probability of a certain output depends on a
secret value. An attacker can run the program multiple times, observe
the distribution of outputs and use these data to infer information about
the secret value. l. 11 contains such a leak. At first glance it prints the
value of f2, which never contains secret information. However whether
the value of f2 is 23 or 42 depends on the order in which the statements
in l. 12 and l. 24 have been executed. In this example the probability of
the execution order is influenced by the secret value, through the loop
in l. 21. The secret value determines the number of loop iterations. The
larger the secret value is, the more statements are executed before l. 24
and thus the more likely it is, that an interleaving occurs where l. 24 is
executed after l. 12. This situation can be exploited by an attacker to
gain some information about the secret value. Even if he cannot infer
the actual value, he may compute the probability that the secret value is
in a certain range.

The problem of a probabilistic leak may seem more like a theoretical
problem than a security issue that is exploited in a real world scenario. But
this is far from true. These kinds of leaks have already been successfully
used to break encryption algorithms [67] previously considered to be
secure. Also, depending on the scheduler, they may even leak actual
values: If the scheduler uses a deterministic round-robin approach,
probabilistic leaks act similar to indirect information flow in conditional
branching [29].

Joana can deal with concurrency and is able to detect possibilistic as
well as probabilistic leaks. Giffhorn [29] has shown that it can guarantee
a security property called low-security observational determinism (LSOD)
[134] — a well known security property for concurrent programs. His
work also contains a substantial evaluation of the underlying algorithms
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1 class A {
2 public static void doPrint(int i) {
3 println(i);
4 }
5 }

6 class Main {
7 public static void main() {
8 A.doPrint(<PUBLIC>); // ok
9 A.doPrint(<SECRET>); // illegal

10 }
11 }

Figure 2.9: A program with a spurious security leak for context-insensitive
analyses.

on real world applications and provides an extension called relaxed-
LSOD (RLSOD) that is less strict yet can still guarantee security of a
program. We were able to improve the precision of the analysis by
Giffhorn with the help of dynamic pushdown networks (DPN) [38] and also
to further improve the RLSOD criterion [18].

2.2 Precision in static analyses

In the previous section we introduced the challenges of analyzing a real
world object-oriented language like Java in the context of information
flow control. In this section we focus on the different methods used
to tackle these problems in a static analysis. The main problem of a
static information flow analysis is to maintain sound results —detect all
possible security leaks— while minimizing the amount of false alarms,
i.e. by improving analysis precision.

In this section we discuss important properties for static analyses
that help to improve precision and are implemented in our tool.

2.2.1 Context-sensitive

A context-sensitive analysis is able to distinguish between different con-
texts in which certain parts of the program are executed. In most cases
context-sensitivity is used as a synonym for distinguishing the effects of
the execution of a method by the site (call site) it has been called from.
The following example shows that methods may have different effects
depending on the context they are called from.

In the example in Figure 2.9 the method doPrint is called twice. The
first call from the main method prints public information and the second
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1 class A {
2 private int i;
3

4 public A(int i) {
5 this.i = i;
6 }
7

8 public void doPrint() {
9 println(this.i);

10 }
11 }

12 class Main {
13 public static void main() {
14 A a1 = new A(<PUBLIC>);
15 A a2 = new A(<SECRET>);
16

17 // ok
18 a1.doPrint();
19 // illegal
20 a2.doPrint();
21 }
22 }

Figure 2.10: A program with a spurious security leak for object-insensitive
analyses.

call prints secret information. A context-insensitive analysis would
not distinguish between these two different calling contexts and thus
assume that doPrint always leaks secret information. A context-sensitive
analysis however is able to distinguish the two call sites and detect that
only the second call can leak secret information.

These kind of situations —where methods are reused to operate on
different data and in different contexts— naturally appear very often.
Hence it is crucial for an analysis to support context-sensitivity, as
otherwise many false alarms would occur.

2.2.2 Object-sensitive

Object-sensitivity in general describes to ability to distinguish actions on
different object instances of the same type. It also acts as a special form of
context-sensitivity for dynamic method calls in an object-oriented setting:
An object-sensitive analysis distinguishes dynamic calls by the receiver
object the method is called upon. Often times member methods access
the attributes of their respective object instance and do not interfere with
other instances of the same type. Hence this distinction proves to be
quite effective. E.g. it works well with standard implementations of
getter and setter methods as these only modify or retrieve the attribute
values of the instance they are called upon.

The example in Figure 2.10 shows how object-sensitivity can help
to reduce false alarms. The main method creates two instances of the
same class A in l. 14 and l. 15. The first instance is initialized with public
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1 class A {
2 public int i1;
3 public int i2;
4

5 public A(int i1, int i2) {
6 this.i1 = i1;
7 this.i2 = i2;
8 }
9 }

10 class Main {
11 public static void main() {
12 A a = new A(<PUBLIC>, <SECRET>);
13 // ok
14 println(a.i1);
15 // illegal
16 println(a.i2);
17 }
18 }

Figure 2.11: A program with a spurious security leak for field-insensitive
analyses.

information, while the second stores a secret value. Class A contains
a method that prints its attribute i to the console. So it depends on
the value stored in i whether doPrint prints a secret value. The main
method calls doPrint for both instances in l. 18 and l. 20, but only the call
on instance a2 in l. 20 leaks secret information, because only this instance
of A contains secret information. An object-sensitive analysis is able
to detect this, while an object-insensitive analysis does not distinguish
between the two calls and assumes a possible security violation in both
cases.

We observed that object-sensitivity is a very important feature when
analyzing object-oriented code, but it comes at the cost of scalability.
Large programs use too many different objects to distinguish all instances
in reasonable time. Hence special adjustments have to be made that
limit object-sensitivity to a subset of all instances. We discuss our
implementation of object-sensitivity in §2.5.2 and show how it enables
us to prove noninterference for an example program in §4.2.

2.2.3 Field-sensitive

An analysis is called field-sensitive if it can distinguish between different
fields of an object instance. A field-insensitive analysis treats every
access to an object field as an access to the same field. So whenever secret
information is stored in a single field, all other fields of the same object
are also considered to hold secret information.

The example in Figure 2.11 illustrates this problem. Class A has
two fields i1 and i2, where i1 is initialized with public and i2 secret
information. Therefore only the print statement in l. 16 leaks secret
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1 class A {
2

3 public int i;
4

5 public A(int i) {
6 this. i = i;
7 }
8 }

9 class Main {
10 public static void main() {
11 A a = new A(<PUBLIC>);
12 println(a.i); // ok
13 a.i = <SECRET>;
14 println(a.i); // illegal
15 }
16 }

Figure 2.12: A program with a spurious security leak for flow-insensitive
analyses.

information. A field-insensitive analysis however would also report a
security violation for the first print statement in l. 14.

Our tool supports field-sensitivity in different variants. It allows
partial field-sensitivity where fields are grouped together in equivalence
classes. This helps to reduce the overhead of tracking all possible fields
and to achieve precise results at the same time. The parameterizable
field-sensitivity is one of the main contributions of this work and is
discussed in detail in §2.6.

2.2.4 Flow-sensitive

A flow-sensitive analysis respects the order in which statements are
executed. It is able to detect that a statement may never influence
another statement simply because it can only be executed afterwards.
In general all analysis that operate on so-called flow-graphs (see §2.3.3)
are flow-sensitive per default, but other approaches e.g. ones based on
type-systems have to introduce an extra layer of complexity to achieve
it [57].

The example in Figure 2.12 shows how flow-sensitivity helps to
identify impossible leaks. It contains two print statements of the same
object field a.i in l. 12 and l. 14. Only the second print statement can leak
secret information, as a.i initially contains public information and is
only set to a secret value after the first print statement. A flow-insensitive
analysis would consider both print statements as leaks, because a.imay
contain a secret value.
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1 class T extends Thread {
2

3 public int x = <PUBLIC>;
4 public int y = <PUBLIC>;
5

6 public void run() {
7 x = y;
8 }
9 }

10 class Main {
11 public static void main() {
12 T t = new T();
13 t.start();
14 int p = t.x;
15 t.y = <SECRET>;
16 println(p); // ok
17 }
18 }

Figure 2.13: A multithreaded program that can be proven noninterferent by a
time-sensitive analysis.

2.2.5 Precision options for multithreaded programs

In addition to the previously presented precision properties for the
analysis of sequential programs, multithreaded programs introduce a
new dimension for precision: The detection of impossible execution
orders and interferences between statements in different threads. This
section contains various properties that are also implemented in Joana.
Note that we assume sequential consistency, which means that statements
are executed in the order they are defined in the source code. Our
analysis does not cover the additional effects allowed by the Java memory
model (JMM). However as long as programs are synchronized correctly,
sequential consistency can be assumed [84].

Time-sensitive

Time-sensitivity describes the ability of an analysis to detect impossible
execution orders of statements in different threads. More specifically
a time-sensitive analysis discards execution orders that include a so-
called time-travel and thus break sequential consistency. The example in
Figure 2.13 illustrates this problem.

The example contains two threads, the main thread and an instance
of class T that is started from the main thread in l. 13. Both threads
may communicate through the public fields x and y of class T. Initially
both attributes contain public information. But they both may end up
containing secret information, if l. 15 is executed before l. 7. As local
variable p reads the value of x in l. 14, a time-insensitive analysis may
assume that p may also contain secret information. However this is not
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1 class T extends Thread {
2 public static Object l = new Object();
3 public int y;
4

5 public void run() {
6 synchronized (T.l) {
7 y = <SECRET>
8 }
9 }

10 }

11 class Main {
12 public static void main() {
13 T t = new T();
14 synchronized (T.l) {
15 t.start();
16 println(t.y); // ok
17 }
18 }
19 }

Figure 2.14: A program that uses synchronization to prevent a security leak.

possible, because x can only contain secret information if l. 15 and l. 7
have already been executed before l. 14 copies the value of x to p. Thus
l. 15 would have been executed before l. 14.

We are able to detect these impossible situations with a technique
called time-sensitive slicing and chopping. This technique has first been
proposed by Krinke [70] and has been further improved and implemented
by Giffhorn [29].

Lock-sensitive

Threads can use locks to synchronize the concurrent execution of state-
ments. Whenever a thread t holds a lock l no other thread that tries to
acquire l is allowed to proceed until t releases l. This mechanism prevents
concurrent execution of any statements that are synchronized by the
same lock object. Synchronization is often used to prevent unwanted
interferences between threads, that otherwise would lead to program
bugs. An analysis that can detect threads that are synchronized through
the same lock is called lock-sensitive.

Figure 2.14 shows an example of a program that uses synchronization
through a shared lock T.l to prevent an information leak. It contains
two threads, the main thread and an instance of class T. This thread is
started in l. 15 after the main thread acquired the lock T.l. This is crucial
for the statement that modifies the value of y in l. 7. This statement is
also synchronized with lock T.l, so it can only be executed after the
main thread releases the lock in l. 17. At this time the output of the
print statement in l. 16 already occurred. So the attribute y can not
contain secret information at the time the print statement executes. A
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lock-sensitive analysis is able to detect this.
We incorporate a technique called dynamic pushdown networks (DPN),

that models concurrent programs in a very precise way, into our analysis
tool. They enable us to identify synchronization via well-nested locks [38].

2.3 Intraprocedural analysis

In the previous sections, we presented the challenges of analyzing an
object-oriented language like Java and introduced various precision
properties for static analyses. Now we are going to describe how we
achieve properties like flow- or field-sensitivity. In this section we focus
on the intraprocedural part of our analysis, then we extend the presented
algorithms to the interprocedural case in the upcoming section §2.5.

2.3.1 Overview

Our information flow analysis for Java programs is based on a graph
structure called procedure dependence graph (PDG). A PDG represents
the possible information flow between statements of a single method
in form of a graph. It is a conservative static approximation of any
information flow that may occur during runtime. Thus a path between
two statements in the PDG means that there may be information flow,
the absence of a path however guarantees that no information flow is
possible. So the more precise the underlying PDG computation algorithm
performs, the less edges occur in the resulting PDG.

For the intraprocedural computation of a PDG we start at the level
of Java bytecode and subsequently take 5 main steps: Conversion to
SSA-bytecode (§2.3.2), control flow graph computation (§2.3.3), control
dependence computation (§2.3.4), data dependence computation (§2.3.5)
and finally combining control and data dependence into a procedure
dependence graph (§2.3.6). Figure 2.15 shows an overview of the
involved steps. Each node represents a single step and incoming edges
show which results of previous steps are needed to compute the current
step. Our implementation is based on the WALA framework for static
analysis. We use WALA to compute the intermediate representation in
form of SSA-bytecode and to extract information about the control flow.
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Figure 2.15: Overview of the intraprocedural computation steps of the Joana
IFC analyis.

Therefore we start by explaining some technical details of Java bytecode
and the transformation to SSA-bytecode.

2.3.2 Intermediate representation

An intermediate representation (IR) has many benefits for program
analysis. Typically it contains less complex instructions than the source
language and is therefore easier to tackle. Also, once an analysis for
the IR has been implemented, it can be extended to a different source
language simply through creating a new front-end that translates the
source language to IR code.

We use the SSA-bytecode IR of the WALA framework. WALA
already contains front-ends for Java, Javascript and Java bytecode. In
close collaboration with Julian Dolby —head of the WALA framework—
we added support for Dalivk bytecode of Android based platforms [92].
Hence our analysis can be extended to support additional object-oriented
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1 static int calc(int a, int b) {
2 int result;
3 if (a > b) {
4

5

6 result = a + b;
7

8 } else {
9

10

11 result = a * b;
12 }
13 return result;
14 }

1 iload_0 // load param a
2 iload_1 // load param b
3 if_icmple 9 // if (b<=a) goto 9
4 iload_0 // load param a
5 iload_1 // load param b
6 iadd // a + b
7 istore_2 // store result
8 goto 13
9 iload_0 // load param a

10 iload_1 // load param b
11 imul // a * b
12 istore_2 // store result
13 iload_2 // load result
14 ireturn // return result

Figure 2.16: A Java program fragment and its corresponding bytecode.

languages with relatively minor hassle. E.g. a front-end for C# as well
as one for Apple’s new programming language Swift will be added to
WALA soon. Nevertheless we are going to focus on Java bytecode for
the remainder of this work, as its representation is quite similar to the IR
and the corresponding front-end is the most reliable.

Bytecode

Every Java program is translated into bytecode before it can be executed
in the Java virtual machine. Java bytecode is a stack-based and static
typed language with an assembler-like instruction set. Every instruction
pulls its operands off the stack and pushes the result back onto it. The
omission of references to actual operands helps to keep the size of a
single instruction very small (1 byte in general), but it is not easy to read
and also complicates further analysis, as data dependencies between
instructions are not clearly visible.

Figure 2.16 shows part of a Java program and its corresponding
bytecode. Most noticeable is the huge amount of iload and istore
instructions that load values onto or off the stack. Also most instructions
are prefixed with an "i" because they refer to integer values. Similar
instructions for other types like byte, char, etc. exist and use a different
prefix specific to the type. This leads to a large amount of instructions
and further complicates the analysis of bytecode. Therefore we translate
bytecode into an intermediate representation that is easier to handle but
still very close to actual bytecode.
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1 A.calc(int v1, int v2)
2 if (v1 <= v2) goto 5
3 v5 = v1 + v2
4 goto 6
5 v4 = v1 * v2
6 v6 = phi v5, v4
7 return v6

Figure 2.17: The SSA intermediate representation of the program fragment in
Figure 2.16.

SSA-Form

The static single assignment form [110,3,24] (SSA-Form) has been designed
as an intermediate representation for program analysis and compiler
applications. Its design allows an easy and straight forward implementa-
tion of many standard analyses, such as constant propagation or reaching
definitions. In SSA-Form the value of any variable can only be assigned
once. Thus variables are never overwritten and every use of a variable
refers to the same single statement where its value is defined.

Figure 2.17 shows the SSA-Form of the program from Figure 2.16. All
variables have been renamed to v<i>. Parameter a is v1, parameter b is
v2 and the result variable corresponds to multiple SSA-variables v5, v6
and v7. The value of some variables, like result, are defined more than
once in the program. Therefore they are split into multiple variables,
one for each definition: v5 in l. 3 and v4 in l. 5. Additional so-called
phi-variables combine the values of multiple variables to a single new
variable, like variable v6 that combines the values of v4 and v5.

We use the WALA framework to compute SSA-Form from the stack-
based Java bytecode. The resulting intermediate representation is close to
actual bytecode: Besides the additional definitions of phi-variables, every
other instruction in the IR corresponds to a Java bytecode instruction.
Only stack manipulating instructions that push, pop or duplicate values
on the stack are omitted as their effects are explicitly captured through
variables. The set of IR instructions is also significantly smaller than
its bytecode counterparts, because all typed operations, like special add
operations for integer, byte, etc. are subsumed with a single operation
that can be applied to any valid type. These properties simplify further
analysis algorithms as the instruction set is smaller, data dependencies are
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directly visible through variable access and the number of instructions per
method is reduced, due to the omitted stack manipulation instructions.

2.3.3 Control flow graph

The control flow graph (CFG) is a graph that captures the potential
execution order of all instructions in a method. It contains nodes for
each instruction and edges between instructions iff one instruction may
be executed directly after the other. The formal definition of a CFG also
contains a special node nentry for method entry and single node nexit for
method exit. We use a definition similar to Giffhorn [29].

Definition 2.1 (Control Flow Graph (CFG)). A control flow graph G =
(N, E, nentry, nexit) of a method m is a directed graph, where

• N is the set of nodes where each instruction in m is represented by a node
n ∈ N.

• E is the set of edges representing the control flow between the nodes. We
write n1 c f n2 ∈ E iff control flow from n1 to n2 is possible.

• nentry is the start node. It has no incoming edges and reaches all nodes in
N.

• nexit is the exit node. It has no outgoing edges and is reachable from every
node in N.

We use additional edge labels for conditional branches and exception
related control flow: true, f alse and exc. true marks all edges from a
conditional branch (if-statement) to the instruction that executes iff the
condition holds, f alse marks the edges to the instruction that executes
if the condition does not hold. exc marks all edges that correspond to
control flow that occurs iff the instruction of the source node throws an
exception. All other edges are unlabeled.

Figure 2.18 shows two CFGs for the previous example program. The
upper graph shows the CFG for the source code version and the lower
graph is the CFG for the program in its intermediate representation.
The general structure of the graph remains the same, but the IR version
contains additional nodes for phi and goto statements.
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ENTRY

EXIT

if (a > b) result = a + b

result = a * b return result

false

true
1 3 6

11 13 14

ENTRY

EXIT

if (v1 <= v2) 
goto 5 v5 = v1 + v2

v4 = v1 * v2 return v6

goto 6

v6 = phi v5, v4

true

false
1 2 3 4

5 6 7 8

Figure 2.18: Control flow graphs from the example in Figure 2.16 and Figure 2.17.

2.3.4 Control dependence graph

The control dependence graph (CDG) is directly computed from the CFG.
It captures the so-called indirect or control dependencies between state-
ments that occur when the outcome of one statement decides if another
statement is executed, e.g. the evaluation of the condition of an if-
statement decides which branch is taken. Ferrante et.at. [27] define
control dependence through the post-dominance relation.

Definition 2.2 (Post-Dominance). Given n1, n2, nexit ∈ CFG. Node n1
post-dominates n2 iff all paths from n2 to nexit contain n1.

Definition 2.3 (Control Dependence). Given n1, n2 ∈ CFG. n2 is control
dependent on n1 (n1 cd n2) if

• ∃ path P = n1 c f · · · c f n2 ∈ CFG with n ∈ P and n2 post-dominates
n.

• n2 does not post-dominate n1.

Figure 2.19 shows the control dependence graph for the example
program in IR form. For example node 6 is control dependent on the entry
node, because for all paths from entry to node 6, node 6 post-dominates
each node in these paths except the entry. Node 3 is control dependent
on the if-clause in node 2, because it does not post-dominate node 2.
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ENTRY
1

if (v1 <= v2) 
goto 5

2
v6 = phi v5, v4

6
return v6

7
EXIT

8

v4 = v1 * v2
5

v5 = v1 + v2
3

goto 6
4

Figure 2.19: Control dependence graph of the example in Figure 2.17.

Note that the artificial control flow edge from entry to exit is essential
for the control dependence definition, as it prevents post-domination of
the entry. An efficient computation of control dependencies applies the
Lengauer-Tarjan algorithm [78] to compute the post-dominator tree.

2.3.5 Data dependencies

Data dependencies are dependencies between two statements s1 dd
s2, where one statement s1 produces a value the other statement s2
uses. Typically these dependencies occur between definition and usage
of a local variable and between modifications and references of heap
values. In Java heap dependencies are introduced through references on
object- and array-fields. The data dependence graph (DDG) captures all
data dependencies that occur between statements of a single method. It
contains nodes for each statement and edges between them if one is data
dependent on the other.

Definition 2.4 (Data Dependence). Two statements s1, s2 are data dependent,
iff they are direct data dependent or heap data dependent.

direct data dependent (s1 dd s2): s1 defines a local variable v that s2 uses
and ∃ path P ∈ CFG where P = s1 c f . . . c f s2 and @s′ ∈ P : s′ ,
s1 ∧ s′ redefines v.

heap data dependent (s1 dh s2): s1 modifies a heap location l that s2 may
refer to and ∃ path P ∈ CFG where P = s1 c f . . . c f s2 and @s′ ∈ P :
s′ , s1 ∧ s′ redefines l.
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1 class A {
2

3 int f;
4

5 int datadeps(int sec) {
6 int tmp = sec;
7 A a = new A();
8 a.f = this.f;
9 this.f = tmp;

10

11 return a.f;
12 }
13

14 }

(a) program fragment

int tmp = sec
6

A a = new A()
7

this.f = tmp
9

a.f = this.f
8

return a.f
11

EXIT
12

dddh

dh

dd

dd

HEAP sec ENTRY
5

HEAPret

input output

dh

dd

method
interface

(b) data dependence graph

Figure 2.20: A program fragment (2.20a) and its DDG (2.20b).

We distinguish between direct data dependencies and heap data
dependencies, because they differ in the way they can be approximated
and have different properties concerning the modular analysis we present
in Chapter 3. Basically direct data dependencies are easier to compute
and are independent of the context a method is executed in, while
heap data dependencies depend on the state of the heap before method
execution.

In addition to statement nodes data dependence graphs also contain
special nodes —called parameter nodes— that represent values passed
into or returned by the corresponding method.

Definition 2.5 (Parameter Nodes). Parameter nodes are artificial nodes
in the data dependence graph of a method m that represent values in method
parameters or heap locations. The values of parameters passed into m or heap
values read by m are called input parameter nodes, while the return value
and modified heap values are called output parameter nodes.

Definition 2.6 (Method Interface). The method interface of method m
is the combination of all input and output parameter nodes summarizing all
values potentially read or modified through execution of m.
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Definition 2.7 (Data Dependence Graph). A data dependence graph (DDG)
of a method m is a graph G = (N, E). The nodes N correspond to program
statements S and artificial parameter nodes P of the method interface of m.
Edges E between nodes represent data dependencies, they are either local or heap
data dependencies.

Figure 2.20 shows an example program (2.20a) that contains direct as
well as heap data dependencies and its corresponding data dependence
graph (2.20b). The method interface of datadeps contains two input
parameter nodes and two output parameter nodes. The input parameter
nodes consist of the method parameter sec and a generic node HEAP that
represents values read from the heap — in this case the object field f of
the this-object in statement 8. The output parameter nodes consist of
a node ret for the return value of the method and another HEAP node
that represents heap values modified by the method. The dependencies
in the DDG show that the value of variable sec does not flow to the
return value of datadeps. However its value is stored in an object field
this.f on the heap. So subsequent access to this.f after the execution
of datadeps can reveal the value of sec. This modification of the global
program (heap) state is called a method side-effect and discussed in more
detail in §2.6.

We use DDGs to detect direct information flow of secret values. Joana
supports multiple variants of sophisticated computation algorithms for
data dependencies that differ in precision and scalability. We are going
to present them in detail in the upcoming sections §2.5.2 and §2.6.

2.3.6 Procedure dependence graph

A procedure dependence graph (PDG) is the combination of a control
dependence and a data dependence graph. It captures all direct and
indirect information flow inside a single method. PDGs have been
researched for years [98] and are applied to many different areas, like
debugging [61], testing [13], code duplicate detection [68] and also for
information flow control [47]. We use a highly optimized version of
PDGs and their interprocedural counterpart the system dependence graph
(SDG), tailored to object-oriented languages and IFC. The upcoming
sections §2.6 and §2.5.3 contain more of these specific optimizations. For
now we focus on the principle structure of a standard PDG.
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1 class A {
2
3 int[] secret;
4
5 int arraysum(int from, int to) {
6 if (from > to)
7 return 0;
8
9 int sum = 0;

10 for(int i = from; i <= to; i++) {
11 int tmp = this.secret[i];
12 sum += tmp;
13 }
14
15 return sum;
16 }
17
18 }

(a) Program fragment

if (from > to)
6

return 0
7

int sum = 0
9

for (int i = from; i <= to; i++)
10

int tmp = this.secret[i]
11

sum += tmp
12

dd

dh

dd dd

HEAP from HEAPret

input output

dd

method
interface to ENTRY

5

return sum
15

dd
dd

dd

dd

true

dd

dd

dd
dh

direct data dependence
heap data dependence
control dependence

dd

(b) Procedure Dependence Graph

Figure 2.21: A program fragment (2.21a) and its PDG (2.21b). Bold edges and
nodes denote the flow of information from the attribute secret to the return
value. The exit node is missing for brevity.

Definition 2.8 (Procedure Dependence Graph). A procedure dependence
graph (PDG) of a method m is a graph G = (N, E). The nodes N correspond to
program statements S and artificial parameter nodes P of the method interface
of m (see Definition 2.5 and Definition 2.6). Edges E between nodes represent
either data or control dependencies.

Figure 2.21 shows an example program (2.21a) that computes a sum
of array entries for a given range and its corresponding PDG (2.21b). The
program contains a class A with an array attribute secret and a single
method arraysum. The PDG shows all direct and indirect information
flow inside arraysum. A path in the PDG from the input parameter HEAP
to the return value ret (HEAP→ 11→ 12→ 15→ ret) captures flow of
the values stored in the array secret to the return value of the method.

Our IFC analysis detects these paths and thus can not only show if
there is an information flow possible, but also which statements in the
program are involved. This additional information enables the user to
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better understand the nature of the flow and helps to locate the potential
problem in the code or to decide if the flow is in fact intended.

The presented technique helps to detect information flow inside a
single method. Depending on the size of the method and its structure
it can be a difficult task to do manually, hence an automated analysis
that guarantees to detect all possible flow is useful even for a single
method. In practice information flow is often not confined to a single
method. It occurs between multiple methods that pass information
back and forth through parameters and heap locations. In the following
Section §2.5 we discuss how to extend this intraprocedural technique to
detect information flow in the whole program.

2.4 Enhancing the intraprocedural analysis

2.4.1 Control-flow optimizations for exceptions

In a language like Java almost any instruction may potentially throw an
exception, e.g. any field access operation or dynamic method call. Thus
many instructions create a branch in the control flow graph leading to
spurious control dependencies. A security analysis cannot ignore these
effects, because it needs to compute sound results. But on the other hand
a naive approach introduces many control dependencies that are not
possible in practice. We measured the number of control dependencies
that are introduced by exceptional control flow on a large set of example
programs10. 87% of all control dependencies are induced by conservative
approximated exceptions. Of all instructions that potentially may throw
an exception11, 83% of them are NullPointerExceptions, followed by 8%
ArrayIndexOutOfBoundsExceptions, 7% OutOfMemoryErrors and 5% Excep-
tionInInitializerErrors. The remaining exception types are≤ 1%. Therefore
we propose additional analysis to detect and remove impossible paths
in the CFG with a special focus on the detection of null-pointers. In
this section we describe the intraprocedural null-pointer analysis that
detects impossible exceptions and is able to reduce the number of control

10We used the JavaGrande benchmark suite, HSQLDB and jEdit with a total of 490000
instructions.

11A single instruction may throw more then a single type of exception, so % add up
above 100%.
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1 class A {
2 private int i = 0;
3

4 public int foo(A p1, A p2) {
5 A a = new A();
6 int i1 = p1.i;
7 a.i = i1;
8

9 if (p2 == null) {
10 p2.i++;
11 } else {
12 p2.i = p1.i;
13 }
14

15 i1 = this.i + p2.i;
16 return i1;
17 }
18 }

(a) program fragment

ENTRY

EXIT

A a = new A()

a.i = i1

int i1 = p1.i

if (p2 == null)

false
true

p2.i++p2.i = p1.i

i1= this.i + p2.i

return i1

4

5

6

7

9

12 10

15

16

17

exc

exc

exc

exc

exc

exc

(b) unoptimized CFG

false
true

ENTRY
4

A a = new A()
5

int i1 = p1.i
6

a.i = i1
7

if (p2 == null)
9

p2.i = p1.i
12

p2.i++
10

i1= this.i + p2.i
15

return i1
16

EXIT
17

(c) unoptimized CDG

Figure 2.22: An example where 5 impossible and 1 always occurring NullPoint-
erExceptions can be detected and its matching CFG (2.22b) and CDG (2.22c)
without optimizations.

dependencies induced by exceptions to 53% of all control dependencies.
The code in Figure 2.22 illustrates the problem of potential null-

pointers. Method foo contains many statements that may potentially
throw an exception. The control flow graph (2.22b) shows the result of a
naive control flow approximation. Red edges labeled “exc” represent
potential exception control flow. The corresponding unoptimized control
dependence graph (2.22c) is on the right side of the figure. Almost
any statement is control dependent on its control flow predecessor. For
example statement 9 is control dependent on statement 7, albeit in closer
inspection statement 7 can never throw an exception, as variable a
cannot be null.

We can detect and remove these spurious exceptions with an analysis
that detects potential null-pointers. All exceptions except those in
statement 5, 6 and 10 can never occur. The optimized CFG and CDG in

45



CHAPTER 2. INFORMATION FLOW CONTROL WITH SYSTEM
DEPENDENCE GRAPHS FOR OBJECT-ORIENTED LANGUAGES

ENTRY

EXIT

A a = new A()

a.i = i1

int i1 = p1.i

if (p2 == null)

false
true

p2.i++p2.i = p1.i

i1= this.i + p2.i

return i1
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(a) optimized CFG

false

true

ENTRY
4

A a = new A()
5

int i1 = p1.i
6

a.i = i1
7

if (p2 == null)
9

p2.i = p1.i
12

p2.i++
10

i1= this.i + p2.i
15

return i1
16

EXIT
17

false false

(b) optimized CDG

Figure 2.23: The optimized CFG (2.23a) of the example in Figure 2.22 and its
resulting CDG (2.23b).

Figure 2.23 show the result of our analysis. As statement 10 shows, we
can also detect exceptions that will always occur and thus remove the
normal control flow.

Implementation as data flow analysis We implemented null-pointer
detection as data flow analysis. The unoptimized CFG is used as
flow graph and each edge is annotated with a state and a transfer
function. The state for each edge stores the state of each variable in
the current method as either unknown, null, ¬null or both. As shown
in Figure 2.24 these values form a lattice similar to standard constant
propagation. Initially the state of all variables is set to unknown. We
write v ← s ∈ {unknown, null,¬null, both} to denote that the state sv of
variable v is set to s′v = sv u s. The transfer functions then implement the
following rules.
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field access (v. f = . . . or . . . = v. f ): Every field access operation oacc
has two potential successor instructions: One that is executed if the
operation was successful o′ and the other one that is executed in case
of an exception oexc. Hence the matching CFG contains o c f o′ as
well as o exc oexc.

oacc c f o′ : Variable v is not null, hence we update the state of v
accordingly: v← ¬null

oacc exc oexc : Variable v was null and its state is updated accordingly:
v← null

object instantiation (v = new . . .): If the instantiation operation onew
does not throw an exception, v is ¬null, otherwise v is null. Again
with onew c f o′ and onew exc oexc as the two successors in the CFG,
we get

onew c f o′ : Variable v is not null, hence v← ¬null

onew exc oexc : Variable v is null, hence v← null

conditional branching (i f (v == null) {B1} else {B2}): For all statements
in block B1 variable v is null, for all statements in B2 variable v is
¬null. So with oi f as the operation of the if-clause, o1 as the first
operation in B1 and o2 the first operation in B2 we get

oi f c f o1 : Variable v is null, hence: v← null

oi f c f o2 : Variable v is not null, hence v← ¬null

this-pointer The this-pointer is never null. All field accesses on the
this-object do not throw an exception. All variables corresponding
to a this-pointer are initialized with ¬null instead of unknown.

We use the CFG edge labels to decide which edge corresponds to
normal and which to exceptional control flow. This allows us to set the
appropriate transfer functions. For example in Figure 2.22b the edge 5

c f 6 is normal control flow from an instantiation. The matching transfer
function sets the state of variable a to ¬null. The transfer function of 5

exc 17 sets the state of a accordingly to null.
Table 2.1a shows how transfer functions for all edges of the example

in Figure 2.22 modify the variable state. Figure 2.1b shows the final

47



CHAPTER 2. INFORMATION FLOW CONTROL WITH SYSTEM
DEPENDENCE GRAPHS FOR OBJECT-ORIENTED LANGUAGES

edge transfer function
5 c f 6 a← ¬null
5 exc 17 a← null
6 c f 7 p1← ¬null
6 exc 17 p1← null
7 c f 9 a← ¬null
7 exc 17 a← null
9 true 10 p2← null
9 f alse 12 p2← ¬null
10 c f 15 p2← ¬null
10 exc 17 p2← null
12 c f 15 p1← ¬null, p2← ¬null
12 exc 17 p1← null, p2← null
15 c f 16 p2← ¬null
15 exc 17 p2← null
default do not modify state

(a) transfer functions of CFG edges

node p1 p2 a
4 ⊥ ⊥ ⊥

5 ⊥ ⊥ ⊥

6 ⊥ ⊥ ¬null
7 ¬null ⊥ ¬null
9 ¬null ⊥ ¬null
10 ¬null null ¬null
12 ¬null ¬null ¬null
15 ¬null ¬null ¬null
16 ¬null ¬null ¬null
17 > > >

(b) final variable states

Table 2.1: Transfer functions (2.1a) and final variable states (2.1b) of the null-
pointer analysis for the example in Figure 2.22.

null ¬null

unknown (⊥)

both (⊤)

Figure 2.24: The lattice of the state values for the null-pointer detection.

variable states after the analysis finished. For example in statement 10
we know that p1 and a can never be null, while p2 will always be null.

We combine this information with the unoptimized CFG and check
for each edge if the variable state of its source statement allows us to
remove the edge from the graph. For example edge 6 exc 17 is only
valid if p1 may be null at statement 6. The final variable state for p1 in
statement 6 is unknown (⊥), therefore we cannot be sure that p1 is not
null and thus cannot remove this edge. However this is possible for
other edges, like 7 exc 17, where we know that a is never null. The
resulting optimized CFG and CDG are shown in Figure 2.23.
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We added several options for exception analysis to Joana. We include
the option to intraproceduraly optimize the CFGs for each method
with the presented analysis. Herhoffer extended this analysis in his
Studienarbeit [54] with an interprocedural propagation of variable states
for method parameters. His analysis almost doubles the number of
edges that can be removed from the CFG. We also include an option to
fully ignore influence of exceptions on the program execution. Albeit
the results of the IFC analysis are no longer sound when exception are
ignored, it helps to pin down the cause of illegal flow.

2.4.2 Termination-sensitive control dependencies

Besides standard control dependence (SCD) (see Definition 2.3), there are
other possible definitions for control dependence with subtly different
semantics [45]. In this section we introduce the termination-sensitive
control dependence from Podgurski and Clarke [101] called weak con-
trol dependence (WCD) and an extension to track these dependencies
interprocedurally.

Informally, a control dependence n1 cd n2 captures if the outcome
of statement n1 may influence if n2 is executed. In case of SCD we
search for alternative paths from nentry to nexit in the CFG that do not
include n1 but include n2. Looking for the possibility that the program
executes n2 without ever executing n1. This approach only works under
the assumption that nexit is reached, hence the program terminates.
Termination-sensitive control dependence like WCD also capture the
possibility that a statement may force execution into an endless loop
—preventing execution of statements after the loop.

Figure 2.25 illustrates this situation. Method endless contains a loop
that may never terminate if the value of parameter sec is below 10. In
an information flow setting this behavior can leak information about the
value of parameter sec. Whenever an attacker observes the output of
the last print statement in l. 7, he knows that sec ≥ 10.

Standard control dependence (Figure 2.26a) does not capture this
effect: Statement 7 does not depend on the outcome of statement 4 and
thus is considered independent of the value of sec. Weak control depen-
dence (Figure 2.26b) however includes this dependency. It conservatively
assumes each loop may execute infinitely and therefore all subsequent
statements depend on the loop condition. The definition of weak control
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1 class A {
2 void endless(int sec) {
3 println("start...");
4 while (sec < 10) {
5 sec = sec;
6 }
7 println("done.");
8 }
9 }

(a) program fragment

true
ENTRY

2
println("start…")

3
while (sec < 10)

4
sec = sec

5

false

println("done.")
7

EXIT
8

(b) control flow graph

Figure 2.25: A program fragment (2.25a) that may not terminate and its CFG
(2.25b).

ENTRY
2

println("start…")
3

while (sec < 10)
4

sec = sec
5

println("done.")
7

EXIT
8

(a) standard control dependence (SCD)

ENTRY
2

println("start…")
3

while (sec < 10)
4

sec = sec
5

println("done.")
7

EXIT
8

(b) weak control dependence (WCD)

Figure 2.26: A termination-insensitive (2.26a) and a termination-sensitive (2.26b)
CDG for the program fragment in Figure 2.25.

dependence is very similar to standard control dependence, it uses a
slightly different version of post-domination, called strong postdomination.

Definition 2.9 (Strong Post Domination). Given n1, n2 ∈ CFG. n2 strong
post-dominates n1 if

• n2 post-dominates n1.

• @ path P = n1 c f ∗ n2 ∈ CFG, where P contains a loop.

Definition 2.10 (Weak Control Dependence). Given n1, n2 ∈ CFG. n2 is
weak control dependent on n1 (n1 wcd n2) if

• ∃ path P = n1 c f ∗ n2 ∈ CFG with n′ ∈ P and n2 strong post-dominates
n′.

• n2 does not strong post-dominate n1.
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Most IFC analyses [124, 93, 94, 43, 20] argue that program termination
is a prerequisite for a secure program. They assume each program
terminates and ignore termination-sensitive leaks. E.g. the common
noninterference criterion implicitly assumes program termination, as it
is defined through the relation between values at program start and end
states —hence implicitly assumes an end state exists.

Interprocedural extension We developed an interprocedural extension
to a termination-sensitive whole program analysis. It detects calls to
methods that may not terminate and treats these calls similar to a non-
terminating loop during WCD computation. Our algorithm basically
contains 4 major steps to analyze a given program P:

1. Detect each method that contains a potentially non-terminating
loop in the intraprocedural control flow.

Mloop = {m ∈ P | m contains non-terminating loop}

2. Detect methods that may be called recursively (direct as well as
indirect).

Mrecurs = {m ∈ P | ∃m1, . . . , mi ∈ P : m call m1, . . .mi call m}

3. Detect methods that may not terminate.

Mnon−term = {m ∈ P | ∃m′ ∈Mloop ∪Mrecurs :

∃m1, . . . , mi ∈ P : m call m1, . . .mi call m′}

4. Treat calls to methods from Mnon−term similar to non-terminating
loops. Use extended strong postdomination (Definition 2.11) during
WCD computation.

Definition 2.11 (Extended Strong Post Domination). Given n1, n2 ∈ CFG.
n2 strong post-dominates n1 if

• n2 post-dominates n1.

• @ path P = n1 c f ∗ n2 ∈ CFG, where P contains a loop or a call to m
with m ∈Mnon−term.
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1 class A {
2 int f;
3

4 static int
5 setAndRet(A a, int i, int r) {
6 a.f = i;
7 return r;
8 }
9 }

(a) example program

5 6 7 8

exc

(b) control flow graph

a.f = i
6

return r
7

dd

i aretr setAndRet
5

dd

dd
dh

direct data dependence
heap data dependence
control dependence

f

a

dd

dh

dd

(c) procedure dependence graph

Figure 2.27: Example program (2.27a) with its CFG (2.27b) and PDG (2.27c). It
shows the effects of imprecise treatment of exceptions in field access operations:
The return value is considered dependent on the value of parameter i.

We include an option for termination-sensitive weak control depen-
dence in Joana, which is turned off by default. Evaluation has shown that
by conservatively assuming non-termination for each loop in the control
flow, the precision of the analysis takes a huge hit and many false alarms
occur. Thus this option should only be used when termination-sensitivity
is required for the current analysis.

2.4.3 Fine-grained field access

In this section we introduce a fine-grained model for field access op-
erations in a PDG. Field accesses are special operations that read or
modify values stored on the heap —the global state of the program. A
field access can introduce new side-effects through modifications and
its result depends on the context it is executed in. Besides method calls,
they are the only points in the PDG that may change depending on the
method context.

Previously a field access has been modeled as a single node in the
PDG. This leads to some unwanted imprecision of the dependencies, as
the example in Figure 2.27 shows. The example contains a single method
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setAndRet that takes three parameters and processes two seemingly
independent operations. It sets the value of field f from the first
parameter to the value of the second parameter in l. 6 and subsequently
returns the value of the third parameter in l. 7. However as presented in
§2.1.8 and §2.4.1 exceptions can introduce control dependencies between
otherwise unrelated statements. This is the case in this example: When
the field access throws a null-pointer exception, the return statement
is never executed. The control flow graph in Figure 2.27b shows this
potential behavior through an edge from node 6 to 8. This leads to a
control dependency from node 6 to 7 in the corresponding PDG (Fig-
ure 2.27c). The bold nodes and edges in the PDG show all elements
contained in the backward slice of the return value ret. The slice contains
the field access including all three method parameters. Parameter a
influences if the field access throws a null-pointer exception, while the
value of parameter r is returned in the following statement. So both
parameters can influence the existence and value of the return value.
Parameter i has no influence on the return value, but is still included in
the slice, because of its data dependency to the field access. However,
the control flow from the field access is only influenced by the variable
pointing to the object whose field is set, not the value that is written to
the field. The current model of field accesses in PDGs does not capture
this property.

We propose a new way to model field accesses as multiple nodes that
correspond to 3 steps during a field write: (1) load base object, (2) load
new value, (3) write value to field. Figure 2.28 shows a version of the
PDG for the program in Figure 2.27a with a fine grained field access. In
this version the return statement is only dependent on the load operation
of base a (Node 6a) and not on the subsequent field write operation
(Node 6, 6b). Therefore the backward slice from the return value no
longer contains parameter i.

We differentiate 6 different forms of field access operations: static,
object and array field write as well as static, object and array read
operations. Figure 2.29 shows the control flow of all fine grained read
operations together with their coarse grained counterparts. The control
flow respects the order in which the different steps of a field access are
executed. Field read operations may include up to 4 steps —depending
on the type of the access— in the following order.
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return r
7

dd

i aretr setAndRet
5

dd

dd
dh

direct data dependence
heap data dependence
control dependence

f

a

dd

dhdd

base a
6a

field A.f
6b

exit
6c

a.f = i
6

dd dd

Figure 2.28: The PDG with a fine-grained field access operation for the example
program from Figure 2.27. It shows that parameter i no longer influences the
return value.

1. Load base pointer (array and object field access only)

2. Load array index (array access only)

3. Read field

4. Store field value in local variable or stack

Steps 1 and 2 potentially can throw an exception in case the referenced
base pointer is null, or the array index is negative or out of bounds. We
model this behavior with additional exception control flow edges from
the respective base and index nodes to an artificial exit node. We include
a node for each step as well as an artificial exit node for the instruction
in case it may throw an exception. The exit node provides a single point
of exit, where the control flow of the intra-instruction steps leave the
instruction.

Figure 2.30 contains a similar overview for all field write operations.
Write operations include the similar steps as read operations, but in a
different order. They read a value from a local variable or the stack before
it is written to the field.
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1. Load base pointer (array and object field access only)

2. Load array index (array access only)

3. Read new field value in local variable or stack

4. Write new value to field

Figure 2.31 and Figure 2.32 show how we model control and data
dependencies for field read and write accesses. The new fine grained
structure enhances precision of the modeled dependencies. Each value
reading and writing step has its own node and the control dependencies
due to potential exceptions are captured by a separate exit node that is
not dependent on the field value. For example the field-set operation
in Figure 2.32 “v2.f = v1” contains no dependency edge from the field
node to the exit node. So a backward slice from the exit node will only
lead to the source of the value v2 and is independent of v1.

Aside from increased precision, fine-grained field accesses are also
used in the computation of so-called access paths presented in the up-
coming section §3.4.3 on modular SDGs. As the impact on runtime is
minimal, fined-grained field accesses are enabled by default in Joana.
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static field-get (v1 = A.f)
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Figure 2.29: The control flow of fine grained field-get instructions.
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static field-set (A.f = v1)
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Figure 2.30: The control flow of fine grained field-set instructions.
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static field-get (v1 = A.f)

v1 = A.f

field A.f

dh (A.f)

dd (v1)

dd

ce

2

1

coarse grained

v1 = A.f

dh (A.f)

dd (v1)

1

base v2
3

field-get (v1 = v2.f)

dd (v2) dh (f)

dd (v1)

dd ddce

ce

v1 = v2.f
1

field A.f
2

exit
4

ce

cd cd

coarse grained

dd (v2) dh (f)

dd (v1)

v1 = v2.f
1

cd cd

array field-get (v1 = v2[v3])

base v2

dd (v2)

dh ([])

dd (v1)

dd
dd

ce
ce

dd (v3)

dd ce

v1 = v2[v3]
1

field [A]
2

3
index v3

5

exit
4

ce
ce

cd cd

coarse grained

dd (v2)

dd (v1)

dd (v3)

v1 = v2[v3]
1

dh ([])

cd cd

Figure 2.31: The control and data dependencies of fine grained field-get instruc-
tions.
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static field-set (A.f = v1)
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Figure 2.32: The control and data dependencies of fine grained field-set instruc-
tions.
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2.5 Interprocedural analysis

This section contains the description of the interprocedural parts of
our IFC analysis. Our analysis heavily relies on the results of points-
to and call graph analyses, which are introduced in §2.5.1 and §2.5.2.
We describe the interprocedural extension of the PDG called system
dependence graph (SDG) in §2.5.3 and explain in detail how we model
precise context-, field- and object-sensitive method side-effects with the
help of artificial parameter nodes.

2.5.1 Call graph

A call graph is an approximation of all methods called during program
execution. It shows which methods are executed and where they may
be called from. This information is often used to lift an intraprocedural
analysis to the interprocedural case: Intraprocedural analyses compute
results for each single method and afterwards these results are propagated
through the call graph from callee to caller until a fixed-point is reached.

Definition 2.12 (Call Graph). A call graph of a program P is a graph
G = (N, E). The nodes N correspond to methods M and call instructions
Icall in P. Edges E are of the form m1 call c call m2 with m1, m2 ∈ M and
c ∈ Icall, where m1 contains a call instruction c that may call m2. We refer to
the tuple (m1, c) as the call site of m2 in m1.

The structure of a programs call graph depends on the features of
programing language it has been written in. E.g. the call graph may
contain cycles when recursive calls are allowed. Or —if method calls are
only statically bound— each call always contains exactly a single edge
to its callee. For dynamically bound methods there may be multiple
potential callees. Hence the call graph for a language like Java with
dynamic binding and recursive calls can become quite complex. The
following example illustrates some of the common problems of call
graphs for object-oriented languages.

Figure 2.33 shows a program (2.33a) and a matching call graph (2.33b).
The program contains two classes A and B where B is a subclass of A
that overrides the dynamically bound method foo. This has the effect
that method print in l. 7 may call either A.foo or B.foo depending on
the dynamic type of the this pointer. The call graph (2.33b) reflects that.
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1 class A {
2 int foo() {
3 return 42;
4 }
5

6 void print() {
7 println(foo());
8 }
9 }

10

11 class B extends A {
12 int foo() {
13 return 23;
14 }
15

16 void main(String argv[]) {
17 A a = new A();
18 A b = new B();
19 a.print();
20 b.print();
21 if (argv[1].equals("B")) {
22 a = b;
23 }
24 a.print();
25 }
26 }

(a) program fragment

A.foo() B.foo()

A.print()

println(int)

B.main(String[])

print()@19 print()@20 print()@24

foo()@7 println()@7

1

2 3 4

5

6 7

8 9 10

...

...

Method

Call instruction

(b) call graph

Figure 2.33: A program fragment (2.33a) and its call graph (2.33b). Rectangular
nodes correspond to methods, round shapes correspond to call instructions.

Node 5 corresponds to method A.print and node 6 represents the call
to method foo. As both implementations of foo may be called, node 6
connects to A.foo as well as B.foo.

So the graph in Figure 2.33b is an approximation of all possible
method calls, but it lacks precision. It does not capture the effect that
a call to A.print on an object instance of A always executes A.foo and
never B.foo. Like in case of the call in l. 19 that refers to an object of
instance A in every execution of the program. The call in l. 20 is similar
as it is always bound to an object of type B. Only the call in l. 24 may
refer to instances of both classes. Thus the structure of the subgraph
that represents subsequent calls from A.print depends on the context in
which the method executes.

A common approach to increase call graph precision in these cases is
to clone methods and subgraphs depending on their execution context.
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Figure 2.34: A call graph for the program in Figure 2.33a with increased precision
through cloned methods for each call site of A.print in main.

Figure 2.34 shows a version of a call graph for the program in Figure 2.33a
that cloned the subgraph of each call to A.print. These subgraphs no
longer contain a call to A.foo or B.foo if it does not fit the execution
context they belong to. E.g. the call in l. 19 is no longer connected
to a node representing method B.foo. Cloning helps to increase call
graph precision, but it comes at a steep price: Even in this small example
the number of nodes doubled. In practice cloning has to be used with
caution, because the resulting call graph quickly becomes too big to
be computed in reasonable time and memory constraints. Cloning can
also introduce unnecessary redundancies in the graph. For example the
multiple cloned representations of println in nodes 9, 14 and 20 do not
increase precision. Therefore a more selective approach that only clones
relevant nodes can help.

Figure 2.35 shows a call graph that clones methods more selectively.
The number of nodes is less than in the call graph with more extensive
cloning (2.34), but the precision gain remains. Both graphs can distinguish
the different effects of the dynamically bound call to foo. Our tool
Joana supports call graphs with arbitrarily cloned methods. It features
predefined clone strategies as well as an interface to specify custom
strategies. Finding and specifying the clone strategy that offers the best
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Figure 2.35: A call graph for the program in Figure 2.33a with increased precision
through selectively cloned methods relevant to the dynamic dispatch of foo.

trade-off between precision and scalability is a challenging problem,
because it often depends on the nature of the program under analysis
and the concrete properties that should be deducible from the call graph.

We have shown what a call graph is and how its precision can be
improved through cloning specific parts of the graph. So far we did not
discuss how a call graph is built and which information is needed. In
order to resolve dynamic dispatch it is important to know upon which
concrete object instances a call can occur. This information is retrieved
with the help of a so-called points-to analysis.

2.5.2 Points-to analysis

A static interprocedural IFC analysis needs to detect and overapproximate
all effects that may occur during program execution. A points-to analysis
helps to detect which memory locations may be read and modified.
This information is crucial as most of the communication in an object-
oriented program relies on passing references to objects, stored in memory,
between program parts. In this section we will focus on points-to analysis
for object-oriented languages. These points-to analyses compute which
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object instances references like variables or object attributes may point
to. We specifically rely on the following language properties:

• Type correctness. References point at any time only to object
instances of a matching type.

• Object instances may contain attributes referencing other objects,
but pointer-to-pointer references and pointer arithmetics are for-
bidden.

• Only object instances can be stored on the heap and be referenced.

• Function pointers are not allowed. Dynamic calls are allowed.

Points-to analyses provide important information for many inter-
procedural program analyses. They have been actively researched for
over 30 years and many advances were achieved in terms of scalability,
precision and modularity. We will discuss more about recent advances
in points-to analyses in the upcoming subsections. First we start with
the two most basic algorithms invented by Andersen [4] and Steens-
gaard [122]. Typically all analyses are based on one of these two variants.
Both compute finite sets of abstract locations, called points-to set (pts),
for each reference in the program. This set includes any locations the
corresponding reference may point to during program execution. The
algorithms differ in the way they handle assignments between references.
Given references p and q with the assignment p = q, Steensgaard uses
an unification-based approach to capture the effect of the assignment:
pts′(q) = pts′(p) = pts(p) ∪ pts(q) where pts′ denotes the points-to set
after the execution of the assignment. Whereas Andersen proposes
a more precise inclusion-based approach: pts′(p) = pts(p) ∪ pts(q) and
pts′(q) = pts(q). Even though Andersen approach is more precise, both
approaches are relevant in practice, because Steensgaard algorithm is
faster. The runtime complexity of Andersen is O(n3) while Steensgaard
is almost linear with O(n · α(n)) (α is the inverse Ackermann function
and therefore grows very slowly).

Points-to information is often represented in form of a points-to graph,
where nodes correspond either to references or locations. References
can be program variables as well as object and array fields. When a
reference may point to a certain location the points-to graph contains
an edge between the node of the reference and the node of the location.
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1 class A {
2

3 int data;
4

5 int ptsExample(int secret) {
6 A a = new A();
7 A b = new A();
8 A c = new A();
9 a = b;

10 a = c;
11 b.data = secret;
12 return c.data;
13 }
14

15 }

(a) program fragment

c

A@[6] A@[7] A@[8]

a b

secret

unification-based (Steensgard)

A@[6] A@[7] A@[8]

a b c

secret

inclusion-based (Andersen)

A@[6] A@[7] A@[8]

a b c

initial points-to graph setup

(b) unification- and inclusion-based points-to
graphs

Figure 2.36: A program fragment (2.36a) and two corresponding points-to graphs
(2.36b).

We are going to use point-to graphs to visualize the differences between
various points-to analysis algorithms, starting with the basic inclusion-
and unification-based approaches.

Figure 2.36 shows the difference between these two approaches. The
program fragment (2.36a) contains a single method that creates three
different instances of class A in l. 6, l. 7 and l. 8. The initial points-to
graph (2.36b) reflects the state of the program after these initializations,
where the references a, b and c all point to a different location. Then
two assignments in l. 9 and l. 10 occur. The unification-based approach
approximates the effect of a = b by unifying the points-to sets of a and
b and subsequently unifying a and c for the following assignment. The
result is a points-to graph where all references point to all locations (left
side of 2.36b). Hence using this less precise approach we are not able
to detect that the assignment of the secret value in l. 11 has no effect on
the return value, because we cannot see that b and c refer to different
locations. The more precise inclusion-based approach can detect that the
return value is independent of the secret value. Given the assignment
a = b it only merges the points-to set of b into a but not vice versa. The
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same holds for a = c where also only the points-to set of a is adapted.
The resulting points-to graph on the right side of Figure 2.36b shows
that while a may point to all three instances, b and c point to distinct
locations. Thus we can infer that modifying b has no effect on c.

A more formal definition of a points-to analysis A points-to analysis
computes for any variable and object field in the program at which
locations they may point-to during execution. The computation of
points-to information can be formulated as a constraint system: The
computation starts with an empty set of instances for each reference
and subsequently iterates over all assignments in the program to add
potential referenced instances until a fix point is reached.

Points-to analyses differ in the way they represent locations. In
general it is infeasible for a static analysis to compute a precise repre-
sentation for each location that may be accessed during a program run.
E.g. the number of object instances created is potentially unlimited and
can depend on statically unknown user input. Therefore every points-to
analysis uses equivalence classes of actual heap locations, called abstract
heap locations. As we focus on points-to analyses for object-oriented
programs, all locations that can be referenced are instances of objects.

Definition 2.13 (Abstract Heap Location). An abstract heap location
l = T@[ctxi] ∈ LocP is an equivalence class of object instances of the same type
T created in a program state described by context ctxi.
Given an object instance o1 the following holds:

o1 ∈ T@[ctxi] B o1 is of type T ∧ o1 created in program state matching ctxi

We also call ctxi the instance-context of the object instances. The concrete
description of the instance-context is part of the specific points-to analysis.

Variables are treated in a similar fashion. They can refer to many
different locations or values during a program run. The location they
refer to depends on the current state of the program —the context it is
evaluated in— e.g. the current call stack or the position of the statement
that accesses the variable. We call a variable together with a specific
description of the context a variable reference.
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Definition 2.14 (Variable Reference). A variable reference r = v@[ctxr] ∈
VarP is a pair of the variable name v and a description of the context ctxr.

v@[ctxr] B values variable v may refer to in a program state matching ctxr

We call ctxr the reference-context of the variable v. The concrete description
of the reference-context is part of the specific points-to analysis.

The choice of the instance- and reference-contexts has a huge influence
on the runtime of the points-to analysis and the precision of its results.
We are going to show the most common precision variants of pointer
analyses in §2.5.2 and explain how these contexts are defined for each
variant. E.g. in the example in Figure 2.36 we used the line number of
the statement that created the object as the instance-context (A@6, A@7,
A@8) and no reference-context at all for variables (a, b, c).

With above definitions in place we can specify the result of a points-to
analysis as a mapping between variable references and a set of abstract
heap locations. This mapping tells us for each reference which locations
it may point to. We call such a mapping the points-to configuration.

Definition 2.15 (Points-to Configuration). A points-to configuration C
maps each program variable and object field to a set of abstract heap locations.

C B {r→ l | r ∈ VarP, l ∈ LocP ∧ r may point to l}
∪ {l. f → l′ | l, l′ ∈ LocP ∧ x→ l ∈ C∧ x. f may point to l′}

We write ptsC(v) for the set of all locations variable v may point to under the
given configuration.

ptsC(v) B {l | v
′@[ctxr]→ l ∈ C∧ v = v′}

We refer to ptsC(v) as the points-to set of v.
We write ptsC(v@[ctxr]) for the set of all locations variable reference v@[ctxr]

may point to.

ptsC(v@[ctxr]) B {l | v′@[ctxr’]→ l ∈ C∧ v = v′ ∧ ctxr = ctxr′}

The points-to set of an field access v. f1 . . . fn is defined recursively

ptsC(v. f1 . . . fn) B

{l | ∃l′ ∈ ptsC(v) : l′. f → l ∈ C} if n = 1
{l | ∃l′ ∈ ptsC(v. f1 . . . fn−1) : l′. f → l ∈ C} else

67



CHAPTER 2. INFORMATION FLOW CONTROL WITH SYSTEM
DEPENDENCE GRAPHS FOR OBJECT-ORIENTED LANGUAGES

A main application of points-to analysis is to decide whether two
variables may point to the same location. This property is called may-
aliasing, or simply aliasing. The aliasing of variables can be inferred
through their points-to sets.

Definition 2.16 (May-Alias). Two variables or field accesses v1. f1 . . . fn and
v2. f ′1 . . . f ′m are may-aliased under a given points-to configuration C iff their
points-to sets share a common element.

aliasC(v1. f1 . . . fn, v2. f ′1 . . . f ′m) B ptsC(v1. f1 . . . fn)∩ ptsC(v2. f ′1 . . . f ′m) , ∅

We also write
(v1. f1 . . . fn, v2. f ′1 . . . f ′m) ∈ C

as abbreviation for

aliasC(v1. f1 . . . fn, v2. f ′1 . . . f ′m)

May-alias information is crucial for our information flow analysis.
We use it to compute potential side-effects of methods and data flow
through heap locations. The precision of Joana is directly linked to the
precision of the may-alias information. Imprecise may-alias information
often leads to many false alarms.

Precision

In this section we present the most common precision options of points-to
and may-alias analyses and discuss how they can help to improve the
results of an IFC analysis. Most of the presented options are available in
our Joana tool.

Class-based (0-CFA) A points-to analysis is class-based if the different
object instances are distinguished by their class name and variable
references are distinguished by the variable name. It is a special form
(context size k = 0) of the more general k-CFA approach we discuss in
the next paragraph and is therefore also referred to as 0-CFA. Essentially
the instance- as well as the reference-context is a single element.

ctxiclass = >, ctxrclass = >
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1 class A { int data; }
2

3 class B {
4 int data;
5

6 int ptsClass(int secret) {
7 A a1 = new A();
8 A a2 = new A();
9 B b = new B();

10 a1.data = secret;
11 return a2.data;
12 }
13 }

(a) program fragment

B@[⊤]

a1@[⊤]

a2@[⊤]
b@[⊤]

A@[⊤]
secret

class based (0-CFA)

(b) points-to graph of a class-based analysis

Figure 2.37: A program fragment (2.37a) and the corresponding points-to graph
(2.37b) of a class-based analysis.

Figure 2.37 shows an example for a class-based points-to analysis. It
contains a program (2.37a) that creates three object instances, two of type
A and one of type B. The abstract heap location for the objects created in
l. 7 and l. 8 is the same: A@[>]. This results in the following points-to
configuration:

CptsClass = {a1@[>]→ A@[>], a2@[>]→ A@[>], b@[>]→ B@[>]}

The matching points-to graph (2.37b) contains only one abstract heap
location node for the two A object instances. This imprecision does not
allow us to detect that the information from parameter secret is not
leaked to the return value, because we cannot distinguish between the
access on a1.data and a2.data as (a1, a2) ∈ CptsClass.

A class-based points-to analysis yields imprecise results which may
lead to many false alarms in an information flow setting. However its
computation scales very well, so even large programs with over 100kLoC
can be analyzed in a reasonable amount of time. Therefore class-based
points-to analyses are still relevant. They can be used whenever speed
is more critical then precision or more precise analyses simply can’t be
computed at all.

Call-stack (k-CFA / k-l-CFA) The most common abstractions of heap
locations and variable references are call stack based. They distinguish
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object instances through the instruction used to create the instance and a
stack-trace of the methods that led to the execution of the instruction.
Variable references are distinguished by the variable name and a stack
trace of the methods that lead to the access of the variable. Because a
call stack may be of arbitrary length most analyses cut the call stack
after a fixed size of k entries. So only the last k methods called are
used to distinguish created instances and references. In practice k is
mostly restricted to 1 or 2, as higher values lead to increased runtime
and memory consumption. The part of the call stack used to identify
object instances is also called its context. Call-stack based analyses are
therefore called context-sensitive12 or k-level call stack context-sensitive.

The standard approach for call stack context-sensitive points-to of
object-oriented languages is based on the k-CFA13 from Shivers [114].
Vitek et.al. [125] presented the extension for object-oriented languages
called k-l-CFA, that allows different k- and l-limiting of the call stacks for
variable references and object instances. If k = l the result of a k-l-CFA
analysis are similar to k-CFA. The reference- and instance-context for a
k-l-level call stack analysis are chosen as follows:

ctxil-call = c1 → . . .→ cl−1 → il

The instance-context ctxil-call consists of l− 1 call instructions and a single
new-instance instruction il. It applies to all object instances created by il
where c1, . . . cl−1 are the last l− 1 calls executed to reach il.

ctxrk-call = c1 → . . .→ ck

The reference-context ctxrk-call of a variable v consists of k call instructions.
It describes the last k calls made to access v.

Figure 2.38 shows an example program that illustrates the difference
between 1-level, 2-level and a 0-1-level call stack based points-to analysis.
The program (2.38a) contains two instructions in l. 4 and l. 6 that create
new instances of class A. During execution of ptsStack, 3 instances of
A are created, two through direct calls to create1 and create2 and one
due to an indirect call of create1 in callCreate. When we use the line
numbers of the call instructions as their identifier, the following points-to

12See §2.2.1 for a general introduction to context-sensitivity
13Abbreviation of kth-order Control Flow Analysis

70



2.5. INTERPROCEDURAL ANALYSIS

1 class A {
2 int data;
3

4 A create1() { return new A(); }
5

6 A create2() { return new A(); }
7

8 A callCreate() {
9 return create1();

10 }
11

12 int ptsStack(int secret) {
13 A a = create1();
14 A b = create2();
15 A c = callCreate();
16 b.data = secret;
17 a.data = secret;
18 return c.data;
19 }
20

21 int call1(int secret) {
22 return ptsStack(secret);
23 }
24

25 int call2(int secret) {
26 return ptsStack(secret);
27 }
28

29 int main(int secret) {
30 return call1(secret)
31 + call2(secret);
32 }
33 }

(a) program fragment

A@[4] A@[6]

a@[⊤] b@[⊤]c@[⊤]

0-1-level call-stack

secret secret

A@[13→4]

A@[14→6]

A@[9→4]

2-level call-stack

secret

secret

A@[4] A@[6]

a@[22] b@[22]c@[22]

1-level call-stack

secret secret

b@[30→22]

a@[30→22]

c@[30→22]

c@[26] b@[26]a@[26]

c@[31→26]

b@[31→26]

a@[31→26]

(b) three points-to graphs of a call stack based
analysis

Figure 2.38: A program fragment (2.38a) and the corresponding points-to graphs
(2.38b) of a call stack based analysis.

configurations are computed:

C0-1-level = {a@[>]→ A@[4], b@[>]→ A@[6], c@[>]→ A@[4]}

C1-level = {a@[22]→ A@[4], a@[26]→ A@[4],
b@[22]→ A@[6], b@[26]→ A@[6],
c@[22]→ A@[4], c@[26]→ A@[4]}

C2-level = {a@[30→22]→ A@[13→4], a@[31→26]→ A@[13→4],
b@[30→22]→ A@[14→6], b@[31→26]→ A@[14→6],
c@[30→22]→ A@[9→4], c@[31→26]→ A@[9→4]}
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k-level variable reference call stack
0 1 . . . n

l-level
object
instance
call stack

0 0-CFA
1 0-1-CFA 1-CFA
...

. . .
n n-CFA

Table 2.2: Points-to call stack precision options supported by Joana.

The right side of Figure 2.38b shows the three points-to graphs for 0-
1-level, 1-level and 2-level call stack sensitivity. The 0-1-level analysis
only keeps track of the last entry on the call stack for object instances
and therefore cannot distinguish the object created through the call in
l. 13 (ptsStack → create1) from the one in l. 15 (ptsStack → callCreate →
create1). This leads to the aliasing of a and c: (a, c) ∈ C0-1-level. The
same holds for 1-level sensitivity: The additional context-sensitivity
for variable references does not improve the precision of the result in
this example. E.g. we can distinguish the value of variable a for the
two different calls to ptsStack, but both abstract variable references
(a@[22], a@[26]) point to the same abstract location (A@[4]). Thus 1-level
sensitivity still cannot detect the absence of aliasing between a and c:
(a@[22], c@[22]), . . . ∈ C1-level. Therefore an IFC analysis reports an illegal
flow from parameter secret to the return value, as it cannot distinguish
between a.data and c.data. This changes with the 2-level sensitive
analysis: Different abstract heap locations exist for the instances of A
created from the calls callCreate→ create1 and ptsStack→ create1. So we
can detect that a and c are never aliased as (a@[. . . ], c@[. . . ]) < C2−level.
Therefore an IFC analysis with 2-level call stack sensitivity can verify the
absence of illegal flow.

Choosing the right points-to precision is a difficult problem on its
own. Sometimes the theoretically more precise and slower approach
results only in minimal actual gains: In the previous example there is no
difference in the results between 0-1-CFA and 1-CFA, the latter is only
more complex to compute and needs more space due to the additional
abstract variable references. We include several options for n-level and
k-l-level call stack sensitivity in Joana—as shown in Table 2.2— so the
analysis user can try which option fits best for a concrete problem. The
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variant of k-l-CFA in Joana is an implementation of the generalized
points-to framework from Grove and Chambers [42] that comes with the
WALA framework. Evaluation shows that 0-1-level sensitivity provides
a good trade-off between scalability and precision, while we have to
resort to class-based sensitivity to analyze the largest programs in our
evaluation set. Call-stacks with n > 1 did only sightly improve the
precision compared to its huge impact on analysis runtime.

Receiver-object / Object-sensitive Dynamic dispatch —also called
dynamic binding— is an integral part of object-oriented languages that
enables polymorphism. The call to a dynamically bound method is
resolved at runtime and depends on the dynamic type of the receiver
object. Also the methods behavior often depends on the concrete receiver
object: E.g. typical getter and setter methods operate on the attributes
of the receiver object. Therefore it makes sense to distinguish variable
references and heap locations used in dynamic methods based on the
instance of the receiver object. Such a receiver object based points-to analysis
uses the receiver object instead of the call stack to distinguish between
different calls to a method. This enables the analysis to effectively
distinguish the effects of dynamically bound methods for different object
instances. It is therefore also called object-sensitive. The respective
instance- and reference-contexts are defined as follows:

ctxiobj =


T[ctxi′obj], inew inew is executed in a dynamic method bound

to T[ctxi′obj]

ctxistatic else use fallback context

Where inew is the new-instance instruction that creates the object instance
and T[ctxi′obj] ∈ LocP is the abstract location of the receiver object for the
dynamic method that was called to execute inew. If inew is part of a static
method another context ctxstatic —typically call stack based— is used
instead.

ctxrobj =


T[ctxiobj] v is referenced in a dynamic method bound

to T[ctxiobj]

ctxrstatic else use fallback context
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1 class List {
2 int data; List next;
3

4 List add(int data) {
5 List l = new List();
6 l.data = data;
7 l.next = this.next;
8 this.next = l;
9 }

10

11 static int ptsReceiver(int secret) {
12 List a = new List();
13 List b = new List();
14 a.add(secret);
15 b.add(42);
16 b.add(23);
17 List c = b.next;
18 return c.data;
19 }
20 }

(a) program fragment

List@[12] List@[13]

a@[⊤] b@[⊤]

c@[⊤]

0-1-level call-stack 

List@[5]

nextnext

l@[⊤]

next secret

(b) 0-1-level call stack

a@[⊤] b@[⊤]

c@[⊤]

2-level call-stack 

List@[13]
next

List@[12]
next

l@[14]
l@[16]

l@[15]

List@[14→5]
secretnext

List@[15→5]
next

List@[16→5]
next

List@[List@[13],5]

a@[⊤]

b@[⊤]

c@[⊤]

receiver-object sensitive
(0-1-level call-stack for static methods) 

List@[List@[12],5]
secret

l@[List@[13]]l@[List@[12]]

List@[12]
next

List@[13]
next

next next

(c) object and 2-level call stack sensitive

Figure 2.39: A program fragment (2.39a) and three matching points-to graphs of
varying precision (2.39b, 2.39c).

The reference-context ctxrobj of a variable v contains the abstract location
T[ctxiobj] ∈ LocP of the receiver object for the dynamic method that was
called to access v. If v is accessed in a static method another context
definition ctxrstatic has to be used as a fallback, like the previously
introduced call stack sensitive reference-context.

Figure 2.39 contains an example (2.39a) that illustrates the benefits
of a object-sensitive analysis over a call stack sensitive approach in a
typical situation. The program uses two different List objects to store
secret (l. 14) as well as non-secret (l. 15, l. 16) data. Both times the same
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method add creates a new entry and adds it to the desired list. A simple
0-1-level or 1-level call stack based analysis cannot distinguish between
the entry created in l. 5 for list a and the one created for list b, because
both are created by the same new-instance call. Thus we need at least
2-level call stack sensitivity, but this comes at the price of additional
analysis complexity. A receiver-object-sensitive analysis offers a good
trade-off in these situations. It does not create distinct variable references
and abstract locations for each separate call —only for those that refer
to different receiver objects. E.g. the calls to b.add in l. 15, l. 16 are not
treated separately —like they are with 2-level call stack sensitivity—, but
the call to a.add is. So the object-sensitive as well as the 2-level call stack
sensitive approach can detect that the secret is never leaked to the return
value of ptsReceiver, while the object-sensitive approach requires less
computation time and space. This distinction also shows in the resulting
points-to configurations.

C0-1-call = {a@[>]→ List@[12], b@[>]→ List@[13], c@[>]→ List@[5],
l@[>]→ List@[5], List@[12].next→ List@[5],
List@[13].next→ List@[5], List@[5].next→ List@[5]}

Cobj = {a@[>]→ List@[12], b@[>]→ List@[13], c@[>]→ List@[List@[13],5],
List@[12].next→ List@[List@[12],5], l@[List@[12]]→ List@[List@[12],5],
List@[13].next→ List@[List@[13],5], l@[List@[13]]→ List@[List@[13],5],
List@[List@[12],5].next→ List@[List@[12],5],
List@[List@[13],5].next→ List@[List@[13],5]}

C2-call = {a@[>]→ List@[12], b@[>]→ List@[13], c@[>]→ List@[15→5],
c@[>]→ List@[16→5], List@[12].next→ List@[14→5],
l@[14]→ List@[14→5], List@[13].next→ List@[15→5],
l@[15]→ List@[15→5], List@[13].next→ List@[16→5],
l@[16]→ List@[16→5], List@[14→5].next→ List@[14→5],
List@[15→5].next→ List@[15→5], List@[16→5].next→ List@[16→5],
List@[15→5].next→ List@[16→5], List@[15→5].next→ List@[16→5]}

The corresponding points-to graphs are in Figure 2.39b and Figure 2.39c.
While the result for 0-1-level call stack sensitivity is quite small, it is not
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precise enough to reveal that c.data does not contain secret information:
(a.next, c) ∈ C0-1-call. The results of the object-sensitive and 2-level call
stack sensitive analysis are precise enough ((a.next, c) < Cobj, (a.next, c) <
C2-call), but the call stack result contains an unnecessary distinction
between the list elements created from l. 15 and l. 16. The size difference
of the points-to configurations is not so huge in this example —as we
kept it deliberately small— but it can quickly become worse in real
programs. Additional call sites blow up the result quite easily, while
they are merged by the object-sensitive approach as long as they are
called on the same receiver instance.

Joana provides support for object-sensitive points-to analysis. Cur-
rently it is often the best option for precise points-to analysis available in
Joana. While n-CFA can be more precise (for n > 1) in certain situations,
it scales worse and in typical object-oriented programs the object sensi-
tivity does a better job at only distinguishing the relevant parts [91, 80].
Evaluation shows that object sensitivity still is quite time and memory
consuming, but the increased precision is very much noticeable in an
IFC setting. E.g. noninterference of the programs in §4.2 and §4.4 could
only be verified with the help of object sensitivity.

Flow-sensitivity and strong updates The concept of flow-sensitivity
has already been explained in §2.2.4. A flow-sensitive points-to analysis
can distinguish between various values of the same variable depending
on the point in the control flow where the variable is accessed. It is often
used in conjunction with strong updates that enable the analysis to detect
when the value of a variable has been overwritten.

We use the example in Figure 2.40 to explain how flow-sensitive
points-to works in general and subsequently show how it can be com-
bined with strong updates. A flow-sensitive points-to analysis can detect
that variable a only points-to the instance created in l. 6 after the assign-
ment in l. 8. Therefore the corresponding points-to graph (bottom part
of Figure 2.40b) contains multiple nodes for a single variable, depending
on the position of the variable in the control flow. There are 4 nodes for
variable a, one for every usage in l. 5, l. 7, l. 8 and l. 9. The first two
represent the object referenced before the assignment in l. 8. They only
point to the instance created in l. 5. After the assignment variable a
points to the instance created in l. 6 and the remaining two nodes reflect
that: They potentially point to both instances of A.
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1 class A {
2 int data;
3

4 int ptsFlow(int secret) {
5 A a = new A();
6 A b = new A();
7 a.data = secret;
8 a = b;
9 return a.data;

10 }
11 }

(a) program fragment

A@[5] A@[6]

a@[5]

b@[6]

flow sensitive with strong updates 

secret

a@[7]

a@[9] b@[8]a@[8]

secret

A@[5] A@[6]

a@[5]

b@[6]

flow sensitive without strong updates 

secret

a@[7]

a@[9] b@[8]a@[8]

secret

(b) two points-to graphs of a flow-sensitive anal-
ysis with and without strong updates

Figure 2.40: A program fragment (2.40a) and the corresponding points-to graphs
(2.40b) of a flow-sensitive analysis with and without strong updates.

However variable a does no longer point to the first instance of A
beyond l. 8. A standard inclusion-based approach cannot capture this
property, because it merges the points-to sets at the variable assignment
(pts(a)′ = pts(a)∪ pts(b)) instead of replacing it (pts(a)′ = pts(b)). This
behavior is necessary to retrieve valid results for a flow-insensitive
points-to analysis, because the points-to set of variable a has to reflect
the potential referenced objects at any point in the program, including
the parts before l. 8. A flow-sensitive points-to analysis on the other hand
distinguishes the various occurrences of variable a and therefore can
remove the first instance of A from all points-to sets of variable a after
the assignment in l. 8. It performs a strong update on the points-to set for
a. The top part of Figure 2.40b shows the corresponding points-go graph
of a flow-sensitive analysis with strong updates. The variable references
a@[8], a@[9] no longer point to A@[5]. The increased precision enables an
IFC analysis to detect the absence of information flow from l. 7 to 9 and
verify that the value of secret is not leaked.

Joana does not support flow-sensitive points-to analyses with strong
updates at this point, we are also not aware of any other IFC analysis tool
that does so. However it contains support for an intraprocedural dataflow
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analysis that detects killing definitions which in many cases produces
similar precision enhancements. For example the absence of information
flow in the example from Figure 2.40 can also be detected. Additionally
—as our analysis builds upon the SSA intermediate representation of the
program— we can take advantage of its inherent flow-sensitivity for local
variables. Programs are transformed to SSA form through renaming
local variables in a way that the value of every variable is only set at a
single point in the program. Thus a local variable may correspond to
multiple SSA variables depending on which value they refer to at the
current point in the program. This effectively turns a flow-insensitive
analysis on the SSA form of a program into a flow-sensitive analysis
for the original code which is a great advantage of using SSA form for
program analysis. However this flow sensitivity does not translate to
object fields and static variables, as they are not renamed in standard
SSA form. So a full flow-sensitive points-to analysis can still provide
improved results.

Flow-sensitive points-to analyses are in general very time and mem-
ory consuming. They have been researched for several years and an
approach that uses binary decision diagrams (BDDs) seems promis-
ing [11, 81]. But in combination with a standard points-to analysis
approach —that operates as an iterative dataflow problem on the control
flow graph— the analysis is still too complex, so that trade-offs have to
be made [136]. Nevertheless Markus Herhoffer incorporated BDD-based
points-to analyses into Joana [53] with the help of the DOOP pointer
analysis framework [17]. We noticed that additional precision gains are
possible, but the scalability improvement through BDDs was not as large
as expected. Basically a faster computation time was traded for huge
memory and disc space consumption (>100GB of disk space for 100kLoC
programs). Also, the DOOP framework relies on a proprietary datalog
engine that is not distributed freely and needs to be licensed. Therefore
we did opt to not include it into Joana.

So far we have not tried (semi-)sparse flow-sensitive points-to analysis
with BDDs [48, 49]. They do not operate on the control flow graph like
traditional pointer analyses, but rather propagate their intermediate
results only along data dependencies. This helps to limit the amount
of work as the intermediate results are only propagated to potentially
relevant program parts. However they need to run an initial (fast and less
precise) points-to analysis in order to compute those data dependencies.
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Demand driven points-to analysis uses a similar trick [104,52,121]. It
applies a fast and less precise points-to analysis on the whole program
for its initial results and runs a more sophisticated analysis on parts of
the program only upon request. This allows for a quick initial result
were precision can be added later on as needed. A demand driven
points-to analysis is included in the WALA framework we build upon.
So it is easily available for Joana. Due to the nature of our IFC analysis
—we compute a SDG model for the whole program independent of the
specific IFC property we want to show— we need to request a precise
analysis for any part of the program. This works against the demand
driven approach that produces the best results when the precise analysis
is only needed for a some parts of the program. However as future work
we can try to use the knowledge about the IFC properties already in the
SDG computation phase. This enables us to detect which parts of the
program are of interest and issue a request for a precise analysis only for
these parts.

Recent work [79] combines flow-insensitive with flow-sensitive anal-
ysis for special cases in order to enable strong updates without sacrificing
scalability. This approach may prove helpful in an IFC setting and its
integration in Joana is regarded as future work. In general mixtures
between different approaches and precision levels seem to yield the
best results in practice. The next section provides a short overview of
points-to analyses with mixed sensitivity options that are also available
in Joana.

Mixing different approaches Different approaches and sensitivity op-
tions can be mixed to achieve better analysis results for a given pro-
gram [90,62]. We present 3 different mixed approaches that are integrated
in Joana and have shown to be useful in practice.

selective class-based with threshold Typically instances of classes like
String or Integer are created at many points in a program. So when
we want to use a precise context-sensitive instance-based points-
to analysis the huge number of distinguishable instances tend to
compromise the overall performance of the analysis. Falling back to a
class-based approach resolves the scalability issues, but also reduces
precision. A popular solution is to use selective class-based analysis
for classes whose instance count exceeds a predefined threshold, e.g.
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more than 100 instances. So if a certain type is instanced in more
then 100 distinguishable contexts, the abstract heap locations are
merged to a single location with a class-based context >. This helps
to reduce the load on the points-to analysis from heavily used types
that often stem from code in the standard library. So the arguably
more important object instances of the application specific code are
still analyzed with full precision, while only the heavily used types
take a hit in precision for the sake of better analysis scalability.

selective object sensitivity for container classes The Java library pro-
vides a set of predefined container classes such as LinkedList or
HashMap. These classes are often used in programs to store all kind of
different objects. This proves to be a burden for points-to analyses,
because they have to keep track of which container instance is used
to store which data object. Even a 1-level call site sensitive analysis
is not enough to achieve the required precision as the internals of
container classes are modified indirectly through access methods like
addor remove. However, an object-sensitive analysis —distinguishing
calls to these access methods by their receiver instance— is precise
enough. As full object sensitivity is often too complex for larger
programs a reasonable trade-off is to analyze only container classes
with object-sensitivity and default to a less complex sensitivity option
for other classes.

selective object sensitivity for threads Selective object sensitivity is also
used for java.lang.Thread and its subclasses. This is necessary due to
the way threads are created in Java. To create a thread a programmer
declares a subclass of Thread and overrides its run method with the
code he wants the new thread to execute. Then he creates a new
instance and calls the inherited method start upon this instance.
The method spawns a new system level thread that executes the run
method of the subclass. This setup is problematic for a points-to
analysis, because every thread has to call the same inherited start
method. Without knowing any context start potentially may call
any run method from all threads used in the program. For a precise
result the analysis needs to keep track upon which object the start
method has been called in order to know which run method will be
executed.
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1 int main() {
2 return foo(1, 2, 3, 4);
3 }
4

5 int foo(int a, int b,
6 int c, int d)
7 {
8 int tmp1 = bar(a, b, c);
9 int tmp2 = bar(c, tmp1, d);

10 return tmp2;
11 }
12

13 int bar(int x, int y, int z) {
14 return x + z;
15 }

(a) Program

return x + z
14

retmain
1

retc tmp1 = bar()
8

retbar
13

return foo()
2

4321 ret

foo
5

dcba ret

ba rettmp2 = bar()
9

tmp1c

yx

call

return tmp2
10

call

call

call

data dependence
control dependence
call edge
parameter edge
summary edge

d

z

(b) System Dependence Graph

Figure 2.41: A program with multiple methods (2.41a) and its corresponding
system dependence graph (2.41b).

2.5.3 System dependence graph

The system dependence graph (SDG) [56] is the interprocedural extension
of the procedure dependence graph (PDG) from §2.3.6 Definition 2.8. It
captures the semantics of a whole program and contains a PDG for each
method.

Definition 2.17 (System Dependence Graph). A system dependence
graph G = (N, E) for a program p is a directed graph, where the nodes in N
represent statements in p, and the edges in E represent dependencies between
them [56]. The SDG is partitioned into procedure dependence graphs (PDG)
that model single procedures.

The PDGs are connected at call sites, consisting of a call node c that is

81



CHAPTER 2. INFORMATION FLOW CONTROL WITH SYSTEM
DEPENDENCE GRAPHS FOR OBJECT-ORIENTED LANGUAGES

connected with the entry node e of the called procedure through a call edge c
call e. All values and memory locations the called procedure may reference or

modify are modeled via synthetic parameter nodes (Definition 2.5) and edges:

referenced values and locations For each referenced value and location
there exists an actual-in node ai at the call site at node c and a matching
formal-in node fi at the entry e of the callee. A parameter-in edge ai

pi fi models the information flow into the callee.

modified values and locations Values and locations modified by the callee
are represented by a formal-out node fo at e and a matching actual-out
node ao at the call site c. The information flow from the callee to the call
site is modeled with a parameter-out edge fo po ao.

Formal-in and formal-out nodes are control dependent on entry node e, actual-in
and actual-out nodes are control dependent on call node c. So-called summary
edges between actual-in and actual-out nodes of one call site represent transitive
flow from a parameter to a return value in the called procedure.

SDGs enable us to analyze program properties via graph traversal.
Moreover, they are purpose-built for context-sensitive analyses, which
distinguish different invocations of the same procedure. Figure 2.41
contains an example for an SDG composed of multiple PDGs with
different call sites. The program consists of 3 methods foo, bar and the
main method, thus the SDG also consists of 3 PDGs. Each separate PDG
is marked with a gray background. Method main calls foo — bar is
called at two different call sites within foo. Therefore the SDG contains 3
call edges: 2 call 5, 8 call 13 and 9 call 13. At each call site the values
passed to the called method are modeled as actual-in nodes on the left
side of the call node. The actual-out node for values returned from the
method are on the right side of each call node. The formal-in and -out
nodes are placed accordingly at each entry node. Passing values between
call and called method is modeled with parameter edges. Aside from call
and parameter edges no other edges occur between nodes of different
PDGs14. This allows us to keep track of the calling context under which
an information flow occurs.

14This changes with the introduction of interference edges for the multithreaded extension
of the SDG.
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For example if we want to detect which inputs of the call to foo in
main can influence the return value of main, we can directly observe the
effect of context-sensitivity on the analysis result:

A naive context-insensitive approach applies a simple backwards
reachability analysis from the formal-out ret of the entry node for main.
Going backwards from the formal-out of main we reach the formal-out
of method bar through 13→9→10→5→2→1. With the dependencies
inside bar we reach formal-in nodes x and z. At this point a simple
reachability analysis achieves a less precise result due to the lack of
context-sensitivity: From the formal-in nodes of bar we can reach the
actual-in nodes of both calls from node 8 and 9. So we reach formal-ins
a, c and d of foo and subsequently detect that the first, third and fourth
parameter of the call to foo in main influence the return value. This
result is a conservative approximation of the actual dependencies, as
the first parameter in fact has no influence. We can do better with a
context-sensitive reachability analysis.

The context-sensitive extension of the backwards reachability analysis
keeps track of the call site through which a PDG was entered and only
traces dependencies back to this call site. This extension is in effect when
the formal-in nodes of node 13 are reached. We entered method bar
through the call in node 9, therefore we only trace back dependencies
that return to the same call: Actual-ins c and d of node 9. We ignore the
parameter-in dependencies from the call in node 8. The result is that
parameter 1 of the call to foo can no longer be reached and therefore
only parameter 3 and 4 influence the return value.

In the current example the context-sensitive reachability analysis
increases the precision of the result, but it also comes at a price. Keeping
track of the context through which a PDG has been entered can become
a complex task, given that SDGs are often quite large graphs with
thousands of nodes and hundreds of PDGs and call sites. Therefore
SDGs include additional so-called summary edges between the actual-in
and -out nodes of each call. These edges summarize the information
flow from the input of the call to its output. Figure 2.41b already
contains summary edges at the 3 call sites. They allow us to compute
context-sensitive reachability in linear time with a special two-phase
algorithm [56]. This algorithm from Horwitz, Reps and Binkley is
generally referred to as HRB slicing or context-sensitive slicing. The
downside of HRB slicing is that it depends on summary edges, which
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are quite complex to compute. A detailed description of the summary
edge computation and HRB slicing can be found in the upcoming section
§2.5.4.

SDGs for object-oriented languages We focus on the computation of
SDGs for object-oriented languages. As previously explained, challenges
arising from object-orientation are object- and field-sensitivity, exceptions,
dynamic dispatch and objects as parameters. These features lead to statically
undecidable problems that are commonly approximated with the help
of a points-to analysis as presented in the previous section §2.5.2. One
usage of points-to information is to resolve dynamic dispatch. Once it
is known to which objects a reference may point to at runtime, one can
determine the possible target methods of a dynamic dispatch. Points-to
information is also used to achieve object- and field-sensitivity: It is
possible to model two objects of the same type separately in the SDG if
they are not may-aliasing.

Another application of points-to information is the precise computa-
tion of method side-effects. It is used to determine which object fields
may be read or modified during method execution and to create the
synthetic parameter nodes for these fields in the SDG. The computation
of these synthetic nodes has a big influence on the scalability of the SDG
computation as a whole, which is investigated in the subsequent section
§2.6.

Improving Scalability SDGs are built through an intraprocedural
phase that covers local control and data dependencies —basically com-
puting a PDG for each method in isolation— and an interprocedural
phase that combines the intraprocedural results and models their effects
on the global state of the program. The interprocedural phase consists
roughly of four steps:

1. Call graph and points-to computation

2. Computation of additional parameter nodes arising from method
side-effects

3. Computation of data dependencies for these new parameter nodes

4. Summary edge computation
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Step (1) is a prerequisite for the intraprocedural phase, because the call
graph is used to detect which methods are called and therefore which
PDGs need to be computed. It it is also used to resolve dynamic binding
at call sites and to compute method side-effects in step (2). Steps (3)
and (4) depend on the results of step (2), because they operate on the
additionally created parameter nodes.

Our evaluation revealed that the intraprocedural phase has no scal-
ability issues, whereas the interprocedural phase is the main reason
for long runtime and huge memory consumption. The first step of the
interprocedural phase is a well-known and extensively researched prob-
lem — as many other analyses aside from SDG construction depend on
points-to and call graph information. In the previous sections §2.5.1 and
§2.5.2 we already showed that there are various options available that
let us choose between precision and scalability. The remaining steps are
more specific to SDG computation. The step (2) parameter computation
seems to be crucial, because its results are used in the subsequent steps
(3) and (4). When we apply the parameter computation introduced by
Hammer [46] a scalability problem occurs: A faster and less precise
point-to analysis in step (1) often leads to greater memory consumption
and a longer overall runtime in the subsequent steps — preventing the
analysis of larger programs. We determined the way how additional
parameters are computed to be responsible. In general a less precise
points-to information resulted in a larger number of additionally created
parameter nodes and slowed down the subsequent data dependency and
summary edge computations. We take a closer look at the computation
of those additional parameters and explain the observed behavior in
section 2.6. We also introduce our own parameter computation algorithm
that fixes this problem.

2.5.4 Summary edges and HRB slicing

Summary edges are a crucial prerequisite for the HRB slicer that allows
context-sensitive reachability analysis in linear time. They are computed
in the last step of the interprocedural SDG computation. They have first
been proposed by Horwitz et al. [56] with a computation algorithm based
on attribute grammars. The computation algorithm has been significantly
improved by Reps et al. [105] to a runtime complexity of O(n3) where n
is the number of nodes in the SDG. Algorithm 2.1 describes an optimized
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version of the summary computation that has been tweaked with an
additional map fragmentPath that stores intermediate results, sacrificing
memory usage for improved runtime [44].

Algorithm 2.1 (Summary edge computation).
PROCEDURE ComputeSummaryEdges(sdg)
INPUT: A system dependence graph sdg
OUTPUT: Set of summary edges summary
BEGIN
Set<Edge> PathEdge = ∅, summary = ∅, WorkList = ∅
Map<Node, Set<Edge>> fragmentPath = new empty map
FOREACH (formal-out node w ∈ sdg) DO
PathEdge = PathEdge ∪{w → w }
WorkList = WorkList ∪{w → w }
DONE

WHILE (WorkList , ∅) DO
WorkList = WorkList \{v → w}
IF (v is actual-out) THEN
FOREACH (x such that x → v ∈ summary ∨ x cd v ∈ sdg) DO
Propagate(x → w)
DONE
ELSE IF (v is formal-in) THEN
FOREACH (call node c with ∃c cal l Entry(w) ∈ sdg) DO
x = matching actual-in for v at call c
y = matching actual-out for w at call c
summary = summary ∪ {x → y }
FOREACH (a such that y → a ∈ fragmentPath(y)) DO
Propagate(x → a)
DONE
DONE
ELSE
FOREACH (x with x dd v , x dh v or x cd v ∈ sdg) DO
IF (NOT (x cd v and x and v both parameter nodes)) THEN
Propagate(x → w)
FI
DONE
FI
DONE
RETURN summary
END

PROCEDURE Propagate(e)
INPUT: A sdg edge e = v → w
OUTPUT: Potentially added edge e to WorkList, PathEdge and fragmentPath(w)
BEGIN
IF (e < PathEdge) THEN
PathEdge = PathEdge ∪{e }
WorkList = WorkList ∪{e }
IF (v is actual-out) THEN
fragmentPath(w) = fragmentPath(w) ∪{e }
FI
FI
END
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The summary edge computation in Algorithm 2.1 computes for
each formal-out node which formal-in nodes of the same method can
reach it through a same-level path. This information is transferred to
summary edges between the matching actual-in and -out nodes at the
corresponding call sites. The algorithm is described in detail in [105] and
evaluated in [70]. We include the pseudocode of the algorithm in this
thesis as Chapter 3 contains an extension of this algorithm in §3.4.4. The
extension is tailored for modular analysis and incorporates precomputed
information into the computation in order to improve computation time.

We introduced slicing in §1.2. In general a program slice is a set
of SDG nodes that potentially can influence the slicing criterion. The
slicing criterion is also a set of nodes — in an IFC setting these are often
program statements related to public output and we want to detect if
some statement that handles secret information is in the slice. A program
slicer uses a reachability check on the dependence graph in order to
check which statements can be influenced. Ideally this check should
be context-sensitive to minimize false alarms. The standard approach
to context-sensitive slicing is the so-called HRB slicer [56] invented by
Horwitz, Reps and Binkley.

The HRB slicer in Algorithm 2.2 takes a SDG with summary edges
and a set of nodes called slicing criterion. It computes context-sensitive
reachability for all nodes in the criterion in O(#edges). The algorithm
consists of two phases. Phase 1 traverses the graph “upwards” only
ascending to calling methods, while using summary edges to bypass
call statements. The actual-out nodes of call statements are connected to
corresponding formal-out nodes of the callees through parameter-out
edges. These formal-outs are stored for later usage in phase 2 in list W2.
Phase 2 then traverses the graph “downwards” only descending into
called methods. It uses all nodes in W2 as a starting point. The result is a
context-sensitive slice for the given criterion.
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Algorithm 2.2 (Two-phase HRB slicer). From Horwitz, Reps and Binkley
[56] with an asymptotic runtime of O(#edges in sdg).

PROCEDURE hrbSlice(sd g, crit)
INPUT:
A system dependence graph with summary edges sd g
A set of nodes as slicing criterion crit
OUTPUT:
The slice for the criterion crit: sl ice
BEGIN
// two worklists and the result set
W1 = {n | n ∈ crit }, W2 = { }, sl ice = {n | n ∈ crit }

/* phase 1 */
DO

W1 = W1 \ {n } // process the next node in W1
// handle all incoming edges of n
FORALL (n ′ e n ∈ sd g) DO
// n ′ has not been visited yet
IF (n ′ < sl ice) THEN

sl ice = sl ice ∪ {n ′ }
FI
// if e is not a parameter-out edge, add n ′ to W1, otherwise, add n ′ to W2
IF (e is parameter-out) THEN

W1 = W1 ∪ {n ′ }
ELSE

W2 = W2 ∪ {n ′ }
FI
DONE
WHILE (W1 , ∅)

/* phase 2 */
DO

W2 = W2 \ {n } // process the next node in W2
// handle all incoming edges of n
FORALL (n ′ e n ∈ sd g) DO
// n ′ has not been visited yet
IF (n ′ < sl ice) THEN
// if e is not parameter-in or call, add n ′ to W2 and to the slice
IF (e is parameter-in or call) THEN

W2 = W2 ∪ {n ′ }
sl ice = sl ice ∪ {n ′ }

FI
FI
DONE
WHILE (W2 , ∅)

RETURN sl ice
END
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2.6 Parameter-model

In an object-oriented language such as Java method calls can have side-
effects that change the state of an object passed as a parameter — e.g.
adding an element to an existing list or setting a new value for a field.
These side-effects can influence the program behavior at the call site and
therefore need to be modeled in the SDG. The parameter model describes
how these side-effects are represented in the SDG. In general they are
represented through additional parameter nodes at the call site and the
PDG of the callee. The choice of the parameter model has a huge impact
on the precision, scalability and soundness of the resulting SDG. In our
work we build upon the work of Liang and Harrold [82] as well as
Hammer [46] who suggested using object-trees to model objects passed as
parameters, where a node represents an object and its children represent
its fields. While this model presents a sound and precise approximation
of the side-effects, we show that object-trees cause severe performance
problems: Their size grows with declining precision (and thus improved
runtime) of the points-to analysis. An imprecise points-to analysis leads
to huge object-trees, reducing the performance of SDG computation. In
order to get the object-tree sizes under control, one has to employ highly
precise points-to analyses, which do not scale for larger programs. We
suggest to model parameters as object-graphs [36, 35] instead of trees
and merge duplicate information from different subtrees into a single
representation.

In this section we introduce object-graphs as a new parameter model
for SDGs of object-oriented languages. We explain in detail how object-
graphs are computed and show their scalability benefits in an evaluation
that compares the results to other parameter models. Therefore we
also briefly introduce alternative parameter models such as object-trees
and the unstructured instruction-based approach as used in the SDG
computation that comes with the WALA framework. Our evaluation
consists of 20 small (100LoC) to medium (60kLoC) sized programs and
covers various options: Four points-to analyses provide different levels
of precision. The results show that object-graphs are the best choice
for imprecise points-to analyses and also work well with more precise
points-to information. In general points-to precision in most cases has
a moderate influence on the overall precision —measured through the
average size of a slice— (around 4%, but up to 24%) while it has a huge
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1 class Data {
2 Node list1 = new Node();
3 Node list2 = new Node();
4 }
5

6 class Node {
7 int i = 1;
8 Node next;
9 }

10

11 static void main() {
12 Data d = new Data();
13 append(d.list1, 4);
14 d.list2 = d.list1;
15 int sum = sumData(d);
16 println(sum);
17 }
18

19 static int sumData(Data d) {
20 Node sum1 = sum(d.list1);
21 Node sum2 = sum(d.list2);
22 return sum1.i + sum2.i;
23 }

24 static void append(Node node, int len) {
25 for (int i = 0; i < len; i++) {
26 node.next = new Node();
27 node = node.next;
28 }
29 }
30

31 static Node sum(Node n) {
32 int sum = 0;
33 while (n != null) {
34 sum += n.i;
35 n = n.next;
36 }
37 Node res = new Node();
38 res.i = sum;
39 return res;
40 }

Figure 2.42: Small program performing list operations with recursive data
structures. It contains side-effects and aliasing to showcase the differences
between the parameter models.

impact on the analysis runtime.
In the following we start with the description and overview of

three different parameter models —unstructured, object-tree and object-
graph— before we continue with a detailed examination of the differences
between object-tree and -graph and their computation. We conclude
with an evaluation and a discussion of the results.

Common example Figure 2.42 shows a program that builds a data
structure with two single-linked lists of integers and subsequently
computes the sum of all entries in both. We use this example to showcase
the differences the parameter model makes on the structure of the
resulting SDG. The program starts in l. 11, it creates a new Data object
and appends 4 new elements to list1 in l. 13. The assignment in l. 14
introduces aliasing between list1 and list2. Finally the sum of both
lists is computed and printed to console. During the computation method
sum creates a new Node instance to hold the result. This temporary object
never leaves the boundaries of sumData. The object-tree and -graph
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...

return sum1.i 
+ sum2.i

call
call

d retsumData[@12].list1
@20

[@12].list2
@21

[@37].i
@38

[@2,3,26].i
@34

[@2,3,26].next
@35

Node sum2 = 
sum(d.list2) retn [@37].i

@38
[@2,3,26].next

@35
Node sum1 = 
sum(d.list1) retn [@37].i

@38
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[@37].i
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[@2,3,26].i
@34

[@2,3,26].i
@34

[@2,3,26].i
@34

Figure 2.43: Part of the SDG with an unstructured parameter model for the
example in Figure 2.42 analyzed with a context-insensitive points-to analysis.

approach can detect that sumData has no visible side-effects and therefore
no additional parameter nodes need to be created for it. The unstructured
parameter model however creates unnecessary nodes. The differences
between object-tree and -graph model is visible in the way they model
nodes for the two aliased lists.

2.6.1 Unstructured model

The unstructured parameter model is closely tied to the points-to analysis
used. It creates a new parameter node for each distinguishable memory
location that may be accessed during method execution. The amount
of distinguishable locations depends on the precision of the points-to
analysis: The more precise it is, the more nodes will be created. Its
main advantage is that it is easy to compute which nodes need to be
created — a simple reachability analysis on the call graph can detect
which methods may be called transitively and a one-time pass through
the instructions of each method suffices to extract points-to information
for all encountered field access instructions.

Figure 2.43 shows a part of the SDG for the common example
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Figure 2.44: Part of the SDG with an unstructured parameter model for the
example in Figure 2.42 analyzed with a 1-level call stack sensitive points-to
analysis.

in Figure 2.42. The SDG contains parameter nodes computed with
the unstructured parameter model and a context-insensitive points-to
analysis. The part shown focuses on method sumData and its calls to sum.
The additional parameter nodes created with the unstructured approach
are labeled with the line numbers of the object instantiation sites and
field access instructions that triggered their creation. E.g. the input
parameter labeled “[@2,3,26].next@35” refers to the access of field next in
l. 35 on the object created either in l. 2, l. 3 or l. 26. Method sum reads from
fields i and next in l. 34 and l. 35. Thus two additional input-parameter
nodes are created. Method sum also creates a new instance of Node and
writes the computed sum to field i. This is represented by an additional
output-parameter node. These nodes are propagated through the call
sites to sumData. In addition to the propagated nodes, sumData also has
two input-parameter nodes for the field accesses to list1 and list2. In
this example the unstructured parameter model results in a total of 5
additional parameter nodes — 4 input and 1 output node — for method
sumData.

This approach is used by the SDG builder that comes with the WALA
framework. Its computation scales quite well in theory, but in practice it
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is not very usable — especially for precise points-to analyses where it
creates a large amount of additional parameters. While the additional
parameters can be computed very fast, their number can become large
and present a struggle for the successive phases of the interprocedural
SDG computation, like summary edge computation.

As shown in the example for context-insensitive points-to analyses,
the number of additional parameters is bound by the number of object
instantiation instructions in the program. Typically each instantiation
instruction is modeled as a single separate distinguishable location. For
context-sensitive analyses the number of additional parameters grows:
It is bound by the number of object instantiations times the number of
distinguishable contexts they may appear in.

The impact of a slightly more precise points-to analysis can be seen
in Figure 2.44: It shows the same part of the SDG as the previous figure,
but computed with a 1-level call site sensitive points-to analysis. Due to
the call stack sensitivity the calls to sum in l. 20 and l. 21 are analyzed
separately. Now each call produces 3 additional parameter nodes for
sumData, resulting in a total of 8 additional parameter nodes in this
scenario.

While this approach computes new parameters fast, it fails to group
parameters with a similar effect together and therefore creates unneces-
sary many parameters. In contrast to the object-tree and -graph model
it also does not include an implicit escape analysis that detects method
local memory accesses that are not visible to the caller. These invisible
accesses still produce additional parameter nodes in the unstructured
model, while they could have been omitted. E.g. in the current example
the modification of field i of the object created in method sum is not
visible outside of sumData, as the created object is not returned. So the
additional output nodes could have been omitted. Our evaluation shows
that the additional costs of the escape analysis almost always pays off
and that less nodes increase the precision of the result and also help to
reduce runtime of summary edge computation.

2.6.2 Object-tree model

The object-tree model structures additional parameters as trees beneath
the nodes of the normal method parameters. Each node represents a
field and its parent node represents the object that contains it. The tree

93



CHAPTER 2. INFORMATION FLOW CONTROL WITH SYSTEM
DEPENDENCE GRAPHS FOR OBJECT-ORIENTED LANGUAGES

return sum1.i 
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n retsum

i next i

Figure 2.45: Part of the SDG with an object-tree parameter model analyzed with
a context-insensitive points-to analysis for the example in Figure 2.42.

structure shows —starting from the normal root-parameter nodes— how
a certain value can be reached through subsequent field access operations.
This is an advantage to the unstructured model, where the access path of
a value is not visible. It allows us to group nodes together that represent
a value accessed in the same way and also to detect and ignore nodes of
values that are not accessible.

Figure 2.45 shows a part of the SDG computed with a context-
insensitive points-to analysis and the object-tree model. The additional
parameters are connected through parameter-structure edges and form a
tree. E.g. at the interface of method sumfields i and nextof parameter n
are read, while field i of the return value object is written. The structure
of the additional parameters allows us to infer if a certain effect is visible
outside of a method boundary. In the current example this is the case
with the field i modified by method sum. While the return value of sum
is an object that contains a reference to i, the return value of sumData is a
primitive integer. Thus the return value of sumData cannot not contain a
reference to the modified field and the matching output-parameter node
must not be included in the interface of sumData. In total the object-tree
approach creates 6 additional input parameters for sumData.
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Figure 2.46: Part of the SDG with an object-tree parameter model analyzed with
a 1-level call stack sensitive points-to analysis for the example in Figure 2.42.

In contrast to the unstructured approach, the number of additional
parameter nodes in the example does not increase with a more precise
points-to analysis. Figure 2.46 shows the SDG part with object-trees for
the 1-level call site sensitive analysis. While the two calls to sum are now
treated separately, both calls result in similar parameter nodes, thus the
number of additional nodes at the caller sumData does not change and
remains at 6.

A disadvantage of the object-tree approach however is that it can
produce unnecessarily many nodes for a single location in case the
location is reachable through different access paths. In the current
example this is the case for elements of list1 and list2 passed to
sumData. Before the call to sumData both elements are set to the same
location in l. 14. So all fields referenced through list1 refer to the same
location when referenced through list2 (e.g. d.list1.i == d.list2.i).
Yet separate nodes are created for them. E.g. in Figure 2.46 there is a
node i reachable from node list1 and another node i reachable from
list2. Both nodes however have the same outgoing dependencies, as
they effectively refer to the same memory location.

These duplicate nodes can occur for two reasons: Either a location
can in fact be reached through different access paths or —in case the
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Figure 2.47: Part of the SDG with an object-graph parameter model analyzed
with a context-insensitive points-to analysis for the example in Figure 2.42.

underlying points-to analysis is not precise enough— two access paths
point-to locations that cannot be differentiated by the points-to analy-
sis. In the current example the first reason applies, but often —when
analyzing larger programs— we need to apply a fast and less precise
points-to analysis that tends to group many actual locations into a single
abstract location. The new object-graph approach tackles this problem
by using arbitrary graphs instead of trees to structure parameter nodes.
The graph structure merges sub-trees of nodes that refer to the same
location and thereby removes the duplicate nodes.

2.6.3 Object-graph model

The object-graph model refines the object-tree approach. It allows
parameter nodes to share subtrees in case they refer to the same location.
Object-graphs remove the bottleneck introduced by object-trees for less
precise points-to analyses and therefore are well suited to analyze larger
programs. As only nodes that correspond to the same location are
combined, no precision is lost when compared to the object-trees.

Figure 2.47 shows the SDG part of the common example with the
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return sum1.i 
+ sum2.i

d retsumData

list1 list2

i next
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i next i
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sum(d.list2) retn
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...
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...

n retsum
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Figure 2.48: Part of the SDG with an object-graph parameter model analyzed
with a 1-level call stack sensitive points-to analysis for the example in Figure 2.42.

object-graph parameter model and context-insensitive points-to analysis.
In contrast to the object-tree model, we use the information that list1
and list2 point-to the same location. Therefore all fields reachable from
list1 is also reachable from list2 and vice versa. Hence we can share
the sub-trees and hereby reduce the amount of additional nodes. In this
example the object-graph parameter model creates 4 additional input
parameter nodes. Like the object-tree approach it can detect that no
additional output nodes need to be created.

Unlike the unstructured model, the object-graph model does not
produce a huge amount of additional nodes when the points-to analysis
precision is increased. Figure 2.48 shows the resulting SDG part of the
common example for a more precise 1-level call stack sensitive points-to
analysis. There the number of additional nodes for the interface of
sumData did not change compared to the context-insensitive variant. Still
only additional 4 nodes are created.

We have argued that object-graphs combine the benefits of the object-
tree and the unstructured model: (1) They do not produce unnecessary
duplicate nodes for aliased location like the object-trees. (2) They
maintain the benefit of object-trees when used with more precise points-
to where the unstructured approach struggles. Also we can detect which
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side-effects are not visible outside of a methods boundary and remove
corresponding nodes from the methods interface. In the following we
take a closer look at the computation algorithm of object-trees before we
explain in detail the changes and adjustments made for the object-graph
model.

2.6.4 Computation

Object-tree computation

The object-tree model uses an object- and field-sensitive representation
for all fields a method may read or modify. A method holds an object-tree
for each parameter: The parameter itself corresponds to the root node
of its object-tree, while the child nodes match the accessed fields of the
parameter object. The computation is initialized with a single root node
for each parameter and subsequently adds new child nodes through a
fixed-point computation that consists of one initial and two mutually
iterating steps:

1. Create root nodes for each method in the program.

2. Repeat until object-trees no longer grow:

(a) Intraprocedural for each method: Examine all field access
instructions and add new child nodes to the current root nodes
or already existing child nodes that match the field access.
Ignore the field access if no current node in the interface
qualifies as a parent.

(b) Interprocedural: Propagate the effects of method calls from
callee to caller. Check for each child node of a called method
if it can be added to the interface of the caller.

The interprocedural step (a) and the intraprocedural step (b) are repeated
until a fixed-point is reached, as they may add new child nodes to the
interface of a method that could act as a parent for previously ignored
field accesses from the other step.

Our computation algorithm differs from the initial algorithm devel-
oped by Hammer [44] because we do not compute new parameter nodes
directly, but rather compute an intermediate representation of so-called
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field-candidates. This approach has the benefit that it is more flexible
and allows us to compute the upcoming object-graph with only minor
changes to the algorithm. Another optimization to Hammers approach
is that we keep input and output parameters in a single data structure to
avoid redundancy and extract the specific input and output parameter
trees later on in a separate step.

We compute field-candidates for each field access in the program. If
an existing parameter node qualifies as a parent node for a candidate, a
new parameter-node is created for the candidate.

Definition 2.18 (Field-Candidate). A field-candidate f c is a 4-tuple f c =
(ptsbase, f , pts f , acc) that describes the location and effects of one or more field
access operations. It contains the points-to set ptsbase of the base-pointer, the
field name f of the accessed field, the points-to set pts f of field f and an access
qualifier acc ∈ {re f , mod, both}. The access qualifier qualifies if the location has
been referenced (re f ), modified (mod) or both (both).

Each method in the program has its own set of object-trees —one for
each parameter— that describes the visible side-effects of the method.
The object-tree parameter nodes computed from the field-candidates are
defined as follows.

Definition 2.19 (Tree-Parameter). A tree-parameter tp is a 4-tuple tp =
(parent, f , pts f , acc) that describes the memory location of a field accessed
during execution of a method. It contains a reference to its parent parameter.
The reference is > (or null) for root parameters. Field name f and points-to set
pts f contain the name and points-to set of the accessed field. The access qualifier
shows if the field has been referenced (re f ), modified (mod) or both (both).

During computation we add a new child to tree-parameter tp for
every candidate f c where f c.ptsbase and tp.pts f may refer to the same
location and the type of tp. f holds a reference to field f c. f . There may be
multiple candidates for the same field that qualify as child of the same
tree-parameter —e.g. candidates from different access operations to the
same field with distinguishable points-to sets. In this case the points-to
sets of all candidates are merged to a single tree-parameter. This helps
to reduce the size of the resulting trees, but may harm precision.

A problem of this approach is that recursive data structures can lead
to trees of infinite depth. So a special treatment of recursive structures is
required.
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1 class Node {
2 Node next;
3

4 static void append(Node node, int len) {
5 node.next = new Node();
6 node = node.next;
7 for (int i = 1; i < len; i++) {
8 node.next = new Node();
9 node = node.next;

10 }
11 }
12 }

Figure 2.49: Example for object-trees with potential infinite depth.

Unfolding recursive data structures When we represent the parameter
structure in form of trees, recursive data structures pose a problem. Fig-
ure 2.49 contains an example with a linked list defined as recursive
data structure. The length of the list created by append is in general not
statically known, but the object-tree has to be limited somehow. Liang
and Harrold [82] proposed to k-limit the tree depth with an arbitrary
number k. This approach prevents an infinite expansion, but can sacrifice
soundness. Hammer [46] introduced a unfolding criterion that limits the
size of object-trees and maintains soundness without the loss of precision.
It uses points-to information to decide how far an object-tree is allowed
to expand. The unfolding criterion works as follows:

Definition 2.20 (Object-Tree Unfolding Criterion). A new child parameter
node c is only added to parameter node p, if no other node n on the path from
the root node to p has the same points-to set as c. So given p1 · · · pn is the
path to p with p.parent = pn and pi.parent = pi−1.parent, c is only added if
@n ∈ {p1 · · · pn, p} with n.pts f ⊆ c.pts f and n. f = c. f .

In our example in Figure 2.49 a fairly precise points-to analysis is
able to distinguish between the object instance created in l. 5 and the
one created in l. 8. Depending on the value of parameter len, l. 8 is
executed multiple times and thus may create more than one new object.
No points-to analysis is not able to distinguish all of them, because
the number of loop iterations is in general not detectable for a static
analysis. Typically only the nodes created by the first and the second
new-statement can be distinguished. So the unfolding criterion limits the
depth of the object-tree for parameter node to two children. The right side
of Figure 2.49 displays how the object-tree for node looks like using the
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k-limiting from Liang and Harrold and the points-to limited unfolding
criterion from Hammer. In Joana we use the unfolding criterion of
Definition 2.20 as it can guarantee soundness [44].

Algorithm We present an object-tree computation algorithm that im-
proves upon the original approach by Hammer. Our approach is based
on field-candidates as intermediate representation and a single data struc-
ture to represent referenced and modified fields. Later —in a separate
step— we extract the resulting input- and output-tree-parameter nodes.
Our approach performs better due to the smaller memory footprint and
fewer nodes during propagation. In the upcoming section we show
how —exploiting the intermediate representation with field-candidates—
the algorithm can be adapted to compute object-graphs with only small
modifications.

Algorithm 2.3 (Object-tree computation).
PROCEDURE build_objecttree(c g)
INPUT:
Call-graph c g
OUTPUT:
Mapping of method to object-tree map
BEGIN
Map<Method, Tree> map = new empty map
FORALL (methods m ∈ c g) DO

tm = emit_root(m)
tm = adjust_local_interface(m, tm)
map.put(m, tm)

DONE
DO
FORALL (calls m1 → m2 ∈ c g) DO

tm1 = map.get(m1), tm2 = map.get(m2)
tm1 = coalesce(tm1, emit_from_tree(tm2))
tm1 = adjust_local_interface(m1, tm1)
map.put(m1, tm1)

DONE
WHILE (object-trees changed)
RETURN map
END

PROCEDURE emit_root(m, t)
INPUT:
Method m
OUTPUT:
Object-tree t
BEGIN

t = empty object-tree
add root node > to t
FORALL (parameters p of m) DO

ptsp = points-to set of parameter p
Add (> , p , ptsp , both) to t
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DONE
ptsstat ic = artificial unique set for static fields
add pstat ic = (> , stat ic , ptsstat ic , both) to t
IF (m has a return value ret) THEN

ptsret = points-to set of return value
add pret = (> , ret , ptsret , re f ) to t
FI
IF (m can throw an exception) THEN

ptsexc = points-to set of all exceptions thrown by m
add pexc = (> , exc , ptsexc , re f ) to t
FI
RETURN t
END

PROCEDURE coalesce(t, cands)
INPUT:
Object-tree t
Set of candidates cands
OUTPUT:
Object-tree t ′
BEGIN

t ′ = copy of t;
FORALL (candidates cand ∈ cands, p ∈ t with p.acc ∈ re f , both) DO
IF (p.pts f ∩ cand.ptsbase , ∅ AND
type of p. f can reference field cand. f AND
@n ∈ path from > to p where n .pts f ⊆ cand .pts f ∧ n . f = cand . f)

THEN
IF (p has no child for field cand. f) THEN
add (p , cand . f , cand .pts f , cand .acc) to t ′

ELSE
get child ch of p with ch. f = cand. f
ch.pts f = ch.pts f ∪ cand.pts f
IF (ch.acc , cand.acc) THEN

ch.acc = both
FI
FI
FI
DONE
RETURN t ′
END

PROCEDURE adjust_local_interface(m, t)
INPUT:
Method m
Object-tree t
OUTPUT:
Object-tree t ′
BEGIN

t ′ = copy of t
DO
FORALL (instructions i ∈ m) DO

t ′ = coalesce(t ′, emit_from_instruction(i))
DONE
WHILE (fixed-point of t ′ is not reached)
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RETURN t ′
END

PROCEDURE emit_from_instruction(i)
INPUT:
Instruction i
OUTPUT:
Set of emitted candidates
BEGIN
IF (i is field access) THEN
create new candidate cand = (ptsbase , f , pts f , acc)
IF (i is static access) THEN

cand.ptsbase = ptsstat ic
ELSE

cand.ptsbase = points-to of base pointer of i
FI
cand. f = accessed field of i
cand.pts f = points-to of accessed field of i
IF (i is field-get) THEN

cand.acc = ref
ELSE

cand.acc = mod
FI
RETURN {cand}
FI
RETURN ∅
END

PROCEDURE emit_from_tree(t)
INPUT:
Object-tree t
OUTPUT:
Set of emitted candidates cands
BEGIN

cands = ∅
FORALL (nodes n ∈ t where n , > AND n.parent , >) DO
create new candidate cand = (ptsbase , f , pts f , acc) with
cand.ptsbase = n.parent.pts f
cand. f = n. f
cand.pts f = n.pts f
cand.acc = n.acc
cands = cands ∪ {cand }

DONE
RETURN cands
END

Algorithm 2.3 computes the object-tree parameters for every method
contained in a given call graph. In addition to the call graph it uses
points-to and type information to create new field-candidates and tree-
parameters. The computation starts in procedure build_objecttree with
the initial computation of root nodes for each parameter. The object-trees
for every parameter of a method are stored in a single tree structure with
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> as artificial root node. Procedure emit_root adds root parameters for
each method parameter, as well as for the return value. It also creates
special root nodes for static field accesses and possible exceptions of the
analyzed method. Procedure adjust_local_interface adds new child
nodes that correspond to method local field accesses to the provided tree.
Procedure coalesce guarantees that only one child node per field exists
and the unfolding criterion is met when new tree-parameters are added.
The interprocedural propagation takes place in the do while-loop of
build_objecttree: The algorithm repeatedly iterates over all method
calls and tree-nodes from the interface of the callee and propagate to the
caller, iff a matching parent node exists. Propagation is finished when
no additional tree-parameters have been added during the previous
iteration.

In the next step —shown in Algorithm 2.4— the input- and output-
parameters for each method are extracted from the computed object-tree
data structure.

Algorithm 2.4 (Extract input and output nodes from object-tree).
PROCEDURE extract_output_nodes(t)
INPUT:
Object-tree t
OUTPUT:
Object-tree of all output-parameter nodes tmod
BEGIN

tmod = empty tree
add all root parameters rp ∈ t with rp .parent = > to tmod
FORALL (nodes f ∈ t where f.acc ∈ {mod, both}) DO
add all nodes on the path from > to f in t to tmod
DONE
RETURN tmod
END

PROCEDURE extract_input_nodes(t)
INPUT:
Object-tree t
OUTPUT:
Object-tree of all input-parameter nodes tre f
BEGIN

tchop = copy of t
remove pret, pexc and all their children from tchop
tre f = empty tree

add all root parameters rp ∈ tchop with rp .parent = > to tre f
FORALL (nodes f ∈ tchop where f.acc ∈ {ref, both}) DO
add all nodes on the path from > to f in tchop to tre f
DONE
RETURN tre f
END
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Object-graph computation

The object-graph computation is closely related to the object-tree al-
gorithm already presented. Again field-candidates of Definition 2.18
are used to compute a similar intermediate result. In contrast to the
tree-parameters used in object-trees, the object-graph is directly built
from field-candidates. During computation we maintain a set of mod-ref
field-candidates and build an object-graph from these sets afterwards.
This separation allows us to minimize the memory footprint, as we do not
need to create new graph-parameter objects during the memory-critical
propagation phase. We introduce two variants of the algorithm: a slower
and more precise variant called standard and a faster less precise variant
called fast. We start with the standard variant.

1. Add root field-candidates to each methods mod-ref set.

2. Compute local field-candidates for each method.

3. Repeat until mod-ref sets no longer change.

(a) Intraprocedural for each method: Add local field-candidates
created from the instructions of the current method to its
mod-ref set. Add only new candidates if they can be reached
through an element already in the set.

(b) Interprocedural: Propagate effects of method calls from callee
to caller. Add all field-candidates in the mod-ref set of the
callee to the mod-ref set of the caller. Add only new candidates
that can be reached from elements already in the callers set.

4. Build object-graph structure from mod-ref sets.

5. Extract input- and output-nodes from object-graph.

Algorithm (standard) The standard variant of the object-graph com-
putation is shown in Algorithm 2.5.
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Algorithm 2.5 (Object-graph computation).

PROCEDURE build_objectgraph(c g)
INPUT:
Call-graph c g
OUTPUT:
Mapping of method to object-graph map graph
BEGIN
Map<Method, Graph of candidates> map graph = new empty map

Map<Method, Set of candidates> mapmodre f , map local, maproot = new empty maps

FORALL (methods m ∈ c g) DO
rootm = emit_root(m)
candsm = build_local_interface(m, rootm)
map local.put(m, candsm)
maproot.put(m, rootm)
modre fm = copy of rootm
mapmodre f .put(m, modre fm)

DONE

DO
FORALL (methods m ∈ c g) DO

candsm = map local.get(m)
modre fm = mapmodre f .get(m)
modre f ′m = add_reachable_to_set(modre fm, candsm \ modre fm)
mapmodre f .put(m, modre f ′m)

DONE
FORALL (calls m1 → m2 ∈ c g) DO

rootm2 = maproot.get(m2)
modre fm1 = mapmodre f .get(m1)

modre fm2 = mapmodre f .get(m2)

modre f ′m1
= add_reachable_to_set(modre fm1, modre fm2 \ rootm2)

mapmodre f .put(m1, modre f ′m1
)

DONE
WHILE (mod-ref sets change)

FORALL (methods m ∈ c g) DO
modre fm = mapmodre f .get(m)
g = extract_graph(modre fm)
map.put(m, g)

DONE

RETURN map
END

PROCEDURE emit_root(m)
INPUT:
Method m
OUT:
Candidates for root nodes roots
BEGIN

roots = new empty set
pts> = artificial unique points-to set for root candidates
FORALL (parameters p of m) DO

ptsp = points-to set of parameter p
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add (pts> , p , ptsp , both) to roots
DONE
ptsstat ic = artificial unique set for static fields
add pstat ic = (pts> , stat ic , ptsstat ic , both) to roots
IF (m has a return value ret) THEN

ptsret = points-to set of return value
add pret = (pts> , ret , ptsret , re f ) to roots
FI
IF (m can throw an exception) THEN

ptsexc = points-to set of all exceptions thrown by m
add pexc = (pts> , exc , ptsexc , re f ) to roots
FI
RETURN roots
END

PROCEDURE build_local_interface(m, roots)
INPUT:
Method m
Set of root candidates roots
OUTPUT:
Set of local candidates locals
BEGIN

locals = copy of roots
FORALL (instructions i ∈ m) DO

locals = locals ∪ emit_from_instruction(i)
DONE
RETURN locals
END

PROCEDURE emit_from_instruction(i)
INPUT:
Instruction i
OUTPUT:
Set of emitted candidates
BEGIN
IF (i is field access) THEN
create new candidate cand = (ptsbase , f , pts f , acc)
IF (i is static access) THEN

cand.ptsbase = ptsstat ic
ELSE

cand.ptsbase = points-to of base pointer of i
FI
cand. f = accessed field of i
cand.pts f = points-to of accessed field of i
IF (i is field-get) THEN

cand.acc = ref
ELSE

cand.acc = mod
FI
RETURN {cand}
FI
RETURN ∅
END

PROCEDURE add_reachable_to_set(modre f, cands)
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INPUT:
Set of already reachable candidates modre f
Set of candidates cands
OUTPUT:
New set of reachable of candidates modre f ′
BEGIN

modre f ′ = copy of modre f
DO
FORALL (nodes n ∈ cands) DO
IF (∃n ′ ∈ modre f ′ : n ′ .pts f ∩ n .ptsbase , ∅
AND type of n ′ .f can reference n)

THEN
add n to modre f ′
FI
DONE
WHILE (fixed-point of modre f ′ not reached)
RETURN modre f ′
END

PROCEDURE extract_graph(modre f)
INPUT:
Set of candidates modre f
OUTPUT:
Object-graph of the provided candidates g
BEGIN

g = new graph of candidates
roots = { gc | gc ∈ modre f ∧ gc .ptsbase = pts> }
FORALL (gc1 , gc2 ∈ modre f with gc1 , gc2) DO
IF (gc1 .pts f ∩ gc2 .ptsbase , ∅ AND type of gc1 . f can reference gc2) THEN
add gc1 → gc2 to g // gc1 is potential parent of gc2
FI
DONE
// optionally merge candidates with same parent and same field
g ′ = merge_candidates(g)
RETURN g ′
END

PROCEDURE merge_candidates(g)
INPUT:
Graph of candidates g
OUTPUT:
Graph of merged candidates g
BEGIN
DO
FORALL (gc1 , gc2 ∈ nodes of g where gc1 , gc2) DO
IF (gc1 . f = gc2 . f AND ∃ gc ∈ nodes of g with gc → gc1 , gc → gc2 ∈ g
AND gc1 .acc = gc2 .acc OR gc1 .acc = both)

THEN
gcmer ge = ( gc1 .ptsbase ∪ gc2 .ptsbase , gc1 . f , gc1 .pts f ∪ gc2 .pts f , gc1 .acc)
replace all occurrences of gc1 and gc2 in g with gcmer ge
FI
DONE
WHILE (g changes)
RETURN g
END
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Algorithm 2.5 computes an object-graph for each method contained
in the provided call graph. Similar to the object-tree algorithm it also
uses points-to and type information to create field-candidates and prop-
agates them along the call graph. The computation starts in procedure
build_objectgraph. The resulting object-graph for each method is stored
in mapgraph. The other maps contain the intermediate results for each
method: mapmodre f stores the current set of mod-ref candidates, maplocal
the set of all field-candidates created from instructions of the corre-
sponding method and maproot holds the root field-candidates of each
method.

Initially all root and local field-candidates are created for each method
and stored to maproot and maplocal. The mod-ref sets in mapmodre f are
initialized with the root field-candidates of the corresponding method.
Then the do while-loop begins and the fixed-point based intra- and
interprocedural propagation starts. We apply a reachability based escape
analysis during each step of the intra- and interprocedural propagation
phase. Procedure add_reachable_to_set(modre f , cands) creates a new
set of field-candidates that contains all elements of modre f and all
candidates in cands that the are reachable from a candidate already
in modre f . This procedure filters all candidates that correspond to a
side-effect that is not visible outside the scope of the current method.
It basically acts as an integrated escape analysis during propagation.
We use add_reachable_to_set during both intra- and interprocedural
propagation phases. After the fixed-point is reached, we extract an
object-graph from the mod-ref set of each method with procedure
extract_graph: We create a node for each field-candidate and add edges
iff one candidate qualifies as the parent of the other. Optionally a call to
merge_candidates combines field-candidates referring to the same field
and share a common parent. In contrast to the object-tree algorithm there
is no need to check for the unfolding criterion, as it is automatically met:
Field-candidates are identified by their field-name and points-to sets,
so no two candidates with a same field and points-to set can exists. No
additional nodes are created during graph construction . If merging is
enabled, the number of nodes is even reduced. The resulting object-graph
contains input- as well as output-parameter nodes of the corresponding
method. In a final step —analog to the extraction of input and output
nodes for object-trees described in Algorithm 2.4— we extract and create
the relevant input- and output-nodes from the shared structure.
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Algorithm (fast propagation) We introduce a less precise but faster
variant of the standard object-graph algorithm. This approach does not
apply reachability checks during the propagation phase, but rather uses
a separate phase afterwards that prunes field-candidates of non-escaping
unreachable side-effects. The algorithm is quite similar to the standard
approach, only the reachability analysis is now done in a separate step
afterwards. This allows us to propagate the field-candidates from callee
to caller without checking if a potential parent node is already in the
candidates of the caller. The changes to the standard algorithm are
marked in italic.

1. Add root field-candidates to each methods mod-ref set.

2. Compute local field-candidates for each method.

3. Intraprocedural for all methods: Add local field-candidates created from
the instructions of the current method to its mod-ref set. Add all local
candidates to the set.

4. Repeat until mod-ref sets no longer change.

(a) Interprocedural: Propagate effects of method calls from callee
to caller. Add all field-candidates in the mod-ref set of the
callee to the mod-ref set of the caller. Add all candidates to the
set of the caller without checking.

5. Prune unreachable candidates from mod-ref sets.

6. Build object-graph structure from mod-ref sets.

7. Extract input- and output-nodes from object-graph.

Algorithm 2.6 shows a variant of the standard approach that applies
the escape analysis in a separate step after the propagation phase. This
helps to improve the runtime of the propagation phase, but it can
produce additional unnecessary parameter nodes, as the separate escape
analysis step can only detect a subset of the non-escaping side-effects
detected by the integrated approach. The pseudocode shown contains
only the methods that changed compared to the standard approach in
Algorithm 2.5.
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Algorithm 2.6 (Object-graph computation with faster but less precise
interprocedural propagation).

PROCEDURE build_objectgraph(c g)
INPUT: Call-graph c g
OUTPUT: Mapping of method to object-graph map graph
BEGIN
Map<Method, Graph of candidates> map graph = new empty map

Map<Method, Set of candidates> mapmodre f , maproot = new empty maps

FORALL (methods m ∈ c g) DO
rootm = emit_root(m)
candsm = build_local_interface(m, rootm)
mapmodre f .put(m, candsm)

maproot.put(m, rootm)
DONE

DO
FORALL (calls m1 → m2 ∈ c g) DO

candsm1 = mapmodre f .get(m1)

candsm2 = mapmodre f .get(m2)

rootm2 = maproot.get(m2)
cands ′m1

= candsm1 ∪ (candsm2 \ rootm2 )
mapmodre f .put(m1, cands ′m1

)

DONE
WHILE (mod-ref sets change)

FORALL (methods m ∈ c g) DO
modre fm = mapmodre f .get(m)
g = extract_graph(modre fm)
map.put(m, g)

DONE

RETURN map
END

PROCEDURE extract_graph(modre f)
INPUT: Set of candidates modre f
OUTPUT: Object-graph of the provided candidates g
BEGIN

g = new graph of candidates
roots = { gc | gc ∈ modre f ∧ gc .ptsbase = pts> }
FORALL (gc1 , gc2 ∈ modre f with gc1 , gc2) DO
IF (gc1 .pts f ∩ gc2 .ptsbase , ∅ AND type of gc1 . f can reference gc2 . f) THEN
add gc1 → gc2 to g
FI
DONE
// prune non-escaping - extra step
remove all candidates in g that are not reachable from an element in roots
// optionally merge candidates with same parent and same field
g ′ = merge_candidates(g)
RETURN g ′
END
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Computation starts in procedure build_objectgraph. In contrast to
the standard approach, the mod-ref set of each method mapmodre f is
initialized with all local field-candidates of the method. The follow-
ing propagation phase in the do-while loop is much simpler and only
contains the interprocedural step that propagates from callee to caller.
Without the reachability check, the propagation can be done with simple
set operations. That allows us to use a fast standard data-flow framework
based on bitvectors for the interprocedural propagation15. After the
propagation phase the object-graph is extracted by extract_graph. The
algorithm performs a separate escape analysis on the resulting graph and
continues with the optional merge operation: All nodes not reachable
from a root node can be pruned from the graph. Next candidates refer-
ring to the same field and parents can be merged optionally, before the
object-graph is finally returned. Analog to Algorithm 2.4 of the standard
approach we extract input- and output-parameter nodes from the shared
object-graph structure.

2.6.5 Evaluation

We integrated the previously introduced parameter models — unstruct-
ured (§2.6.1), object-tree (§2.6.4) and object-graph (§2.6.4) — into the
Joana framework and evaluated their performance in combination with
points-to analyses of varying precision. Our tool is based on the WALA
framework that supports a variety different points-to analyses as de-
scribed in §2.5.2. For this evaluation we focus on three widely used
variants:

1. Context-insensitive type-based (0-CFA) analysis that disambiguates
objects according to declared types.

2. Context-insensitive instance-based (0-1-CFA) analysis that disam-
biguates objects according to instantiation sites.

3. Object-sensitive instance-based analysis that enables object-sensitivity
for all instantiation sites.

15For sake of brevity this optimization is not part of the pseudocode.
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program #instructions
JavaCard
corporatecard 1186
purse 10807
safeapplet 1295
wallet 116
JRE
battleship 937
cloudstorage 1972
clientserver 601
hybrid 1479
JavaGrande (11) 14176
freecs 49396
hsqldb 126860
J2ME
barcode 11406
bexplore 14041
j2mesafe 5519
keepass 16427
onetimepass 13034

Table 2.3: Size of analyzed programs in number of bytecode instructions. Library
code not included.

The points-to variants from 1) to 3) are enumerated from least to most
precise. We evaluated the performance and precision of SDG creation16

on 26 Java programs with up to 3 different points-to analyses and three
different parameter models. All programs were analyzed including the
library methods. Native methods were conservatively approximated
through hand written method stubs — a huge difference to other ap-
proaches where parts of the runtime library are not analyzed at all [124].
The parts included from the runtime library tend to be big and have
an enormous impact on the runtime of the analysis. But when left out,
the result of the analysis is no longer a conservative approximation and
some illegal information flow may be undetected.

We evaluate our SDG computation on 26 example programs that vary
in program size as well as runtime library size: 4 programs (Corporate
Card, Purse, Wallet and Safe) are JavaCard applications. JavaCard is

16We executed all tests on a computer with a Core i7 processors, 32GB of RAM running
Windows 10 with Java 8 64-bit.
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built for applications that run on smart cards and other devices with very
limited memory and processing capabilities, so its runtime library is quite
small with about 500LoC. 5 programs (Barcode, bExplore, J2MESafe,
KeePass and OneTimePass) are J2ME applications. J2ME is a Java en-
vironment for mobile phones with a medium sized runtime library
comprised of about 30kLoC. The remaining 17 programs (Battleship,
CloudStorage, ClientServer, Hybrid, FreeCS, HSQLDB and the 11 ex-
amples of the JavaGrande suite17) use the Java 1.4 library with about
100kLoC. Table 2.3 shows the size of all analyzed programs in number of
bytecode instructions. These numbers do not include additional libraries.
The 11 programs of the JavaGrande suite share a common codebase,
therefore the individual program sizes cannot be distinguished.

We canceled computation when the memory usage exceeded 30GB or
the analysis ran for more than 4 hours. The JavaCard programs and most
of the Java 1.4 programs —except MonteCarlo, FreeCS and HSQLDB—
can be analyzed with all available options. They are used to compare
the effects of the different parameter models and points-to analyses. All
J2ME programs and the large FreeCS and HSQLDB applications could
only be analyzed with some of the available options. Sometimes we
could not apply a more precise points-to analysis because the points-to
computation itself was too costly. Other times we could not use other
parameter models as they did not scale: The parameter computation
of the object-tree model often consumed too much time and memory
and did not finish. The unstructured approach finished parameter
computation in many cases, but created so many additional parameter
nodes that the subsequent summary edge computation struggled.

As expected object-graphs scale better then object-trees or the un-
structured approach. Object-graphs are a good choice when analyzing
larger programs as they can deal with imprecise points-to analyses
more efficiently, yet they also cope well with more precise points-to
information.

Runtime Table 2.4 shows the runtime of the SDG computation in
milliseconds for each evaluated program. The results are grouped by
parameter model and for each model three columns show the results

17EPCC University of Edinburgh. The Java Grande benchmarking suite (http://www.
epcc.ed.ac.uk/research/activities/java-grande/).
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Table 2.5: Runtime of SDG computation relative to the object-graph option with
type-based points-to. Points-to analysis variants: (1) type-based, (2) instance-base
and (3) object-sensitive.
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% summary (1) (2) (3)computation time
unstructured 19.27 % 69.83 % 67.54 %
object-tree 10.42 % 7.00 % 6.01 %
object-graph 6.56 % 7.10 % 10.94 %

Table 2.6: Average percent of runtime spent on summary computation for
JavaCard, JavaGrande suite and small JRE examples. Points-to analysis variants:
(1) type-based, (2) instance-base and (3) object-sensitive.

for the respective points-to precision: (1) type-based, (2) instance-based
and (3) object-sensitive. The object-graph numbers are measured for
the standard approach with integrated escape analysis and merging
of parameter field nodes with the same name. In order to improve
comparability, Table 2.5 displays analysis runtime relative to the object-
graph approach with type-based points-to.

Almost in any case object-graphs prove to be the fastest option.
As expected, analysis runtime increases with points-to precision and
program size. The parameter-model has a huge impact on scalability: The
unstructured approach scales relatively well in combination with a less
precise type-based points-to analysis. In average it is 3.48 times slower
then object-graphs. This gets significantly worse with instance-based
and object-sensitive points-to where its runtime is 91.04 and 103.26 times
slower compared to the fastest variant. In contrast —using the same
points-to options— the object-graph approach only increases runtime
by a factor of 1.08 and 3.03 on average. The object-tree approach scales
better than the unstructured model by a significant margin in most cases.
In combination with instance-based and object-sensitive points-to it is on
average only 8.81 and 13.43 times slower then object-graphs. However,
in case of the least precise points-to option object-trees are on average
8.59 times slower, the unstructured model is considerably faster with a
smaller slowdown of 3.48.

Overall we observe that program size and points-to precision are
not the only factors that influence analysis runtime. Program structure
and the amount of library code used is also relevant. This shows the
most in the J2ME examples. These programs are roughly all about the
same size and use the same library, but still analysis runtime differs
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Table 2.7: SDG size in number of nodes. Points-to analysis variants: (1) type-
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Table 2.8: SDG size relative to the object-graph option with type-based points-to.
Points-to analysis variants: (1) type-based, (2) instance-base and (3) object-
sensitive.
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significantly between them. For example bExplore contains about 1.2×
the instructions of Barcode, yet the analysis takes about 20× longer.
This inconsistency also shows when we compare the J2ME programs to
JavaGrande examples. All programs have roughly about the same size
of around 10000 bytecode instructions. While the JRE1.4 runtime library
of the JavaGrande examples is far bigger then the J2ME library, still we
were not able to analyze the J2ME programs with the object-sensitive
points-to precision, while all JavaGrande programs except montecarlo
could be analyzed. We explain this effect through the different program
structures: The J2ME programs make heavy use of object-orientation
due to GUI elements included from the runtime library. The JavaGrande
programs focus on the computation of mathematical problems and make
less use of object-orientation and the runtime library. Therefore the
object-sensitive points-to analysis of the J2ME programs is more complex
—due to more objects used— resulting in a longer runtime and more
distinguishable points-to elements. This in turn leads to more parameter
nodes and ultimately prohibits SDG computation in this scenario.

Taking a closer look at how much of the runtime is spent in the
different phases of SDG computation, we notice that specifically the
summary edge computation takes up a significant chunk. Table 2.6
shows which fraction of the analysis runtime is spent on summary
computation. The unstructured parameter model leads to very long
summary computation phases of 70% on average for the medium sized
programs in our evaluation. Even with the least precise points-to analysis
the summary phase takes up 19% of the computation time. The object-
tree approach spends less time for summary computation. However,
it shows that in contrast to the unstructured and object-graph model,
summary computation takes more time with the less precise points-to.
This is directly related to the cloning of sub-trees in case of aliasing.
As previously mentioned we identified a problem in the object-tree
algorithm as it creates additional parameter nodes whenever a potential
aliasing is detected — which in turn occurs more often the less precise a
points-to analysis is. Hence, with more parameter nodes in the graph the
summary computation takes longer. The object-graph model performs
as expected, where the summary computation time increases with the
precision of the points-to analysis, as naturally more distinguishable
memory locations lead to more parameter nodes in this approach.

In general, SDGs computed with the object-graph approach contain

120



2.6. PARAMETER-MODEL

the fewest nodes. Table 2.7 shows the size of all computed SDGs
and Table 2.8 shows the SDG size relative to the object-graph SDG
with type-based points-to precision. The overall trend is similar to the
runtime statistics —as expected, the larger the graph the longer it takes
to compute. The unstructured model produces the largest SDGs: With
the least precise points-to variant they are on average about 2 times
larger then an SDG built with the object-graph. With increasing precision
the difference becomes even more visible. SDG size is about 9× and
20× the size of the smallest variant, compared to an increase of only
1.03× and 2.21× with the object-graph model. Object-trees produce
a smaller SDG, but are still on average about 1.4× to 5.4× the size of
object-graph SDGs —depending on points-to precision. We expected
larger object-tree SDGs for less precise points-to due to the cloning
of subtrees, as explained earlier. However SDGs with the type-based
points-to are only slightly larger then with instance-based points-to.
This is because increased precision has many effects that result in very
different outcomes depending on the parameter-model. On the one hand,
with increased precision we can reduce the amount of potential targets
detected for dynamic calls —resulting in fewer methods called. On the
other hand more distinguishable points-to elements are computed, hence
points-to sets become larger. A larger points-to set has no visible effect
on object-trees, as parameter nodes are grouped by field-names. Less
precise points-to can lead to cloning of subtrees which increases the size
of the object-tree. However a less precise points-to analysis can also
reduce the size of the resulting SDG, as call targets are distinguished in
fewer contexts —leading to less cloned nodes in the call graph. Hence
object-tree SDGs are not always strictly larger when computed with
less precise points-to. However, with the unstructured approach —that
creates a node for each points-to element— a precise points-to analysis
with larger result sets is very noticeable and leads to a significant increase
of the SDG size.

Overall object-graphs produce the smallest SDGs in the least amount
of time. They enable us to analyze significantly larger programs as
previously possible, as the freecs and hsqldb examples show. Aside from
the improved runtime, the object-graph model is also able to provide
precise results. In the following section we will take a closer look at the
effects of parameter models on analysis precision.
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Table 2.9: Percent of application code on average in a backward slice. Points-to
analysis variants: (1) type-based, (2) instance-base and (3) object-sensitive.
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Precision Finding a good metric to measure and compare the precision
of SDG computation algorithms is tricky. Counting the number of
nodes or edges in the result does not work, as the number varies
with parameter model and configuration and is only loosely related to
precision. Sometimes more nodes is good, when they actually represent
different locations or instructions in a different context. Other times
—e.g. in case of subtree cloning of the object-tree model— multiple nodes
exists that in fact represent the same location and thus do not enhance
the quality of the result.

We chose to look at the slices that can be computed from the given
SDGs, as slicing is the main application of dependency graphs [56, 98,
82, 70] and many advanced analyses —like our information flow control
tool— depend on it. Naturally our goal is to build SDGs well suited to
precise slicing. Hence it makes sense to judge the quality of our SDG
computation with the average precision of a random slice. We measure
the precision of a slice by counting the average number of source code
lines it covers. Therefore we group all nodes in the graph by the source
code line they correspond to. Then we run a backward slice for each
source code line found. Finally we compute the percentage of source
code lines on average in such a slice. So, a lower percentage implies
better precision of the SDG. Table 2.9 shows the measured precision for
each evaluated program. The numbers are quite low compared to the
evaluation in our previous work [35, 36], because we choose to ignore
the effects of exceptions. In §2.4.1 we discussed the effects of exceptions
on our analysis. It showed that the indirect information flow through
exception often overshadows precision improvements in other areas,
like pointer-analyses and parameter model. As we are interested in the
effect of parameter-model and points-to analysis alone, we chose to run
the evaluation with exceptions turned off.

Impact of parameter model Overall the difference in precision between
parameter models is very visible. Object-graphs produce the best results
in most cases with an average of 23% to 19% of source code lines in a
random slice —depending on points-to precision. As expected, SDG
precision increases when a better points-to analysis is used. Nevertheless
the object-graph approach already provides good results in combination
with the least precise points-to. Object-trees specifically struggle in
this case with about 51% lines in a random slice for the least precise
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points-to option. The results of object-trees improve significantly with a
better points-to analysis, up to a point where they have similar precision
as object-graphs with an average of 31% and 24% compared to 22%
and 19% of object-graphs. The unstructured model produces the worst
results in most cases and also benefits the least from a better points-to
analysis. The difference between the average of 42% to 39% seems not
worth the effort, especially when the huge impact on runtime is also
taken into account. Only in combination with the least precise points-to
analysis, the unstructured approach has a better average precision than
object-trees with 42% compared to 51%. However, this is not consistently
the case, as seen in the J2ME examples where object-trees are the better
option —as long as computation can be finished.

We explain the observed differences mostly through (1) the way field-
candidates are grouped together through merging of similar candidates
and (2) the reachability based escape analysis that removes parameter
nodes corresponding to side-effects that are not visible outside the
method scope.

Impact of (1): All three parameter models differ in the way parameter
nodes are computed and hence candidates for parameter nodes are
handled. The unstructured model directly creates nodes from field
accesses and does not merge candidates at all, while object-trees merge
nodes corresponding to the same field on-the-fly and object-graphs merge
candidates after propagation. We notice that merging reduces node count
which in turn improves runtime especially for larger programs, but it can
also harm precision. When two candidates are merged information can
be lost: Previously distinguishable side-effects are then represented by a
single candidate. Merging at a later stage after propagation proves to be
beneficial for precision of the result, as object-graphs produce the most
precise result in most cases measured. While the unstructured model
does not merge at all, it still usually fails to deliver precise results. We
are going to show that this is due to the missing escape analysis.

Impact of (2): In contrast to the unstructured approach, object-trees
and -graphs use an integrated escape analysis. Object-trees check whether
a matching parent for a new tree-parameter exists, before adding it to the
tree and object-graphs only add candidates to the mod-ref set reachable
from a candidate already contained in the set. Both approaches help to
improve precision. We measured the precision of object-graphs with a
deactivated reachability analysis and observed that slice sizes were on
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average 3× to 5× as big, depending on the points-to precision. The better
the points-to analysis the more visible this effect becomes.

Impact of points-to precision Points-to precision appears to have a
large effect on overall SDG precision —especially in case of the object-tree
model, which suffers the most from less precise points-to information. As
expected, the average precision of object-tree SDGs is significantly worse
in case of the least precise points-to analysis used. The SDG precision
improves significantly with a better pointer-analysis. The unstructured
model benefits only sightly from improved points-to information. We
suspect the missing escape analysis as a cause: In contrast to object-trees
and -graphs —where the escape analysis makes heavy use of points-to
information to detect which nodes can be omitted— the unstructured
model does use points-to information to reduce the number of nodes
and thus the enhanced precision is not utilized.

Overall the effect of improved points-to precision differs from pro-
gram to program. Sometimes —when critical program parts and locations
can be distinguished— a huge improvement is possible, other times there
seems to be almost no effect. Hence a single best option for all cases does
not exists. Sometimes the enhanced precision due to object-sensitive
points-to is worth the increased computation time, other times choosing
a simple type-based approach yields the same result. For object-graphs
and -trees the instance-based points-to analysis should almost always be
preferred to the type-based approach, as the average runtime difference
is not huge, but precision improves in many cases. The unstructured
model works only well with the least precise type-based approach. All
other options take significantly longer to compute, yet only slightly
enhance the SDG precision.

2.6.6 Conclusion

We have shown that the parameter model has a huge influence on
precision and scalability of the SDG computation. Overall, the object-
graph model we introduced in this work (see Algorithm 2.5) proves to
be the best option in most cases. It works well with different points-to
analyses and almost always produces the smallest graphs in the least
amount of time —all while the precision of the resulting SDG does not
suffer. In fact, in most cases object-graphs achieved the most precise
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result of all available options. Hence we opted to use them as the
standard option in Joana.

The object-tree model (see Algorithm 2.3) works reasonably well
with smaller programs and precise points-to analysis. As expected this
model has problems when aliasing —two variables or fields pointing
to the same memory location— occurs, as it creates many additional
nodes in this case. The reason for aliasing can either be that the aliasing
in fact exists in the program or that the static approximation —the
points-to analysis— issues a false alarm. Hence object-trees struggle
with imprecise points-to information and larger programs. They also
struggle with larger programs when a precise points-to analysis is used,
as the number of aliases that are no false alarms can still be too much
to handle. However, they remain a viable option for small to medium
sized programs and precise points-to information.

The unstructured model of §2.6.1 works reasonably well with impre-
cise points-to information, as the number of nodes it creates is directly
related to the number of distinguishable points-to set elements. So the
more precise the points-to information gets, the more nodes are created
and subsequently the longer the analysis takes. In addition the missing
escape analysis hurts the precision of the result. Apart from its simple
and straight forward implementation there are few reasons to use this
model.

The precision gained through an advanced points-to analysis can be
quite large, but varies depending on the nature and size of the program.
We assume that some of the programs analyzed with a precise points-to
analysis were too small and used too few objects to benefit from the precise
information. Other, larger programs —like the J2ME examples— could
have benefited from a more precise points-to analysis, but the analysis
was not able to scale. We experimented with other promising BDD-based
approaches to pointer-analysis, but those algorithms appeared to trade
faster computation time for increased space requirements due to large
intermediate results [53]. For example for a program as large as HSQLDB
a object-sensitive analysis would take up several hundred gigabytes
of disk space. These results pose a problem to the scalability of the
subsequent parameter model and summary edge computation. As of
today, the scalability of object-sensitive points-to analyses limits their
application to smaller programs. Current ongoing work in our group
focuses on points-to analysis specifically tailored to a given IFC problem.
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This tailored analysis is a hybrid of an imprecise points-to approach
used for most program parts and an advanced, precise analysis that
applies only to specific program parts relevant for the IFC request. We
expect this approach to provide a good trade-off between precision and
scalability. As of now we suggest using the instance-based points-to
approach as default —it combines good scalability with decent overall
precision.
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I have always wished for my computer to be as easy to
use as my telephone; my wish has come true because
I can no longer figure out how to use my telephone.

Bjarne Stroustrup 3
A Modular Approach to

Information Flow with SDGs

The SDG based algorithms presented so far in the previous chapter are
whole-program analyses. Their disadvantage is that in order to work
they need to analyze the whole-program —including all libraries and the
runtime-system— at once. This can lead to significant scalability issues,
due to the sheer size of a given program and libraries. It may even be
impossible to do in the first place, as some of the libraries used may not
be available at the time the analysis is run. For example one may want
to analyze an encryption library for noninterference properties without
knowing in which contexts and programs it will be used.

This chapter describes how precise SDG based IFC analyses can be
extended to reason about code in unknown context. At first a motivating
example shows the limits of current approaches, then we introduce
our approach to remove these limitations. Section §3.1 contains a de-
tailed overview of our approach and a discussion of its limitations.
Section §3.2 covers information flow in unknown context in general,
defines common notation and introduces the monotonicity property for
context configurations. In §3.3 we present our language FlowLess that
allows the specification of information flow properties for methods in
unknown context and explain how existing analysis techniques can be
extended to check these properties. Section §3.4 introduces techniques
specifically tailored for our SDG based analyses: conditional data depen-
dencies that only hold in certain contexts, an enhanced summary edge
computation that accompanies conditional dependencies and a new way
to precompute dependencies through so-called access paths.
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1 class User {
2 char[] name;
3 char[] passwd;
4

5 public User(char[] n, char[] p) {
6 this.name = n;
7 this.passwd = p;
8 }
9

10 // does it return u.passwd?
11 static char[] getName(User u) {
12 char[] orig = u.name;
13 int len = orig.length;
14 char[] copy = new char[len];
15 for (int i = 0; i < len; i++) {
16 char ch = orig[i];
17 copy[i] = ch;
18 }
19 return copy;
20 }
21 }

22 class Context {
23 static void legal() {
24 char[] in1 = "public".toCharArray();
25 char[] in2 = "secret".toCharArray();
26 User u = new User(in1, in2);
27 printInfo(u);
28 }
29

30 static void illegal() {
31 char[] in1 = "public".toCharArray();
32 char[] in2 = "secret".toCharArray();
33 in1 = in2; // bug or malicious code
34 User u = new User(in1, in2);
35 printInfo(u);
36 }
37

38 static void printInfo(User u) {
39 char[] name = User.getName(u);
40 System.out.println(name); // maybe unsafe
41 }
42 }

Figure 3.1: An example of a method (User.getName()) that returns secret
information depending on the context in which it is called.

Information flow in unknown context — a motivating example Fig-
ure 3.1 contains a program where the information flow properties of a
method depend on the context in which it is used. Assume we want to
guarantee that the method getName() of class User only returns the name
of the user and never leaks information about the password. At first
glance the method never touches the attribute passwd and therefore it
should not reveal its content. However, this is not true if attributes name
and passwd refer to the same location in memory. Then getName() also
returns the content of passwd and subsequently method printInfo of
class Context could reveal secret information. Class Context contains 2
methods that call printInfo(): Method legal() calls it with two separate
parameters, so getName() acts as expected. Method illegal() contains
an additional statement in l. 33 that sets both parameters to the same
location leading to the aliasing of attributes name and passwd. So if class
User is part of a library we have to analyze for information flow security
without knowledge in which programs and contexts it will be used,
theses effects have to be detected.

In general these effects are often very subtle and easily overlooked
on manual inspection. Hence an automated analysis that guarantees
to detect all possible effects is beneficial. We are now going to propose
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some general steps on how to tackle this problem for languages that
allow aliasing, before we explain in more detail our solution that uses
modular SDGs specifically tailored for the object-oriented language Java.

Related work IFC Analysis of program components without the knowl-
edge of the whole system has been researched by several other projects.
Components can occur in the form of mobile code, that is downloaded
and plugged into an existing system. Examples are browser plug-ins or
mobile phone applications.

The Mobius project [6] is one of the earliest and largest projects that
aimed to provide a security infrastructure for Java programs in mobile
phones. It was based on proof carrying code (PCC) and security type
systems. The PCC approach delivers a program together with a formal
proof of certain security properties, in the form of pre- and postconditions.
After the program is downloaded, the proof is then checked at client side
against the actual code. PCC works best, when the verification of the
proof is significantly more efficient then building it from scratch. This
way the client side has to do less work and can still verify the security
properties without the need of a full-blown analysis. The IFC checker in
Mobius uses a security type system for Java bytecode, hence it comes
with the usual pros and cons of type system based approaches: It lacks
the precision —especially flow-, context- and object-sensitivity— of more
advanced program analysis techniques as used in Joana, but on the other
hand its relatively simple nature leads to good scalability.

Compositionality is a property that is closely related to the analysis
of mobile code. An analysis is called compositional if its intermediate
results for each component of a large system can automatically guarantee
the security property for the whole system. So if each component itself
is found to be noninterferent, the system composed through language
constructs such as if-then-else or parallel execution of the individual
components is also noninterferent. This is a very nice property to have,
but it does not work for all forms of noninterference [86] and it can lead
to overly restrictive results which harms its practical usability.

More practical solutions sacrifice compositionality as well as sound-
ness in order to achieve good scalability and few false alarms. One
example for such an approach is the TAJ system [124] from IBM, which
can analyze 500kLOC written in full Java. It is based on thin slicing
—a special variant of slicing that ignores certain implicit flows. So TAJ
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misses illegal implicit flow, but the authors argue that those are rarely
critical and the user benefits if the reported violations contain mostly true
information leaks. Other studies [58] also suggest that a large number of
false alarms can have similar negative effects on the system security as
missed leaks due to soundness problems: If too many false alarms are
reported, the user tends to ignore those security warnings and therefore
misses also the valid ones. False alarms can either be reduced through
unsound analysis techniques —such as ignoring implicit flows— or
through improving the precision of the analysis [48]. In Joana we focus
on improving the analysis precision, but we also include heuristics that
categorize detected leaks. We can show for each of the detected leaks if
it can only occur due to implicit flow, exceptions, or thread interferences.
Its up to the user to decide on the severity of the leak based on its
category.

In general only few of the available research tools for IFC analysis can
handle a realistic language like full Java or C. Often, they focus on a small
subset of a real language, where specific constructs such as exceptions
or dynamic dispatch or aliasing are not allowed. Those tools also often
lack precision: they are rarely flow-, context- or object-sensitive. Some
can handle only small programs of 500 LoC instead of 500 kLoC, or they
demand a high degree of user interaction in form of many annotations
(e.g. JIF [94]). For IFC in mobile code precise interprocedural program
analysis —to our best knowledge— has never been used.

3.1 Overview — Goals and limitations

We focus our efforts on the IFC analysis for enclosed modules of a
program, such as library methods. Our goal is to provide information
about the information flow inside a module in general and about how
the flow is dependent on the modules context. When the module is
to be integrated into a program, the programmer can lookup its IFC
properties and decide if it is save to use. We also include the possibility to
automatically use precomputed IFC summaries of the module to speed
up the process of the IFC analysis for the whole program.

Figure 3.2 shows a high-level view of a program that uses a module.
It passes two inputs to the module, an uncritical public (low) input and
a secret (high) input, and it requires the output of the module to only
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IBM SUN

Program

low low

Module

?

high

Program

low low

Module
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high
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Program
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?

high

SUN

noninterferent potential leak

Figure 3.2: A program with two possible variants of a module. Only one variant
can guarantee noninterference.

contain low information. Now the programmer has to choose which
implementation of the module he is going to use in the program. He
may choose between various libraries, in this example one from IBM
and another from SUN. When plugged in the IBM variant does not leak
high information to the low output and the program is noninterferent.
Using the SUN variant may result in an information leak.

Our goal is to provide tools that help support the decision of the
programmer. We introduce a new language called FlowLess in §3.3 that
allows the programmer to specify information flow requirements the
module needs to meet. In the current example he may specify that the
second input is not allowed to influence the value of the output in any
way. This specification can then be used to check which modules fulfill
the requirements. We also include an inference analysis in §3.2.3 that
detects under which minimal context preconditions the requirements are
met by a given module. The example in Figure 3.1 shows that unforeseen
aliasing can introduce unwanted information flow. We can detect that
this unintentional leak only occurs in case of the aliasing of both input
parameters and provide this information to the programmer.

Thus, we need to analyze the module in unknown alias context. One
approach is to analyze the module in all possible context configurations.
A context configuration describes the points-to configuration at the
entrypoint of the module —the call site of the interface or entry method
of the module. We can detect and enumerate all context configurations
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with the algorithm presented in §3.2.1. While enumerating all context
configurations is theoretically possible, it is not feasible in practice due to
the huge amount of possibilities. As a remedy we present a partial order
on the context configurations of a module together with a monotonicity
property in §3.2.2 that builds a connection between context order and
information flow properties. We show that given two configurations
C1 ≤ C2 of a module m, all information flow inside m in C1 also may
happen in C2. Thus only additional flow can occur in C2. This helps us
search the space of context configurations in an efficient way, e.g. by
using binary search, and it also allows us to detect the minimal and
maximal flow inside a module. Therefore the monotonicity property
greatly reduces the amount of context configurations we need to analyze,
which in turn makes the automated inference of information flow relevant
context conditions presented in §3.2.3 feasible.

In Section §3.3 we present the language FlowLess that is used to de-
scribe the information flow requirements of a module in detail. FlowLess
allows the programmer to specify unwanted information flow between
the input and output of a method as well as restrictions on the context
configuration. In §3.3.2 we show how to compute the minimal and
maximal context configurations that fulfill those restrictions and auto-
matically generate stubs that call the module in these contexts. Aside
from our own IFC analysis this allows us to run arbitrary whole-program
analyses on modules in unknown context, as long as they do not break
the monotonicity property.

Finally in §3.4 we extend our SDG format from §2.5.3 to include
so-called conditional data dependencies that only hold in certain context
configurations. This modular SDG contains precomputed information
flow that applies to every possible context configuration together with
conditional flow depending on the context. When we need to extract
the information flow for a specific context, the matching conditional
dependencies are activated and the adapted algorithm for summary edge
computation in §3.4.4 is run. It computes the context specific summary
in reduced runtime compared to a full-blown analysis and returns a
SDG corresponding to the context. The precomputed modular SDG
reduces the runtime and memory needed to compute a context specific
SDG, which further reduces the overall runtime of our context inference
analysis. Section §3.4.3 describes the suggested algorithm to compute
the modular SDG for a component. It uses so-called access paths as an
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abstract context-independent description of memory locations. These
paths allow us to detect context dependent data dependencies in the
SDG and to extract the required context condition for each individual
dependency.

Limitations Our modular analysis currently does not cover modules
that include one or more of the following features.

Callbacks We do not support modules that contain callbacks to un-
known code. The module needs to be enclosed in the sense that every
method that is called from within the module has to be available at
analysis time. Due to the nature of the Java language a single method
can introduce almost arbitrary side-effects through static fields or
use of reflection — please see §2.1 for details. This makes it hard to
compute any meaningful information flow properties for a module
that contains unknown code. However it seems possible to pose
restrictions on the unknown code —like forbid visible side-effects
or any information sources and sinks within the code— that allow
us to narrow down the possible impact on the information flow of
the module. These restrictions then would need to be checked as
soon as the unknown code is available. This is future work that is
not included in the scope of this thesis.

Downcasts We don’t allow explicit downcasts in module code. Down-
casts do not pose a principal problem to our analysis, but they can
massively increase the number of potential side-effects the module
may have and therefore harm the analysis scalability and precision.
For example if we have to approximate the potential modifications
a method can execute on a parameter of type Object, we only have
to consider that attributes of Object may have been changed. How-
ever, if the method is allowed to downcast the parameter, it could
potentially modify any attribute of any class, as all classes in Java
directly or indirectly extend Object. An additional analysis that
detects downcasts in the module can help tackle this problem, but
as downcasts are in general a bad practice and should be avoided
—especially in the security critical scenarios we are aiming at— we
choose to forbid them.
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Reflection As discussed in §2.1.4 reflection is a huge threat to security
related applications in Java and should be avoided. It is possible
to allow some less critical functionality —like loading of classes by
name— and detect its effects with a sophisticated string analysis [83]
or record the actual values with a dynamic analysis [16]. However
these analyses only work in special cases and thus can not guarantee a
conservative result in general. Therefore we currently do not support
reflection in our analysis.

3.2 Information flow in unknown context

In this section we explain how we apply our static whole-program
analysis to components in unknown alias context.

3.2.1 Enumerating all contexts

One idea to deal with components in unknown context is to analyze them
in any context possible. This approach is straight forward and works
at least in theory as long as the number of contexts is finite. Figure 3.3
illustrates the various potential alias contexts of a component and how
the number of different contexts can be minimized through implicit
constraints of object type and structure. In this example method foo
has two parameters of the same type A. These parameters or any of
their fields may be aliasing when foo is called. In order to find out
which different alias configurations are possible we start by detecting
fields reachable from each parameter. For recursive data structures
such as linked lists the number can potentially be infinite, but in the
current example each parameter can reach up to 5 fields. Including
the parameters themselves method foo may access up to 12 different
references. These references may be aliasing in certain contexts and
be unique in others. The number of different context configurations
depends on the aliasing possible between those references. We are now
going to discuss 3 different approaches —with increasing finesse— that
can be used to enumerate all different aliasing contexts.

Case (a) In a first naive approach we can assume that each of these
locations may be aliased to any other location. This results in the
situation depicted at case (a) in Figure 3.3: Every location reachable is

136



3.2. INFORMATION FLOW IN UNKNOWN CONTEXT

a1

a1.f1

a1.f2

a1.f2.f3

a1.f2.f3.f4

a1.f2.f3.f5

a2

a2.f1

a2.f2

a2.f2.f3

a2.f2.f3.f4

a2.f2.f3.f5

a1

a1.f1

a1.f2

a1.f2.f3

a1.f2.f3.f4

a1.f2.f3.f5

a2

a2.f1

a2.f2

a2.f2.f3

a2.f2.f3.f4

a2.f2.f3.f5

Example: A method with two parameters
 in unknown context

(a) Naive aliasing of locations: fully connected

(b) Type aware aliasing (c) Type and structure aware aliasing

a1

a1.f1

a1.f2.f3.f4

a1.f2.f3.f5

a2

a2.f1

a2.f2

a2.f2.f3.f5

a1.f2

a1.f2.f3 a2.f2.f3

a2.f2.f3.f4

v1

v2

v3

v4

v5

v6

Figure 3.3: Example for enumerating alias contexts with different approaches.

shown as a node in the graph and edges between nodes show potential
aliasing. Without restrictions on the aliasing the graph is complete
with (#nodes

2 ) edges. For each edge we can decide independently if
the aliasing is present or not, which results in a total of 2#edges context
variations.

2#edges = 2(
#nodes

2 ) = 2(
12
2 ) = 266

≈ 1.6 ∗ 1071

The number of variations is obviously far too big in this case to
analyze the component in each one, but if we only allow aliasing
between locations whose types are compatible, the number is greatly
reduced.

Case (b) The graph in case (b) of Figure 3.3 contains only edges between
nodes of locations that refer to compatible types, where the static
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type checker allows both references to point to an object of the same
type. In Java this is the case if both references have the same static
type, or one refers to a subtype of the other reference. In the current
example only aliasing between fields of the same name are possible,
leading to a graph with only 6 edges. According to our previously
derived formula, we get a total of 64 different aliasing contexts. While
this number is still quite high for such a small example, it is already
feasible to analyze the component in all variants.

2#edges = 2

∑
#types

(
#nodes_per_type

2 )

= 21+1+1+1+1+1 = 26 = 64

However we can still improve if we incorporate the object structure
into the computation of different aliasing contexts.

Case (c) The graph in case (c) of Figure 3.3 visualizes the access structure
of the parameter objects. It shows the possible aliasing between com-
patible types as in case (b) and the dependencies between the aliasing
due the object structure. In case (b) we still included some alias
configurations that are not possible in practice, because whenever
two references point to the same location, all their fields must also
be aliasing. It is impossible that a1.f2 and a2.f2 are aliasing, while
a1.f2.f3 and a2.f2.f3 are not. In general we can rule out any alias
configuration that violates the following statement.

alias(a, b) =⇒ ∀ f ∈ Fields in type a or b : alias(a. f , b. f )

The number of valid alias configurations is the number of all permu-
tations minus the number of violating permutations. In the current
example we can rule out 51 of all 64 potential configurations, leaving
only 13 valid configurations.

2#edges
− #violating = 26

− 51 = 13

The number of actual valid alias configurations is far less than the
first naive approach suggests. Hence the analysis of a component
in all possible configurations is not only theoretically possible but
also practically feasible in some situations. However our evaluation
shows that there are still components with more then 210 in rare cases
2100 valid configurations, even when compatible types and object
structure are incorporated.
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Computation of violation permutations We can map the problem
of finding violating permutations to the more general boolean sat-
isfiability problem with disjunctions that have at most 2 elements
(2-SAT). We model each potential alias edge in the graph as a boolean
variable v and add an implication from each variable v to v′ if the
corresponding aliases are dependent due to object structure. So in
the current example we have variables v1, . . . , v6 and we derive the
implications from the respective object structure:

(v1 =⇒ v2)∧ (v1 =⇒ v3)∧ (v3 =⇒ v4)∧ (v4 =⇒ v5)∧ (v4 =⇒ v6)

Which resolves straight forward to a conjunction of disjunctions.

(¬v1 ∨ v2)∧ (¬v1 ∨ v3)∧ (¬v3 ∨ v4)∧ (¬v4 ∨ v5)∧ (¬v4 ∨ v6)

We can compute 13 different assignments for v1 . . . v6 that satisfy the
above formula. Therefore we know that 13 different valid and 51
invalid alias configurations exist.

We have shown that the explicit enumeration of alias configurations is
possible and the number of valid configurations can be greatly reduced
with the help of type and object structure information. However the
number can still be impracticably large, so we suggest an alternative
approach that allows us to infer information flow properties for all
configurations where only few need to be analyzed.

3.2.2 Context configurations: Order and monotonicity

During our evaluation and upon a closer look at the underlying algo-
rithms of our IFC analysis we noticed that more may-aliases in the context
configuration imply more flow, that is more edges or paths in the PDG.
Indeed, the set of may-alias relations forms a partial order (e.g. {(a, b)} ⊆
{(a, b), (b, c)}) with minimal and maximal elements, which induces an
order on the resulting flows (e.g. {a.i →∗ c.i} ⊆ {a.i →∗ c.i, a.i →∗ b.i}),
again with minimal and maximal elements. The latter provide limit cases
for potential flow that can be used to quickly check for existing context
configurations of a component that fulfills a given security property.

However this observation is not valid for any IFC analysis or the
noninterference property in general. The analysis needs to meet certain
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requirements that lead to monotone analysis results with respect to the
initial context configuration.

• The points-to analysis does not use strong updates and thus fulfills
the forthcoming Lemma 3.1 and Lemma 3.2.

• Interprocedural killing-definitions that rely on global must-alias
information are not applied. Local context independent killing-
definitions however are allowed.

• The computation of control flow is purely intraprocedural.

• Aside from may-alias information no other context specific infor-
mation is used during component analysis.

We observed that these requirements are met by most practical program
analyses, especially those that build upon the well known static analysis
frameworks WALA or Soot. More specialized approaches like the KeY
framework would need to artificially relax their precision in order to
achieve monotone analysis results.

We define a lattice on the context configuration elements and show
a monotonicity property for any given configuration C1, C2 that if C1 is
smaller then C2 (C1 v C2) the analysis result for C1 contains at most the
same data dependencies as C2. This monotonicity property can then be
used by the concrete analysis to reason about its own results. It can be
leveraged by any program analysis that applies interprocedural data
dependence computation through points-to and alias analysis. In our
IFC scenario we show that if a component does not contain leaks for
context C2 then it also does not contain leaks for any context C1 v C2.
By choosing C2 as the greatest element of the context lattice we can also
show the absence of security leaks for any possible context.

Given the context order v and a program component P‖m for method
m we will show that the following is always true for a noninterference
analysis (§1.1.3) that meets above mentioned requirements.

C1 v C2 ∧ P‖m in C2 is noninterferent =⇒ P‖m in C1 is noninterferent

We also write C |= NI(P‖m) to express that P‖m is noninterferent in
context configuration C .

C1 v C2 ∧C2 |= NI(P‖m) =⇒ C1 |= NI(P‖m)
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In the following we proof the upcoming Theorem 3.2 on monotonicity of
program slices which directly implies above statement. Therefore we
start with a formal definition of the order of context configurations and
show how a program component can be derived for a given method.
Then we go into more detail about the properties a points-to and alias
analysis has to fulfill in order for the monotonicity theorem to hold. In
general we allow any form of points-to analysis as long as it does not
apply strong updates. We define how initial context configurations are
modified to derive the context configuration at a given statement and
show how this information is used to compute data dependencies. With
the help of these definitions we can proof that without strong updates
the result of points-to computation is monotone with respect to the
initial configuration (Lemma 3.1 and Lemma 3.2). Then we leverage this
result for points-to computation to show monotonicity for dependencies
in a PDG. Therefore we briefly recapitulate the different dependency
types inside a PDG —control, direct data and heap data dependence—
and show that only heap data dependence is influenced by the initial
points-to configuration. As all other dependencies remain the same, it
suffices to show that heap data dependencies are also monotone with
respect to initial points-to configuration to finally proof the monotonicity
for program slices.

Order on context configurations In the following we refer to points-to
sets, points-to configurations and may-aliasing as defined by Defini-
tion 2.15 and Definition 2.16 in the previous Chapter 2 in §2.5.2. We
define an order on context configurations through the aliasing properties
they imply.

Definition 3.1 (Context Order). Given two points-to context configurations
C1 and C2 the relation (v ) defines an order.

C1 v C2 B ∀v1, v2 ∈ VarP : aliasC1(v1, v2) =⇒ aliasC2(v1, v2)

The subset relation between the points-to sets implies the matching order of the
contexts.

∀v ∈ VarP : ptsC1
(v) ⊆ ptsC2

(v) =⇒ C1 v C2

We are going to show the effect of initial context configurations on
the information flow inside components. Therefore we start with a more
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detailed definition of components derived from a whole program. We
call those components program and method parts.

Program and method parts as components We call a subset P‖s1→s2 of
all statements in program P a program part between s1 and s2 iff P‖s1→s2
contains all statements that may be executed after the execution of s1
and before s2 while s2 is always executed after s1.

P‖s1→s2 B {s | s ∈ P∧ s may be executed after s1 and before s2}

Definition 3.2 (Method Part). A program part can be defined for every
method m by choosing s1 as the entry statement of m and s2 as the set of all
return statements in m.

P‖m B P‖entry(m)→exit(m)

The program part P‖m of a method m is also called the method part of m.

1 class A {
2 int i;
3 }
4

5 A v1; A v2; int v3;
6

7 void main() {
8 v1 = new A(); // l1
9 v2 = new A(); // l2

10 foo(); // Cfoo@10
11 v3 = readInt; // secret input
12 if (v3 > 23)
13 v2 = v1;
14 foo(); // Cfoo@14
15 }

16

17 void foo() {
18 v2.i = 42;
19 output();
20 }
21

22 void output() {
23 printInt v1.i; // public output
24 }

Figure 3.4: A program that calls method f oo in different points-to context
configurations.

Note that the method part P‖m does not only contain all statements
of method m, but also all statements of methods that may be called
during execution of m. For example the method part for method foo
in Figure 3.4 contains all statements in foo as well as the statements in
output.
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Points-to and aliasing A points-to analysis as defined in §2.5.2 is a
static analysis that decides for all variables v ∈ VarP and fields l′. f of
a program P at which memory locations l ∈ LocP they may point to
during all possible executions of P. Due to the potentially unbounded
number of memory locations a points-to analysis has to use abstract heap
locations —which are equivalence classes of actual memory locations—
during computation. The precision of the analysis is strongly related
to the granularity of the instance and variable context that defines
these equivalence classes. We will use Definition 2.13 of abstract heap
locations, Definition 2.15 of points-to configurations and Definition 2.16
of may-aliasing in the latter.

If we assume a standard 0-1-CFA based points-to analysis, the ex-
ample in Figure 3.4 contains two abstract heap locations l1 = A@[8]
and l2 = A@[9]. Location l1 refers to the instance of class A created at
l. 8 and l2 to the instance created at l. 9. The result of a points-to and
may-alias analysis is a conservative approximation. So if two variables
are may-aliased, they may point to the same location, but if they are not
may-aliased, they are guaranteed to point to distinct locations. False
positives may occur as locations are combined to equivalence classes. So
a single element l ∈ LocP may refer to multiple actual locations (h1, h2)
in memory. Even if two variables v1 and v2 point to the same abstract
location ptsC(v1) = ptsC(v2) = {l} they still may never point to the same
actual memory location during program execution. For example with a
type-based points-to analysis the instances of A created at l. 8 and l. 9
would be treated as the same abstract location l = A@[>].

Points-to configuration for method parts The points-to information
for a method part P‖m depends on the context in which m is called. We
distinguish the initial context configuration —that describes the state of
the memory upon method invocation— from the intermediate contexts for
each statement to the final context at the end of the execution of P‖m. The
points-to analysis computes the intermediate and final contexts for P‖m
from the initial context through a data flow analysis on the statements in
the control flow graph of P‖m.

For example the program in Figure 3.4 contains two calls to method
f oo. One in l. 10 and the other in l. 14. Depending on the context in which
f oo is called, the effects vary. If v1 and v2 refer to the same memory
location then v2.i = 42 also changes the value of v1.i and thus output()
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prints 42, if not v1.i is left unchanged. At the call in l. 10 v1 and v2 are
referring to two distinct locations while they may point to the same
location at the call in l. 14. So method part P‖foo is called in two different
initial contexts: Cfoo@10 for the call in l. 10 is {v1 → l1, v2 → l2} and
Cfoo@14 for the call in l. 14 is {v1 → l1, v2 → l1, v2 → l2}. Thus for the
context configurations Cfoo@10, Cfoo@14 we get Cfoo@10 v Cfoo@14. This
observation supports the suspected monotonicity property we are going
to proof, as P‖foo in context Cfoo@14 contains additional flow that results
in a security leak.

In order to show how the initial points-to configuration influences
the result of a points-to computation for a method part, we go into
more detail about the actual computation. Therefore we define a points-
to update operation for each instruction in the program according to
Andersens subset-based approach. Note that the less precise approach
from Steensgaard —that unifies the points-to sets of variables in an
assignment— computes points-to sets that are always a superset of the
result from Andersens approach. So our monotonicity proof also carries
over to Steensgaard based points-to analyses.

Definition 3.3 (Points-to Update Operation). Given a points-to configura-
tion C and an instruction s, the points-to update operation that incorporates the
effect of s on the program memory described by C is as follows.

update(C, s) B



C∪ {l. f → l′ | a→ l, b→ l′ ∈ C} if s ≡ ”a. f = b”
C∪ {a→ l | b→ l′, l′. f → l ∈ C} if s ≡ ”a = b. f ”
C∪ {a→ l | b→ l ∈ C} if s ≡ ”a = b”
C∪ {a→ l | l = LocP(s)} if s ≡ ”a = new . . . ”
C else

When we compute the points-to configuration for a given statement
s in the method part P‖m, we have to incorporate any possible effects
that may have occurred before the execution of s. Therefore we apply all
the effect of all statements that may be executed between the entry of
P‖m and s. We compute the points-to configuration for the call to foo in
l. 10 of Figure 3.4 as follows: Given method part P‖main with the initial
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empty points-to configuration Cmain = {}we get

Cfoo@10 = update(update(Cmain, ”v1 = new A()”), ”v2 = new B()”)
= update({v1 → l1}, ”v2 = new B()”)
= {v1 → l1, v2 → l2}

For any points-to analysis that uses this style of subset based update
operations we can show the following two lemmas on monotonicity and
order preservation.

Lemma 3.1 (Monotone Update Operation). For any context C and any
statement s the following holds for the update operation defined in Definition 3.3.

C v update(C, s)

Proof. If s is a field-update operation ”a. f = b”, we know that update(C, s) =
C∪ {l. f → l′ | a → l, b → l′ ∈ C}. Obviously C v C∪ . . . is always true.
If s is a field-get operation ”a = b. f ” then update(C, s) = C ∪ {a → l |
b → l′, l′. f → l ∈ C}. As C v C ∪ . . . the lemma holds in this case. If s
is an assignment ”a = b” then update(C, s) = C ∪ {a → l | b → l ∈ C}.
Again C v C∪ . . . is always true. The same argument holds if s creates
a new instance of a class ”a = new . . . ”. The resulting configuration is
again extending C: update(C, s) = C∪ {a→ l | l = LocP(s)} = C∪ . . .. In
all other cases we know that update(C, s) = C. So C v update(C, s) = C
holds. �

Another important property is that the context order is preserved
for any two initial contexts as long as the same update operations are
performed upon both.

Lemma 3.2. Given two contexts C1, C2 and a statement s the following is
always true.

C1 v C2 =⇒ update(C1, s) v update(C2, s)

Proof. We show that any element x ∈ update(C1, s) must also be present in
update(C2, s). If x ∈ C1 then x ∈ C2 due to C1 v C2. Thus x ∈ update(C2, s)
due to Lemma 3.1. Otherwise if x < C1 we distinguish 5 cases for
operation s.
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field-update If s is a field-update operation ”a. f = b” we know that x
is of the form l. f → l′, where l ∈ ptsC1

(a) and l′ ∈ ptsC1
(b). Due to

C1 v C2 we also know that l ∈ ptsC2
(a) and l′ ∈ ptsC2

(b). Therefore
l. f → l′ must also be part of update(C2, ”a. f = b”) due to Defini-
tion 3.3.

field-get If s is a field-get operation ”a = b. f ” we know that x is of the
form a → l, where l ∈ ptsC1

(l′. f ) and l′ ∈ ptsC1
(b). Due to C1 v C2

we also know that l ∈ ptsC2
(l′. f ) and l′ ∈ ptsC2

(b). Therefore a → l
must also be part of update(C2, ”a = b. f ”) due to Definition 3.3.

assignment If s is an assignment ”a = b” we know that x is of the
form a → l, where l ∈ ptsC1

(b). Due to C1 v C2 we also know that
l ∈ ptsC2

(b). Therefore a→ l must also be part of update(C2, ”a = b”)
due to Definition 3.3.

new instance If s creates a new instance ”a = new . . . ” we know that
x is of the form a → l, where l = LocP(s). a → l is added to the
context independent of the elements already present. So we get
x = a→ l ∈ update(C2, ”a = new . . . ”).

other operations For all other operations we know update(C1, s) = C1.
Therefore x < C2 cannot occur given x ∈ update(C1, s) = C1 v C2.

�

We write C[s] for the context configuration at statement s computed
by the points-to analysis with the initial configuration C. It is defined as
follows.

Definition 3.4 (Context at a Statement). Given a statement s, an initial
context C and an initial statement sinit we define C[s] as the union of the results
for each execution path from sinit to s.

C[s] B
⋃

p:sinit c f ∗s

update(C, p)

with

update(C, s1 c f s2 . . . c f sn) B update(update(C, s1), s2 . . . c f sn)
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Theorem 3.1 (Preservation of Context Order). Given any two context
configurations C1, C2 for method part P‖m the following is always true.

C1 v C2 =⇒ ∀s ∈ P‖m : C1[s] v C2[s]

Proof. Given two configurations C1, C2 with C1 v C2 it suffices to show
that update(C1, p) v update(C2, p) holds for any execution path p. This
directly implies that the context order is also preserved on the union of
the result for each path:

∀p : update(C1, p) v update(C2, p)

=⇒
⋃
∀p

update(C1, p) v
⋃
∀p

update(C2, p)

Thus we assume an execution path p = s1 c f s2 . . . c f sn and show
that update(C1, p) v update(C2, p) holds by induction over n.

n = 1 If p = s1 we get

update(C1, p) = update(C1, s1)

update(C2, p) = update(C2, s1)

From Lemma 3.2 it directly follows that update(C1, s1) v update(C2, s1).

n→ n + 1 With p = s1 c f . . . sn we know that

update(C1, p) v update(C2, p)

holds. For p′ = s1 c f . . . sn c f sn+1 we get

update(C1, p′) = update(update(C1, p), sn+1)

update(C2, p′) = update(update(C2, p), sn+1)

So we can follow from Lemma 3.2 that

update(update(C1, p), sn+1) v update(update(C2, p), sn+1)

and thus update(C1, p′) v update(C2, p′).

�
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Dependencies in the PDG We described the computation of a standard
PDG in detail in Chapter 2. Therefore we only briefly recapitulate the
parts relevant for this proof. Dependencies in the PDG are either control
or data dependencies. Control dependencies (§2.3.4) are computed from
the control flow graph (§2.3.3). They capture the dependencies that
arise when the outcome of one statement controls if another statement is
executed, e.g. the condition of the if statement trigger the execution of
all statements in the if-block. Data dependencies are computed through
a data flow analysis on the CFG (§2.3.5). They capture the dependencies
between statements that potentially access the same memory location.
Whenever a statement s1 modifies a memory location that is read by
another statement s2 and s2 is executed after s1, s2 is data dependent on
s1. We distinguish two different forms of data dependence: direct data
dependence (dd) and heap data dependence (dh).

Definition 3.5 (Direct Data Dependence). Direct data dependencies arise
from definition and usage of variables. Let def (s1) be the set of variables defined
by statement s1 and use(s2) the set of variables used by s2. Then s2 is direct
data dependent on s2 (s1 dd s2), iff

• s1 defines a variable v that s2 uses: ∃v ∈ def (s1) : v ∈ use(s2)

• A control flow path from s1 to s2 exists on which no other statement
redefines v: ∃s1 c f ∗s2 ∈ ICFG : @s′ ∈ s1 c f ∗s2 : v ∈ def (s′)

Heap data dependencies occur only between statements that read or
modify heap memory. In Java the only operations that can access heap
values are field-get and set operations. For brevity we omit the special
type of field access operations for arrays.

Definition 3.6 (Field Access Operation). A field access is a tuple (v, f )
where v is a variable and f is a field name. The value of v is used as a pointer to
a memory cell in the heap and f is interpreted as an offset specific to the field.
The fields that can be accessed depend on the type of the object that v refers to.
Let Fieldsv be the set of all fields possible for the type of v. We distinguish two
kinds of field access operations.

Field-get operation

field-ref(v, f ) : v, v′ ∈ VarP, f ∈ Fieldsv : v′ = v. f

148



3.2. INFORMATION FLOW IN UNKNOWN CONTEXT

Field-set operation

field-mod(v, f ) : v ∈ VarP, f ∈ Fieldsv : v. f = <expr>

Definition 3.7 (Heap Data Dependence). Heap data dependencies cover
the dependencies between field access operations. Two statements s1, s2 are heap
data dependent (s1 dh s2) iff

• s1 is a field-mod(v, f ) operation

• s2 is a field-ref(v′, f ′) operation

• Both operations access the same field at potentially the same location:
f = f ′ ∧ alias(v, v′)

• There is a realizable path from s1 to s2 in the interprocedural control flow
graph: ∃s1 c f ∗s2 ∈ ICFG

• There is no killing write access to the same location along every path be-
tween s1 and s2: ∀p : s1 c f ∗s2@skill ∈ p where skill is a field-mod(vkill, f )
with must-alias(vkill, v′).

In order to incorporate killing definitions in the computation of
heap data dependencies a so-called must-alias analysis is needed. A
global must-alias analysis for a real world language like Java is due to
its complexity not part of general program analysis frameworks. As
previously mentioned in §3.2.2 it is in general impossible to decide if two
operations always refer to the same memory location, as the locations
computed by the points-to analysis are equivalence classes of the actual
locations. Therefore in our analysis setup we do not apply a global
must-alias analysis and always assume that no killing definition exists.
We may however use local context independent optimizations that detect
killing definitions for the intraprocedural case.

Figure 3.5 shows the direct and heap data dependencies for our
example program. It contains a single heap data dependency from
v2.i = 42 to printInt v1.i. We are going to show that the presence of this
dependency depends on the context in which the method part P‖foo is
executed.
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Figure 3.5: The left side shows the control flow graph for the example of Fig-
ure 3.4. The grey nodes belong to method part P‖foo. The right side shows direct
and heap data dependencies.

Data dependence in varying contexts The points-to context has an
influence on the data dependencies of a method part. Specifically the heap
data dependencies use alias information to compute if two statements
may access the same location. In our example program the method part
P‖foo contains a heap data dependency from statement s18 : v2.i = 42 to
s23 : printInt v1.i. This dependency holds as long as alias(v2, v1) holds.
For the previously defined context configurations Cfoo@10, Cfoo@14 we
get the following alias results: aliasCfoo@11(v2, v1):

ptsCfoo@10
(v2)∩ ptsCfoo@10

(v1) = {l2} ∩ {l1} = ∅

and aliasCfoo@14(v2, v1):

ptsCfoo@14
(v2)∩ ptsCfoo@14

(v1) = {l1, l2} ∩ {l1} = {l1}

So the heap data dependency is only present in the context Cfoo@14. We
write s18 ��ZZdh Cfoo@10s23 and s18 dh Cfoo@14s23 as abbreviation for heap
data dependencies under the given context configurations.

Monotonicity in PDGs We are now going to show that the mono-
tonicity properties (Lemma 3.1 and Lemma 3.2) of the applied points-to
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computation implies a similar property for the dependencies in the
computed PDG.

Lemma 3.3 (Monotonicity of Dependencies in a PDG). Given a program
part P‖m for method m and two initial context configurations C1 and C2 the
following holds.

C1 v C2 =⇒ ∀s1 → s2 ∈ PDGC1(P‖m) : s1 → s2 ∈ PDGC2(P‖m)

Proof. We distinguish the different type of dependencies inside a PDG.

control dependence If s1 cd s2 we know due to the Definition 2.3 of
control dependence that the dependency is computed from the
control flow graph. The computation of the CFG is independent of
the initial context, therefore the dependency is present in any variant
of PDG(P‖m).

local data dependence If s1 dd s2 we know due to the Definition 2.3
of local data dependence that the dependency is independent of
any points-to information. Therefore it is present in any variant of
PDG(P‖m).

heap data dependence If s1 dh s2 the dependency is only present if s1
and s2 are aliasing. Lets assume that the heap data dependency is
not part of PDGC2(P‖m) but part of PDGC1(P‖m):

s1 dh C1s2 ∧ s1 ��ZZdh C2s2

As s1 ��ZZdh C2s2 at least one condition of Definition 3.7 is violated. Due
to s1 dh C1s2 we know that s1 is a field-mod operation ”v1. f1 = v′3”
and s2 is a field-read operation ”v4 = v2. f2”. Also f1 = f2 and
aliasC1(v1, v2) as well as a path in the ICFG‖m exists (∃s1 cs s2 ∈
ICFG‖m). As all these conditions are also true in context C2 only the
aliasing aliasC2(v1, v2) may have changed. Because s1 ��ZZdh C2s2 has
to hold we have to assume that ¬aliasC2(v1, v2) is true.

Due to Theorem 3.1 we know that

C1[s1] v C2[s1] ∧C1[s2] v C2[s2]

and therefore

aliasC1(v1, v2) =⇒ aliasC2(v1, v2)
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Leading to a contradiction as ¬aliasC2(v1, v2) as well as aliasC1(v1, v2)
has to hold. So s1 ��ZZdh C2s2 is not true and s1 dh C2s2 has to exist.

�

Theorem 3.2 (Monotonicity of Slices in a PDG). Given a program part P‖m
for method m and two initial context configurations C1 and C2 the following
holds for any PDG computed with a points-to analysis that fulfills Lemma 3.1
and Lemma 3.2.

C1 v C2 =⇒ ∀s ∈ P‖m : slice(PDGC1(P‖m), s) ⊆ slice(PDGC2(P‖m), s)

Proof. From Lemma 3.3 we can deduce that all paths s1 → . . .→ sn →
s ∈ PDGC1(P‖m) must also be present in PDGC2(P‖m). Subsequently all
elements in the slice of s in PDGC1(P‖m) need to be contained in the slice
of s in PDGC2(P‖m). �

Conclusion We have shown through Theorem 3.2 that slices of method
parts are monotone with respect to the initial points-to configuration if
the underlying analysis fulfills certain very common properties — as our
analysis tool Joana does. So whenever C1 v C2 by the context order v
defined in Definition 3.1, we know that every dependency in C1 is also
present in C2. This enables us to reason about dependencies in other
contexts C3 without the need to run the analysis for C3: If C3 v C2 and
we want to know if s1 dh C3s2, we only need to look at the result for C2
and see if s1 dh C2s2 is present. If s1 ��ZZdh C2s2 we know for sure that s1
��ZZdh C3s2 is also true. On the other hand if C1 v C3 and we know that

s1 dh C1s2 we also know that s1 dh C3s3 holds. So before we run an
analysis for the context C3 we can lookup if two context C1, C2 with C1
v C3 v C2 exists and if analysis results for C1 and C2 have already been
computed. If so we can use them to approximate the result for C3. In the
next section we show how to use this property to infer relevant context
conditions that can guarantee the absence of illegal information flow.

3.2.3 Inferring relevant context conditions

In this section we show how the monotonicity property helps us to
detect if and under which conditions a method part P‖m is guaranteed
to be noninterferent. These so-called relevant context conditions allow us
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to decide if P‖m is noninterferent for any given context configuration
C without the need to analyze P‖m in configuration C . Therefore we
propose the following 3 basic analysis steps.

1. Check if P‖m is noninterferent independent of its context config-
uration. If true we don’t need to infer any conditions, as P‖m is
always noninterferent. If false we continue with step 2.

2. Check if P‖m is noninterferent for some context configurations. If
false no condition exists under which the noninterference of P‖m
can be guaranteed. If true we continue with step 3.

3. Infer relevant conditions —e.g. “parameter a and b are not
aliasing”— on the context configurations that tell us if a con-
figuration can guarantee noninterference for P‖m.

The monotonicity property allows us to quickly check if (1) P‖m
is noninterferent independent of the context it is called in and (2) if
there exists at least some context configurations in which we can verify
its noninterference. For (1) we analyze P‖m in the maximal context
configuration Cmax with ∀C : C v Cmax. If P‖m is noninterferent in Cmax
we automatically know that it is noninterferent in any other context.
For (2) we analyze P‖m in the minimal context configuration Cmin with
∀C : Cmin v C. If P‖m is noninterferent in Cmin we know that at least a
single configuration exists in which P‖m is noninterferent. Thus further
analysis that detects which configurations exactly make or break the
noninterference of P‖m should be applied.

This approach only works if a maximal and minimal context con-
figuration exist. Therefore we define Cmin, Cmax as follows and show
that they are indeed the maximal and minimal element of all context
configurations for P‖m
Definition 3.8 (Minimal and Maximal Context Configurations). The
minimal Cmin and maximal context configuration Cmax for a component P‖m
are

Cmin B {} Cmax B
⋃

∀ valid configuration C of P‖m

C

A valid configuration is a context configuration that only contains aliases
that fulfill the conditions presented in §3.2.1 case c). Note that the unification
of valid configurations always results in a valid configuration.
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Lemma 3.4. Cmin and Cmax are the minimal and maximal elements of all
context configurations for P‖m.

Cmin 6|= NI(P‖m) =⇒ ∀C : C 6|= NI(P‖m)
Cmax |= NI(P‖m) =⇒ ∀C : C |= NI(P‖m)

Proof. If Cmin is not minimal then ∃C : C v Cmin and thus ∃(a, b) ∈ Cmin :
(a, b) < C. As Cmin = {} no such element can exist. Therefore Cmin is the
minimal configuration.

Given Cmin 6|= NI(P‖m): If ∃C : C |= NI(P‖m) then Cmin v C and
due to the monotonicity property Cmin |= NI(P‖m) must be true, which
contradicts the premise. So C cannot exist.

If Cmax is not maximal then ∃C′ : Cmax v C′. As C needs to be a valid
context configuration of P‖m we know that Cmax contains all elements of
C ’ per definition. Thus C′ v Cmax and therefore C′ = Cmax.

Given Cmax |= NI(P‖m): If ∃C : C 6|= NI(P‖m) then also C v Cmax
and due to the monotonicity property Cmax 6|= NI(P‖m) must be true,
which contradicts the premise. So C cannot exist. �

When we detect through (2) that P‖m is noninterferent in some context
configurations, our goal is to (3) infer under which concrete context
configurations P‖m is guaranteed noninterferent. We define Cvalid as
the set of all valid context configurations that fulfill the noninterference
property for P‖m. Subsequently we show how to detect if a given
configuration C is part of Cvalid without the need to compute all elements
of Cvalid.

Definition 3.9 (Valid Fulfilling Configurations). Given a method part P‖m
the set of valid fulfilling context configurations Cvalid is defined as

Cvalid B {C | C |= NI(P‖m)}

Given Cvalid we can verify that P‖m is noninterferent in a configuration
C by checking if C ∈ Cvalid. Due to the monotonicity property we don’t
need to find an exact match in Cvalid, it suffices if we are able to find a
configuration C′ ∈ Cvalid where C v C′. Therefore we only need to find
the maximal fulfilling context configurations in Cvalid and are still able to
check noninterference for any given configuration.
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Definition 3.10 (Maximal Fulfilling Configurations). Given a component
P‖m the set maximal fulfilling context configurations ↑Cvalid contains only the
maximal elements of Cvalid.

↑Cvalid B {C | C ∈ Cvalid ∧ @C′ ∈ Cvalid : C , C′ ∧C v C′}

Lemma 3.5. Checking if a configuration C is in Cvalid is equivalent to checking
if C is a subcontext of any element in ↑Cvalid.

C ∈ Cvalid ≡ ∃C′ ∈ ↑Cvalid : C v C′

So we can use ↑Cvalid to verify noninterference.

∃C′ ∈ ↑Cvalid : C v C′ ≡ C |= NI(P‖m)

Proof. First part of the lemma: =⇒ : Given C ∈ Cvalid we distinguish
two cases:

@C′ ∈ Cvalid : C , C′ ∧C v C′ Due to Definition 3.10 C ∈ ↑Cvalid. As
C v C we get that ∃C′′ ∈ ↑Cvalid : C v C′′ with C = C′′.

∃C′ ∈ Cvalid : C , C′ ∧C v C′ If C′ ∈ ↑Cvalid obviously ∃C′ ∈ ↑Cvalid :
C v C′ is true. If C′ < ↑Cvalid through Definition 3.10 C′′ ∈ Cvalid
exists with C′ v C′′. As the number of elements in Cvalid are finite
∃Cn ∈ Cvalid with C v C′ v C′′ v . . . v Cn where @Cn+1 ∈ Cvalid with
Cn , Cn+1 ∧Cn v Cn+1. Thus Cn ∈ ↑Cvalid and C v Cn.

⇐= : Given ∃C′ ∈ ↑Cvalid : C v C′ we know due to Defini-
tion 3.10 that C′ ∈ Cvalid and thus C′ |= NI(P‖m). As C v C′ due to the
monotonicity property C |= NI(P‖m) is true.

Second part: =⇒ : Given ∃C′ ∈ ↑Cvalid : C v C′ we know that
C′ ∈ Cvalid and C′ |= NI(P‖m). Therefore C |= NI(P‖m).
⇐= : Given C |= NI(P‖m) we know that C ∈ Cvalid. Due to the first

part of this lemma ∃C′ ∈ ↑Cvalid : C v C′ must hold. �

We further minimize the effort for checking a given configuration C
with so-called alias conditions derived from the configurations in ↑Cvalid.
These conditions are a boolean formula of aliasing predicates. If C
satisfies these conditions we know that C′ ∈ ↑Cvalid exists where C v C′

and thus C |= NI(P‖m).
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Definition 3.11 (Alias Conditions of Context Configurations). An alias
condition Cond(C) of a given context configuration C is a conjunction of
not-alias predicates of all variables and fields that are not aliased in C .

Cond(C) B
∧

(a,b)∈Cmax\C

¬alias(a, b)

The alias condition for a set of configurations C is the disjunction of the
conditions for all elements.

Cond(C) B
∨
C∈C

Cond(C) =
∨
C∈C

∧
(a,b)∈Cmax\C

¬alias(a, b)

The alias conditions derived from a single context configuration
maintain the monotonicity property. This allows us to check if C1 is a
subcontext of C2 by verifying that C1 satisfies Cond(C2) .

Lemma 3.6 (Monotonicity of Alias Conditions).

C1 v C2 ≡ Cond(C1) =⇒ Cond(C2)

Proof. =⇒ : If C1 v C2 we also know that Cmax \ C2 v Cmax \ C1.
Therefore

Cond(C1) = Cond(C2)∧
∧

(a,b)∈C2\C1

¬alias(a, b)

Thus Cond(C1) =⇒ Cond(C2).
⇐= : If Cond(C1) =⇒ Cond(C2) we know that∧

(a,b)∈Cmax\C1

¬alias(a, b) =⇒
∧

(a,b)∈Cmax\C2

¬alias(a, b)

Therefore Cmax \C2 v Cmax \C1. Which leads to C1 v C2. �

We write C1 |= Cond(C2) if C1 satisfies the alias conditions derived
from C2.

C1 |= Cond(C2) B
∧

(a,b)∈Cmax\C2

¬aliasC1(a, b)
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From Lemma 3.6 it follows that

C1 |= Cond(C2) ≡ C1 v C2

Hence we can use the alias conditions Cond(↑Cvalid) to check if a
configuration C is a subcontext of any configuration in ↑Cvalid.

Lemma 3.7. Iff a configuration C fulfills the alias conditions of a set of
configurations C, the set must contain a configuration C′ with C v C′.

C |= Cond(C) ≡ ∃C′ ∈ C : C v C′

Proof. =⇒ : If C |= Cond(C) we know due to Definition 3.11 that C
satisfies the alias condition of at least a single configuration C′ ∈ C. So
C |= Cond(C′) and thus C v C′.
⇐= : If ∃C′ ∈ C : C v C′ we know that C |= Cond(C′) and therefore

C |= Cond(C). �

Theorem 3.3. In order to check P‖m for noninterference in context configura-
tion C , it is sufficient to check if C satisfies the alias conditions derived from the
maximal fulfilling configurations ↑Cvalid.

C |= Cond(↑Cvalid) ≡ C |= NI(P‖m)

Proof. =⇒ : If C |= Cond(↑Cvalid) we know due to Lemma 3.7 that
∃C′ ∈ ↑Cvalid : C v C′. By Lemma 3.5 C |= NI(P‖m) must hold.
⇐= : If C |= NI(P‖m) we know due to Definition 3.9 that C ∈ Cvalid.

Due to Lemma 3.5 C′ ∈ ↑CP‖m exists with C v C′. Thus due to Lemma 3.7
C |= Cond(↑CP‖m). �

The alias conditions in Cond(↑Cvalid) tell us exactly for which con-
figurations the method part P‖m is noninterferent. Therefore we also
call Cond(↑Cvalid) the relevant context conditions of P‖m. Note that this
implies that the conditions derived from the whole set of valid fulfilling
configurations Cond(Cvalid) is equivalent to the conditions derived only
from the set of maximal fulfilling configurations Cond(↑Cvalid) .

In general we can remove any context configuration C1 from a set of
configurations C without changing Cond(C) as long as C still contains
a configuration C2 with C1 v C2.
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Lemma 3.8. Non-maximal context configurations do not change the alias
condition of a set of configurations.

C1, C2 ∈ C : C1 , C2 ∧C1 v C2 =⇒ Cond(C) ≡ Cond(C \ {C1})

Proof. Cond(C) = Cond(C \ {C1, C2} ∪ {C1} ∪ {C2}) = Cond(C \ {C1, C2})
∨ Cond(C1) ∨ Cond(C2). As C1 v C2 due to Lemma 3.6 Cond(C1) =⇒
Cond(C2) and thus Cond(C1) ∨ Cond(C2) = Cond(C2).
So we get Cond(C \ {C1, C2})∨Cond(C1)∨Cond(C2)=Cond(C \ {C1, C2})
∨ Cond(C2) = Cond(C \ {C1, C2} ∪ {C2}) = Cond(C \ {C1}) �

This allows us to reason about the conditions derived from a set of
context configurations without the need to look at all elements of the set.
Our goal is to compute the relevant context conditions Cond(Cvalid) that
tell us for every configuration if P‖m is noninterferent. Through Theo-
rem 3.3 we reduce this problem to compute only the conditions derived
from the maximal fulfilling configurations Cond(↑Cvalid) . Therefore we
only need to compute all elements in ↑Cvalid instead of all elements in
Cvalid. While this reduces the amount of work, it is still a quite complex
task. However we can use any element C ∈ Cvalid to approximate the
relevant context conditions. While not all elements in Cvalid may satisfy
Cond(C), still any context configuration that does guarantees noninter-
ference of P‖m. This allows us to use an approach that starts with very
restrictive context conditions derived from a small subset of Cvalid and
subsequently refine these conditions with newly discovered members
of Cvalid until only the relevant context conditions remain. If needed
—due to space or time constraints— we can cancel the computation at
any point in time and are still left with conditions that, albeit being more
restrictive, still can guarantee noninterference.

Lemma 3.9 (Conservative Approximation of Alias Conditions). The alias
conditions derived from C1 are stronger than the conditions of C2 if C1 v C2.

∀C1, C2 < C where C1 v C2 : Cond(C ∪ {C1}) =⇒ Cond(C ∪ {C2})

So Cond(C ∪ {C1}) can be used to conservatively approximate the conditions
in Cond(C ∪ {C2}) .

Proof. Due to Lemma 3.6 Cond(C1) =⇒ Cond(C2) and obviously
Cond(C) =⇒ Cond(C). So Cond(C) ∨ Cond(C1) =⇒ Cond(C) ∨
Cond(C2) is also true. �
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Theorem 3.4 (Alias Conditions Preserve the Monotonicity Property).
Given two alias conditions Cond(C1) , Cond(C2) for a method part P‖m the
following holds.

(Cond(C1) =⇒ Cond(C2))∧Cond(C2) |= NI(P‖m)
=⇒ Cond(C1) |= NI(P‖m)

As well as

(Cond(C1) =⇒ Cond(C2))∧Cond(C1) 6|= NI(P‖m)
=⇒ Cond(C2) 6|= NI(P‖m)

Proof. Part (1): As Cond(C1) =⇒ Cond(C2) we know

∀C : C |= Cond(C1) =⇒ C |= Cond(C2)

and therefore C |= NI(P‖m).
Part(2): As Cond(C1) 6|= NI(P‖m) we know that there exists a context

C with C |= Cond(C1) and C 6|= NI(P‖m). Because Cond(C1) =⇒
Cond(C2) it holds that C |= Cond(C2) and therefore Cond(C2) 6|= NI(P‖m).

�

In the following we show our approach that uses Lemma 3.9 and
Theorem 3.4 to approximate the relevant context conditions without the
need to fully detect all elements of ↑Cvalid.

Inference algorithm for relevant context conditions Given a method
part P‖m, its root parameters roots and a classification of secret input and
public output, the inference algorithm computes a set of alias conditions
that can guarantee noninterference of P‖m. The resulting alias conditions
are in the form of Definition 3.11: Each alias condition is a conjunction
of not-alias predicates on the input variables of P‖m. We distinguish
atomic from non-atomic not-alias predicates. An atomic predicate forbids
exactly a single alias relation (e.g. ¬alias(a. f , b.i)) while a non-atomic
predicate contains a wildcard ’*’ and in general can refer to multiple
relations (e.g. ¬alias(a.∗, b.∗)).
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Algorithm 3.1 (Inference algorithm for relevant context conditions).

MAIN inferRelevantConditions(roots)
IN: Set of method root parameters roots
OUT: Set of alias conditions that guarantee noninterference val id
BEGIN
Set<Predicate> init ia lPreds = initialPredicates(roots)
Set<Condition> val id = refine(∅, init ia lPreds, true)
WHILE (∃c ∈ val id ∧ c contains non-atomic predicate) DO

val id.remove(c)
// modify val id with refined and expanded conditions derived from c
refineAndExpand(val id, c, init ia lPreds)
DONE
END

PROCEDURE refineAndExpand(val id, cond, init ia lPreds)
IN: Set of already valid condition val id

Condition to be refined and expanded cond
Set of initial predicates init ia lPreds

OUT: Set of valid conditions including the newly refined and expanded ones val id
BEGIN
Predicate p = some non-atomic predicate ∈ cond // 1. split
Condition noP = cond without predicate p
Set<Predicate> splitP = split(p);
Set<Condition> refineValid = refine(val id, splitP, noP) // 2. refine
Set<Condition> expandValid = copy of refineValid // 3. expand
Set<Predicates> maxInitial = {p init ia l | p init ia l ∈ init ia lPreds ∧ p init ia l 6=⇒ p}
Condition maxNoP = noP ∧

∧
p init ia l ∈maxInitial

p init ia l
FOR (i: 1 to #elements in spiltP) DO
checkAndAddIfRelevant(expandValid, i, splitP, maxNoP)
DONE
expandValid.removeAll(refineValid)
FORALL (c ∈ expandValid) DO
refine(val id, maxInitial, noP ∧ c)
DONE
END

PROCEDURE checkAndAddIfRelevant(val id, numPreds, preds, base)
IN: Set of valid conditions val id

Number of predicates in the conditions to check numPreds
Set of predicates to build the condition from preds
Base condition thats added to the built conditions base

OUT: Set of valid conditions extended with newly found conditions val id
BEGIN
FORALL {p1 , . . . , pnumPreds} ∈ {P | P ∈ 2preds

∧ |P | = numPreds} DO
Condition c =

∧
i :1 . . .numPred p i

IF (@c’∈ val id with c =⇒ c’) THEN
IF (checkNoninterference(c ∧base)) THEN

val id.add(c)
FI
FI
DONE
END
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PROCEDURE refine(val id, preds, base)
IN: Set of valid conditions the result is added to val id

Set of predicates to build the condition from preds
Base condition thats added to the built conditions base

OUT: Adapted set of valid conditions val id
Set of newly added conditions without base condition re f ined

BEGIN
Set<Condition> re f ined = ∅
FOR (i: 1 to #elements in preds) DO
checkAndAddIfRelevant(re f ined, i, preds, base)
DONE
FORALL (c ∈ re f ined) DO val id.add(c ∧ base) DONE
RETURN re f ined
END

PROCEDURE split(p)
IN: Non-atomic predicate p
OUT: Set of finer-grained predicates (derived from p) spl i t
BEGIN
Set<Predicate> spl i t = ∅
p is of the form ¬al ias(r . f1 . . . fn .∗ , r ′ . f ′1 . . . f ′m .∗)
FORALL (non-primitive fields fn+1 reachable from r . f1 . . . fn) DO
FORALL (non-primitive fields f ′m+1 reachable from r ′ . f ′1 . . . f ′m) DO
addIfPotentialRelevant(spl i t, r . f1 . . . fn . fn+1, r ′ . f ′1 . . . f ′m . f ′m+1)

DONE
DONE
RETURN spl i t
END

PROCEDURE addIfPotentialRelevant(preds, re f1, re f2)
IN: Set of predicates to extended preds

Parameter references re f1, re f2
OUT: Set of predicates extended if references were relevant preds
BEGIN
IF (re f1 and re f2 are potential aliasing) THEN
IF (re f1 contains only primitive types) THEN
IF (re f1 , re f2) THEN preds.add("¬al ias(re f1 , re f2 )") FI
ELSE

preds.add("¬al ias(re f1 .∗ , re f2 .∗)")
FI
FI

END

PROCEDURE initialPredicates(roots)
IN: Method root parameters roots
OUT: Set initial predicates init ia lPreds
BEGIN
Set<Predicate> init ia lPreds = ∅
FOREACH ((r1 , r2 ) | r1 , r2 ∈ roots) DO
addIfPotentialRelevant(init ia lPreds, r1, r2)
DONE
RETURN init ia lPreds
END
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The inference algorithm in Algorithm 3.1 initially computes a set
of coarse-grained predicates that forbid any aliasing. Then it detects
for which minimal combinations of predicates noninterference can be
guaranteed and stores them in the set of valid conditions. A fixed-point
iteration refines and expands any conditions in valid that contain a non-
atomic predicate until only conditions with atomic predicates remain.
This fixed-point iteration can be aborted at any time as the result in valid
contains a conservative approximation of all relevant alias conditions
during each iteration.

Procedure initialPredicates computes the set of coarse-grained
predicates from the method root parameters.

Procedure refine applies the monotonicity property of Theorem 3.4
to compute the minimal conditions from a set of given predicates preds
and a base condition base. It uses procedure checkAndAddIfRelevant to
compute which combination of predicates is relevant.

Procedure checkAndAddIfRelevant checks for any combination of
numPreds predicates which of them form a condition that guarantees
noninterference and currently cannot be inferred through elements in
valid. It skips any call to checkNoninterference where the outcome of the
computation can be inferred and thus only adds conditions to valid that
increase the number of detected valid context configurations.

The main part of the inference is in procedure refineAndExpand. It
converts a single coarse-grained condition cond into a set of finer-grained
conditions in a 3-step process: split, refine and expand.

1. (split) A non-atomic predicate p in cond is split into a set of finer-
grained predicates splitP through procedure split.

2. (refine) A refinement step computes which combinations of those
finer-grained predicates form —together with the rest of condition
cond excluding p— a valid condition and adds them to the set of
valid conditions.

3. (expand) The last step checks if combinations of non-valid finer-
grained predicates with previously skipped coarse-grained predi-
cates can yield new valid conditions. The expand step itself is also
a 3-step process.

(a) Compute a maximal alias condition maxNoP that includes all
predicates besides p.
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(b) Check if the finer-grained parts of p in splitP can be combined
with maxNoP into conditions that currently cannot be inferred
by the conditions already found in the refine phase.

(c) Use a separate refine step for each newfound condition to
detect which parts of maxNoP are necessary and add those to
the set of valid conditions.

Approximating relevant context conditions — an example In this
paragraph we show how Algorithm 3.1 infers the relevant conditions for
the example in Figure 3.6. We consider the example component P‖bar
noninterferent if information about value of parameter secret is not
leaked to a print statement. Thus the component may leak information
if the secret value read at l. 2 can influence the print statements in l. 6
and l. 7. This is possible either through a direct flow from l. 2 to l. 7 —in
case a1.b1 and a2.b1 are aliased— or through an indirect flow caused
by the conditional if-statement l. 2→l. 3→l. 4→l. 6 —in case a1.b1 and
a1.b2 as well as a2.b2 and a1.b1 are aliased. So the expected result of
the analysis of this component is that P‖bar is noninterferent as long as

¬alias(a1.b1, a2.b1)∧ (¬alias(a1.b1, a2.b2)∨¬alias(a1.b1, a1.b2))

holds. Our inference algorithm can detect this condition as follows.

Initial setup In the first step we check if P‖bar is noninterferent
independent of its context configuration. Therefore we have to compute
the maximal alias configuration Cmax:

1. Identify all variable and field references that can be accessed by
P‖bar.

2. Add an aliasing between each two references with compatible
types to Cmax.

As result of (1) we get the references {a1, a1.b1, a1.b2, a2, a2.b1, a2.b2}. For
(2) we assume all references to type A may be aliased as well as all
references to type B.

Cmax ={(a1, a2), (a1.b1, a1.b2), (a1.b1, a2.b1), (a1.b1, a2.b2),
(a1.b2, a2.b1), (a1.b2, a2.b2), (a2.b1, a2.b1)}
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1 static void bar(A a1, A a2, int secret) {
2 a1.b1.l = secret;
3 if (a1.b2.l > 0) {
4 a2.b2.k = 23;
5 }
6 print(a1.b1.k);
7 print(a2.b1.l);
8 }

9 class A {
10 B b1;
11 B b2;
12 }
13 class B {
14 int l;
15 int k;
16 }

Figure 3.6: A small yet somewhat complex example that illustrates how we infer
relevant context conditions for the noninterference of method bar.

Our analysis shows that Cmax 6|= NI(P‖bar). Due to the potential aliasing
of (a1.b1, a2.b1) l. 2 may directly influence the value read at l. 7.

In the next step we check if P‖bar is noninterferent in any context, by
analyzing it in the minimal context Cmin = {}. The analysis result shows
that Cmin |= NI(P‖bar), because only a1.b1.l holds the secret value and is
never referenced directly in the rest of the component.

Inference of relevant conditions As

Cmax 6|= NI(P‖bar) and Cmin |= NI(P‖bar)

we start to infer the relevant alias conditions as described in Algorithm 3.1.
Given the two root parameters a1, a2 method initialPredicates com-
putes

initialPreds = {¬alias(a1.∗, a1.∗),¬alias(a1.∗, a2.∗),¬alias(a2.∗, a2.∗)}

The resulting set contains 3 non-atomic not-alias predicates. Before enter-
ing the fixed-point iteration we compute the initial set of valid conditions
through a call to refine. Method refine checks which minimal com-
binations of those predicates can guarantee noninterference. Table 3.1
shows the result of the necessary IFC checks. Each row represents a
single alias configuration where all not-alias predicates with entry ’1’
are part of the conjunction for the alias condition of the configuration.
For example the alias condition for row 5 —with the entries ’1’, ’1’, ’0’—
is ¬alias(a1.∗, a1.∗)∧¬alias(a1.∗, a2.∗). The last column shows the result
of the noninterference analysis of P‖bar for the given configuration: A
’3’ marks that noninterference could be verified, while ’7’ marks that
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¬(a1.∗, a1.∗) ¬(a1.∗, a2.∗) ¬(a2.∗, a2.∗) NI
0 0 0 7(Cmax)
1 0 0 7

0 1 0 3

0 0 1 7

1 1 0 (3)
1 0 1 7

0 1 1 (3)
1 1 1 3(Cmin)

Table 3.1: Root-level IFC checks for all possible not-alias combinations. 3- marks
combinations that guarantee NI(P‖bar) , 7- marks combinations that do not and
(3)- marks noninterference implied by the monotonicity property.

NI(P‖bar) could not be shown in the given configuration. Parentheses
’(3)’ and ’(7)’ represent noninterference properties that can be inferred
—with the help of Theorem 3.4— through previous analysis results. For
example noninterference of row 5 is automatically implied by the result
in row 3 as ¬alias(a1.∗, a1.∗) ∧ ¬alias(a1.∗, a2.∗) =⇒ ¬alias(a1.∗, a1.∗).
Therefore we can check all 8 different combinations of not-alias condi-
tions with 4 analysis runs —assuming the analysis for Cmin and Cmax
has already previously been run— and the resulting approximated valid
alias condition is ¬alias(a1.∗, a2.∗) |= NI(P‖bar). Thus

valid = {¬alias(a1.∗, a2.∗)}

We now know that P‖bar is guaranteed noninterferent as long as no field
of a1 is aliased to any field of a2. This condition is already usable and
we could stop our interference analysis at this point. However if we
invest more computation time we can further improve the result through
the following fixed-point iteration.

The condition in valid contains a non-atomic predicate, so we remove
it from the set and call refineAndExpand.

1. split(¬alias(a1.∗, a2.∗)):

splitP ={¬alias(a1.b1, a2.b1),¬alias(a1.b1, a2.b2),
¬alias(a1.b2, a2.b1),¬alias(a1.b2, a2.b2)}
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¬(a1.b1, a2.b1) ¬(a1.b1, a2.b2) ¬(a1.b2, a2.b1) ¬(a1.b2, a2.b2) NI
0 0 0 0 (7)
1 0 0 0 7

0 1 0 0 7

0 0 1 0 7

0 0 0 1 7

1 1 0 0 3

1 0 1 0 7

1 0 0 1 7

0 1 1 0 7

0 1 0 1 7

0 0 1 1 7

1 1 1 0 (3)
1 1 0 1 (3)
1 0 1 1 7

0 1 1 1 7

1 1 1 1 (3)

Table 3.2: Refinement of the ¬alias(a1.∗, a2.∗) condition from Table 3.1. Checking
alias variants of object-fields.

2. refine({}, splitP, true): We check which minimal combinations of
the split predicate result in valid conditions. Table 3.2 shows
the results of the various analysis runs. After 13 runs we know
that ¬alias(a1.b1, a2.b1) ∧¬alias(a1.b1, a2.b2) —and any condition
implied by it— can guarantee noninterference. So only aliasing
between those object fields is relevant. This is a quite significant
enhancement of our previous result, as we now know that only 3
of 16 possible combinations can guarantee noninterference and we
can discard any context configuration that is only valid in one of
the other 13 combinations.

re f ineValid = {¬alias(a1.b1, a2.b1)∧¬alias(a1.b1, a2.b2)}
valid = {¬alias(a1.b1, a2.b1)∧¬alias(a1.b1, a2.b2)(∧true)}

3. The expand step checks if it is still possible to guarantee nonin-
terference when only the valid split predicates are left out of the
condition. The result of step 2 in Table 3.2 shows that 13 combi-
nations of the split predicate cannot guarantee noninterference by
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¬(a1.b1, a2.b1) ¬(a1.b1, a2.b2) ¬(a1.b2, a2.b1) ¬(a1.b2, a2.b2) NI
0 0 0 0 (7)
1 0 0 0 3

0 1 0 0 7

0 0 1 0 7

0 0 0 1 7

1 1 0 0 (3)
1 0 1 0 (3)
1 0 0 1 (3)
0 1 1 0 7

0 1 0 1 7

0 0 1 1 7

1 1 1 0 (3)
1 1 0 1 (3)
1 0 1 1 (3)
0 1 1 1 7

1 1 1 1 (3)

Table 3.3: Expanding failed alias conditions from Table 3.2 to check if noninter-
ference is possible in combination with ¬alias(a1.∗, a1.∗)∧¬alias(a2.∗, a2.∗).

themselves, however some of them may be sufficient when com-
bined with other alias conditions. Therefore we run an IFC analysis
for each insufficient condition in Table 3.2 in combination with the
additional alias conditions ¬alias(a1.∗, a1.∗)∧¬alias(a2.∗, a2.∗).

maxInitial = {¬alias(a1.∗, a1.∗),¬alias(a2.∗, a2.∗)}
maxNoP = (true∧)¬alias(a1.∗, a1.∗)∧¬alias(a2.∗, a2.∗)

The following loop tries any combination of the split predicates
in conjunction with maxNoP. Table 3.3 shows the result of these
analysis runs. We observe that condition ¬alias(a1.b1, a2.b1) ∧
¬alias(a1.∗, a1.∗)∧¬alias(a2.∗, a2.∗) in row 2 is sufficient to guaran-
tee noninterference and therefore also all combinations that include
¬alias(a1.b1, a2.b1) —as in rows 6-8 and 12-14— are also sufficient
due to Theorem 3.4. In total 8 additional analysis runs were needed
to detect which of the 13 alias conditions are sufficient. As all other
conditions can be implied by the one in row 2, we only get a single
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¬(a1.∗, a1.∗) ¬(a2.∗, a2.∗) NI
0 0 (7)
1 0 3

0 1 7

1 1 (3)

Table 3.4: Refining the valid alias condition ¬alias(a1.b1, a2.b1) ∧
¬alias(a1.∗, a1.∗)∧¬alias(a2.∗, a2.∗) from Table 3.3. Given ¬alias(a1.b1, a2.b1) we
test which combinations of ¬alias(a1.∗, a1.∗) ∧ ¬alias(a2.∗, a2.∗) can guarantee
NI(P‖bar) .

additional condition as the result.

expandValid = {¬alias(a1.b1, a2.b1)}

We now know that any element in expandValid in conjunction
with all elements of maxNoP can guarantee noninterference, but
it may be that only some elements of maxNoP are needed. In
the last phase of the expand step we refine the newfound condi-
tions by checking which parts of maxNoP are needed. Table 3.4
shows that ¬alias(a1.b1, a2.b1) ∧¬alias(a1.∗, a1.∗) is sufficient and
¬alias(a2.∗, a2.∗) is not relevant for a valid alias condition. So the
call to refine adds

valid B valid∪ {¬alias(a1.b1, a2.b1)∧¬alias(a1.∗, a1.∗)(∧true)}

to the set of valid conditions.

After the first iteration of the while-loop in inferRelevantConditions the
set of valid conditions contains two entries:

valid ={¬alias(a1.b1, a2.b1)∧¬alias(a1.b1, a2.b2),
¬alias(a1.b1, a2.b1)∧¬alias(a1.∗, a1.∗)}

Any of these conditions can guarantee NI(P‖bar) so the disjunction of
all conditions in valid is also a valid condition.

¬alias(a1.b1, a2.b1)∧ (¬alias(a1.b1, a2.b2)∨¬alias(a1.∗, a1.∗))

We could abort the fixed-point iteration at this point and use above
condition as a conservative approximation of the relevant conditions,
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but as valid still contains a condition with a non-atomic predicate
¬alias(a1.∗, a1.∗), a second iteration of the while-loop is possible. In
the second iteration refineAndExpand is called with the arguments:

valid ={¬alias(a1.b1, a2.b1)∧¬alias(a1.b1, a2.b2)}
c =¬alias(a1.b1, a2.b1)∧¬alias(a1.∗, a1.∗)

initialPreds ={¬alias(a1.∗, a1.∗),¬alias(a1.∗, a2.∗),¬alias(a2.∗, a2.∗)}

The subsequent call to splitP splits the predicate only into a single
non-atomic predicate, as no other aliasing is possible.

split(¬alias(a1.∗, a1.∗)) = {¬alias(a1.b1, a1.b2)}

The following refine and expand steps therefore only need a single addi-
tional IFC-check to assure that

¬alias(a1.b1, a2.b1)∧¬alias(a1.b1, a1.b2)

is also a valid condition. After the second and final iteration of the
while-loop valid only contains conditions with atomic predicates and the
inference algorithm terminates with

valid ={¬alias(a1.b1, a2.b1)∧¬alias(a1.b1, a2.b2),
¬alias(a1.b1, a2.b1)∧¬alias(a1.b1, a1.b2)}

as the final result. Which translates to the expected condition:

¬alias(a1.b1, a2.b1)∧ (¬alias(a1.b1, a2.b2)∨¬alias(a1.b1, a1.b2))

Conclusion We have shown how to apply the monotonicity prop-
erty to infer relevant alias conditions for a method part. We can use
these conditions to check for any given context configuration if the
method part is noninterferent when executed in this context. However
in order to analyze a method part for noninterference we have to know
which statements or variables are considered sources and sinks. In the
following section we introduce an annotation language called FlowLess
that allows us to specify forbidden information flow for a method part at
the head of the method declaration. This way the programmer is able to
specify expected information flow properties for arbitrary methods. Our
tool then automatically infers the relevant alias conditions that guarantee
that the specified properties are satisfied.
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1 interface Lib {
2 //@ifc: !{a, b} => x -!-> \result
3 int call(A a, A b, A c, int x);
4 }
5

6 class Library implements Lib {
7 int call(A a, A b, A c, int x) {
8 c.i = a.i;
9 a.i = x;

10 return b.i;
11 }
12 }
13 class A { int i; }

14 void prepareContext(Random r) {
15 A a = new A(); A b = new A();
16 A c = new A(); int x;
17 A ac = new A(); A bc = new A();
18 if (r.nextInt(2) == 0) a = ac;
19 if (r.nextInt(2) == 0) c = ac;
20 if (r.nextInt(2) == 0) b = bc;
21 if (r.nextInt(2) == 0) c = bc;
22 (new Library()).call(a, b, c, x);
23 }

Figure 3.7: A component with alias and information flow specification and the
generated context stub calling the component in the context C¬alias(a, b)

3.3 FlowLess: A language for information flow
annotations

In this section we introduce FlowLess — a specification language for
information flow properties of program components. FlowLess can be
used to annotate method declarations with restrictions on the information
flow that have to be met during method execution. These restrictions can
be paired together with requirements on the context in which the method
is executed. For example: “In any context where parameter a and b are
not aliasing, the method execution does not result in information flow
between parameter x and the return value.”. The matching FlowLess
specification for this IFC-condition is “¬alias(a, b) =⇒ x 9 \result”.
Figure 3.7 shows an example component annotated with this condition
using a JML-like syntax (see l. 2).

Given an IFC-condition for a method we compute if it can be guaran-
teed that the condition is valid. Due to the monotonicity property we are
able to check the condition without knowledge of the concrete calling
context. In the given example we can verify that method call of class
Library never leaks information about the value of parameter x to the
return value as long as parameters a and b are not aliased. Therefore
we infer the maximal alias configurations allowed by the alias conditions
on the methods parameters and generate code in form of context stubs
that call the method in said configuration. Method prepareContext on
the right side of Figure 3.7 shows a generated code that prepares the
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Library.call
7

a

b

c

x

a

b

c

i

i

i i

i

i

ret

c.i = a.i
8

a.i = x
9

return b.i
10

control dependence

heap data dependence
direct data dependence

Figure 3.8: The PDG of Library.call in the context C¬alias(a, b).

maximal allowed alias configuration for Library.call. We analyze the
information flow that occurs inside of method call when called from
prepareContext and can verify the absence of flow between x and the
return value. Figure 3.8 shows the resulting PDG for the method part
P‖call in the context of C¬alias(a, b) = {(b, c), (a, c)}. The PDG contains no
path from input parameter x to output parameter ret, therefore the IFC-
condition is valid. Note that if a and b were aliased, the modification
of a.i in l. 9 would also affect field b.i read in the following line. Thus
¬alias(a, b) is a relevant context condition, as in every context that allows
alias(a, b) an illegal flow occurs.

With FlowLess it is also possible to infer the relevant context condi-
tions for a given flow restriction with the algorithm presented in §3.2.3.
Changing the IFC-condition in the example to “? =⇒ x 9 \result”
triggers the inference algorithm and our analysis automatically infers
if and under which context conditions x does not influence the return
value. The result of the inference is as expected ¬alias(a, b).

In the following subsections we present an introduction to the syntax
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of FlowLess in §3.3.1, before we explain the generation of context stubs
in §3.3.2. §3.3.3 concludes with an example that shows step by step how
a context stub is build from a given alias condition.

3.3.1 Overview and syntax

The FlowLess specification language enables the software engineer to
specify required information flow properties at the public methods of
a component. He may annotate each method with a set of so-called
IFC-conditions. Each IFC-condition contains a description of the aliasing
contexts it applies to and restrictions to the information flow inside the
component that need to be guaranteed in these contexts.

Definition 3.12 (IFC-Condition). An information flow control condition
(IFC-condition)

c =⇒
m

f

of a method m is comprised of an alias-condition c describing the context
configurations to which it applies and a flow-restriction f that poses required
restrictions on the information flow inside the component P‖m.

The IFC-condition c =⇒
m

f is satisfied iff for any context config-
uration C that meets the alias condition c, the method m fulfills the
flow-restriction f when called in context C .

∀C : C |= c =⇒ C[P‖m] fulfills f

An alias condition c —as defined in Definition 3.11— is a disjunction
of conjunctions of not-alias predicates on input parameters18 IN(m) of
method m.

c B
∨

i

∧
j

¬alias(pi j, p′i j) with pi j, p′i j ∈ IN(m)

We allow not-alias predicate with > 2 parameters for convenience. They
translate to atomic predicates as follows.

¬alias(p1, p2, . . . , pi) B
∧

1≥k,l≥i,k,l

¬alias(pk, pl)

18Note that input parameters are normal method parameters as well as static and object
fields read by the method.
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We also allow wildcards ’*’ to forbid aliasing of all reaching fields.

¬alias(p.∗, p′.∗) B
∧

p. f1... fk,p′. f ′1 ... f
′

l ∈IN(m)

¬alias(p. f1 . . . fk, p′. f ′1 . . . f ′l )

Definition 3.13 (Flow Restriction). A flow restriction f for a component
P‖m restricts the allowed information flow between the input parameters IN(m)

and the output parameters OUT(m) of P‖m. We call f B pin 9 pout an
atomic flow-restriction when it restricts direct and indirect flow from a single
input to a single output parameter. An atomic flow-restriction is satisfied if no
information flow between pin and pout is possible. In general a flow-restriction
is a conjunction of atomic flow restrictions.

f B
∧
i, j

pin
i 9 pout

j with pin
i ∈ IN(m), pout

j ∈ OUT(m)

We say f is fulfilled in context C

C |= f

if P‖m does not contain any information flow from pin to pout when called
in context C. We say f is fulfilled in general

|= f

if it is fulfilled in any context.
Similar to the not-alias predicate we allow flow-restrictions on multi-

ple input and output parameters at once.

(pin
1 , pin

1 , . . . , pin
i )9 (pout

1 , pout
1 , . . . , pout

j ) B
∧

1≥k≥i,1≥l≥ j

pin
k 9 pout

l

Our tool supports IFC-conditions in form of a JML style syntax inside
the comment block for method declarations. Figure 3.9 contains the
grammar of a single IFC-condition in extended backus-naur form (EBNF).
An example of an IFC-condition at a method declaration has already
been shown in Figure 3.7. For convenience we allow several shortcuts:

• Alias conditions (rule alias-cond) do not need to be declared in
disjunctive normal form. They are automatically transformed to
DNF in a precomputation step.
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ifc-cond → alias-cond => flow-rest
| ? => flow-rest

alias-cond → alias-and [ | alias-cond ]
| ( alias-cond )

alias-and → alias-pred [ & alias-pred ]
alias-pred → !{ param , param-list }
param-list → param [ , param-list ]

param → <ident> [ . access-path ]
access-path → field [ . access-path ]

field → <ident> | [] | *
flow-rest → in-params -!-> out-params [ , flow-rest ]
in-params → param | ( param-list )

out-params → out-param | ( out-param-list )
out-param → out-root [ . access-path ]

out-root → <ident> | \result | \exception
out-param-list → out-param [ , out-param-list ]

Figure 3.9: EBNF-Grammar of FlowLess – the description language for conditional
information flow requirements.

• Not-alias predicates (rule alias-pred) can be declared with a list of
parameters. Single parameter declarations can use a wildcard *
that expands to a list of reachable parameters.

• Flow-restrictions (rule flow-rest) can be declared declared in form of
a comma separated list. The conjunction of atomic flow-restrictions
is built automatically from each list entry. For example

a.f -!-> b.i, b -!-> c.f2

translates to
a. f 9 b.i∧ b9 c. f 2

• Single entries of the flow-restriction list can refer to multiple in-
and out-parameters. When multiple parameters are referenced
flow from any in- to any out-parameter is forbidden. For example

(a.f, b, c.i) -!-> (a.k, b.i)
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translates to the following atomic flow-restrictions

a. f 9 a.k∧ a. f 9 b.i∧ b9 a.k∧ b9 b.i∧ c.i9 a.k∧ c.i9 b.i

• Special root out-parameter names exist for the return value (\result)
and exception object (\exception). For example the flow-restriction
in Figure 3.7 x -!-> \result translates to x9 pexit.

Joana parses the FlowLess annotation of a method and transforms it
into a so-called basic IFC-conditions that use only alias conditions in
disjunctive normal form with atomic predicates and flow-restrictions that
only contain a conjunction of atomic restrictions. Given these basic IFC-
conditions Joana then computes if the conditions may hold for the given
method. This is a two step process, where in the first step we compute
the maximal context configurations allowed by the IFC-condition and in
the second step we check if the component satisfies the flow-restriction
in those configurations. The following subsection §3.3.2 explains how
to generate context stubs that call the component in the maximal context
configuration allowed. These stubs can then be used to analyze the
information flow inside the component through a standard SDG-based
information flow analysis. The structure of the components SDG obvi-
ously depends on the context configuration. However independent of
the context, all SDGs of the component share a common structure that
can be exploited to compute a modular context independent representa-
tion. Section §3.4 introduces the modular variant of the SDG that allows
an efficient computation of the actual context dependent SDG. With
a precomputed modular SDG the full recomputation for each context
is no longer needed. So checking flow-restrictions in different context
configurations becomes more efficient.

3.3.2 Building context stubs from annotation

One way to verify if a given IFC-condition (c =⇒
m

f ) holds is to analyze
the corresponding component P‖m in the maximal context that still
satisfies alias-condition c. Therefore we extract and normalize the alias-
condition of the IFC-condition and use it to build maximal points-to
sets that satisfy c. Then we generate a context stub method that creates
a context according to the points-to sets and calls the component P‖m.
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Finally we apply our standard whole-program IFC analysis on the
generated context stub to see if P‖m satisfies flow-condition f in all
contexts allowed by c.

Normalizing alias conditions

The alias-conditions in a FlowLess annotation may contain arbitrarily
nested conjunctions and disjunctions of atomic and non-atomic alias
predicates. This improves convenience for the user, but at the same time
complicates an automated analysis. Therefore we transform the alias-
condition of an IFC-condition into the disjunctive normal form (DNF) of
atomic alias predicates. We remove superfluous parts from the condition
and then analyze each part of the remaining disjunction separately.
Every part of the disjunction only contains a conjunction of atomic alias
predicates. For every conjunction there exists a single maximal context
configuration that satisfies all predicates and therefore a single analysis
run suffices to check if the flow-restrictions can be guaranteed in the
contexts allowed by the conjunction. Therefore we create a separate
context stub for each conjunction and check if the flow-restrictions hold
in any of them. Note that we can use a lazy approach because of the
disjunction of conjunctions: We can stop the analysis as soon as we verify
a single conjunction.

Given an IFC-condition c =⇒
m

f we apply the following steps:

1. Expand non-atomic alias predicates in c.

¬alias(p1, . . . , pn)→
∧

1≤i, j≤n,i, j

¬alias(pi, p j)

2. Transform to disjunctive normal form.

c→ DNF(c) ≡
∨

i

ci ≡
∨

i

(
∧

j

ci, j) ≡
∨

i

(
∧

j

¬alias(pi, j, p′i, j))

3. Remove superfluous conjunctions of predicates.

C(c) = {c j | c j ∈
∨

i

ci ∧ @ck ∈
∨

i

ci : ck , c j ∧ ck =⇒ c j}
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4. Build disjunction of basic IFC-conditions. If any of those conditions
can be met, the originating condition c =⇒

m
f is also met.∨

c′∈C(c)

(c′ =⇒
m

f )

Consider for example the following IFC-condition in FlowLess syntax:
(!{x, y} | !{a, b, c, d}) & (!{a, b} | !{c, d}) => c -!-> d

We parse the alias-condition part and get:

(¬alias(x, y)∨¬alias(a, b, c, d))∧ (¬alias(a, b)∨¬alias(c, d))

Then we transform to disjunctive normal form and remove superfluous
conditions.

¬alias(x, y)∧¬alias(a, b)
∨ ¬alias(x, y)∧¬alias(c, d)
∨ ¬alias(a, b, c, d)∧¬alias(a, b)
∨ ¬alias(a, b, c, d)∧¬alias(c, d)

=⇒

¬alias(x, y)∧¬alias(a, b)
∨ ¬alias(x, y)∧¬alias(c, d)
∨ ¬alias(a, b)∧¬alias(a, c)∧¬alias(a, d)∧¬alias(b, c)
∧¬alias(b, d)∧¬alias(c, d)

Now we are left with three different conjunctions of atomic alias-
predicates that we need to check separately. Therefore we are going to
build initial points-to sets for all parameters of P‖m that satisfy these
conditions.

Building initial points-to sets

We start with the maximal alias configuration Cmax of the component.
This configuration allows aliasing between all parameters of the com-
ponents interface only restricted by type information. For example an
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int array can never point to the same location as a char. Objects may
only alias if one is a subtype of the other. Given a conjunction of atomic
alias-predicates (c =

∧
i
¬alias(ai, bi)) we use them to remove the specified

non-aliasing parameters from the configuration.

C¬alias(a,b) B Cmax \ {(a, b)}

Cc = C∧
i
¬alias(ai,bi)

B
⋂

i

C¬alias(ai,bi)

The configuration Cc contains a pair of every parameters potentially
aliased. By the definition of aliasing we know that the respective points-to
sets of these parameters must share at least a single common element.

(a, b) ∈ Cc =⇒ ∃l ∈ ptsc(a) : l ∈ ptsc(b)

We use this observation to create point-to sets from the given alias
configuration. A straight forward approach would be to create a new
points-to element for each pair in the configuration.

∀a ∈ Inter f ace(m) : ptsc(a) B {la,b | ∃(a, b) ∈ Cc}

However the number of potential aliasing parameter pairs can become
large and thus the number of individual points-to elements too. We can
do better by detecting complete groups of aliasing parameters.

(a, b)c B {(a, b)} ∪ {(x, y) | (x, y) ∈ Cc

∧∀(a′, b′) ∈ (a, b)c : (a′, x), (a′, y), (b′, x), (b′, y) ∈ Cc}

Every parameter in a complete group of aliasing parameters is aliased to
any other parameter in this group.

(a′, _), (b′, _) ∈ (a, b)c =⇒ (a′, b′) ∈ Cc

Therefore it suffices to create only a single points-to element for each
group. We define Cc as the set of all complete groups under the alias-
condition c. Then we define the points-to sets with respect to these
groups.

∀a ∈ Inter f ace(m) : ptsc(a) B {la | ∃ a = (a′, x′)c ∈ Cc ∧ (a, _) ∈ (a′, x′)c}

178



3.3. FLOWLESS: A LANGUAGE FOR INFORMATION FLOW ANNOTATIONS

This definition reduces the amount of points-to elements significantly
compared to the naive approach. It shows even in a small example where
three parameters a, b, c may be aliased with each other. The minimal alias
configuration for this example is {(a, b), (a, c), (b, c)} and thus the naive
approach creates three different points-to elements {l(a,b), l(a,c), l(b,c)}

with pts(a) = {l(a,b), l(a,c)}, pts(b) = {l(a,b), l(b,c)} and pts(c) = {l(a,c), l(b,c)}.
The refined approach detects that a, b, c form a complete group of alias
parameters: a = (a, b) = (a, c) = (b, c). Therefore we only need to create
a single points-to element la with pts(a) = pts(b) = pts(c) = {la}.

We integrated initial points-to sets through complete aliasing groups
into our Joana tool. To compute complete groups efficiently we build a
structure called alias graph and search for maximal complete subgraphs —
also called maximal cliques — in this graph.

Definition 3.14 (Alias Graph). An alias graph is an undirected graph
G = (N, E) that represents the aliasing configuration of a component P‖m.
The nodes of the graph correspond to input parameters of the component
N B Inter f ace(m). Two nodes n1, n2 ∈ N are connected if they are may-
aliased: (n1, n2) ∈ E ≡ alias(n1, n2).

A maximal clique in the alias graph corresponds to a complete alias
group. Therefore we can leverage well known approaches to compute
maximal cliques in an undirected graph. For arbitrary graphs this
problem is hard to compute [107] with an approximated runtime of
O(2

n
3 ) ≈ O(1.3n). We found that the alias graphs in our evaluation

computed in reasonable time. However it is still possible to fall back
to the naive approach and trade memory — the number of points-to
elements — in favor of runtime.

While maximal cliques provide the best result in terms of memory
usage, it is also possible to mix it with the naive approach and only
identify some cliques. It does not guarantee a minimal number of points-
to elements but proved to be the best option in practice. We suggest a
greedy algorithm that starts at a random node with a high degree and
searches a maximal clique for it. Then we remove all edges between
nodes in the clique — which may remove the possibility to detect other
maximal cliques — and the process starts again with a different node.
Algorithm 3.2 contains the pseudocode of the greedy algorithm that runs
in O(n3). The naive approach needs to touch every node and edge once
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Algorithm 3.2 (Compute points-to sets from alias graphs in O(n3)).
No optimal solution, but a good trade-off.
MAIN AliasToPts(G, minDe g)
IN: An alias graph G = (N , E) for a component and

a threshold minDe g for the minimal degree of the nodes we search cliques for.
OUT: A mapping pts : N → Loc2

m for each node of G to a set of points-to elements Locm.
BEGIN
Initialize pts with empty sets for each node.
Initialize workset := {n | n ∈ N ∧ de gree(n) ≥ minDe g }
WHILE (workset , ∅) DO
Remove random element n from workset
cl ique := {n }
Add n to empty workl ist

WHILE (workl ist , ∅) DO
Remove first element e from workl ist
FORALL (neighbors n ′ of e in G with de gree(n ′ ) ≥ max(minDe g , ‖cl ique‖)) DO
IF (n ′ < cl ique ∧ n ′ is neighbor to all nodes in cl ique) THEN
Add n ′ to cl ique
Add n ′ to workl ist
FI
DONE
DONE

Create a new points-to element l
FORALL (n ′ ∈ cl ique) DO

pts(n ′ ) = pts(n ′ ) ∪ { l }
DONE
Remove all edges between nodes of cl ique in G
Remove all nodes n ′′ ∈ cl ique with de gree(n ′′ ) < minDe g from workset
DONE

FORALL (remaining edges (n1 , n2 ) = e ∈ E) DO
Create a new points-to element l
pts(n1 ) = pts(n1 ) ∪ { l }
pts(n2 ) = pts(n2 ) ∪ { l }

DONE
END

and therefore runs in O(n + e) ≈ O(n2). Note that it is possible to abort
the greedy algorithm during any iteration of the workset and finish the
remaining graph with the naive approach, in case the computation still
takes too long. However we have never found the need to do so.

The result of our points-to set computation is a mapping from each
variable and field to an initial points-to set. These initial points-to
sets are the largest points-to configuration that still can satisfy the alias
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conditions of the component. Thus if we use this configuration to analyze
the component for internal information flow, we can be sure that when
no illegal flow is detected, there will be no illegal flow for any other
points-to configuration that satisfy the alias conditions.

In order to run an IFC analysis of the given component with the
precomputed initial points-to sets it is possible to insert the points-to
sets as initial states into the points-to computation of our whole program
analysis. However our IFC framework —as well as other program
analysis frameworks— supports multiple flavors of points-to analyses.
We would have to integrate initial states in each, as the integration is
very much dependent on the nature of the points-to analysis. Therefore
we decided to decouple initial points-to sets from the concrete points-to
analysis and generate stubs that call the component in the desired context
instead. This way we can run our analysis with an unaltered points-to
analysis directly on the stub and the called component is automatically
analyzed in the right context.

Generating stubs from given points-to sets

This section describes how we generate a stub that calls a given compo-
nent in an alias configuration specified by initial points-to sets for each
parameter. The presented approach in general only works under the
previously stated restrictions that the component contains no callbacks
and the dynamic types of all method parameters are equal to their static
type. However in our implementation we can treat dynamic types,
because the WALA framework we use to generate the instructions of
the stub supports a special flavor of new-instructions that does not only
create an object of a specific type, but potentially creates a new-instance
of any subtype of the specified type.

Algorithm 3.3 contains the pseudocode of the context-stub cre-
ation for a given context configuration. The input is a mapping
pts : Inter f ace(m) → Loc2

m from parameter nodes n ∈ Inter f ace(m) of
component m to a set of points-to elements l ∈ Locm. At first we generate
new instance instructions for each element of the points-to set Locm and
assign a separate local variable vl to each instance. Then we start at the
root parameter nodes r ∈ Root(m), create a variable vr for each root node
and add a statically undecidable conditional assignment to vr for each
element of the points-to set of r. Then we traverse to the parameter fields
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Algorithm 3.3 (Build a context-stub for a given points-to configuration).

MAIN PtsToStub(pts)
IN: A mapping pts : N → Loc2

m for each node of that alias graph G of component m
to a set of points-to elements Locm.

OUT: A method stub s that calls component m with the points-to configuration
described by the input.

BEGIN
Initialize empty map pts2var : Locm → V
Initialize empty set of alias nodes visi ted = { }

FORALL (l ∈ Locm) DO
Create new local variable v l
// Add new-instance instruction i for pts-element l to stub s:
Emit(’v l = new t ype( l)’)
pts2var( l) := v l

DONE

FORALL (r ∈ Root(m)) DO
Create new local variable vr
FORALL (l ∈ pts(r)) DO

v l := pts2var( l)
// Add conditional assignment to stub s:
Emit(’if (System.timeInMillis() % 23 == 0) vr = v l’)
DONE
AssignFields(r)
DONE

// Finally add call to component with root node variables vr as params
Emit(’call m(vr1 , . . . , vrn)’)
END

PROCEDURE AssignFields(n ∈ Inter f ace(m))
BEGIN
Add n to visi ted
FOREACH (non-primitive field f of n) DO
FOREACH (c ∈ Inter f ace with c corresponds to field f) DO
FORALL (l ∈ pts(c)) DO

v l := pts2var( l)
// Add conditional assignment to stub s:
Emit(’if (System.timeInMillis() % 23 == 0) n. f = v l’)
DONE
IF (c < visi ted) THEN
AssignFields(c)
FI
DONE
DONE
END

PROCEDURE Emit(Instruction i)
BEGIN
Add i at the end of stub s
END
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1 class A {
2 B b1;
3 B b2
4 }

5 class B {
6 int i;
7 }

8 class Library {
9 //@ifc: !{a1, a2} && !{a1.b1, a1.b2, a2.b2}

10 static void component(A a1, A a2, B b) { ... }
11 }

Figure 3.10: An example program with an alias condition (l. 9) for method
component.

reachable from those root nodes and also create variables and conditional
assignments for them. Finally we add a call to the component that takes
the matching variables of the root nodes as argument.

We implemented this approach in our Joana framework and use it
to compute information flow inside a component for a given points-to
configuration. However this approach is in general independent from
our IFC and dependency graph analysis and can be used to set up
stubs for other analysis purposes as well. A limitation of this approach
is that the resulting stub is not executable in a virtual machine. The
instructions in the stub are tailored to support arbitrary points-to analyses
and contain as few clutter as possible —we omit additional methods
calls. The generated field accesses can violate access restrictions and the
new-Instance instructions miss the subsequent call to the constructor of
the type. This leaves the code non-executable but —to our experience— it
yields the best results for points-to analyses in terms of analysis runtime
and precision.

3.3.3 Example

This example illustrates how we create a stub calling a component with
a given alias condition. The relevant code for the component is shown
in Figure 3.10 and contains an alias condition in l. 9.

We start by parsing the alias condition and convert it into disjunctive
normal form:

¬alias(a1, a2)∧¬alias(a1.b1, a1.b2, a2.b2)
=⇒

¬alias(a1, a2)∧
¬alias(a1.b1, a1.b2)∧¬alias(a1.b1, a2.b2)∧¬alias(a1.b2, a2.b2)
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a1

a1.b1

a1.b2
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a2.b1

a2.b2

b

potential aliasing
aliasing excluded 
by configuration

(a) All potential aliasing relations. Dotted edges show aliasing forbidden by the
alias conditions.

potential aliasing

aliasing groups

l? points-to elements
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(c) Greedy approach

Figure 3.11: Alias graphs for method component of the example in Figure 3.10.
Nodes with bold outline are root parameters, others are field parameters.

Then we compute the maximal aliasing possible for the input parameters
of method component in form of an alias graph. We use type information
and the additional restrictions to remove impossible aliasing. Figure 3.11a
shows the resulting alias graph. The alias relations that would be possible
due to type information but are forbidden by the restrictions are drawn
as dotted edges.

We use the alias graph to compute the necessary points-to elements.
Therefore we can use either the slow but optimal approach (see Fig-
ure 3.11b) to detect all complete groups in the graph, or the faster
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pts(a1) = {la1}

pts(a2) = {la2}

pts(b) = {lb, l1, l2, l3}
pts(a1.b1) = {la1.b1, l1}
pts(a1.b2) = {la1.b2, l2}
pts(a2.b1) = {la2.b1, l1, l2, l3}
pts(a2.b2) = {la2.b2, l3}

(a) Optimal approach

pts(a1) = {la1}

pts(a2) = {la2}

pts(b) = {lb, l1, l2, l3}
pts(a1.b1) = {la1.b1, l1}
pts(a1.b2) = {la1.b2, l2, l5}
pts(a2.b1) = {la2.b1, l1, l4, l5}
pts(a2.b2) = {la2.b2, l3, l4}

(b) Greedy approach

Figure 3.12: Resulting points-to sets for the optimal and the greedy approach.

non-optimal greedy approach (see Figure 3.11c). Figure 3.12 shows the
resulting points-to sets for both approaches. Besides a points-to element
for each detected group and edges in the graph, those sets also contain
an individual points-to element for each separate parameter and field.
This helps to guarantee that every parameter has at least a single element
in its points-to set and that no two parameters share the exact same
points-to set —making the may-aliasing more explicit.

In the final step we use the computed points-to sets from Figure 3.12a
to build a stub that calls method component in the defined alias config-
uration. Figure 3.13 shows the resulting stub. It contains instructions
to create instances for each individual parameter, as well as for each
points-to element induced by aliasing constraints. Then the values of all
fields are set according to their corresponding points-to set and finally
the component is called.

3.4 Modular SDG

In the previous sections we argued that some whole-program analyses
—like our IFC analysis— can also be used to analyze components in
unknown context, if they fulfill the requirements for the monotonicity
property. This property allows us to draw conclusions about the outcome
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1 public static void stub() {
2 // individual elements
3 A v1 = new A(); // la1
4 A v2 = new A(); // la2
5 B v3 = new B(); // lb
6 B v4 = new B(); // la1.b1
7 B v5 = new B(); // la1.b2
8 B v6 = new B(); // la2.b1
9 B v7 = new B(); // la2.b2

10 // aliasing induced elements
11 B v8 = new B(); // l1
12 B v9 = new B(); // l2
13 B v10 = new B(); // l3

14 // set b
15 if (System.timeInMillis() % 23 == 0) v3 = v8;
16 if (System.timeInMillis() % 23 == 0) v3 = v9;
17 if (System.timeInMillis() % 23 == 0) v3 = v10;
18 // set a1.b1
19 v1.b1 = v4;
20 if (System.timeInMillis() % 23 == 0) v1.b1 = v8;
21 // set a1.b2
22 v1.b2 = v5;
23 if (System.timeInMillis() % 23 == 0) v1.b2 = v9;
24 // set a2.b1
25 v2.b1 = v6;
26 if (System.timeInMillis() % 23 == 0) v2.b1 = v8;
27 if (System.timeInMillis() % 23 == 0) v2.b1 = v9;
28 if (System.timeInMillis() % 23 == 0) v2.b1 = v10;
29 // set a2.b2
30 v2.b2 = v7;
31 if (System.timeInMillis() % 23 == 0) v2.b1 = v10;
32 // call method
33 Library.component(v1, v2, v3);
34 }

Figure 3.13: Generated stub for the component in Figure 3.10 and the alias
configuration in Figure 3.12a.

of the analysis in a given context through previously obtained results in
other contexts. We introduced a new language to specify conditions on
the components context and showed how to generate context-stubs from
those conditions. These context-stubs allow us to use whole-program
analyses to analyze a component for any context that fulfills these
conditions. With this approach however we still need to run a full-blown
analysis for every context variant.

In this section we introduce the modular SDG —a special variant of the
SDG presented in §2.5.3. The modular SDG of a component can be com-
puted independent of the components context. Given a specific context
we can extract a standard SDG from the modular SDG in significantly less
computation time and with lower memory usage than a standard SDG
computation would take. The modular SDG exploits the fact that many
dependencies —like control (Definition 2.3) and direct data dependencies
(Definition 3.5)— are not influenced by the context of the respective
component. Only heap data dependencies (Definition 3.7) depend on the
alias configuration at the call site of the component. Therefore it includes
a new form of heap data dependencies —called conditional dependencies—
annotated with alias conditions that must be met for the dependencies to
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occur. In the following section §3.4.1 we provide an overview of the steps
needed to compute a modular SDG, §3.4.2 contains a detailed description
of the new conditional dependencies, §3.4.4 contains the adjustments to
the summary computation phase for the modular SDG. Section §3.4.3
introduces access paths and the accompanying computation algorithm.
Access paths allow us to compute the conditional dependencies of the
modular SDG. Finally section §3.4.5 concludes with an evaluation of the
modular IFC approach.

3.4.1 Overview

In order to compute the modular SDG of a component we approximate
its structure through the SDGs in the minimal and maximal context
configuration possible. Any dependency that is part of the minimal SDG
is also present in any other context. Therefore any dependency that is
part of the maximal SDG, but not part of the minimal SDG, is obviously
a conditional dependency.

In the next step we compute the actual conditions of the conditional
dependencies. This can be achieved through a brute force approach that
enumerates all possible contexts or with a more sophisticated approach
similar to the inference algorithm for relevant context conditions (Algo-
rithm 3.1). However, we propose a new algorithm based on access paths
that takes the maximal SDG as input, automatically detects conditional
heap dependencies and subsequently computes an approximation of the
matching alias conditions for them. While the access path algorithm can
detect alias conditions for single heap dependencies, it cannot be used to
compute conditions for the summary edges between the components
input and output parameters.

When we extract the SDG for a given context configuration from
the modular SDG with conditional heap dependencies, we trigger all
conditional dependencies whose condition is satisfied by the context.
Then we recompute the summary edges for the specific context at the plug-
in site. As we know the minimal and maximal SDGs of the component,
this process can be sped up significantly: We inject the summary edges
of the minimal SDG at the starting point of the computation and run an
adapted version of the summary computation from there.

When the summary computation finished, we analyze the resulting
SDG for information flow properties in the given context configuration.
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3.4.2 Conditional data dependencies

The modular system dependence graph SDG∗(m) of a component m
contains conditions for all heap data dependencies that only occur
in specific contexts. These conditional dependencies are annotated with
may-alias conditions. In contrast to (not-)alias conditions as defined
in Definition 3.11, may-alias conditions represent a positive condition
that holds for a context C if the dependency occurs in the dependence
graph for the component in this context. We write SDGC(m) for the
dependence graph of P‖m in context C and May-Cond(x) to denote the
may-alias conditions implied by x.

Definition 3.15 (Conditional Dependence). A conditional dependence
inside a modular dependence graph SDG∗(m) for a component m is a heap data de-
pendency n1 dh n2 annotated with a may-alias condition May-Cond(n1 dh n2)
that evaluates to true for all contexts C in which n1 dh n2 ∈ SDGC(m).

We define Cn1,n2 as the set of all valid contexts of m in which the heap data
dependence n1 dh n2 occurs.

Cn1,n2 B {C | C ∈ Cm ∧ n1 dh n2 ∈ SDGC(m)}

The may-alias conditions implied by Cn1,n2 are used to annotate n1 dh n2.

May-Cond(n1 dh n2) B
∨

∀C∈Cn1,n2

∧
(a,b)∈C

alias(a, b)

These conditions can be simplified by standard logic operations, but
we can also reduce the size of these conditions with a limited subset of
Cn1,n2 that only contains relevant configurations. When we use ↓Cn1,n2
similar to Definition 3.10 as the set of all minimal elements in Cn1,n2

↓Cn1,n2 B {C | C ∈ Cn1,n2 ∧ @C′ ∈ Cn1,n2 : C , C′ ∧C′ v C}

the resulting conditions are still equivalent19 to May-Cond(n1 dh n2) .

19Using a similar reasoning as in Theorem 3.3
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May-Cond(Cn1,n2) = May-Cond(↓Cn1,n2)

=
∨

∀C∈↓Cn1,n2

May-Cond(C)

=
∨

∀C∈↓Cn1,n2

∧
(a,b)∈C

alias(a, b)

Due to the monotonicity property we can guarantee that for any
context C where ∃C′ ∈ ↓Cn1,n2 with C v C′ the dependency n1 dh n2 is
not present in SDGC(m) and so May-Cond(↓Cn1,n2) is necessary for n1

dh n2.
We argued in §3.2.1 that enumeration of all valid context configura-

tions is possible, but it can become rather complex. So computing Cn1,n2
through enumeration is only feasible in some cases. Our evaluation
results have shown that the number of type-correct context configura-
tions can become huge, often around 210 and up to 2100. We suggest an
approach using so-called access paths to compute these conditions more
efficiently.

3.4.3 Access paths

Access paths describe referenced locations inside a component through
a syntactic representation of subsequent field accesses needed to reach
the location. Access paths start from the components input parameters,
return values of method calls or newly created objects. They include a
path of field names that need to be dereferenced. This description of
locations uses a syntactic representation of parameters and fields that is
independent of aliasing contexts and specific points-to information. We
are going to compute access paths for all statements in a given SDG. Then
we use them to decide which statements are referring to the same location
independent of aliasing context or if two different statements may refer
to the same location depending on initial aliasing. This approach enables
us to infer aliasing conditions for heap data dependencies without
recomputing the component in various alias contexts, as previously
suggested in §3.4.2.
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6 class Library implements Lib {
7 int call(A a, A b, A c, int x) {
8 c.i = a.i;
9 a.i = x;

10 return b.i;
11 }
12 }

Figure 3.14: Relevant part of the code from Figure 3.7.

Library.call
7

a

b

c

x

a

b

c

i

i

i i

i

i

ret

c.i = a.i
8

a.i = x
9

return b.i
10

control dependence

heap data dependence
direct data dependence

conditional dependence

Figure 3.15: SDG in minimal alias context Cmin of method call from Figure 3.14.

For example method Library.call from Figure 3.14 may be called in
various contexts. Depending on the calling context different dependen-
cies occur:

• In Cmin all three statements are independent from each other and
parameter xdoes not influence the return value. Figure 3.15 shows
the matching SDGCmin for the minimal alias context.

• In Cmax —with input parameters a, b and c potentially aliased—
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Library.call
7

a
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ret

c.i = a.i
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a.i = x
9

return b.i
10

control dependence

heap data dependence
direct data dependence

conditional dependence

Figure 3.16: SDG in maximal alias context Cmax of method call from Figure 3.14.
Additional conditional heap dependencies compared to Figure 3.15 are dashed.

the statements are no longer independent and a flow from x to the
return value exists. Figure 3.16 shows the SDGCmax where addi-
tional heap dependencies —compared to SDGCmin— are drawn
with a dashed line. Those dependencies are conditional depen-
dencies, as they are not present in SDGCmin and therefore clearly
depend on the initial alias configuration.

Our goal is to compute the necessary alias conditions for the conditional
dependencies. If these alias conditions do not hold in a given initial
context configuration, the conditional dependency is not part of the SDG
specific to this configuration. Figure 3.17 shows the SDG with annotated
access paths for each node and alias conditions for each conditional
dependency. The graph omits all unconditional data dependencies
already present in SDGCmin to improve readability and only shows
conditional dependencies. For example statement 10 reads the value set
in statement 9 only if parameters a and b are initially aliased.
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mod (a,_)

mod (c,i)

mod (b,i)

mod (a,i)

mod (c,_)

mod (b,_)

ref (a,i)

mod (c,i)

mod (a,i)

ref (b,i)

ref (a,i)

ref (b,i)

ref (c,i)

Figure 3.17: Conditional dependencies in the modular SDG for Figure 3.14.
Nodes are annotated with matching access paths.

In case we want to extract the SDG where only a and b are aliasing
(Calias(a,b) = {(a, b)}) from the modular SDG, we have to check each
conditional dependency if it is valid in Calias(a, b). Invalid dependencies
are removed, valid dependencies are replaced with standard heap data
dependencies. The resulting SDGCalias(a, b)

—shown in Figure 3.18— is a
standard non-modular SDG suitable for IFC analysis.

The conditional dependencies in Figure 3.17 have been inferred from
the access paths of the source and destination nodes for each dependency.
They are also shown in the Figure as small boxes above or beneath each
node. An access path (r, f1 → . . . → fn) consists of a root parameter
r and an access path of fields fi. The path of fields describes the field
access operations needed to reach the referenced location starting from
r. A “mod” denotes that the location reachable by the access path is
modified, while “ref” marks referenced locations. Whenever the access
paths between source and sink do not share a common element the
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Figure 3.18: The SDG for the code in Figure 3.14 in the context Calias(a, b).

dependency is conditional. The condition is built from the elements of
the access paths: The dependency occurs if any element described by the
“mod” access paths of the source node is initially aliased to any element
of the “ref” access paths from the destination node. Again looking at
statement 9 and 10, 10 reads data modified by statement 9 if (a, i) and
(b, i) refer to the same location. Thus condition alias(a, b) is inferred.
In practice we do not need to distinguish mod and ref access paths if
we use the fine-grained field access representation from §2.4.3. With
fine-grained field accesses, no node holds mod and ref access paths at
the same time, so the type of access can be inferred from the node type.

We start with the definition of access paths before we explain in detail
how they are computed for a given SDG. The access paths of a node
contain a path for any potential trace of field accesses in the program
that may have been used to reach the location.
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Definition 3.16 (Access Path). An access path ap is a tuple (r, f p) of a root
node r and a field path f p. It identifies a set of locations on the heap that can be
reached from r through field accesses given by f p. A root node corresponds
to values passed to the current method or created within. It is either a method
parameter, static variable, return value of a call or a new-instruction. A field
path is a possibly empty list of object fields. It describes the fields that need to
be dereferenced in order to reach the desired location.

f p =

{
_ no field accesses, direct value

f1 → . . .→ fn subsequent accesses: i ∈ [1 . . . n], fi ∈ Fields

Some access paths are only viable in case some conditions are met.
These conditions come in the form of aliasing between statements.

Definition 3.17 (Conditional Access Paths). We write APn for the set
of conditional access paths of node n ∈ SDG. A conditional access path
cap = (cond, ap) consists of a condition cond and an access path ap = (r, f p)
with a root node r and a field path f p. The condition cond is a boolean formula
of alias conditions for access paths of nodes. It describes in which aliasing
configurations the access path exists.

An alias condition alias-ap(n1, n2) for access paths of nodes n1, n2 is
recursively defined through the aliasing of their conditional access paths.

alias-ap(n1, n2) B
∨

(cond1,ap1)∈APn1
(cond2,ap2)∈APn2

cond1 ∧ cond2 ∧ alias(ap1, ap2)

The aliasing of access paths, given a concrete context configuration
C , computes directly from the points-to information of the described
locations (Definition 2.15).

aliasC((r, f1 → · · · fn), (r′, f ′1 → · · · f ′m)) B aliasC(r. f1. . . fn, r′. f ′1 . . . f
′
m)

As previously shown in the example from Figure 3.17 we use access
paths to infer for each heap data dependence n1 dh n2 in which alias
configuration it may hold and when it can be removed: If the access
paths of n1 and n2 share a common path, the dependence may be present
in any alias configuration else it only holds in certain configurations.
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When there are no common paths, any aliasing between access paths of
n1 and n2 is a possible condition for the dependence. This leads to the
access path theorem.

Theorem 3.5 (Access Path Theorem). Given a heap data dependency n1
dh n2 in the maximal SDGCmax of a component, the dependency is not present

in any other SDGC with an initial alias configuration C if the access paths
APn1 , APn2 of n1, n2 are not aliasing in C .

(∀(cond1, ap1) ∈ APn1∀(cond2, ap2) ∈ APn2 :
¬(cond1 ∧ cond2 ∧ aliasC(ap1, ap2))) =⇒ n1 dh n2 < SDGC

In the following we are going to show the computation of access
paths in the intra- and interprocedural case and how the result can be
used to derive conditional data dependencies. Additionally we sketch
a proof of the access path theorem for the intraprocedural setting. The
proof for the interprocedural part is considered future work and not in
the scope of this thesis.

Computation

The access path computation is split in an intraprocedural (Algorithm 3.4)
and an interprocedural (Algorithm 3.5) part. The intraprocedural part
uses the system dependence graph sdg in the maximal alias context as
input and produces a mapping n2ap of nodes to their access paths as
output. Access paths are propagated unconditional along local data
dependencies and parameter structure edges, propagation along heap
data dependencies adds an alias condition to each propagated access
path.

The intraprocedural computation (Algorithm 3.4) takes the following
steps separately for each methods pdg.

1. Create initial conditional access paths for parameter and new-
instance nodes in initialAccessPaths.

2. Propagate the access paths along data dependency and parameter
structure edges e until a fixed-point is reached in propagateIntraproc.

Given edge e = n1 → n2 ∈ SDGCmax , propagate access paths from
source n1 to target n2.
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(a) Case n1 ps n2: All access paths of n1 are extended with the
field represented by n2 and propagated to n2.

(b) Case n1 dd n2: If n2 is a field access and e is a data dependency
to the base pointer of the field access then every access path
of n1 is extended by the field accessed in n2. In any other case
the access paths of n1 are simply propagated to n2.

(c) Case n1 dh n2: All access paths of n1 are propagated to n2
with the additional alias condition alias(n1, n2).

Step 2 is repeatly executed until the access paths of all nodes no longer
change. The result of the intraprocedural propagation captures all
method local changes on the access paths between method entry and exit.
So the access paths of the formal-out nodes of each method represent
the method local effects that are visible outside the method itself. These
effects need to be propagated from callee to call site in the interprocedural
computation in order to capture the effects for a whole component.

Algorithm 3.4 (Compute intraprocedural access paths).

MAIN intraprocAccessPaths(sd g, n2ap)
IN: System dependence graph SDGCmax in maximal alias configuration sd g
OUT: Mapping of nodes n ∈ sd g to intraprocedural conditional access paths APn n2ap
BEGIN

n2ap = map all nodes to an empty set.
FORALL (PDGs pd g ∈ sd g) DO
initialAccessPaths(pd g, n2ap) // step 1
propagateIntraproc(pd g, n2ap) // step 2
DONE
END

PROCEDURE propagateIntraproc(pd g, n2ap)
IN: Procedure dependence graph pd g

Mapping from nodes n ∈ pd g to conditional access paths n2ap
OUT: Returns true iff n2ap mapping changed
BEGIN
DO
FORALL (edges e = n1 → n2 ∈ pd g) DO
SWITCH (type of edge e)
CASE parameter structure edge: // step 2a
// n2 must be a field node
// f = corresponding field of field node n2
n2ap(n2 ) = n2ap(n2 )∪ expand(n2ap(n1 ), f)

CASE local data dependence: // step 2b
// n2 is a field-get ("v2 = v1 . f") or
// field-set ("v1 . f = v2") operation on field f
IF (e is data dependency for field base pointer v1) THEN

n2ap(n2 ) = n2ap(n2 )∪ expand(n2ap(n1 ), f)
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ELSE
n2ap(n2 ) = n2ap(n2 ) ∪ n2ap(n1 )

FI
CASE heap data dependence: // step 2c
FORALL (cond , (r , f p) ) ∈ n2ap(n1 ) DO
Add (al ias(n1 , n2 ) ∧ cond , (r , f p) ) to n2ap(n2 )
DONE

ESAC
DONE
WHILE (n2ap changed)
RETURN true iff n2ap changed
END

PROCEDURE expand(paths, f)
IN: Set of access paths paths

Field f
OUT: Set of all conditional access paths in paths extended with field f
BEGIN

expanded = { }
FORALL (access paths ap = (cond , (r , f1 → . . . fn ) ) ∈ paths) DO
IF (∃ f i ∈ { f1 , . . . fn } with f i = f) THEN

expanded.add((cond , (r , f1 → . . . f i ) ))
ELSE

expanded.add((cond , (r , f1 → . . . fn → f ) ))
FI
DONE
RETURN expanded
END

PROCEDURE initialAccessPaths(pd g, n2ap)
IN: Procedure dependence graph pd g
OUT: Added mapping from nodes n ∈ pd g to initial conditional access paths in n2ap
BEGIN
FORALL (nodes n ∈ pd g) DO
IF ((n is root parameter AND (n is formal-in/out OR actual-out))
OR n is new-instance operation)

THEN
n2ap(n) = {( true , (n , _) ) }

FI
DONE
END

Figure 3.19 shows a schematic overview of the interprocedural prop-
agation at each call site. The algorithm is described in detail in Algo-
rithm 3.5. It starts with an initial run of the intraprocedural access path
computation for each method and then subsequently propagates method
local effects from callee to call site until a fixed-point is reached. Method
accessPaths contains these two basic steps. The interprocedural propa-
gation takes place in propagateInterprocedural. It applies the following
steps until all access paths no longer change and a fixed-point is reached.
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1. Propagate access paths intraproce-
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put parameters with access paths
of parameters at call site

3. Reiterate intraprocedural propa-
gation at callee

4. Transfer access paths from callee
output parameters to call site

5. Reiterate intraprocedural propa-
gation at caller

...

call

a call callee
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Figure 3.19: Schematic interprocedural propagation of access path information
at a single call site.

1. For each call site call and each called target tgt in the SDG it
propagates the effects inside tgt so the call site.

(a) Search the matching formal-in nodes of the target for the
actual-in nodes of the call.

(b) Temporarily replace the access paths of the formal-in node
with the access paths of the actual-in node for all nodes of tgt.

(c) Propagate the temporarily replaced access paths intraproce-
dural.

(d) Search the matching actual-out nodes of the call for each
formal-out of the target.

(e) Permanently replace all access paths of the actual-out node
with the access paths of the formal-out node for all nodes in
the PDG of the call site.

2. For all methods with changed access paths the intraprocedural
propagation is run again.
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Algorithm 3.5 (Compute interprocedural access paths).

PROCEDURE accessPaths(sd g)
IN: System dependence graph SDGCmax in maximal alias configuration sd g
OUT: Mapping of nodes n ∈ sd g to set of interprocedural access paths APn n2ap
BEGIN

n2ap = empty mapping from nodes ∈ sd g to sets of access paths
intraprocAccessPaths(sd g, n2ap)
propagateInterprocedural(sd g, n2ap)
END

PROCEDURE propagateInterprocedural(sd g, n2ap)
IN: System dependence graph SDGCmax in maximal alias configuration sd g

Mapping of nodes n ∈ sd g to set of intraprocedural access paths APn n2ap
OUT: Mapping of nodes n ∈ sd g to set of interprocedural access paths APn n2ap
BEGIN
DO
FORALL (call nodes cal l ∈ sd g) DO
FORALL (entry nodes t gt ∈ sd g where cal l calls t gt) DO
// propagate effects to call site
propagateFromCalleeToSite(cal l, t gt, n2ap, sd g)
DONE
DONE

FORALL (PDGs pd g ∈ sd g where ∃n ∈ pd g with n2ap(n) has changed) DO
propagateIntraproc(pd g, n2ap)
DONE
WHILE (n2ap changed)
END

PROCEDURE propagateFromCalleeToSite(cal l, t gt, n2ap, sd g)
IN: Call node cal l

Entry node of callee t gt
Mapping of nodes n ∈ sd g to set of access paths APn n2ap
System dependence graph SDGCmax in maximal alias configuration sd g

OUT: Adjusted mapping including effects inside callee at the call site n2ap
BEGIN

n2apSubst = empty mapping from nodes to set of access paths
// search matching form-in nodes for act-ins of call and
// replace callee access paths with access paths found at actual-ins
FORALL (actual-in nodes aIn of cal l) DO

f In = matching formal-in node of aIn for callee t gt
substitute(t gt, sd g, n2ap, n2ap( f In), n2ap(aIn), n2apSubst)
DONE
// propagate temporarily replaced access paths inside callee
propagateIntracproc(t gt, n2apSubst)
// search matching act-out nodes for form-out of callee
// replace access paths of act-outs with those of form-outs
cal lerEntr y = entry node for the method containing node cal l
FORALL (actual-out nodes aOut of cal l) DO

f Out = matching formal-out node of aOut for callee t gt
substitute(cal lerEntr y, sd g, n2ap, n2ap(aOut), n2apSubst( f Out), n2ap)
DONE
END
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PROCEDURE substitute(entr y, sd g, n2ap, apOri g, apN ew, n2apSubst)
IN: Entry node of a method entr y

System dependence graph SDGCmax in maximal alias configuration sd g
Mapping of nodes to set of access paths n2ap
Set of original access paths apOri g
Set of access paths to replace with apN ew

OUT: Mapping of nodes to set of substituted access paths n2apSubst
BEGIN
FORALL (nodes n ∈ sd g in the same method as entr y) DO
FORALL (ap = (cond , (r , f1 → . . . f l ) ) ∈ n2ap(n)) DO
IF (∃ i : 0 >= i <= l : (condori g , (r , f1 → . . . f i ) ) ∈ apOri g) THEN
FORALL (ap ′ = (condnew , (r ′ , f ′1 → . . . f ′k ) ) ∈ apN ew) DO

n2apSubst(n) = n2apSubst(n)
∪{(condori g ∧ condnew , (r ′ , f ′1 → . . . f ′k → f i+1 . . . f l ) ) }

DONE
FI
DONE
DONE
END

From access path to conditional data dependencies

Given a heap data dependency n1 dh n2 and the result of the access path
computation —a mapping from each node n to a set of conditional access
paths APn— we can decide if and under which context configurations
the dependency will be part of the SDG using the alias condition for n1
and n2.

n1 dh n2 ∈ SDGC =⇒ aliasC(n1, n2) =⇒ alias-apC(n1, n2)

The computed access paths are a conservative approximation, hence
alias-apC(n1, n2) may evaluate to true even when the aliasing is in fact
not present for the given context C . However the opposite is never the
case: Whenever alias-apC(n1, n2) evaluates to false the aliasing and thus
the data dependency is definitely not existing in configuration C .

alias-ap(n1, n2) 6|= C =⇒ n1 dh n2 < SDGC

With Definition 3.17 the alias condition for nodes can be transformed to
alias conditions for access paths.

alias-ap(n1, n2) =
∨

(cond1,ap1)∈APn1
(cond2,ap2)∈APn2

cond1 ∧ cond2 ∧ alias(ap1, ap2)

200



3.4. MODULAR SDG

Conditions cond1 and cond2 can be transformed to alias conditions
for access paths accordingly. In practice —as we aim for a scalable
conservative approximation— it is safe to substitute a condition with
true in case the formula becomes too complicated to evaluate within
existing time- and memory-constraints.

We approximate Cn1,n2 (Definition 3.15), the set of all contexts C
where n1 dh n2 occurs in the matching SDGC , with the help of the
conditional access paths as CAP

n1,n2
.

CAP
n1,n2

B {C | C ∈ C ∧ alias-apC(n1, n2)}

Obviously —given access paths are a conservative approximation—
Cn1,n2 ⊆ CAP

n1,n2
holds, so ↓Cn1,n2 —the set of all minimal elements in

Cn1,n2— can be approximated in a similar way as ↓CAP
n1,n2

.

↓CAP
n1,n2

B {C | C ∈ CAP
n1,n2

∧ @C′ ∈ CAP
n1,n2

: C , C′ ∧C′ v C}

By definition it follows that

∀C ∈ ↓Cn1,n2∃C′ ∈ ↓CAP
n1,n2

: C′ v C

The minimal satisfying condition for n1 dh n2 derived from the approxi-
mated set of minimal contexts ↓CAP

n1,n2
therefore is weaker than the actual

condition.

May-Cond(n1 dh n2) = May-Cond(↓Cn1,n2)

=⇒May-Cond(↓CAP
n1,n2

)

So we can still guarantee that if a conditional dependency n1 dh n2
is removed from SDGC due to C not satisfying May-Cond(↓CAP

n1,n2
) , C

also does not satisfy May-Cond(↓Cn1,n2) . Therefore the resulting SDGs
remain a conservative approximation.

Correctness

We are going to show that the computation of access paths is correct,
meaning Theorem 3.5 holds for the access paths computed by Algo-
rithm 3.4. We restrict this proof to the intraprocedural case and a simpler
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language without array accesses and static fields. Thus only object field
accesses are allowed. Extending this proof to full Java is considered future
work. The outline is as follows: We start off with definition of execution
traces, trace based dependencies, their connection to dependencies in the
SDG and dynamic access paths. Then we show that for each dynamic
access path there always exists a matching (static) access path. We
argue that a special form of dynamic access paths called origin access
paths describe how locations can be reached from the initial memory
configuration —also referred to as the context of the component. This
helps to connect trace-based heap dependencies to aliasing in the initial
memory configuration. Finally we show that whenever an additional
trace-based heap dependency is triggered by initial aliasing of access
paths, the relevant access paths are also found in the static approximation
and therefore the resulting dependence conditions (Theorem 3.5) are
sound.

Traces, dynamic dependencies and static approximation We define
traces in a similar fashion to Giffhorn [29] as an ordered infinite list of
actions20.

Definition 3.18 (Trace). A trace T for a program P is a potential infinite list
of ordered actions a0, a1, . . . a j, . . .

(m0, o0, m0), (m1, o1, m1), . . . (m j, o j, m j), . . .

where each action (mi, oi, mi) consists of an operation oi from program P, the
state of the memory mi before the execution of oi and afterwards mi. For
two consecutive actions ai, ai+1 the states of the memory match each other:
mi = mi+1.

We write v[m] to refer to the value of variable v evaluated at the memory
state m. As a shorthand we use v[a] and v[a] to refer to the value of v before and
after the execution of action a.

We refer to the first trace action a0 in each trace also as the initial trace
action ainit.

The memory state of a trace action a specifies which access paths
point-to the same location —are aliased— before or after a executes. We

20We chose to name single trace elements action instead of configuration to prevent
confusion with alias configurations.
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write aliasa for the alias configuration after execution of a and aliasa before
execution of a. We are going to define heap data dependence in traces
based on aliasing, but first we have to start off with data dependence
through local variables.

Definition 3.19 (Data Dependence for Traces). Two actions a, a′ ∈ T are
data dependent (a dd a′) iff

• Operation o of a defines a variable v that o′ of a′ reads.

• a happens before a′ in T.

• No action between a and a′ contains an operation that redefines v.

We write de f (a′, v) for the action a that defines variable v used in a′. Note that
de f (a′, v) is unambiguous and always exists. It is the first action preceding a′

that defines v.

Data dependencies in traces are related to data dependencies in the
corresponding system dependence graph of the program independent
of the initial aliasing configuration.

Corollary 3.1 (SDGs and Data Dependence in Traces). If action a1, a2 of a
trace T of program P are data dependent then the nodes of the operations o1, o2
are also data dependent in the corresponding system dependence graph SDGP
of P.

∀a1 = (m1, o1, m1), a2 = (m2, o2, m2) ∈ T :
a1 dd a2 =⇒ o1 dd o2 ∈ SDGP

Proof Argument. A system dependence graph contains a conservative
approximation of all local data dependencies in the program. This
property has already been shown as part of the proof of the correctness
of slicing from Wasserrab [129, 127]. �

Besides data dependencies through local variables, heap data depen-
dencies can also occur through values stored on the heap.

Definition 3.20 (Heap Data Dependence in Traces). Two trace actions
a1 → . . .→ a2 ∈ T are heap data dependent (a1 dh a2) iff a1 writes a value to
a heap location that a2 reads and no action a3 in between a1 and a2 overwrites
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the value. Heap data dependencies can occur only between actions that modify
and reference a value stored on the heap. So operation o1 of action a1 is a field-set
operation and o2 of a2 is a field-get operation.

o1 B v1
base. f 1 = v1

val

o2 B v2
re f = v2

base. f 2

As a1 and a2 refer to the same location, we know that also the base pointers refer
to the same location and the accessed fields must be the same.

v1
base[m1] = v2

base[m2] ∧ f 1 = f 2

Heap data dependencies in traces also have corresponding depen-
dencies in the statically computed dependence graph.

Corollary 3.2 (SDGs and Heap Data Dependence in Traces). If two actions
a1, a2 of a trace T of program P are heap data dependent (a1 dh a2) then the
system dependence graph computed in the maximal alias configuration SDGmax

P
contains a heap data dependence edge between the corresponding operations
o1, o2.

∀a1 = (m1, o1, m1), a2 = (m2, o2, m2) ∈ T :
a1 dh a2 =⇒ o1 dh o2 ∈ SDGmax

P

Proof Argument. Aside from Wasserrabs correctness proof [129, 127], the
semantics of slicing including heap data dependencies have already been
extensively studied [100, 106, 14]. In combination with the monotonicity
property from §3.2.2, we know that the maximal SDG needs to contain
all heap data dependencies possible. �

With the definition of local and heap data dependencies for traces in
place, we can define the notion of a dynamic data slice for traces.

Definition 3.21 (Dynamic Data Slice). The dynamic backward data slice
BSdyn

data(a) of a trace action a in trace T contains all actions in the transitive
closure of heap and data dependent actions leading to a.

BSdyn
data(a) B {a} ∪ {a

′
| ∃a′′ ∈ BSdyn

data(a) : a′ dd a′′ ∈ T ∨ a′ dh a′′ ∈ T}
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From Corollary 3.1 and Corollary 3.2 it follows that the static backward
slice of the system dependence graph is a conservative approximation of
the dynamic slice.

Corollary 3.3 (Static and Dynamic Data Slice). For every action a′ =
(m′, o′, m′) in the dynamic backward data slice of a = (m, o, m) the matching
operation o′ is also in the static backward data slice of o when the maximal
aliasing configuration is assumed.

(m′, o′, m′) ∈ BSdyn
data((m, o, m)) =⇒ o′ ∈ BSdata(SDGmax

P , o)

As static data slices in the maximal SDG are a conservative ap-
proximation, this can be extended to standard slices including control
dependencies. Therefore we define control dependence for traces similar to
dynamic control dependence from Xin and Zhang [132]. Two actions are
trace control dependent if (1) one action happens after the other, (2) their
respective operations are statically control dependent and (3) there if no
action in between that also fulfills those requirements.

Definition 3.22 (Control Dependence for Traces). Two trace actions
a1 = (. . . , o1, . . .), a2 = (. . . , o2, . . .) of trace T are dynamic control dependent
(a1 cd a2) iff

1. a1 →
∗ a2 ∈ T

2. o1 cd o2 ∈ SDGmax
P

3. @a′ = (. . . , o′, . . .) ∈ T : a1 →
∗ a′ →∗ a2 ∧ o′ cd o2 ∈ SDGmax

P

With dynamic data dependence and control dependence in place we
define the dynamic slice as follows.

Definition 3.23 (Dynamic Slice). The dynamic backward slice BSdyn(a) of
trace action a in trace T contains all actions in the transitive closure of heap,
data and control dependent actions leading to a.

BSdyn(a) B {a} ∪ {a′ | ∃a′′ ∈ BSdyn(a) : a′ ∈ BSdyn
data(a

′′)∨ a′ cd a′′ ∈ T}

With these definitions in place we can extend Corollary 3.3 to the
standard backward slice that includes data dependencies as well as
control dependencies.
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Corollary 3.4 (Static and Dynamic Slice). For every action a′ = (m′, o′, m′)
in the dynamic backward slice of a = (m, o, m) the matching operation o′ is also
in the static backward data slice of o when the maximal aliasing configuration is
assumed.

(m′, o′, m′) ∈ BSdyn((m, o, m)) =⇒ o′ ∈ BS(SDGmax
P , o)

Proof Argument. Given a′ ∈ BSdyn(a) we know that a′ is connected to a
through dynamic data and control dependencies a′ → · · · → a. Hence
there exists an a′′ with a′ → a′′ → · · · → a where a′ reaches a′′ either
through (1) a control dependency (a′ cd a′′) or (2) a data dependency (a′

dd a′′ or a′ dh a′′). In case (1) we know from Definition 3.22 that also
the matching operations o′ and o′′ must be statically control dependent:
o′ cd o′′ ∈ SDGmax

P . Hence o′ ∈ BS(SDGmax
P , o′′). In case (2) we know

trough Corollary 3.3 that o′ ∈ BS(SDGmax
P , o′′).

If a′′ = a we are done. Otherwise the same argument is used for
a′′ ∈ BSdyn(a) =⇒ o′′ ∈ BS(SDGmax

P , o) until by induction a′′ = a finally
holds. �

Location and aliasing of access paths for traces We want to show how
access paths can be used to decide if a heap data dependency is present
in a certain alias configuration. Therefore we start with access paths for
traces and a definition of aliasing between them.

Definition 3.24 (Location of Access Paths in Traces). An access path
ap = (r, f1 → . . . fn) describes a location through subsequent field accesses fi
starting from root r. The location reached through these accesses depends on the
memory state of the program. In the context of traces the location of an access
path depends on the memory state of the trace actions ~a = (a1, . . . , an) used to
dereference fields f1, . . . , fn.

loc((r, f1 → . . . fn), (a1, . . . , an)) B [[. . . [r. f1]a1 . . .]an−1 . fn]an

We also write ap[~a] = (r1, f1 → . . . fn)[a1, . . . , an] to denote that the field
accesses fi of the access path ap evaluate at the respective trace action ai.
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Definition 3.25 (Aliasing of Access Paths in Traces). Two access path
ap1 = (r1, f1 → . . . fn) and ap2 = (r2, f ′1 → . . . f ′m) are aliasing if they
refer to the same location. Given two trace action vectors ~a = (a1, . . . , an),
~a′ = (a′1, . . . a′′m) we can decide if ap1 and ap2 are aliasing.

alias(ap1[~a], ap2[~a′]) B loc(ap1,~a) = loc(ap2, ~a′)

We are especially interested in the aliasing of access paths at the
initial memory configuration minit at the start of each trace, as the alias
conditions we are going to proof impose restrictions on the aliasing of
access paths in the initial configuration. We write ~ainit for the vector
that contains only the initial trace action and consequently ap[~ainit]
for the location of the access path ap evalutated at the initial memory
configuration.

Access path from traces We define a special access path called origin
access path that is computed from a given trace T, a variable v and a trace
action a. The origin access path oapv(a) of v at a reflects how the location
of v at a can be reached at the initial memory state minit before method
execution. Or —in case the referenced location is of an object created
during method execution— the origin access path refers to the memory
state of the action that created the object.

Definition 3.26 (Origin Access Path). The origin access path oapv(a) of a
variable v in trace action a ∈ T describes how the value can be reached at the
initial memory state minit. The origin access path is built as follows. Instead
of starting at action a, we start directly at last action in the trace before a that
defines v: av = de f (a, v) as oapv(a) = oapv(av). Depending on the type of
the operation of action av the origin access path is built recursively until a
new-instance operation or the method-entry (ainit) is reached.

field-get oapv(av) of a field-get action “v = vbase. f ” is

oapv(av) B

oapval(amod) if ∃amod dh av ∈ T
expand(oapbase(abase), f ) else with abase = de f (av, vbase)

For field-get operations we refer to oapv(av) also as oapre f (av) and to
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oapvbase(av) of the base pointer as oapbase(av).

oapbase(av) B oapvbase(abase) with abase = de f (av, vbase)

oapre f (av) B oapv(av)

field-set A field-set action a = (ma, “vbase. f = vval”, ma) is special in that it
does not define the value of a variable. However it modifies a value on the
heap and uses the values of two variables. Therefore we distinguish between
3 different access paths: oapbase(a), oapmod(a) and oapval(a). oapbase(a) is
the access path of the base pointer vbase, oapmod(a) is the access path of the
field that is modified. It can be inferred by expanding the access path of the
base pointer.

oapmod(a) B expand(oapbase(a), f )
oapbase(a) B oapvbase(abase) with abase = de f (a, vbase)

oapval(a) B oapvval(aval) with aval = de f (a, vval)

assignment oapv(av) of an assignment “v = v′” is

oapv(av) B oapv′(av′) with av′ = de f (av, v′)

new-instance oapv(av) of a new-instance operation o B“v = new C” is

oapv(av) B (ro, _) with ro root param for operation o

If v is defined at a new-instance operation, it refers to the instances created
by this operation.

method entry If av is the method entry, then v is a method parameter.

oapv(av) B (rv, _) with rv root param for variable v

If v is defined at method entry, it refers to a method parameter and thus is
directly related to a root parameter.
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Lemma 3.10 (Location of Origin Access Paths). The location loc(v, a)
variable v points-to at trace action a = (m, o, m) is the determined through the
value of v evaluated in memory m: loc(v, a) = v[m]. It can also be computed
with the help of the origin access path.

loc(v, a) =


oapv(a)[~anew] if v refers to a new instance

created at anew

oapv(a)[~ainit] else

Proof. If a is a

field-get action “v = vbase. f ” then oapv(a) has two cases:

Case (1) oapval(amod) if ∃amod dh a ∈ T then oapval(amod)[~a] =
oapval(amod)[~amod]. amod is a field-set action “vbase. f = vval”. We follow
oapval(amod) to the action that defines vval: aval = de f (a, vval). Then
oapval(amod) = oapvval(aval)hence oapval(amod)[~amod] = oapvval(aval)[~aval].

Case (2) expand(oapbase(abase), f ) with abase = de f (av, vbase). As no
action overwriting the value of f in between abase →

∗ a exists, it holds
that expand(oapbase(abase), f )[~a] = expand(oapbase(abase), f )[~abase].

assignment action “v = v′” then oapv(av) = oapv′(av′) with av′ =
de f (av, v′). Hence oapv(av)[~av] = oapv′(av′)[~av′ ].

new-instance action “v = new C” then oapv(av) = (ro, _) with ro as
root parameter for the new-instance operation. Hence loc(v, a) =
oapv(a)[~a].

method entry then a = ainit and v is a method parameter defined at ainit.
Hence loc(v, a) = oapv(a)[~ainit].

other actions are not possible, as they cannot define a value for v.

As the trace ainit →
∗ a is finite, the evaluation of the origin access path

location always stops at either ainit or a new-instance action. �

Observation 3.1. Given oapv(a) = (r, f1 → . . . → fn). If loc(v, a) =
oapv(a)[~anew] where the access path starts at a new-instance trace action anew
then the access path consists only of the root node for action anew : oapv(a) =
(ranew , _).
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Proof Argument. Given n , 0 then f = f1 exists. Therefore a field-
get action a f = (m f , “v f = vbase. f ”, m f ) with a →∗ a f exists. Also
de f (vbase, a f ) = anew. Then field f needs to be written after anew and
before a f , because field f of a newly created instance needs to be
initialized: ∃a′ = (m′, “v′base. f = vval”, m) where anew →

∗ a′ →∗ a f and
de f (v′base, a′) = anew. Due to the Definition 3.26 oapv f (a f ) = oapvval(a

′).
Hence if n > 0 and f exists, then f needs to be initialized after anew. If
f is initialized after anew a different access path is computed from vval.
Thus n > 0 is not possible. �

Lemma 3.10 allows us to reason about the aliasing of access path in
the initial context configuration. Note that aliasC(oapmod(a1), oapre f (a2))

includes oapmod(a1) = oapre f (a2) as same access paths are aliased in any
configuration.

Lemma 3.11 (Origin Access Paths and Initial Context Configuration).
Given initial context configuration C and the set of all possible traces TC with
initial configuration C then

∀T ∈ TC : ∀a1, a2 ∈ T : a1 dh a2 =⇒ aliasC(oapmod(a1), oapre f (a2))

Proof. Given a1 dh a2 we know that a1 is a field-set action “v1. f = v2”
and a2 a field-get action “v3 = v4. f ”. Hence loc(v4, a2) = loc(v1, a1). Due
to Lemma 3.10 4 combinations are possible:

Case (1) loc(v4, a2) = oapv4(a2)[~ainit], loc(v1, a1) = oapv1(a1)[~ainit]:
Hence oapv4(a2)[~ainit] = oapv1(a1)[~ainit].
Therefore aliasC(oapv4(a2), oapv1(a1)) holds.

Case (2) loc(v4, a2) = oapv4(a2)[~ainit], loc(v1, a1) = oapv1(a1)[~anew]:
Due to Observation 3.1 oapv1(a1) = (ra, _). So oapv1(a1) refers to a
location that is not existing at ainit. Hence there can’t be a heap data
dependence between a1 and a2. Thus this case is impossible to occur
given a1 dh a2.

Case (3) loc(v4, a2) = oapv4(a2)[~a′new], loc(v1, a1) = oapv1(a1)[~ainit]:
Due to similar reasoning as in (2) this case cannot occur given a1 dh a2.

Case (4) loc(v4, a2) = oapv4(a2)[~a′new], loc(v1, a1) = oapv1(a1)[~anew]:
Both origin access paths are evaluated at a trace action of a new-
instance operation. Due to Observation 3.1 the origin access paths
contain only a root node: oapv4(a2) = (ra′ , _) and oapv1(a1) = (ra, _).
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Given loc((ra′ , _)) = loc((ra, _)), ra′ = ra and finally a′ = a. Obviously
aliasC(ap1, ap2) holds for any C if ap1 = ap2. �

We have shown that the dynamically computed origin access paths
are always aliased in the initial context configuration if a heap data
dependency is present. Next we need to show that every possible origin
access path is included in the set of statically computed access paths
from the corresponding SDG node.

As prerequisite we show that ignoring edges in the static computation
always yields weaker conditions and less access paths.

Lemma 3.12 (Monotonicity of Static Access Paths). The static access paths
APn of a node n computed from the dependence graph SDG = (N, E) include
all access paths AP′n computed from a subgraph SDG′ = (N′, E′) with N′ ⊆ N
and E′ ⊆ E.

We write AP′n ≤ APn iff all access paths in AP′n are implied by access paths
in APn:

AP′n ≤ APn ≡ ∀(cond′, ap′) ∈ AP′n : ∃(cond, ap) ∈ APn :
(cond =⇒ cond′)∧ ap = ap′

Given a subgraph, all resulting access paths are implied by the access paths of
the original graph.

∀n ∈ SDG′ ⊆ SDG : AP′n ≤ APn

Proof. We proof that the invariant AP′n ≤ APn holds during each step of
the computation. Initially at computation start, the access path set for
each node is empty. Hence ∀n ∈ N : AP′n ≤ APn.

Given e = n1 → n2 ∈ E \E′ is an edge missing in E′. By Algorithm 3.4
the computation of initialAccessPaths is unchanged due to N = N′

every root-parameter and new-instance node in SDG is also part of SDG′.
Hence ∀n ∈ N : APn = AP′n after computation of initial access paths. So
at the start of propagateIntraproc ∀n ∈ N : AP′n ≤ APn holds. This is
unchanged up to the first iteration of the FORALL loop that propagates
edge e < E′. Edge e may be one of three types: ps , dd or dh .

If n1 ps n2 then APn2 = APn2 ∪ expand(APn1 , f ). Hence APn2 before
the propagation step is a subset of APn2 afterwards. Given AP′n2

≤ APn2
before propagation of e, AP′n2

≤ APn2 holds afterwards.
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In case n1 dd n2 the access paths of n1 are merged into those of n2:
APn2 = APn2 ∪APn1 . Hence AP′n2

≤ APn2 holds afterwards. If e is a
data dependency for a field base pointer, the same argument as in case
n1 ps n2 applies.

In case n1 dh n2 the access paths of n1 are merged into those of n2
with the additional condition alias(n1, n2):

APn2 = APn2 ∪ {(alias(n1, n2)∧ cond, ap) | (cond, ap) ∈ APn1 }

Given AP′n1
≤ APn1 and AP′n2

≤ APn2 before propagation. As APn1 , AP′n1
are unchanged AP′n1

≤ APn1 is trivial. As APn2 contains additional access
paths after propagation. A no existing path is removed, it still holds that
APn2 ≤ AP′n2

.
Subsequent iterations of edge not contained in E′ further expand the

existing access paths, while AP′n ≤ APn always holds. �

Theorem 3.6. Given program P in initial context configuration C . For any
trace action a = (m, o, m) of T ∈ TC and corresponding node o ∈ SDGmax

P it
holds that:

∃(cond, ap) ∈ APo : aliasC(ap, oap(a))∧C |= cond

Especially it holds that

∃(cond, ap) ∈ APo : ap = oap(a)∧C |= cond

Proof Argument. Given a specific trace T ∈ TC and trace action a ∈ T.
We write T|a = ainit → . . . → a for the part of the trace up to a. Let
SDG′ = (N′, E′) be the dependency graph that contains only nodes
corresponding to trace actions up to a:

n ∈ N′ ≡ ∃(m′, o′, m′) = a′ ∈ T|a : n = o′

SDG′ only includes edges that are also present in corresponding actions
of the trace up to a.

n1 dd n2 ∈ E′ ≡ ∃a1, a2 ∈ T|a : a1 dd a2 ∧ o1 = n1 ∧ o2 = n2

n1 dh n2 ∈ E′ ≡ ∃a1, a2 ∈ T|a : a1 dh a2 ∧ o1 = n1 ∧ o2 = n2

Due to Corollary 3.4 SDGmax
P = (N, E) is a conservative approximation

of all dependencies in any trace. Hence for all dependencies between
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two actions (. . . , o1, . . .) → (. . . , o2, . . .) in trace T there is a matching
dependency edge o1 → o2 ∈ E. So E′ ⊆ E and thus SDG′ ⊆ SDGmax

P .
Due to Lemma 3.12 any access path computed from SDG′ is also

contained in SDGmax
P . We show that (1) oap(a) is part of the static access

paths of APo computed from SDG′ and that (2) the access path conditions
computed from the subgraph SDG′ are valid in C .

For (1) we show that the dependencies taken to build the oap(a) also
trigger the static computation of a similar access path. Let v be the
variable defined at a then —depending on the type of operation o— we
build the origin access path by Definition 3.26 as follows:

field-get “v = vbase. f ” — oapv(a) is built from one of two options: (a)
In case a heap data dependency amod dh a exists, oapval(amod) is
computed. If the heap data dependency is present in the trace then
omod dh o is also present in the SDG′. Hence the access paths from
omod are propagated to o.

(b) The origin access path oapvbase(abase) is computed from abase =
de f (a, vbase) and extended with field f . As the value of vbase is used in
a and defined in abase the data dependency abase dd a exists and hence
obase dd o ∈ SDG′. Operation o is a field access, so the incoming data
dependency of the base pointer connects to the base node (see §2.4.3).
Hence the base node contains all access paths from obase. The base
node connects to the field node of o with a parameter structure edge.
Due to Algorithm 3.4 the field node contains all access paths of the
base node extended with field f .

field-set “vbase. f = vval” As a field-set action does not define a variable,
the origin access path computation enters it only via a heap-data de-
pendency of a previously visited field-get operation. Hence oapvval(a)
is built. In the static computation with the fine-grained field access
model (see §2.4.3) the heap-data dependency leaves the operation at
the field node. The main node is connected to the field node with a data
dependency. Hence all access paths computed for the main node are
also part of the field node paths. The main node contains the access
paths computed from the value read vval, as it is connected to the
definition of vval via an incoming data dependency. In a similar fash-
ion oapvval(a) is computed from oapvval(aval) with aval = de f (a, vval).
Hence aval dd a exists and therefore oval dd o ∈ SDG′.

213



CHAPTER 3. A MODULAR APPROACH TO INFORMATION FLOW WITH
SDGS

assignment “v = v′” then oapv(a) is built from oapv′(a′) with a′ =
de f (a, v′). Hence a′ dd a and therefore o′ dd o ∈ SDG′. The static
access path is propagated accordingly from o′ to o.

new-instance “v = new C” then oapv(a) is (ro, _). In the static computa-
tion a similar access path is added initially in initialAccessPaths.

method entry If the method entry is reached, then oapv(a) is (rv, _)
and v refers to a root parameter. In the static computation all root
parameters are initialized with a similar access path.

For (2) we show that the conditions are valid during each step of the
computation. During computation of access path conditions in Algo-
rithm 3.4 all conditions are initialized with true. Additional conditions
are build traversing heap data dependence edges. The first iteration of
the FORALL-loop that propagates a n1 dh n2 edge builds new conditions
by extending the existing conditions of the access paths of the source
node n1:

cond2 = cond1 ∧ alias(n1, n2)

Due to initialization cond1 = true. Because SDG′ only contains data
dependence edges also present in trace T, we know ∃a1 dh a2 ∈ T where
o1 = n1 and o2 = n2. Hence (. . . , oapmod(o1)) ∈ APn1 and (. . . , oapre f (o2))

∈ APn2 . We also know by Lemma 3.11 that aliasC(oapmod(a1), oapre f (a2)).
Thus C |= alias(n1, n2) and C |= cond2.

In the following iterations of heap data dependence edges, before
propagation C |= cond1 and hence by induction C |= alias(n1, n2) and
therefore C |= cond2 for each propagation step. �

Theorem 3.6 guarantees that —given the initial context C — it is
safe to remove all computed access paths from the nodes in SDGmax

P
whose condition is not valid in C . So we can safely remove heap data
dependencies from the maximal SDG where the access paths of source
and target node no longer share a common element. The resulting graph
SDGC

P remains a conservative approximation of all possible information
flow in context C .
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1 class A {
2 B f;
3 }
4

5 class B {
6 int i;
7 }
8

9 //@ifc ? => sec -!-> \result
10 int compute(A a, A b,
11 A c, int sec)
12 {
13 B x = c.f;
14 a.f = x;
15 B y = b.f;
16 x.i = sec;
17 int w = y.i;
18

19 return w;
20 }

(a) Sourcecode

base c
1

dd (c) dh (f)

dd

dd dd

x = c.f
3

field A.f
2ps

dd (a)

dh

dd

dd

base a
4

field A.f
5

a.f = x
6

base b
7

dd (b) dh (f)

dd
dd dd

y = b.f
9

field A.f
8

ps

base y
13

dh (i)

dd

dd dd

int w = y.i
15

field B.i
14

ps

ps

dd

dh

dd (sec)

dd

dd

base x
10

field B.i
11

x.i = sec
12

ps

return w
16

(b) Fine-grained data dependence graph

Figure 3.20: Example for intraprocedural access path propagation. Sourcecode
(3.20a) and the relevant data dependence part of the SDG (3.20b). Control
dependencies and formal parameters are omitted for brevity.

Example: Intraprocedural access paths

In the previous sections we introduced the algorithms for intra- and
interprocedural access path computation and showed how access paths
help to approximate conditional dependencies for the modular SDG. This
section contains a step-by-step example leading from the intraprocedural
propagation phase to the resulting conditional dependencies. Figure 3.20
shows a method (Figure 3.20a) and the relevant parts of its matching PDG
(Figure 3.20b). The method is annotated with a FlowLess specification
in l. 9 that forbids information flow from parameter sec to the method
result. The context in which the method is called is unknown, so we infer
in which configurations the flow restriction is met. Therefore we compute
a modular SDG with the access path approach. The PDG part in Fig-
ure 3.20b shows only the edges relevant to the intraprocedural access path
propagation algorithm: dd-edges for direct data dependencies, dh-edges
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Node Access Paths
1 (>, (c, _))1
2 (>, (c, f ))2b
3 (>, (c, f ))2a
4 (>, (a, _))1
5 (>, (a, f ))2b
6 (>, (a, f ))2a, (>, (c, f ))2a
7 (>, (b, _))1
8 (>, (b, f ))2b, (alias(5, 8), (a, f ))2c
9 (>, (b, f ))2a, (alias(5, 8), (a, f ))2b
10 (>, (c, f ))2a
11 (>, (c, f .i))2a
12 (>, (c, f .i))2a
13 (>, (b, f ))2a, (alias(5, 8), (a, f ))2b
14 (>, (b, f .i))2b, (alias(11, 14), (c, f .i))2c, (alias(5, 8), (a, f .i))2a
15 (>, (b, f .i))2a, (alias(11, 14), (c, f .i))2b, (alias(5, 8), (a, f .i))2b
16 (>, (b, f .i))2a, (alias(11, 14), (c, f .i))2b, (alias(5, 8), (a, f .i))2b

Table 3.5: Access paths of the example from Figure 3.20 after the intraprocedural
propagation described in §3.4.3. The subscript of each access path element shows
the propagation step in which it was added.

for heap data dependencies and ps-edges for the parameter structure of
field accesses. The graph contains fine-grained field access instructions
(§2.4.3) as they are necessary for the propagation Algorithm 3.4.

Table 3.5 shows the access paths computed after the intraprocedural
propagation. The access paths are annotated with the subscript of the
specific step in Algorithm 3.4 that computed them. The flow restriction
forbids any flow from sec to the result. A closer look at Figure 3.20b
reveals that illegal flow can only occur if there is a path from 12→∗ 16.
Specifically the heap data dependency between 11 and 14 needs to be
present. Therefore we compute the context condition that guarantees
the absence of 11 dh 14 by resolving its alias condition:

alias(11, 14) = >∧>∧ alias((c, f , i), (b, f .i))∨
>∧⊥∧ alias((c, f .i), (c, f .i))∨
>∧ alias(5, 8)∧ alias((c, f .i), (a, f .i))
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As alias(5, 8) is referenced we continue with

alias(5, 8) = >∧>∧ alias((a, f ), (b, f ))∨
>∧⊥∧ alias((a, f ), (a, f ))

= alias((a, f ), (b, f ))

Finally we get

alias(11, 14) = alias((c, f , i), (b, f .i))
∨(alias((a, f ), (b, f ))∧ alias((c, f .i), (a, f .i)))

So a path from sec to the method result (12→∗ 16) is only possible if
alias(11, 14) holds. Therefore method compute is safe as long as its calling
context satisfies

¬alias(c. f .i, b. f .i)∧ (¬alias(a. f , b. f )∨¬alias(c. f .i, a. f .i))

We have shown how access paths help to compute if a heap data
dependency is present in a certain context configuration. Given a specific
context we can enable the matching dependencies in the modular SDG
through these alias conditions. However afterwards the summary edges
still need to be adjusted. In the following section we discuss how the
information in the modular SDG can be used to precompute some parts
of the summary computation in order to safe a significant amount of
time compared a full-blown recomputation.

3.4.4 Precomputation of summary information

The summary edge computation originally introduced in Chapter 2
section §2.5.4 computes summary edges between actual-in and -out
nodes for each call site in the SDG. It summarizes the information flow
that may occur through each call and enables unlimited call site context-
sensitive slicing in linear time O(#edges) with the two-phase slicing
algorithm.

Summary edges in the modular SDG depend on the context the
component is called in. Thus we either need to recompute them once a
standard SDG is extracted for a given context or we compute a conditional
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variant of summary edges that can be triggered similar to conditional data
dependencies. However we noticed that —due to the nature of summary
edges— precomputing a conditional variant in the spirit of access paths
is rather complex. The conditions have to include a disjunction over all
paths that lead from a formal-in to a formal-out node computed for each
pair of formal-ins and -outs. This would add another layer of complexity
to the already time consuming summary computation. In contrast to
the standard computation, the conditional computation can no longer
abort once a single path between formal-in and -out has been found. It
needs to find all paths in order to enumerate all potential conditions
—which further hinders computation. Therefore we focus on improving
the recomputation of summary edges for a given context rather than
computing conditional summary edges.

The recomputation speed of summary edges can be improved, be-
cause we know the minimal and maximal SDGs that can result from
a modular SDG. Thus we can precompute a minimal set of summary
edges —that occur in every configuration— and a maximal set that helps
us to decide which edges are even possible. We extend the summary
edge algorithm from §2.5.4 with several options that allow us to include
precomputed information from the maximal and minimal SDGs. We
identified 3 optimizations to the standard algorithm.

minimal edges Using the minimal SDGCmin we compute the minimal
set of summary edges that will always be present in each variant of
the modular SDG. We use the minimal set instead of an empty set of
summary edges as initial configuration.

influenced methods We keep track of the added conditional edges
when we extract a SDG for a given context. We detect all methods
that contain activated conditional dependency edges as well as all
methods that can reach them through calls. The summary edge
computation only has to propagate additional summary edges along
those methods. It can ignore all other parts of the SDG that have not
changed.

shortcut for maximal dependencies We use the maximal set of depen-
dency edges to detect which parts of the SDG will no longer change
and can be excluded from the propagation. We also detect sooner
when to abort the fixed-point-based algorithm.
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Algorithm 3.6 shows the enhanced version of Algorithm 2.1 that con-
tains above optimizations. It takes the additional arguments initialSum,
relevantPDGs and out2in:

initialSum contains the set of minimal summary edges. We add these
edges to the SDG at the start of the computation and also include
them in the result set.

relevantPDGs is a set of all PDGs inside the given SDG that may change
during the summary computation — thus PDGs not contained in this
set will not change and can be ignored.

out2in is a mapping of actual-out and formal-out nodes to the corre-
sponding actual-in or formal-in nodes of the same call or PDG. For
each -out node that is already fully connected we directly store the
-in nodes it depends on. It allows us to skip the search through the
call or PDG and propagate directly all dependencies that can occur.
This information is retrieved by checking the differences between
SDGCmin and SDGCmax : All -out nodes that depend on the same -in
nodes in both SDGs can be included in this mapping.

Algorithm 3.6 (Summary edge computation for modular SDGs).
PROCEDURE ComputeSummaryEdges(sdg, init ia lSum, relevantPDGs, out2in)
INPUT:
A system dependence graph sdg
Initial minimal set of summary edges init ia lSum
Set of PDGs where additional summary changes may occur relevantPDGs
Map of actual and formal-out to -in nodes already fully connected out2in
OUTPUT:
Set of summary edges summary
BEGIN
FOREACH (Edge e ∈ init ia lSum) DO // enhanced
Add e to sdg
DONE
Set<Edge> PathEdge = ∅, summary = init ia lSum, WorkList = ∅
Map<Node, Set<Edge>> fragmentPath = new empty map
FOREACH (formal-out node w ∈ sdg) DO
IF (w is part of a PDG in relevantPDGs) THEN // enhanced
PathEdge = PathEdge ∪{w → w }
WorkList = WorkList ∪{w → w }
FI
DONE

WHILE (WorkList , ∅) DO
WorkList = WorkList \{v → w }
IF (v is actual-out) THEN
IF (v ∈ out2in) THEN // enhanced
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FOREACH (a in ∈ out2in(v)) DO
Propagate(a in → v, relevantPDGs)
DONE
ELSE
FOREACH (x such that x → v ∈ summary ∨ x cd v ∈ sdg) DO
Propagate(x → w, relevantPDGs)
DONE
FI
ELSE IF (v is formal-in) THEN
FOREACH (call node c with ∃c cal l Entry(w) ∈ sdg) DO
x = matching actual-in for v at call c
y = matching actual-out for w at call c
summary = summary ∪ {x → y }
FOREACH (a such that y → a ∈ fragmentPath(y)) DO
Propagate(x → a, relevantPDGs)
DONE
DONE
ELSE
FOREACH (x with x dd v , x dh v or x cd v ∈ sdg) DO
IF (NOT (x cd v and x and v both parameter nodes)) THEN
Propagate(x → w, relevantPDGs)
FI
DONE
FI
DONE
RETURN summary
END

PROCEDURE Propagate(e, relevantPDGs)
INPUT:
A SDG edge e = v → w
Set of PDGs where additional summary changes may occur relevantPDGs
OUTPUT:
Potentially added edge e to WorkList, PathEdge and fragmentPath(w)
BEGIN
IF (v and w not part of a PDG in relevantPDGs) THEN RETURN FI // enhanced
IF (e < PathEdge) THEN
PathEdge = PathEdge ∪{e }
WorkList = WorkList ∪{e }
IF (v is actual-out) THEN
fragmentPath(w) = fragmentPath(w) ∪{e }
FI
FI
END
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Program original +minimal +influenced +shortcut
tests.Mantel00Page10 442 287 67 56
conc.ds.DiskSchedulerDriver 407 251 66 55
tests.ThreadSpawning 371 222 54 44
tests.Synchronization 353 201 60 49
tests.ThreadJoining 333 187 43 37
conc.sq.SharedQueue 315 176 50 41
conc.daisy.DaisyTest 339 183 36 30
tests.HammerDistributed 401 209 52 44
tests.IndirectRecursiveThreads 460 244 62 50
conc.bb.ProducerConsumer 459 248 69 59
conc.cliser.kk.Main 476 258 66 59
conc.kn.Knapsack5 482 269 70 59
tests.RecursiveThread 487 265 39 34
conc.TimeTravel 553 295 81 70
conc.lg.LaplaceGrid 584 311 75 64
tests.ProbPasswordFile 565 311 76 69
tests.ConcPasswordFile 564 310 73 65
tests.Hammer 550 295 73 63
conc.dp.DiningPhilosophers 618 335 70 56
conc.ac.AlarmClock 555 293 100 85
conc.ac.AlarmClockSync 616 314 71 73

9930 5464 1353 1162
speedup from original 0% 44,70% 86,27% 88,27%

Table 3.6: Runtime evaluation of enhanced summary edge computation of
Algorithm 3.6. Times are shown in milliseconds.

3.4.5 Evaluation

Enhanced summary computation We evaluated the impact of the
optimizations to summary computation presented in §3.4.4 on 21 different
programs and found that the average runtime improvement is about
88%. Table 3.6 shows the result of the evaluation. The enhanced
algorithm is 44% faster with the minimal summary edges added alone.
In combination with the detection of potentially influenced methods the
runtime is reduced by 86%. Finally the last 2% are gained through the
shortcuts for the fully connected parameter-out nodes. The impact of the
shortcuts is not large, because part of their effect is already included in
the minimal summary edges: The shortcuts already exist in the SDG in
form of summary edges, only the unnecessary traversal of non-summary
edges leading to those nodes is prohibited by this optimization.

In conclusion, the enhanced summary computation significantly
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reduces the time needed to extract a context specific SDG from a given
modular SDG. Due to small speed-up from the shortcut optimization
the additional memory required may not be worth it, but the other two
optimizations work well in practice.

Modular SDGs with access paths We randomly selected 151 different
method parts —with less then 100 methods in each part— from the set of
example programs already used in §2.6.5 Table 2.3. The resulting SDGs
varied in size between 10 and 5000 nodes with an average of about 210
nodes. We computed the modular SDG using access paths as well as
the standard SDG in minimal context configuration. Table 3.7 shows
the result of the evaluation. We accumulated the results of the analysis
according to the size of the dependency graphs in 5 groups: Starting
from very small method parts with 10-50 nodes going to 51-100, 101-200,
201-500 and graphs with 501-5000 nodes. We were not able to compute a
modular SDG for graphs larger then 5000 nodes due to scalability issues.
The first column “modular vs. std” shows the relative execution time
of the modular SDG computation with access paths, compared to the
standard SDG computation in the minimal context configuration with
no aliases. We see that for small graphs the access path computation is
about 2.5× slower then the standard SDG computation. As expected it
gets worse with increasing graph size. For the group of largest graphs
we were able to compute, access paths are on average 60.5× slower.
The second column “std vs. adjust” shows the relative execution time
of standard SDG computation from scratch compared to adjusting a
precomputed modular SDG to a given context configuration. For small
graphs adjusting the modular SDG to a given context yields a significant
speedup 313× then a full blown recomputation. However the speedup
shrinks with increased graph sizes down to only a 20× speedup for
the group of graphs between 500 and 5000 nodes. The last column “%
alias edges” shows the average percentage of alias edges in an SDG of
the corresponding group. We notice that with increased SDG size the
amount of contained alias edges increases disproportionately —in the
group of the biggest graphs on average 64% of all contained edges are
alias edges. We expect that the percentage increases even further with
larger graphs.

In conclusion we see that —once the modular SDG is computed—
a speed-up is present when we extract and adjust a SDG for a specific
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SDG size #nodes modular vs. std std vs. adjust % alias edges
10-50 2.54 × 313.20 × 28%
51-100 4.54 × 93.46 × 34%
101-200 5.28 × 88.46 × 28%
201-500 6.29 × 35.01 × 55%
500-5000 60.54 × 20.42 × 64%

Table 3.7: Modular SDG computation with access paths.

context. However, the initial computation of the modular SDG is quite
complex and finishes only for smaller method parts. In addition, the
speed-up shrinks for larger modular SDGs that contain many alias edges,
because the adjustment to a specific context needs to compute for each
edge if it is valid in the context. The complicated adjustment operation
currently limits the application of the modular SDG to smaller method
parts, for larger parts we suggest to use the standard SDG computation
in combination with a context specific stub, as presented in §3.3.2.
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There are two ways of constructing a software design.
One way is to make it so simple that there are obvi-
ously no deficiencies. And the other way is to make it
so complicated that there are no obvious deficiencies.

C.A.R. Hoare 4
Applications of Information Flow

Control

This chapter presents how our information flow control tool Joana is use
and showcases several successful applications.

4.1 Information flow control in practice with
Joana

Joana contains a plug-in for the Eclipse platform that integrates into
the user interface of the development environment. This plug-in can
be used to trigger an IFC analysis of the current project. It displays the
results in a separate view and marks relevant or critical parts of the code
directly in the editor. Figure 4.1 shows the result of the analysis of the
initial example from §1.1. Both information leaks in the example are
identified correctly and shown in the GUI. The “Information Flow Control”
view at the bottom contains the description of the detected leaks and
allows the user to highlight the statements relevant to the selected leak —
currently the statements relevant to the direct leak from line 11 to line 15
are highlighted.

Before the analysis can be triggered, the user has to provide an-
notations for the secret input and public output operations. Joanas
annotations build upon the annotation mechanism integrated into Java
> 1.6. In the example shown in Figure 4.1 this was done by annotating
method inputPIN() as a secret @Source and method print() as public
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Figure 4.1: Joana GUI detecting direct and indirect information leaks (§1.1).

@Sink. Then the analysis detects all information leaks and automatically
categorizes them with the algorithm presented in Algorithm 4.1. This
algorithm applies a series of analysis runs with different configurations
to detect the cause of information leaks: Leaks detected when all control
dependencies are ignored are categorized as direct leaks. Then control
dependencies are turned on while exceptions are ignored. Any addition-
ally detected leaks must therefore be caused by indirect flow and are
marked as indirect leaks. In a third step exceptions are no longer ignored
and the newly discovered leaks therefore must be caused by indirect flow
through exceptions. The whole process can be repeated with increased
points-to analysis precision until either all leaks can be discarded as false
alarms or the most precise points-to option has been applied.
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Figure 4.2: Joana GUI detecting illegal flow through object fields (§2.1.5).

Algorithm 4.1 (Automatic information leak categorization).

FOR (pts ∈ [type-based, instance-based, object-sensitive]) DO
set points-to precision to pts
resultdd = compute ifc with data dependencies only
FORALL (vio ∈ resultdd) DO
mark vio as caused by "direct flow"
DONE
resultno−exc = compute ifc with data + control dependencies ignore exceptions
FORALL (vio ∈ resultno−exc \ resultdd) DO
mark vio as caused by "indirect flow"
DONE
result f ul l = compute ifc with data + control dependencies and exceptions

FORALL (vio ∈ result f ul l \ resultno−exc) DO
mark vio as caused by "indirect flow through exceptions"
DONE

IF (result f ul l is empty) THEN stop analysis
DONE
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Figure 4.3: Joana GUI detecting an information leak caused by an exception
(§2.1.8).

Figure 4.2 shows another example of the Joana Eclipse plug-in in ac-
tion. Similar to the previous example only methods print and inputPIN
are annotated. This example is taken from §2.1.8 and illustrates the
object-, type- and field-sensitivity of our analysis. Joana correctly iden-
tifies two information leaks caused by direct information flow. It is
able to detect that the first print() statement in line 32 as well as the
last print statement in line 37 access an object-field that contains no
secret information. Therefore it needs to distinguish the different objects
created and the fields within those objects. For example b.val does not
contain secret information while b.next.val does.

Finally the third example in Figure 4.3 shows how Joana can auto-
matically detect information flow caused by exceptions. We analyze the
example from §2.1.8 that contains two information leaks caused by a
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NullPointerException triggered depending on the secret value returned
by Main.secret(). Joana alerts the user that the secret value used in the
conditional clause in line 10 can cause illegal information flow to lines 25
and 28. It also identifies the information flow caused by exceptions. As
—depending on the secret value— A.create() can return null, it may
cause the subsequent call to a.foo() in line 23 to throw an exception.
Hence either println in line 25 or 28 is executed.

All these examples can be edited and reanalyzed with minimal
effort. In previous versions of Joana security annotations had to be
placed at manually selected dependence graph nodes. So after a minor
change to the source code, or even a change in the analysis options, the
annotations had to be redone for the specific graph. The new annotations
at source code level are more robust and enable us to combine the
results of multiple runs —as in Algorithm 4.1. They are also more user
friendly, as they are directly visible in the source code and can be easily
modified by a user without detailed knowledge of the underlying system
dependence graph. In our experience the new annotation mechanism
was an important improvement that raised the popularity of Joana as an
information flow control tool amongst other research groups.
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Figure 4.4: A simple setup for encrypted communication between a client and
server.

4.2 Proving cryptographic indistinguishabiliy
with Joana

In this case study we show how a noninterference check with Joana can
be used to proof cryptographic indistinguishability properties. This result is
joint work with Ralf Küsters and Tomasz Truderung from the University
of Trier [76, 75]. We introduce a new approach called ideal functionality
that allows us to replace real cryptographic operations with an idealized
version that is easier to analyze, while the analysis result remains valid in
the original setting. We apply this new approach to proof cryptographic
indistinguishability for a small case study. In order to achieve this result
we have to proof noninterference for an open system with an unknown
initial state. Therefore we additionally show how Joana can be used to
argue about a whole family of programs that vary in initialization. We
provide a list of rules that restrict the allowed variations and proof that
when these restrictions are met, the information flow properties detected
by Joana are the same for each variant. Thus it suffices to analyze only a
single member of the program family.

Figure 4.4 contains an overview of our case study. It consists of
a client and a server that exchange an encrypted message through a
network connection. The attacker provides two messages to the client.
The client then chooses —depending on a secret bit— one of the two
messages. Then it uses public-key encryption and sends the encrypted
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message through an untrusted network to the server. The server receives
the message and decrypts it afterwards. The attacker is allowed to
observe the network and still should not be able to decide which of the
two messages were sent. This property is an instance of cryptographic
indistinguishablility, a fundamental security property for encryption that
is relevant in many applications such as secure message transmission,
key exchange and e-voting [75]. The setup of the case study is quite
simple from a cryptographic point of view, yet the actual implementation
could contain bugs that leak additional information. Therefore we use
Joana to verify that the implementation does not contain any intentional
or unintentional information leaks.

The given example is clearly not noninterferent, because the value
of the encrypted message that is transferred from the client to the
server depends on the secret bit. Thus a standard noninterference check
with Joana will rightfully discover a security violation. However, we
want to show that the program fulfills the weaker security property of
cryptographic indistinguishability. So while the original program is not
noninterferent it may very well be cryptographically indistinguishable:
Secret information may be leaked, but the attacker is not able to reveal it
in polynomially bounded time. We are now going to describe how we
exchange parts of the functionality in the original program Preal with
ideal versions. Then we use the program with ideal functionality Pideal to
proof basic noninterference which automatically21 implies cryptographic
indistinguishability for Preal.

Pideal is noninterferent =⇒ Preal is cryptographic indistinguishable

This implication has been fully formalized and proven for a large subset
of the Java language called Jinja+. The details are out of the scope for
this work. They can be found in the corresponding publication [75] and
in more detail in its accompanying tech report [76].

We replace the Encryptor and Decryptor parts of the original program
with their ideal counterparts. The ideal version of the Encryptor does
not encrypt the secret messages —instead it generates a random string
that is sent over the network. On the server side the ideal version of the
Decryptor then replaces the random string with the secret message. This
setup ensures that —as long as the program does not contain any other

21Through a proof provided by Küsters and Truderung
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security violations— the transferred message does not contain any secret
information. Thus a standard noninterference check should succeed. At
the implementation level we need of course some way to transfer the
actual message from the client to the server. This is realized through a
map that is shared between the Encryptor and Decryptor. This map stores
the mapping between the random string and the secret message. This
way the Decryptor can lookup the actual message after it received the
random string. So the functionality of the ideal version of the program
remains intact, while the message transferred over the network does not
contain secret information.

The source code of the ideal version is available in Appendix A. The
encryption and decryption functionalities can be found in the Encryptor
and Decryptor classes, respectively. The main method in class Setup
simulates the system. It initially creates a server and then enters a loop
where it creates a new client if the attacker provides two new messages
to encrypt. It selects one of the two messages depending on the secret
value in static variable Setup.secret and creates a client that encrypts
the message and sends it to the server where it gets decrypted. The
input and output of the program is controlled by the class Environment.
Every operation that reveals information to a public visible channel
–e.g. the network– is modeled to change the value of the static field
Environment.result. To proof noninterference we essentially have to
show that the value of Setup.secret is never going to influence the value
of Environment.result.

For the verification process with Joana we only need to annotate
two points in the program: We mark the initialization of variable
Setup.secret as high input and modifications to the variable result in
class Environment as low output. Using the standard security lattice
low ≤ high for noninterference, Joana then builds the PDG model of
the program and propagates the security labels for all other statements
automatically. If a situation occurs where high input may flow to a
low output channel, Joana issues a security warning and computes
the set of possible paths in the program along which the information
may have been leaked. In the ideal version of the current example
Joana did not detect any leaks, therefore we can conclude that Pideal is
noninterferent. The analysis took about 11 seconds on a standard PC
(Core i5 2.3GHz, 8GB RAM) for the example program with a size of
387LoC — not counting the size of the parts of the JRE 1.4 library that are
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included automatically. The computation of the PDG model —including
interprocedural propagation and summary edge computation— was
finished in 10 seconds and only 1 second was needed to detect the absence
of illegal information flow in the PDG. The example specific code that
sets up the automatic noninterference analysis only takes about 80LoC
and can be found in §4.2.2. It is used to configure Joana specifically for
this setting.

Analysis features needed to show noninterference Even this small
client-server example contains some challenges for static analysis tools.
We are going to discuss at which points in the example the various
features and precision enhancements of Joana were needed to show its
noninterference.

Instance-based The analysis needs to distinguish different instances of
a class. In contrast to very basic type-based security systems, Joana
does not expect each instance of the same type to hold the same
level of secret or public information. It is a crucial option in this
example as byte-arrays are used to hold the secret message as well
as the encrypted public cipher that is transferred over the network.
A simple type-based analysis would assume that the contents of
all byte-arrays are secret information and issue a false alarm. This
precision feature is in general very important as normal programs
often reuse the same data-types and -structures –like lists, maps or
arrays– to store all kind of different information.

Field-sensitivity We need to distinguish different fields inside a single
object. §2.2.3 provides more details on field-sensitive analysis. In our
example, the class MessagePair contains the two fields ciphertext
and plaintext, where only the latter holds secret information. An
analysis without field-sensitivity would merge the security label of
both fields and thus would assume that ciphertext also contains
secret information which subsequently leads to a false alarm.

Context-sensitivity We also need to distinguish the effects of a method
call depending on the point in the program (call site) it has been called
from. §2.2.1 provides more details on context-sensitive analysis. In
our example the method copyOf in class MessageTools is used to copy
the contents of the parameter to a new array instance. This method
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is used to copy secret as well as public information. For example,
l. 34 in class Decryptor copies the contents of the secret plaintext
array, while l. 32 in class Encryptor copies the public contents of the
random cipher array. So depending on the context copyOf is called in,
it returns either public or secret information. A context-insensitive
analysis would assume that copyOf always returns secret information
and thus the result of the encryption would also be secret — which
would lead to a false alarm.

Parameterized initialization The program under analysis uses parame-
terized initialization to simulate the different input it may receive. The
input is modeled as a list of integer values in the class Environment.
Its values are set in method initialValue in l. 34. Our analysis has to
respect that the analysis result needs to hold independently of the
values initially created. So changes to l. 34 should not impact the
noninterference property of the rest of the program. This cannot be
guaranteed in general, as a single line may contain arbitrary large
portions of code that may lead to side-effects in other parts of the
program. However if we carefully restrict the allowed changes to
this line, we are able to proof that the noninterference property is
unchanged, while the initial values can be set arbitrarily. The crafted
restrictions as well as the sketch of the proof —changes that adhere
to these restrictions do not change our information flow result— is
shown in the following section.

4.2.1 Parameterized initialization and IFC

This section contains the modified proof sketch from the technical
report [76]. It has been adapted to match the common notation of
this work. Figure 4.5 and 4.6 contain the model for unknown input
in the previous client-server example together with a simple main
method. As before the singly linked list of input values is initialized
in method initialValue. The code shows two variants V1, V2 of the
potentially infinite number of initializations in l. 13 and l. 12. We are
now going to show how Joana internally represents this program in
PDG form and argue that variants of the initialization do not affect
the noninterference property of the whole program. We briefly inspect
the corresponding PDG in Figure 4.7. As usual it contains nodes for
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1 class Node {
2 int value;
3 Node next;
4 Node(int v, Node n) {
5 value = v; next = n;
6 }
7 }
8 private static Node list = null;
9 private static boolean listInitialized = false;

10 private static Node initialValue() {
11 /* WILL BE MODIFIED */
12 return new Node(1, new Node(2, null)); // V2
13 //return new Node(1, null); // V1
14 }
15 static public int untrustedInput() {
16 if (!listInitialized) {
17 list = initialValue();
18 listInitialized = true;
19 }
20 if (list==null) return 0;
21 int tmp = list.value;
22 list = list.next;
23 return tmp;
24 }

Figure 4.5: Code that models unknown input in form of a linked list similar to
the client-server example in Appendix A.

25 public class P {
26 public static void main(String[] argv) {
27 int untrusted1 = untrustedInput();
28 int secret = 42;
29 int unstrusted2 = untrustedInput();
30 low = unstrusted1;
31 secret += 21;
32 low += unstrusted2;
33 }
34 }

Figure 4.6: An example of a program without illegal information flow using
untrusted input from Figure 4.5.

each statement of the program. For brevity we summarize input and
output parameters for each call and method entry in a single IN and
OUT field. Nodes of the same method are enclosed in an outlined
rectangle. So edges between nodes that cross those rectangles represent
interprocedural dependencies between methods while edges inside are
purely intraprocedural dependencies. In the following we are going to
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Figure 4.7: A PDG of the example program from Figure 4.5 and 4.6. The colored
nodes are the additional nodes that occur if version V2 of initialValue is chosen
instead of V1.

show that variants of method initialValue, as long as they obey certain
restrictions, will only lead to additional intraprocedural dependencies
that do not interfere with the rest of the program.

Problem statement In general we consider programs P[~o] that consist of
two parts: Pmain and P~o, where Pmain is a system that meets the conditions
given below and P~o is the part that models the unknown input ~o as in
Figure 4.5. We write m~o for the variant of method initialInput that
creates an sequence of input values as specified by vector ~o.

We require that the main part Pmain of the program does not

1. reference nor modify the variable list.

2. create an instance of class Node.
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Note that when Pmain meets these conditions, the following statements
are true as long as only the initialization of list elements inside m~o of P~o
is modified:

1. Only method untrustedInput references and modifies variable
list.

2. A single static method initialValue (m~o) creates all list elements
for variable list.

3. The constructor Node for elements of list is only called inside m~o.

4. Method m~o has no parameters and does not reference or modify
any static variable.

5. Neither untrustedInput nor m~o contain statements that reference
high (secret) or low (public) variables.

Using the properties above we can prove the following result.

Proposition 4.1. For all P[~o] = Pmain ·P~o that comply with the requirements
stated above, it holds that if P[~o] does not contain illegal information flow, for
some sequence ~o, then ∀~u : P[~u] does not contain illegal information flow.

Proposition 4.1 enables us to reason about a family of programs by
analyzing only a singe instance of it. We take a single specification ~o and
analyze P[~o]. If the analysis guarantees security in this case, we know
due to Proposition 4.1 that the program is secure for all versions of m~u
that obey the restrictions.

Example We use the program from Figure 4.6 as Pmain and Figure 4.5
as P~o. Indeed all the above requirements are met for P[~o] = Pmain · P~o.
The main part Pmain includes reading and writing of untrusted values as
well as a computation on a secret value, but not P~o. Figure 4.7 contains
the corresponding PDG for variant V2 with ~o = (1, 2). This program
is considered noninterferent, because the PDG contains no connection
from the secret value in line 28 to a statement that leaks to untrusted
output (line 30 and 32). Therefore also variant V1 and all other variants
that match the restrictions are noninterferent.
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Proof sketch of Proposition 4.1 Let us assume that the program P[~o] =
Pmain · P~o, for some ~o is secure. Additionally we have a set of statements
Ssecret ⊆ Pmain that are sources of secret values in P[~o] and a set of
statements Sout ⊆ Pmain that refer to untrusted output (e.g. changing the
value of a low variable). As P[~o] is guaranteed to be secure, we also know
that there is no path in the corresponding PDG~o from secret sources to
untrusted output:

∀l ∈ Sout : slicePDG~o
(l)∩ Ssecret = {}

If we use Path(PDG~o) as the set of all possible paths in PDG~o we get:

∀h ∈ Ssecret ∀l ∈ Sout ∀p ∈ Path(PDG~o) : h ∈ p =⇒ l < p|h

with

p|h = (p1 → . . .→ h→ pi → . . .→ pn)|h = (h→ pi → . . .→ pn)

With these definitions in place we can continue the proof sketch with the
following, auxiliary lemma:

Lemma 4.1. Changes in the PDG local to m~o are not affecting the security
guarantee.

Proof. If the PDG local to m~o has changed, either previously existing
nodes or edges were removed or new ones were introduced. Removing
nodes or edges has no effect on the security guarantee as it only reduces
the number of possible paths in the whole PDG. So no additional flow
can be introduced. Additional nodes or edges inside the PDG part of m~o
does increase the number of possible paths inside the method, but not the
number of paths leading to or leaving from it. Because m~o ∩ Ssecret = {}
and m~o ∩ Sout = {}we get that no illegal flow can start or end inside of m~o.
Due to the restrictions, we know that m~o does not take any parameters
as arguments and that it does not reference any static variables. So no
parameter or heap dependence edges are connected to the entry node of
m~o. The only possible paths from a secret source to an untrusted output
through m~o have to enter through the call edge and to leave through the
parameter and heap dependence of the OUT field. Because any output
of a method is dependent on the method execution, there is always a
path from the entry node to its OUT field. So additional nodes or edges
inside m~o do not introduce new flow from Ssecret to Sout. �
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Now we change m~o of P[~o] to m~u, given by some ~u, and assume that
the resulting program P[~u] = Pmain · P~u contains an illegal flow. Then
we show by contradiction that this is not possible and thus P[~u] must be
secure.

If P~u contains illegal flow we get

∃h ∈ Ssecret ∃l ∈ Sout : h ∈ slicePDG~u
(l)

So there must be a path p from h to l in the changed PDG that was not
part of the original.

∃p ∈ Path(PDG~u) : h ∈ p∧ l ∈ p|h ∧ p < Path(PDG~o)

Path p is a list of instructions that are connected through dependencies.
We are now going to show that any of these dependencies must already
have been part of PDG~o and thus cannot exists if PDG~o has no illegal
flow.

If p < Path(PDG~o) then p must contain at least one edge n1 → n2 that
is not in PDG~o.

p < Path(PDG~o) =⇒ ∃n1 → n2 ∈ p|h : n1 → n2 < PDG~o

Now we consider four different cases.

Case n1 < PDG~o, n2 < PDG~o. Both nodes have not been part of PDG~o.
Because m~u is the only changed part of P[~u] we know that n1, n2 ∈ m~u.
Due to Lemma 4.1 this edge can not introduce new illegal flow.

Case n1 < PDG~o, n2 ∈ PDG~o. Because m~u is the only changed part of
P[~u] we know that n1 ∈ m~u. So due to Lemma 4.1 this edge cannot
introduce new illegal flow.

Case n1 ∈ PDG~o, n2 < PDG~o. n2 ∈ m~u so no new illegal flow is introduced
with this edge.

Case n1, n2 ∈ PDG~o. Only the edge between n1 and n2 is new in PDG~u.
Because of Lemma 4.1 we only have to consider the case n1 → n2 < m~u.
The new edge may be of four different kinds:

control dependence Control dependencies are computed per method
using the control flow graph. No method in P[~o] \m~o (that is no
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method of P[~o] except for m~o) has been changed, so the control flow
is unchanged and thus no control dependencies have changed. So
n1 → n2 cannot be a control dependency.

data dependence Data dependencies are either caused through use
and definition of variables or references and modification to heap lo-
cations. P[~u] \m~u contains no new statements and thus no additional
uses and definitions of variables. So the additional data dependence
cannot stem from them and has to be introduced through access to
heap locations. The only heap locations that have changed are the
elements of list. Our restrictions forbid references to this list in
Pmain, so n1 → n2 cannot be a data dependency.

call P[~u] \ m~u contains no new statements and thus no new call
statements. So n1 → n2 cannot be a call dependency.

parameter and heap dependence These edges are caused by pass-
ing parameters into methods and returning method results. As
P[~u] \m~u is not changed, no method signatures and calls are altered.
So n1 → n2 cannot be caused by additionally passed parameter or
returned results. The last remaining possibility is that the edge is
caused by a change in the referenced or modified heap locations.
Due to the restrictions we know that only heap locations referring
to elements of list may have changed. As Pmain does not contain
references to list, n1 → n2 is no parameter or heap dependency.

We argued that n1 → n2 cannot exists in PDG~u if PDG~o contains no
illegal flow, thus path p cannot exist and so no illegal information flow
can be introduced by changing m~o of m~u.

4.2.2 Example specific analysis code

This section contains the code needed to automatically check the ideal
version of the client-server example for noninterference with the help
of Joana. It consists of two parts: the annotation of the program
specific sources and sinks in class RunClientServerIFC and the setup of
the analysis with the required precision options in class IFC. Generic
parts of class IFC are left out for brevity. The whole code is accessible
at [77] or GitHub22.

22https://github.com/jgf/crypto-client-ifc

240

https://github.com/jgf/crypto-client-ifc


4.2. PROVING CRYPTOGRAPHIC INDISTINGUISHABILIY WITH JOANA

Class RunClientServerIFC

1 public class RunClientServerIFC {
2

3 public static void main(final String[] args) throws ClassHierarchyException,
4 IOException, UnsoundGraphException, CancelException {
5 final IFCConfig configClientServer = IFCConfig.create("./example/bin",
6 "Lde/uni/trier/infsec/protocol/Setup", SecurityPolicy.CONFIDENTIALITY);
7

8 // annotate input of method untrusted output as leaked to low output
9 configClientServer.addAnnotation(Annotation.create(

10 "de.uni.trier.infsec.environment.Environment.untrustedOutput(I)V",
11 BytecodeLocation.ROOT_PARAM_PREFIX + "0",
12 SDGNode.Kind.FORMAL_IN,
13 SecurityLabel.LOW
14 ));
15

16 // annotate references to static variable Setup.secret as high input
17 configClientServer.addAnnotation(Annotation.create(
18 "de.uni.trier.infsec.protocol.Setup.main([Ljava/lang/String;)V",
19 "de.uni.trier.infsec.protocol.Setup.secret",
20 SDGNode.Kind.EXPRESSION,
21 SDGNode.Operation.REFERENCE,
22 SecurityLabel.HIGH
23 ));
24

25 IFC.run(configClientServer);
26 }
27 }

Class IFC

1 class IFC {
2

3 /**
4 * Runs an information flow check using the given configuration. Returns
5 * <tt>true</tt> if the program is considered save, returns <tt>false</tt> if a
6 * leak has been found.
7 * @param config The information flow configuration.
8 * @return <tt>true</tt> if the program is considered save, or <tt>false</tt> if a
9 * leak has been found.

10 */
11 public static boolean run(final IFCConfig config) throws ClassHierarchyException,
12 IOException, UnsoundGraphException, CancelException {
13 final Collection<Violation> vios = computeIFC(config);
14

15 if (vios.size() == 0) {
16 System.out.println("OK: The program is noninterferent.");
17 } else {
18 switch (config.policy) {
19 case CONFIDENTIALITY: {
20 System.out.println("WARNING: Program MAY leak high information.");
21 } break;
22 case INTEGRITY: {
23 System.out.println("WARNING: Public (low) input MAY influence "
24 + "confidential (high) information.");
25 } break;
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26 default:
27 throw new IllegalStateException("unknown security policy: " + config.policy);
28 }
29 }
30

31 return vios.isEmpty();
32 }
33

34 private static void buildSDG(final IFCConfig config, final String mainClassSimpleName,
35 final String outputSDGfile) throws ClassHierarchyException, IOException,
36 UnsoundGraphException, CancelException {
37 Log.setMinLogLevel(LogLevel.WARN);
38 System.out.println("Analyzing class files from ’"
39 + new File(config.classpath).getAbsolutePath() + "’");
40 final Main.Config cfg = new Main.Config(mainClassSimpleName,
41 config.mainClassSignature.substring(1) + ".main([Ljava/lang/String;)V",
42 config.classpath,
43 PointsToPrecision.OBJECT_SENSITIVE,
44 ExceptionAnalysis.INTRAPROC, false, Main.STD_EXCLUSION_REG_EXP, null,
45 "./lib/jSDG-stubs-jre1.4.jar", null, ".",
46 FieldPropagation.OBJ_GRAPH);
47

48 final joana.sdg.SDG sdg = Main.compute(System.out, cfg);
49

50 System.out.print("Saving SDG to " + outputSDGfile + "... ");
51 final BufferedOutputStream bOut =
52 new BufferedOutputStream(new FileOutputStream(outputSDGfile));
53 SDGSerializer.toPDGFormat(sdg, bOut);
54 System.out.println("done.");
55 }
56

57 public static Collection<Violation> computeIFC(final IFCConfig config) throws
58 ClassHierarchyException, IOException, UnsoundGraphException, CancelException {
59 final String mainClassSimpleName =
60 WriteGraphToDot.sanitizeFileName(config.mainClassSignature.substring(1));
61 final String outputSDGfile = mainClassSimpleName + "-main.ifc.pdg";
62

63 buildSDG(config, mainClassSimpleName, outputSDGfile);
64

65 System.out.println("Checking " + outputSDGfile);
66 final joana.sdg.SDG sdgSec =
67 joana.sdg.SDG.readFrom(outputSDGfile, new SecurityNodeFactory());
68 System.out.print("Annotating SDG nodes... ");
69 final IEditableLattice<String> lat = createLattice("low<=high");
70 final int matches = matchAnnotationsWithNodes(sdgSec, config.getAnnotations());
71 System.out.print("(" + matches + " nodes) ");
72

73 // set required and provided
74 annotateSecurityNodes(config.getAnnotations(), config.policy);
75 System.out.println("done.");
76 System.out.print("Checking information flow... ");
77 final PossibilisticNIChecker ifc = new PossibilisticNIChecker(sdgSec, lat);
78 final Collection<Violation> vios = ifc.checkIFlow();
79

80 System.out.println("(" + vios.size() + " violations) done.");
81

82 return Collections.unmodifiableCollection(vios);
83 }
84 }
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1 public class Example {
2

3 private static int a;
4 public static int result = 0;
5

6 public void main(int secret) {
7 a = 42;
8 bar(secret);
9 int b = foo(secret);

10 result = b;
11 }

13 static int foo(int secret) {
14 int b = a;
15 if (secret == 0)
16 b += secret;
17 return b;
18 }
19

20 static void bar(int secret) {
21 int[] arr = new int[100];
22 for(int i = 0; i < 100; ++i)
23 arr[i] = secret + i + a;
24 result += a - 1;
25 }
26 }

Figure 4.8: A noninterferent program that cannot be verified with Joana.

4.3 Combining analysis tools for hybrid verifi-
cation – An example

This section introduces a novel hybrid approach to noninterference
analysis, that combines Joana with other tools in order to increase
analysis precision. Joana is a very precise automatic static analysis
tool, but it still contains several approximations that may introduce
false alarms in favor of significantly enhanced analysis runtime when
compared to other tools like the interactive theorem prover KeY [2].
Therefore certain programs that are in fact noninterferent cannot be
verified with Joana.

Figure 4.8 shows such an example. If we want to verify that the value
of parameter secret in l. 6 can never influence the value of static variable
result, Joana issues a false alarm — even though the program never
leaks information about parameter secret. A closer inspection of the
source code reveals that the secret value is used during computations in
method foo and method bar, but it never has any effect on the value of
result. Method bar uses secret in some method local computations in
l. 23. As variable arrnever leaves the method, information about secret
cannot be revealed. Joana can detect that bar does not leak information,
but it fails to detect noninterference of method foo. In l. 16 the value of
secret is added to the return value of foo and later on in l. 10 result is
set to the return value. So at first glance there is an illegal information
flow, but going back to l. 16 we see that the value of secret is only added
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int b = a
14

if (secret == 0)
15

b += secret
16

dh
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return b
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Figure 4.9: The PDG of method foo from Figure 4.8. Bold red outlined nodes
and edges show statements influenced by parameter secret.

to the return value, if it equals zero. Consequently the operation does
not affect the return value.

The PDG of foo in Figure 4.9 shows how Joana traces information
flow for parameter secret. The edges and nodes marked in bold red
represent all statements and dependencies that are potentially influenced
by secret. Joana detects potentially influenced statements through an
advanced reachability analysis —called slicing— on the PDG. The PDG
contains data dependency between parameter secret and statement 16,
because technically statement 16 reads the value of secret and adds
it to variable b. The data dependency does not cover the fact that the
value of secret is only used when it is 0 and therefore has no effect
on the value of b. An additional analysis that applies path conditions
may remove this imprecision in the future, but currently there is a path
(13→ 16→ 17) from secret to the return value and a potential security
violation is detected.

However we are able to show that only method foo poses a potential
security problem and the rest of the program is safe. Thus we only need
to apply a more precise analysis —in our case KeY— to method foo, but
we don’t need to consider the other parts of the program. This reduces
the amount of manual work that is required for a non-automatic tool
like KeY. With the help of KeY we are able to prove that the value of b at
l. 14 is always the same as its value in l. 17. This enables us to create a
conservative extension of foo that behaves similar to the original version,
but makes the independence of b from secret more explicit, so that an
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1 class Extension {
2 static int tmp;
3 }
4

5 class Example {
6 ...
7 static int foo(int secret) {
8 int b = a;
9 Extension.tmp = b;

10 if (secret == 0)
11 b += secret;
12 b = Extension.tmp;
13 return b;
14 }
15 ...
16 }

int b = a
8

if (secret == 0)
10

b += secret
11

dh
dd

secret retfoo
7

return b
13

dd

dd

dd
dh

direct data dependence
heap data dependence
control dependence

HEAP

dd

dd

Extension.tmp = b
9

dd

b = Extension.tmp
12

dh

HEAP

dh

Figure 4.10: A conservative extension of method foo for the program in Figure 4.8
that can be verified with Joana and its matching PDG.

automated tool like Joana can verify noninterference.
Figure 4.10 shows the so-called conservative extension of method foo

and its matching PDG. As we could prove with KeY that the value of
b is not changed, we can add two additional statements to the code
without changing its behavior. We save the value of b in l. 9 before
the part that uses parameter secret and load the original value back
into b at l. 12. Hence we create a new class Extension with a static
field tmp that temporarily stores the value of b. Note that we did not
change any existing code —like completely removing the conditional
add instruction— as in general it may have additional effects on the
behavior of the program, aside from changing the value of b. This way
we can restrict the amount of work that needs to be done with the KeY
tool, as we only need to focus on the value of b and can disregard any
other effects of the code.

The right side of Figure 4.10 shows the effects the conservative exten-
sion of foo has on the PDG and thus the result of the noninterference
analysis. Joana is now able to detect that the return value is not influenced
by the value of secret, because variable b is explicitly overwritten before
its value is returned. However the conservative extension introduced
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a new side-effect: The static variable tmp still contains the value of b
at the end of method foo. A heap data dependency from node 9 to
the heap parameter-out node captures this effect. This static variable
could potentially be read at another point in the program and introduce
additional unwanted information flow. To prevent this we carefully
considered what a conservative extension is allowed to do and proved
that if the extensions obeys those rules, no additional flow will be intro-
duced. The definition of a conservative extension and the accompanying
proof are part of a joint publication [74] in cooperation with Ralf Küsters
and Tomasz Truderung from the University of Trier and the members
of the KeY group from the Karlsruhe Institute of Technology. A short
summary of the results can be found in [73]. As a detailed discussion is
out of scope for this work, we only show the definition of a conservative
extension as a result from this collaboration.

Definition 4.1. Let P be a program. An extension of P is a program P′

obtained from P in the following way. First, a new class M with the following
properties is added to P:

(i) the methods and fields of M are static,
(ii) the methods of M do not call any methods defined in P (that is ∅ `M),

(iii) the arguments and the results of the methods of M are of primitive types,
(iv) all potential exceptions are caught inside M.

Second, P is extended by adding statements of the following form in arbitrary
places within methods of P:

(a) (output to M)
M. f (e1, . . . , en), (4.1)

where f is a (static) method of M and e1, . . . , en are expressions without
side-effects and of the types corresponding to the types of the arguments
of M. f .

(b) (input from M)
r = M. f (e1, . . . , en), (4.2)

where f is a method of M with some (primitive) return type t, expressions
e1, . . . , en are as above, and r is an expression that evaluates without
side-effects to a reference of type t. (Such an expression can for example
be a variable or an expression of the form o.x, where o is an object with
field x.)

Such an extension P′ of P is called a conservative extension of P, if, additionally,
the following is true. For a run of the program P′, whenever a statement of the
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form (4.2) is executed, it does not change the value of r. That is, the value of r
right before the execution of the assignment coincides with the value returned
by the method call M. f (e1, . . . , en). As such, statement (4.2) is redundant.

In general the above definition aims to ensure that the state —the
accessed memory— of extension M is strictly separated from the rest of
the program P. Hence the behavior of P is not influenced at all by M.
This guarantees that as long as our extension follows above rules, we
can infer noninterference of P from the noninterference of P′.

conservative extension P′ is noninterferent =⇒ P is noninterferent

In this section we introduced the notion of hybrid analysis, where
we use so-called conservative extensions to combine different analysis
techniques in order to reduce false alarms. Through this approach we
can benefit from the advantages of the different techniques. We use
the fully automated Joana noninterference analysis for large parts of
the program and apply the more precise KeY framework that requires
more manual effort to only a small part. In the following chapter we
show how the hybrid approach is applied in a more realistic setting to
prove cryptographic privacy properties in the context of an e-voting
application.
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Figure 4.11: A schematic view of the simple e-voting system.

4.4 Verifying a simple e-voting example with a
novel hybrid approach

This case study shows how Joana can be combined with other verification
tools to proof advanced cryptographic security properties. In addition
to the ideal functionality [75, 76] approach introduced in §4.2 we also
combine our analysis with the KeY verification tool [2, 9] as presented in
§4.3. KeY is an interactive theorem proofer for first-order dynamic logic
(JavaDL) [55, 50, 8]. In contrast to well known general purpose theorem
provers like Isabelle [99] or Coq [12], KeY specializes in verification of
Java programs. It can be used to verify arbitrary advanced properties of
sequential Java programs. KeY is more precise then Joana, but it is not
an automated tool. It requires significant user effort and has difficulties
to scale to large programs. Hence we reduce the parts of the program
that need to be formalized with KeY through an automated analysis
with Joana. This approach reduces the amount of manual verification
required, while it still benefits from KeY’s enhanced precision.

Figure 4.11 shows an overview of the example. It consists of a set of
voters that communicate their choice to a central server over a secure
(encrypted) channel. The server collects all choices and computes the
number of total votes for each candidate. Then it transfers the result over
an authenticated channel to a bulletin board. We assume that everything
that is sent over the network can be read by an attacker, as well as every
information posted on the bulletin board.
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Advanced cryptographic security property Our goal is to proof the
privacy of individual votes. The attacker should not gain any additional
information that helps to deduce the choice of a voter. As he knows the
number of total votes, he can deduce some information. For example
if candidate A gets 0 votes, he knows that no single voter chose to vote
for A. But in case A has a single vote, he has no means to decide which
voter chose A, because of equal probability. Hence we want to make sure
that the attacker cannot gain any information that improves chances to
deduce the choice of a single voter compared to a random guess.

This security property differs significantly from the very strict non-
interference property that forbids leakage of any secure information at
all. Therefore we set our system up in a way that allows us to infer
the privacy of individual votes through showing cryptographic indis-
tinguishability for it. Then we use ideal functionality —as presented
in §4.2— to transfer the cryptographic indistinguishability property to
classical noninterference. As Joana is not able to automatically show
noninterference for this system, we introduce an additional step. We
modify the system to enable automatic analysis and use another tool
—such as KeY— to verify that these modifications did not change the
behavior of the system —as introduced in §4.3. In the following para-
graphs we start with a description of the system, then we explain how
cryptographic indistinguishability shows privacy of individual votes in
this setup. Finally we discuss the necessary modifications that enable
automatic analysis with Joana.

We want to allow the attacker to see the result of the vote, but not
individual votes. Our system uses two arrays ~c1,~c2 as the potential voter
choices. Each array entry represents the choice of a single voter. We
have two possible choices for each voter vn: One is stored in ~c1[n] and
the other is stored in ~c2[n]. The program then checks if the choices in ~c1
result in the same total of votes for each candidate as the choices in ~c2.
This technique guarantees that knowledge of the voting result does not
help to decide whether ~c1 or ~c2 represent the individual choices. The
system then uses a secret boolean value to decide if ~c1 or ~c2 are used as
voter choices. Then the selected choices are encrypted and transfered
to the server, allowing the attacker to inspect the encrypted individual
choices. The server proceeds with computing the total of all votes and
eventually sends them to the bulletin board.

Given this setup we can now use the same cryptographic indistin-
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guishability property we introduced in §4.2 to proof privacy of individual
votes in the system. If the attacker is unable to infer any information
about the value of the secret boolean, he is also not able to decide whether
~c1 or ~c2 are the actual voter choices. If we show the behavior of the
system is cryptographically indistinguishable for both values of the
secret boolean, we can also proof that an attacker cannot gain additional
information about individual voters choices.

As we want to use Joana to proof this property we have to take
some additional steps to model the problem accordingly. We transfer
the original program P to a version Pideal that uses ideal functionality
for encryption of the individual votes sent to the server, so we can
use classical noninterference to show cryptographic indistinguishability.
Then we add additional code at certain parts that enable Joana to detect
noninterference of the modified version Phybrid. We use KeY to proof that
the additional code does not change the behavior of the program. This
way we can show cryptographic indistinguishability of P by proving
noninterference for Phybrid.

Phybrid noninterferent =⇒ Pideal noninterferent
=⇒ P cryptographic indistinguishable

Joana is not able to show noninterference for Pideal without additional
modifications. The programs noninterference depends on the property
that the value of total votes is the same for ~c1 and ~c2 and therefore it is
impossible to decide which option has been chosen from the number of
total votes alone. Joana searches for violating paths in the PDG model
of the program. It detects which statements depend on the outcome of
other statements, without considering the actual values computed. Thus
it detects that the number of total votes is computed by adding up the
individual votes and the individual votes are selected through the secret
boolean. Therefore Joana concludes that the result depends on the secret
boolean. This approximation improves the performance of the analysis,
but in this case it also reduces precision.

Our solution is a hybrid approach where we use an additional tool —
the KeY tool — to guarantee that the value of the result is independent
of the choice between ~c1 and ~c2. This is true, because otherwise the
program aborts before selecting individual votes and it never sends them
to the server. Based on this guarantee we can modify the program at two
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specific points to enable a noninterference analysis with Joana without
changing its behavior:

• We store the number of total votes for ~c1 and ~c2 a separate variable
total, before we choose through the secret value of s which votes
are sent to the server.

• After the server receives either ~c1 or ~c2 and computes the number
of total votes, we replace the results of the computation with the
value in variable total.

As the analysis approach used by Joana has no way to verify that the
computation in fact computes the total of all votes, this work-around
allows Joana to establish that the result of the computation is the same as
the number of total votes computed at the beginning. Hence information
flow from single individual voter choices is prevented. With the help of
KeY we are then able to show that these modifications do not change
the behavior of the program and thus its noninterference property is
unchanged. Therefore if we can show noninterference for the modified
version Phybrid we can automatically infer noninterference of the original
version Pideal.

We provide the full source code of version Phybrid in Appendix B.
The vectors ~c1 and ~c2 are modeled as byte[] arrays voterChoices1,
voterChoices2 whose values are read in from the environment in l. 231
in the main method of class HonestVotersSetup. Input and output from
the environment as well as network communication visible to the at-
tacker is modeled by the classes in package environment.*. Any public
visible output results in a modification of attribute result defined in
l. 13 of class Environment. Unknown and untrusted input is simulated
by a list of integer values initialized in l. 18. Class HonestVotersSetup
contains the setup and main loop of the program. It stores the copy of
the precomputed results in the attributes of inner class CorrectResult in
l. 51 and computes them in method computeCorrectResult in l. 116. The
loop starting at l. 183 triggers the various possible events like selecting
votes, sending votes to the server, or posting results on the bulletin
board. It simulates the life cycle of the e-voting system. The secret
bit that decides which voter choices are selected is stored in attribute
secret in l. 57 of HonestVoterSetup. In order to show noninterference in
this example we have to proof that no information about the value of
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HonestVoterSetup.secret can flow to the environment and thus to the
value of Environment.result.

We are able to analyze the modified version Phybrid with a size of
950 LoC on a standard PC (Core i5 2.3GHz, 8GB RAM) in about 17
seconds. Computation of the PDG model takes about 16 seconds and
running the slicing-based IFC check is performed in under 1 second. The
computation time is relatively large compared to the size of the program.
This has two major reasons: (1) We need to analyze the program code
in combination with the parts of the JRE standard library that it uses.
This significantly increases the size of the analyzed code. (2) We need to
apply a very precise but slow object-sensitive points-to analysis. Less
precise and faster analyses yield false positives.

Relevant analysis features for noninterference check Although the
program is quite small, it still poses a challenge for a static analysis to
verify its noninterference. The following precision enhancing features of
Joana were required for a successful noninterference check:

Object-, context- and field-sensitivity We need to distinguish methods
and object instances based on the context in which they are used at
several points in the program. See sections §2.2.1, §2.2.3 and §2.2.2 for
more details on these sensitivity features. §2.5.2 explains the details
of the object-sensitive points-to analysis.

• Secret as well as public information are both stored in byte[]
arrays. In many points in the program the content of these arrays
is leaked to a publicly visible channel. We need to verify that
only array instances containing public information are leaked.

• The method copyOf in l. 5 of class MessageTools is used to copy
secret as well as public information to a new array. The security
level of its return value depends on the context it is called in.
Furthermore we need to distinguish the contents of arrays from
their metadata —such as their address or length.

Flow-sensitivity and local killing definitions §2.2.4 contains a detailed
description of flow-sensitivity and killing definitions. These features
are needed at several points in the program to increase the precision
of the analysis. The most important part is in method getResult at
l. 95 in class Server:
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private byte[] getResult() {
if (!resultReady()) return null;

votesForA = HonestVotersSetup.CorrectResult.votesForA;
votesForB = HonestVotersSetup.CorrectResult.votesForB;

return formatResult(votesForA, votesForB);
}

After the server computes the number of total votes from the received
voters choices and before it formats and returns the result, it over-
writes the computed value with the values stored in CorrectResult.
We have to detect that the assignment definitely kills the computed
value and afterwards all accesses to the returned result only depend
on the values in CorrectResult.

Enhanced exception analysis and fine-grained field accesses
Sections §2.1.8, §2.4.1 and §2.4.3 describe in detail how we use
exception analysis and fine-grained fields to increase precision. In
the current example fine-grained field accesses allow us to detect
that the secret value that influences certain array-set instructions
cannot trigger an exception, as it is used to select the field value
and not the base pointer. This is crucial for the part that copies the
selected votes to the message that is transfered to the server in class
HonestVoterSetup l. 130:
private static byte[] chooseVoterChoices(byte[] voterChoices1, byte[] voterChoices2) {
byte[] voterChoices = new byte[Server.NumberOfVoters];
for (int i=0; i<Server.NumberOfVoters; ++i) {
final byte data1 = voterChoices1[i];
final byte data2 = voterChoices2[i];
voterChoices[i] = (secret ? data1 : data2);

}
return voterChoices;

}

Applying IFC analysis to the case study The code that performs the
IFC analysis on the case study using the Joana API is shown below. We
mark the value of the boolean in HonestVotersSetup.secret as source of
secret information. All output to the public visible environment, like
data sent over the network, is modeled in our example as a modification
to the static variable Environment.result. Therefore we annotate each
modification of this variable as a sink of public information. Then we
build the PDG model for the program with object-sensitive points-to
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precision and enabled exception optimization. Finally we mark the
information sources and sinks accordingly and perform the IFC analysis
on the model. If no violations are found, we know for sure, that the
program is noninterferent.

1 public final class AnalyzeHonestVoterSetup {
2

3 private AnalyzeHonestVoterSetup() {
4 throw new IllegalStateException();
5 }
6

7 private final static String CLASSPATH = "./build/";
8

9 public static void main(String[] args) throws ClassHierarchyException, IOException,
10 UnsoundGraphException, CancelException {
11 final String[] secretSource = new String[] {
12 "de.uni.trier.infsec.protocols.smt_voting.HonestVotersSetup.secret"
13 };
14 final String[] publicOut = new String[] {
15 "de.uni.trier.infsec.environment.Environment.result"
16 };
17 final IFCAnalysis ana = buildAndAnnotate(
18 "de.uni.trier.infsec.protocols.smt_voting.HonestVotersSetup",
19 PointsToPrecision.OBJECT_SENSITIVE, secretSource, publicOut);
20 final Collection<IllicitFlow> leaks = ana.doIFC();
21

22 if (leaks.isEmpty()) {
23 System.out.println("Program is noninterferent: No leaks found.");
24 } else {
25 System.out.println("Leaks found: " + leaks.size());
26 }
27

28 final SDG sdg = ana.getProgram().getSDG();
29 SDGSerializer.toPDGFormat(sdg, new FileOutputStream("HonestVotersSetup.pdg"));
30 for (final IllicitFlow leak : leaks) {
31 System.out.println(leak);
32 final Violation vio = leak.getViolation();
33 System.out.println("Violation: " + vio);
34 }
35 }
36

37 private static IFCAnalysis buildAndAnnotate(final String className,
38 final PointsToPrecision pts, final String[] secretSource,
39 final String[] publicOut) throws ClassHierarchyException, IOException,
40 UnsoundGraphException, CancelException {
41 final JavaMethodSignature mainMethod =
42 JavaMethodSignature.mainMethodOfClass(className);
43 final SDGConfig config =
44 new SDGConfig(CLASSPATH, mainMethod.toBCString(), Stubs.JRE_14);
45 config.setComputeInterferences(false);
46 config.setExceptionAnalysis(ExceptionAnalysis.INTRAPROC);
47 config.setFieldPropagation(FieldPropagation.OBJ_GRAPH);
48 config.setPointsToPrecision(pts);
49 config.setMhpType(MHPType.NONE);
50 final SDGProgram prog = SDGProgram.createSDGProgram(config, System.out,
51 NullProgressMonitor.INSTANCE);
52
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53 final IFCAnalysis ana = new IFCAnalysis(prog);
54 for (final String strSec : secretSource) {
55 final SDGProgramPart secret = ana.getProgramPart(strSec);
56 assert (secret != null);
57 ana.addSourceAnnotation(secret, BuiltinLattices.STD_SECLEVEL_HIGH);
58 }
59

60 for (final String strPub : publicOut) {
61 final SDGProgramPart output = ana.getProgramPart(strPub);
62 assert (output != null);
63 ana.addSinkAnnotation(output, BuiltinLattices.STD_SECLEVEL_LOW);
64 }
65

66 return ana;
67 }
68 }
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We can only see a short distance ahead, but we can
see plenty there that needs to be done.

Alan Touring 5
Conclusion

We presented numerous improvements to dependence graph computa-
tion and slicing-based information flow control analysis in Chapter 2. In
Chapter 3 we discussed new solutions for the modularization of SDG
computation and information flow of components in unknown context.
Finally Chapter 4 demonstrated the usage of our IFC tool on several
applications.

Our work has been incorporated into the Joana information flow
control framework and successfully applied to real world programs [85]
as well as research prototypes. As of today, Joana is the most advanced
IFC tool for Java that can guarantee noninterference and comes with
support for multithreaded programs. Joana needs only few annotations
and is easy to use. It scales for programs up to 100kLoC and comes
with a wide variety of options that allow the user to hand pick the
best combination of precision and scalability options for the given
problem. We also included a simple configuration and categorization
inference algorithm (§4.1) that detects the best configuration out of a set of
predefined options. In addition it categorizes the discovered information
leaks in direct, indirect and exception induced leaks — helping the user
to decide on the severity of each leak. Future work in this area aims to
automatically compute a custom generated points-to analysis that only
applies a precise analysis where needed, hence keeping the computation
overhead minimal.

In Chapter 2 we discussed the challenges of analyzing a realistic
object-oriented language and showed current state-of-the-art methods
to tackle them. We introduced in detail several improvements to SDG
computation including
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• a precise analysis of the effects of potential exceptions (§2.4.1) that
enhances the precision of the analysis result by detecting impos-
sible and always occurring exceptions. Previously, exceptions
significantly harmed the precision of the SDG, but when ignored
the result can no longer guarantee security properties such as non-
interference. Hence they need to be included. With the presented
analysis it is possible to achieve precise results that include the
effect of exceptions and thus can still guarantee noninterference.
Further extensions of this analysis are currently developed. They
will enable us to detect additional exceptions such as array out of
bounds errors.

• a fine-grained model of field access operations (§2.4.3) that allows a
more detailed tracking of information flow, enhances precision and
enables the computation of access paths used in modular SDGs.

• termination sensitive control dependencies (§2.4.2) that can op-
tionally be activated to detect information leaks through non-
termination. Several tests have shown that termination sensitivity
severely harms analysis precision. Thus, while it is a theoretical
interesting property, in practice too many termination related de-
pendencies are introduced that prevent a meaningful result. In
our view the large number of false alarms is likely the reason why
most information flow control related analyses ignore termination
sensitivity.

• a new parameter model (§2.6) for interprocedural side-effects.
We studied the phases of SDG computation and identified the
interprocedural side-effect computation —also known as parameter
model— as a performance critical part. We discovered a scalability
bottleneck in the old object-tree model and removed the weakness
with our new parameter model using object-graphs. Compared
to the old model it performs consistently better and in most cases
even enhances precision, as shown in the extensive evaluation
of the performance of different parameter models with varying
points-to analyses.

Furthermore, we developed a flexible algorithm (Algorithm 2.3 and
Algorithm 2.5) that can be used for either object-tree or object-graph com-
putation with only minor adjustments. The intermediate representation
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of the algorithm based on field-candidates allows easy modifications
like hand-tuned variants of the parameter computation. For example we
experimented with a maximal node count threshold, where whenever
the number of parameter nodes for a method exceeds the threshold,
parameter candidates are merged until the resulting nodes are below the
threshold. This modification guaranteed fast summary edge computa-
tion times, but often at severe precision penalties. However, we expect
that future work in this area can achieve performance gains with only a
minor precision penalty, when the “correct” candidates are merged.

Chapter 3 contains a new approach for precise information flow
control with SDGs in unknown context — a major step towards modular-
ization of SDG computation. We discovered that most points-to analysis
currently used in analysis frameworks have in common that they do not
support strong updates, which in turn leads to a monotonicity property.
This property allows us to approximate the outcome of the analysis of
a component in different contexts, without explicitly performing the
analysis. We provide a proof that these approximations are conservative
and therefore can be used to give guarantees in our security related
setting. Based on this property, we develop algorithms that —when
given certain context properties— can compute minimal and maximal
points-to sets and generate context stubs for the component. These
context stubs can be used to analyze the component with any whole
program analysis meeting the prerequisites of the monotonicity property
without any change to the analysis itself. Hence we are able to use our
standard IFC analysis to compute information flow for components in
unknown contexts. Additionally, we invented the modular SDG that
—once computed— contains a summary of the component in any poten-
tial context and thus allows a fast adaption to a concrete context when
needed. While the computation of the modular SDG is theoretically
possible, we observed that in practice it is often not feasible, due to the
huge amount of different context configurations possible. Therefore, we
introduced a way to approximate the modular SDG with the help of
so-called access paths. Our evaluation showed that the computation
of the modular SDG is very complex and hence future work needs to
discover additional optimizations in order to work with larger compo-
nents. Nevertheless the theoretical concept is sound —as shown in our
sketched proof— and can be used as foundation for future work.

In general, we noticed that scalability and precision can still be
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improved in slicing based IFC analyses, but in our opinion the point
of diminishing returns is reached. It may prove beneficial to relax
the fixation on soundness and focus research on theoretical possible
information leaks that are in practice a real threat. We think that proven
soundness guarantees are important, but allowing the user to optionally
ignore some leaks can be very useful. For example if a program cannot be
proven secure, it is relevant if it contains obvious leaks —such as direct
information flow through local variables— or if only more intricate leaks
are found. Complex languages such as Java can be analyzed, but secure
programs are hard to write and even harder to automatically proof secure.
Hence, we suggest that either soundness has to be sacrificed at some
point or we need to restrict security critical program parts to a subset of
Java. Research in the direction of domain specific IFC friendly languages
may also be beneficial. Still the problem remains that currently many
security critical programs written in Java already exist. These programs
most likely cannot be proven secure with 100% soundness, as they either
contain potential information leaks or the conservative approximations
of the IFC analysis produce a false alarm. Therefore, future work should
also focus on quantitative IFC and tools that support a manual decision
on the severity of a leak. The current state of the Joana IFC tool should
provide a solid foundation for future improvements in these directions.

260



A
Sourcecode of Client-Server

Example

This section contains the sourcecode of ideal version Pideal of the client-
server example as shown in Figure 4.4 of §4.2.

Package protocol

Class Setup

1 package de.uni.trier.infsec.protocol;
2

3 import de.uni.trier.infsec.environment.Environment;
4 import de.uni.trier.infsec.network.Network;
5 import de.uni.trier.infsec.network.NetworkError;
6 import de.uni.trier.infsec.pkenc.Decryptor;
7 import de.uni.trier.infsec.pkenc.Encryptor;
8 import de.uni.trier.infsec.protocol.Client;
9 import de.uni.trier.infsec.protocol.Server;

10

11 /**
12 * Setup for the simple protocol: it creates the server and then,
13 * depending on the input from the untrusted network, creates some
14 * (potentially unbounded) number of clients and makes them send
15 * their messages.
16 *
17 * In case of each client, two messages are determined by the
18 * environment; one of them is picked and sent by the client,
19 * depending on the value of a secret bit. The adversary is not
20 * supposed to learn the value of this bit.
21 *
22 * @author Andreas Koch (University of Trier)
23 * @author Tomasz Truderung (University of Trier)
24 */
25 public class Setup {
26
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27 static private boolean secret = false; // SECRET -- an arbitrary value put here
28

29 public static void main(String[] args) throws NetworkError {
30

31 // Public-key encryption functionality for Server
32 Decryptor serverDec = new Decryptor();
33 Encryptor serverEnc = serverDec.getEncryptor();
34 Network.networkOut(serverEnc.getPublicKey()); // public key of Bob is published
35

36 // Creating the server
37 Server server = new Server(serverDec);
38

39 // The adversary decides how many clients we create:
40 while( Network.networkIn() != null ) {
41 // determine the value the client encrypts:
42 // the adversary gives two values
43 byte s1 = Network.networkIn()[0];
44 byte s2 = Network.networkIn()[0];
45 // and one of them is picked depending on the value of the secret bit
46 byte s = secret ? s1 : s2;
47 Client client = new Client(serverEnc, s);
48

49 // initialize the client protocol
50 // (Alice sends out an encrypted value s to the network)
51 client.onInit();
52 // read a message from the network...
53 byte[] message = Network.networkIn();
54 // ... and deliver it to the server (server will decrypt it)
55 server.onReceive(message);
56 }
57 }
58 }

Class Server

1 package de.uni.trier.infsec.protocol;
2

3 import de.uni.trier.infsec.pkenc.Decryptor;
4

5 /**
6 * Server of a simple protocol that simply decrypts received message.
7 *
8 * @author Andreas Koch (University of Trier)
9 * @author Tomasz Truderung (University of Trier)

10 */
11 final public class Server {
12 private Decryptor BobPKE;
13 private byte[] receivedMessage = null;
14

15 public Server(Decryptor BobPKE) {
16 this.BobPKE = BobPKE;
17 }
18

19 public void onReceive(byte[] message) {
20 receivedMessage = BobPKE.decrypt(message);
21 }
22 }
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Class Client

1 package de.uni.trier.infsec.protocol;
2

3 import de.uni.trier.infsec.network.Network;
4 import de.uni.trier.infsec.network.NetworkError;
5 // import de.uni.trier.infsec.pkenc.PKEnc;
6 import de.uni.trier.infsec.pkenc.Encryptor;
7

8 /**
9 * Client of a simple protocol: it encrypts a given message and sends

10 * it over the network.
11 *
12 *
13 * @author Andreas Koch (University of Trier)
14 * @author Tomasz Truderung (University of Trier)
15 */
16 final public class Client {
17 private Encryptor BobPKE;
18 private byte[] message;
19

20 public Client(Encryptor BobPKE, byte message) {
21 this.BobPKE = BobPKE;
22 this.message = new byte[] {message};
23 }
24

25 public void onInit() throws NetworkError {
26 byte[] encMessage = BobPKE.encrypt(message);
27 Network.networkOut(encMessage);
28 }
29 }

Package environment

Class Environment

1 package de.uni.trier.infsec.environment;
2

3 /**
4 * @author Andreas Koch (University of Trier)
5 * @author Tomasz Truderung (University of Trier)
6 */
7 class Node {
8 int value;
9 Node next;

10 Node(int v, Node n) {
11 value = v; next = n;
12 }
13 }
14

15 /**
16 * Generic environment for verifying noninterference in an open
17 * systems (systems interacting with untrusted
18 * environment/libraries).
19 *
20 * @author Andreas Koch (University of Trier)
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21 * @author Tomasz Truderung (University of Trier)
22 */
23 public class Environment {
24

25 private static boolean result; // the LOW variable
26

27 private static Node list = null;
28 private static boolean listInitialized = false;
29

30 private static Node initialValue() {
31 // Unknown specification of the following form:
32 // return new Node(U1, new Node(U2, ...));
33 // where U1, U2, ...Un are constant integers.
34 return new Node(1, new Node(7,null)); // just an example
35 }
36

37 public static int untrustedInput() {
38 if (!listInitialized) {
39 list = initialValue();
40 listInitialized = true;
41 }
42 if (list==null) return 0;
43 int tmp = list.value;
44 list = list.next;
45 return tmp;
46 }
47

48 public static void untrustedOutput(int x) {
49 if (untrustedInput()==0) {
50 result = (x==untrustedInput());
51 throw new Error(); // abort
52 }
53 }
54 }

Package pkenc

Class Decryptor

1 package de.uni.trier.infsec.pkenc;
2

3 import de.uni.trier.infsec.crypto.CryptoLib;
4 import de.uni.trier.infsec.crypto.KeyPair;
5

6 /**
7 * Ideal functionality for public-key encryption: Decryptor
8 *
9 * @author Andreas Koch (University of Trier)

10 * @author Tomasz Truderung (University of Trier)
11 */
12 public final class Decryptor {
13

14 private byte[] privKey;
15 private byte[] publKey;
16 private MessagePairList log = new MessagePairList();
17

18 public Decryptor() {
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19 KeyPair keypair = CryptoLib.generateKeyPair();
20 publKey = MessageTools.copyOf(keypair.publicKey);
21 privKey = MessageTools.copyOf(keypair.privateKey);
22 }
23

24 public Encryptor getEncryptor() {
25 return new Encryptor(log, publKey);
26 }
27

28 public byte[] decrypt(byte[] message) {
29 byte[] messageCopy = MessageTools.copyOf(message);
30 if (!log.contains(messageCopy)) {
31 return MessageTools.copyOf(
32 CryptoLib.decrypt(MessageTools.copyOf(privKey), messageCopy) );
33 } else {
34 return MessageTools.copyOf( log.lookup(messageCopy) );
35 }
36 }
37 }

Class Encryptor

1 package de.uni.trier.infsec.pkenc;
2

3 import de.uni.trier.infsec.crypto.CryptoLib;
4

5 /**
6 * Ideal functionality for public-key encryption: Encryptor
7 *
8 * @author Andreas Koch (University of Trier)
9 * @author Tomasz Truderung (University of Trier)

10 */
11 public final class Encryptor {
12

13 private MessagePairList log;
14 private byte[] publKey;
15

16 Encryptor(MessagePairList mpl, byte[] publicKey) {
17 log = mpl;
18 publKey = publicKey;
19 }
20

21 public byte[] getPublicKey() {
22 return MessageTools.copyOf(publKey);
23 }
24

25 public byte[] encrypt(byte[] message) {
26 byte[] messageCopy = MessageTools.copyOf(message);
27 // Note the fixed size (1) of a message
28 byte[] randomCipher = MessageTools.copyOf(
29 CryptoLib.encrypt(MessageTools.getZeroMessage(1),
30 MessageTools.copyOf(publKey)));
31 if( randomCipher == null ) return null;
32 log.add(messageCopy, randomCipher);
33 return MessageTools.copyOf(randomCipher);
34 }
35

36 }
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Class MessagePairList

1 package de.uni.trier.infsec.pkenc;
2

3 /**
4 * @author Andreas Koch (University of Trier)
5 * @author Tomasz Truderung (University of Trier)
6 */
7 public class MessagePairList {
8

9 static class MessagePair {
10 byte[] ciphertext;
11 byte[] plaintext;
12 MessagePair next;
13

14 public MessagePair(byte[] ciphertext, byte[] plaintext, MessagePair next) {
15 this.ciphertext = ciphertext;
16 this.plaintext = plaintext;
17 this.next = next;
18 }
19 }
20

21 private MessagePair first = null;
22

23 public void add(byte[] pTxt, byte[] cTxt) {
24 first = new MessagePair(cTxt, pTxt, first);
25 }
26

27 byte[] lookup(byte[] ciphertext) {
28 MessagePair tmp = first;
29 while( tmp != null ) {
30 if ( MessageTools.equal(tmp.ciphertext, ciphertext) )
31 return tmp.plaintext;
32 tmp = tmp.next;
33 }
34 return null;
35 }
36

37 boolean contains(byte[] ciphertext) {
38 MessagePair tmp = first;
39 while( tmp != null ) {
40 if ( MessageTools.equal(tmp.ciphertext, ciphertext) )
41 return true;
42 tmp = tmp.next;
43 }
44 return false;
45 }
46

47 }

Class MessageTools

1 package de.uni.trier.infsec.pkenc;
2

3 /**
4 * @author Andreas Koch (University of Trier)
5 * @author Tomasz Truderung (University of Trier)
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6 */
7 public class MessageTools {
8

9 public static byte[] copyOf(byte[] message) {
10 if (message == null) return null;
11 byte[] copy = new byte[message.length];
12 for (int i = 0; i < message.length; i++) {
13 copy[i] = message[i];
14 }
15 return copy;
16 }
17

18 public static boolean equal(byte[] a, byte[] b) {
19 if ( a.length != b.length ) return false;
20 for(int i = 0; i < a.length; ++i)
21 if ( a[i] != b[i] ) return false;
22 return true;
23 }
24

25 public static byte[] getZeroMessage(int messageSize) {
26 byte[] zeroVector = new byte[messageSize];
27 for (int i = 0; i < zeroVector.length; i++) {
28 zeroVector[i] = 0x00;
29 }
30 return zeroVector;
31 }
32 }

Package crypto

Class CryptoLib

1 package de.uni.trier.infsec.crypto;
2

3 import de.uni.trier.infsec.environment.Environment;
4

5 /**
6 * @author Andreas Koch (University of Trier)
7 * @author Tomasz Truderung (University of Trier)
8 */
9 public class CryptoLib {

10

11 public static byte[] encrypt(byte[] in, byte[] publKey) {
12 // input
13 Environment.untrustedOutput(0x66); // Function code for encryption
14 Environment.untrustedOutput(in.length);
15 for (int i = 0; i < in.length; i++) {
16 byte b = in[i];
17 Environment.untrustedOutput(b);
18 }
19 Environment.untrustedOutput(publKey.length);
20 for (int i = 0; i < publKey.length; i++) {
21 byte b = publKey[i];
22 Environment.untrustedOutput(b);
23 }
24

25 // output
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26 int len = Environment.untrustedInput();
27 if (len < 0) return null;
28 byte[] returnval = new byte[len];
29 for (int i = 0; i < len; i++) {
30 returnval[i] = (byte) Environment.untrustedInput();
31 }
32 return returnval;
33 }
34

35 public static byte[] decrypt(byte[] message, byte[] privKey) {
36 // input
37 Environment.untrustedOutput(0x77); // Function code for decryption
38 Environment.untrustedOutput(message.length);
39 for (int i = 0; i < message.length; i++) {
40 byte b = message[i];
41 Environment.untrustedOutput(b);
42 }
43 Environment.untrustedOutput(privKey.length);
44 for (int i = 0; i < privKey.length; i++) {
45 byte b = privKey[i];
46 Environment.untrustedOutput(b);
47 }
48

49 // output
50 int len = Environment.untrustedInput();
51 if (len < 0) return null;
52 byte[] returnval = new byte[len];
53 for (int i = 0; i < len; i++) {
54 returnval[i] = (byte) Environment.untrustedInput();
55 }
56 return returnval;
57 }
58

59 public static KeyPair generateKeyPair() {
60 // input
61 Environment.untrustedOutput(0x88); // Function code for generateKeyPair
62

63 // ouptut
64 KeyPair returnval = new KeyPair();
65 returnval.privateKey = null;
66 int len = Environment.untrustedInput();
67 if (len >= 0) {
68 returnval.privateKey = new byte[len];
69 for (int i = 0; i < len; i++) {
70 returnval.privateKey[i] = (byte) Environment.untrustedInput();
71 }
72 }
73 returnval.publicKey = null;
74 len = Environment.untrustedInput();
75 if (len >= 0) {
76 returnval.publicKey= new byte[len];
77 for (int i = 0; i < len; i++) {
78 returnval.publicKey[i] = (byte) Environment.untrustedInput();
79 }
80 }
81 return returnval;
82 }
83 }
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Class KeyPair

1 package de.uni.trier.infsec.crypto;
2

3 /**
4 * @author Andreas Koch (University of Trier)
5 * @author Tomasz Truderung (University of Trier)
6 */
7 public class KeyPair {
8 public byte[] publicKey;
9 public byte[] privateKey;

10 }

Package network

Class Network

1 package de.uni.trier.infsec.network;
2

3 import de.uni.trier.infsec.environment.Environment;
4

5

6 /**
7 * @author Andreas Koch (University of Trier)
8 * @author Tomasz Truderung (University of Trier)
9 */

10 public class Network {
11

12 public static void networkOut(byte[] outEnc) throws NetworkError {
13 // input
14 Environment.untrustedOutput(0x55);
15 Environment.untrustedOutput(outEnc.length);
16 for (int i = 0; i < outEnc.length; i++) {
17 Environment.untrustedOutput(outEnc[i]);
18 }
19 // output
20 if (Environment.untrustedInput()==0) throw new NetworkError();
21 }
22

23 public static byte[] networkIn() throws NetworkError {
24 // input
25 Environment.untrustedOutput(0x56);
26

27 // output
28 if (Environment.untrustedInput()==0) throw new NetworkError();
29 int len = Environment.untrustedInput();
30 if (len < 0) return null;
31 byte[] val = new byte[len];
32 for (int i = 0; i < len; i++) {
33 val[i] = (byte) Environment.untrustedInput();
34 }
35 return val;
36 }
37 }
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B
Sourcecode of the Simple e-Voting

Example

This section contains the Phybrid version of the sourcecode for the e-voting
example discussed in §4.4.

Package functionalities.*

Class AMT

1 package de.uni.trier.infsec.functionalities.amt.ideal;
2

3 import de.uni.trier.infsec.utils.MessageTools;
4 import de.uni.trier.infsec.functionalities.pki.ideal.PKIError;
5 import de.uni.trier.infsec.environment.network.NetworkClient;
6 import de.uni.trier.infsec.environment.network.NetworkError;
7 import de.uni.trier.infsec.environment.amt.AMTEnv;
8

9 /**
10 * Ideal functionality for AMT (Authenticated Message Transmission).
11 *
12 * Every party who wants to use this functionality should first register itself:
13 *
14 * AgentProxy a = AMT.register(ID_OF_A);
15 *
16 * Then, to send messages to a party with identifier ID_OF_B:
17 *
18 * Channel channel_to_b = a.channelTo(ID_OF_B);
19 * channel_to_b.send( message1 );
20 * channel_to_b.send( message2 );
21 *
22 * To read messages sent to the agent a:
23 *
24 * AuthenticatedMessage msg = a.getMessage();
25 * // msg.message contains the received message
26 * // msg.sender_id contains the id of the sender
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27 */
28 public class AMT {
29

30 //// The public interface ////
31

32 static public class AMTError extends Exception {}
33

34 /**
35 * Pair (message, sender_id).
36 *
37 * Objects of this class are returned when an agent reads a message from its queue.
38 */
39 static public class AuthenticatedMessage {
40 public byte[] message;
41 public int sender_id;
42

43 private AuthenticatedMessage(byte[] message, int sender) {
44 this.sender_id = sender; this.message = message;
45 }
46 }
47

48 /**
49 * Objects representing agents’ restricted (private) data that can be used
50 * to securely send and receive authenticated message.
51 *
52 * Such an object allows one to
53 * - get messages from the queue or this agent (method getMessage),
54 * where the environment decides which message is to be delivered,
55 * - create a channel to another agent (channelTo and channelToAgent); such
56 * a channel can be used to securely send authenticated messages to the
57 * chosen agent.
58 */
59 static public class AgentProxy
60 {
61 public final int ID;
62 private final MessageQueue queue; // messages sent to this agent
63

64 private AgentProxy(int id) {
65 this.ID = id;
66 this.queue = new MessageQueue();
67 }
68

69 /**
70 * Returns next message sent to the agent. It return null, if there is no such
71 * a message.
72 *
73 * In this ideal implementation the environment decides which message is to be
74 * delivered.
75 * The same message may be delivered several times or not delivered at all.
76 */
77 public AuthenticatedMessage getMessage(int port) throws AMTError {
78 if (registrationInProgress) throw new AMTError();
79 int index = AMTEnv.getMessage(this.ID, port);
80 if (index < 0) return null;
81 return queue.get(index);
82 }
83

84 public Channel channelTo(int recipient_id, String server, int port)
85 throws AMTError, PKIError, NetworkError {
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86 if (registrationInProgress) throw new AMTError();
87 boolean network_ok = AMTEnv.channelTo(ID, recipient_id, server, port);
88 if (!network_ok) throw new NetworkError();
89 // get the answer from PKI
90 AgentProxy recipient = registeredAgents.fetch(recipient_id);
91 if (recipient == null) throw new PKIError();
92 // create and return the channel
93 return new Channel(this, recipient, server, port);
94 }
95 }
96

97 /**
98 * Objects representing secure and authenticated channel from sender to recipient.
99 *

100 * Such objects allow one to securely send a message to the recipient, where the
101 * sender is authenticated to the recipient.
102 */
103 static public class Channel
104 {
105 private final AgentProxy sender;
106 private final AgentProxy recipient;
107 private final String server;
108 private final int port;
109

110 private Channel(AgentProxy from, AgentProxy to, String server, int port) {
111 this.sender = from;
112 this.recipient = to;
113 this.server = server;
114 this.port = port;
115 }
116

117 public void send(byte[] message) {
118 byte[] output_message =
119 AMTEnv.send(message, sender.ID, recipient.ID, server, port);
120 recipient.queue.add(MessageTools.copyOf(message), sender.ID);
121 try {
122 NetworkClient.send(output_message, server, port);
123 } catch (NetworkError e) {}
124 }
125 }
126

127 /**
128 * Registering an agent with the given id. If this id has been already used,
129 * registration fails (the method returns null).
130 */
131 public static AgentProxy register(int id) throws AMTError, PKIError {
132 if (registrationInProgress) throw new AMTError();
133 registrationInProgress = true;
134 // call the environment/simulator
135 AMTEnv.register(id);
136 // check whether the id has not been claimed
137 if( registeredAgents.fetch(id) != null ) {
138 registrationInProgress = false;
139 throw new PKIError();
140 }
141 // create a new agent, add it to the list of registered agents, and return it
142 AgentProxy agent = new AgentProxy(id);
143 registeredAgents.add(agent);
144 registrationInProgress = false;
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145 return agent;
146 }
147

148 private static boolean registrationInProgress = false;
149

150

151 //// Implementation ////
152

153 //
154 // MessageQueue -- a queue of messages (along with the id of the sender).
155 // Such a queue is kept by an agent and represents the messages that has been
156 // sent to this agent.
157 //
158 private static class MessageQueue
159 {
160 private static class Node {
161 final byte[] message;
162 final int sender_id;
163 final Node next;
164 Node(byte[] message, int sender_id, Node next) {
165 this.message = message;
166 this.sender_id = sender_id;
167 this.next = next;
168 }
169 }
170 private Node first = null;
171

172 void add(byte[] message, int sender_id) {
173 first = new Node(message, sender_id, first);
174 }
175

176 AuthenticatedMessage get(int index) {
177 if (index<0) return null;
178 Node node = first;
179 for( int i=0; i<index && node!=null; ++i )
180 node = node.next;
181 return (node != null
182 ? new AuthenticatedMessage(MessageTools.copyOf(node.message), node.sender_id)
183 : null);
184 }
185 }
186

187 //
188 // AgentsQueue -- a collection of registered agents.
189 //
190 private static class AgentsQueue
191 {
192 private static class Node {
193 final AgentProxy agent;
194 final Node next;
195 Node(AgentProxy agent, Node next) {
196 this.agent = agent;
197 this.next = next;
198 }
199 }
200 private Node first = null;
201

202 public void add(AgentProxy agent) {
203 first = new Node(agent, first);
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204 }
205

206 AgentProxy fetch(int id) {
207 for( Node node = first; node != null; node = node.next )
208 if( id == node.agent.ID )
209 return node.agent;
210 return null;
211 }
212 }
213

214 // static list of registered agents:
215 private static AgentsQueue registeredAgents = new AgentsQueue();
216 }

Class SMT

1 package de.uni.trier.infsec.functionalities.smt.ideal;
2

3 import de.uni.trier.infsec.utils.MessageTools;
4 import de.uni.trier.infsec.functionalities.pki.ideal.PKIError;
5 import de.uni.trier.infsec.environment.network.NetworkClient;
6 import de.uni.trier.infsec.environment.network.NetworkError;
7 import de.uni.trier.infsec.environment.smt.SMTEnv;
8

9 /**
10 * Ideal functionality for SAMT (Secure Authenticated Message Transmission).
11 *
12 * Every party who wants to use this functionality should first register itself:
13 *
14 * AgentProxy a = SAMT.register(ID_OF_A);
15 *
16 * Then, to send messages to a party with identifier ID_OF_B:
17 *
18 * Channel channel_to_b = a.channelTo(ID_OF_B);
19 * channel_to_b.send( message1 );
20 * channel_to_b.send( message2 );
21 *
22 * (It is also possible to create a channel to b by calling a.channelToAgent(b).)
23 *
24 * To read messages sent to the agent a:
25 *
26 * AuthenticatedMessage msg = a.getMessage();
27 * // msg.message contains the received message
28 * // msg.sender_id contains the id of the sender
29 */
30 public class SMT {
31

32 //// The public interface ////
33

34 static public class SMTError extends Exception {}
35

36 /**
37 * Pair (message, sender_id).
38 *
39 * Objects of this class are returned when an agent reads a message from its queue.
40 */
41 static public class AuthenticatedMessage {
42 public final byte[] message;
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43 public final int sender_id;
44 public AuthenticatedMessage(byte[] message, int sender) {
45 this.sender_id = sender; this.message = message;
46 }
47 }
48

49 /**
50 * Objects representing agents’ restricted (private) data that can be used
51 * to securely send and receive authenticated message.
52 *
53 * Such an object allows one to
54 * - get messages from the queue or this agent (method getMessage),
55 * where the environment decides which message is to be delivered,
56 * - create a channel to another agent (channelTo and channelToAgent); such
57 * a channel can be used to securely send authenticated messages to the
58 * chosen agent.
59 */
60 static public class AgentProxy
61 {
62 public final int ID;
63 private final MessageQueue queue; // messages sent to this agent
64

65 private AgentProxy(int id) {
66 this.ID = id;
67 this.queue = new MessageQueue();
68 }
69

70 /**
71 * Returns next message sent to the agent. It return null, if there is no such
72 * a message.
73 *
74 * In this ideal implementation the environment decides which message is to be
75 * delivered.
76 * The same message may be delivered several times or not delivered at all.
77 */
78 public AuthenticatedMessage getMessage(int port) throws SMTError {
79 if (registrationInProgress) throw new SMTError();
80 int index = SMTEnv.getMessage(this.ID, port);
81 if (index < 0) return null;
82 return queue.get(index);
83 }
84

85 public Channel channelTo(int recipient_id, String server, int port)
86 throws SMTError, PKIError, NetworkError {
87 if (registrationInProgress) throw new SMTError();
88 boolean network_ok = SMTEnv.channelTo(ID, recipient_id, server, port);
89 if (!network_ok) throw new NetworkError();
90 // get the answer from PKI
91 AgentProxy recipient = registeredAgents.fetch(recipient_id);
92 if (recipient == null) throw new PKIError();
93 // create and return the channel
94 return new Channel(this, recipient, server, port);
95 }
96 }
97

98 /**
99 * Objects representing secure and authenticated channel from sender to recipient.

100 *
101 * Such objects allow one to securely send a message to the recipient, where the
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102 * sender is authenticated to the recipient.
103 */
104 static public class Channel
105 {
106 private final AgentProxy sender;
107 private final AgentProxy recipient;
108 private final String server;
109 private final int port;
110

111 private Channel(AgentProxy from, AgentProxy to, String server, int port) {
112 this.sender = from;
113 this.recipient = to;
114 this.server = server;
115 this.port = port;
116 }
117

118 public void send(byte[] message) {
119 byte[] output_message =
120 SMTEnv.send(message.length, sender.ID, recipient.ID, server, port);
121 recipient.queue.add(MessageTools.copyOf(message), sender.ID);
122 try {
123 NetworkClient.send(output_message, server, port);
124 } catch (NetworkError e) {}
125 }
126 }
127

128 /**
129 * Registering an agent with the given id. If this id has been already used,
130 * registration fails (the method returns null).
131 */
132 public static AgentProxy register(int id) throws SMTError, PKIError {
133 if (registrationInProgress) throw new SMTError();
134 registrationInProgress = true;
135 // call the environment/simulator
136 SMTEnv.register(id);
137 // check whether the id has not been claimed
138 if( registeredAgents.fetch(id) != null ) {
139 registrationInProgress = false;
140 throw new PKIError();
141 }
142 // create a new agent, add it to the list of registered agents, and return it
143 AgentProxy agent = new AgentProxy(id);
144 registeredAgents.add(agent);
145 registrationInProgress = false;
146 return agent;
147 }
148

149 private static boolean registrationInProgress = false;
150

151

152 //// Implementation ////
153

154 //
155 // MessageQueue -- a queue of messages (along with the id of the sender).
156 // Such a queue is kept by an agent and represents the messages that has been
157 // sent to this agent.
158 //
159 private static class MessageQueue
160 {
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161 private static class Node {
162 final byte[] message;
163 final int sender_id;
164 final Node next;
165 Node(byte[] message, int sender_id, Node next) {
166 this.message = message;
167 this.sender_id = sender_id;
168 this.next = next;
169 }
170 }
171 private Node first = null;
172

173 void add(byte[] message, int sender_id) {
174 first = new Node(message, sender_id, first);
175 }
176

177 AuthenticatedMessage get(int index) {
178 if (index<0) return null;
179 Node node = first;
180 for( int i=0; i<index && node!=null; ++i )
181 node = node.next;
182 return (node != null
183 ? new AuthenticatedMessage(MessageTools.copyOf(node.message), node.sender_id)
184 : null);
185 }
186 }
187

188 //
189 // AgentsQueue -- a collection of registered agents.
190 //
191 private static class AgentsQueue
192 {
193 private static class Node {
194 final AgentProxy agent;
195 final Node next;
196 Node(AgentProxy agent, Node next) {
197 this.agent = agent;
198 this.next = next;
199 }
200 }
201 private Node first = null;
202

203 public void add(AgentProxy agent) {
204 first = new Node(agent, first);
205 }
206

207 AgentProxy fetch(int id) {
208 for( Node node = first; node != null; node = node.next )
209 if( id == node.agent.ID )
210 return node.agent;
211 return null;
212 }
213 }
214

215 // static list of registered agents:
216 private static AgentsQueue registeredAgents = new AgentsQueue();
217 }
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Package utils.*

Class MessageTools

1 package de.uni.trier.infsec.utils;
2

3 public class MessageTools {
4

5 public static byte[] copyOf(byte[] message) {
6 if (message==null) return null;
7 byte[] copy = new byte[message.length];
8 for (int i = 0; i < message.length; i++) {
9 copy[i] = message[i];

10 }
11 return copy;
12 }
13

14 public static byte[] concatenate(byte[] m1, byte[] m2) {
15 // we allocate 4 additional bytes for the length of m1
16 byte[] out = new byte[m1.length + m2.length + 4];
17 byte[] len = intToByteArray(m1.length);
18

19 // copy all bytes to the output array
20 int j = 0;
21 for( int i=0; i<len.length; ++i ) out[j++] = len[i]; // the length of m1
22 for( int i=0; i<m1.length; ++i ) out[j++] = m1[i]; // m1
23 for( int i=0; i<m2.length; ++i ) out[j++] = m2[i]; // m2
24

25 return out;
26 }
27

28 public static final byte[] intToByteArray(int value) {
29 return new byte[] {
30 (byte)(value >>> 24),
31 (byte)(value >>> 16),
32 (byte)(value >>> 8),
33 (byte)value};
34 }
35 }

Package environment.*

Class NetworkServer

1 package de.uni.trier.infsec.environment.network;
2

3 import de.uni.trier.infsec.environment.Environment;
4

5 public class NetworkServer {
6

7 public static void listenForRequests(int port) throws NetworkError {
8 // input
9 Environment.untrustedOutput(0x2400);

10 Environment.untrustedOutput(port);
11 // output
12 if ( Environment.untrustedInput()==0 ) throw new NetworkError();
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13 }
14

15 public static byte[] nextRequest(int port) throws NetworkError {
16 // input
17 Environment.untrustedOutput(0x2401);
18 Environment.untrustedOutput(port);
19 // output
20 if ( Environment.untrustedInput()==0 ) throw new NetworkError();
21 return Environment.untrustedInputMessage();
22 }
23

24 public static void response(byte[] message) throws NetworkError {
25 // input
26 Environment.untrustedOutput(0x2402);
27 Environment.untrustedOutputMessage(message);
28 // output
29 if ( Environment.untrustedInput()==0 ) throw new NetworkError();
30 }
31

32 public static byte[] read(int port) throws NetworkError {
33 // input
34 Environment.untrustedOutput(0x2403);
35 Environment.untrustedOutput(port);
36 // output
37 if ( Environment.untrustedInput()==0 ) throw new NetworkError();
38 return Environment.untrustedInputMessage();
39 }
40 }

Class NetworkClient

1 package de.uni.trier.infsec.environment.network;
2

3 import de.uni.trier.infsec.environment.Environment;
4

5 public class NetworkClient {
6

7 public static void send(byte[] message, String server, int port) throws
8 NetworkError {
9 // input

10 Environment.untrustedOutput(0x2301);
11 Environment.untrustedOutputMessage(message);
12 Environment.untrustedOutputString(server);
13 Environment.untrustedOutput(port);
14 // output
15 if ( Environment.untrustedInput()==0 ) throw new NetworkError();
16 }
17

18 public static byte[] sendRequest(byte[] message, String server, int port)
19 throws NetworkError {
20 // input
21 Environment.untrustedOutput(0x2302);
22 Environment.untrustedOutputMessage(message);
23 Environment.untrustedOutputString(server);
24 Environment.untrustedOutput(port);
25 // output
26 if ( Environment.untrustedInput()==0 ) throw new NetworkError();
27 return Environment.untrustedInputMessage();
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28 }
29 }

Class AMTEnv

1 package de.uni.trier.infsec.environment.amt;
2

3 import de.uni.trier.infsec.environment.Environment;
4

5 public class AMTEnv {
6 public static void register(int id) {
7 Environment.untrustedOutput(7801);
8 Environment.untrustedOutput(id);
9 }

10

11 public static boolean channelTo(int sender_id, int recipient_id, String server,
12 int port) {
13 Environment.untrustedOutput(7802);
14 Environment.untrustedOutput(sender_id);
15 Environment.untrustedOutput(recipient_id);
16 Environment.untrustedOutputString(server);
17 Environment.untrustedOutput(port);
18 return Environment.untrustedInput()==0;
19 }
20

21 public static byte[] send(byte[] message, int sender_id, int recipient_id,
22 String server, int port) {
23 Environment.untrustedOutput(7803);
24 Environment.untrustedOutputMessage(message);
25 Environment.untrustedOutput(sender_id);
26 Environment.untrustedOutput(recipient_id);
27 Environment.untrustedOutputString(server);
28 Environment.untrustedOutput(port);
29 return Environment.untrustedInputMessage();
30 }
31

32 public static int getMessage(int id, int port) {
33 Environment.untrustedOutput(7804);
34 Environment.untrustedOutput(id);
35 Environment.untrustedOutput(port);
36 return Environment.untrustedInput();
37 }
38 }

Class SMTEnv

1 package de.uni.trier.infsec.environment.smt;
2

3

4 import de.uni.trier.infsec.environment.Environment;
5

6

7 public class SMTEnv {
8

9 public static void register(int id) {
10 Environment.untrustedOutput(7801);
11 Environment.untrustedOutput(id);
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12 }
13

14 public static boolean channelTo(int sender_id, int recipient_id, String server,
15 int port) {
16 Environment.untrustedOutput(7802);
17 Environment.untrustedOutput(sender_id);
18 Environment.untrustedOutput(recipient_id);
19 Environment.untrustedOutputString(server);
20 Environment.untrustedOutput(port);
21 return Environment.untrustedInput()==0;
22 }
23

24 public static byte[] send(int message_length, int sender_id, int recipient_id,
25 String server, int port) {
26 Environment.untrustedOutput(7803);
27 Environment.untrustedOutput(message_length);
28 Environment.untrustedOutput(sender_id);
29 Environment.untrustedOutput(recipient_id);
30 Environment.untrustedOutputString(server);
31 Environment.untrustedOutput(port);
32 return Environment.untrustedInputMessage();
33 }
34

35 public static int getMessage(int id, int port) {
36 Environment.untrustedOutput(7804);
37 Environment.untrustedOutput(id);
38 Environment.untrustedOutput(port);
39 return Environment.untrustedInput();
40 }
41 }

Class Environment

1 package de.uni.trier.infsec.environment;
2

3 class Node {
4 int value;
5 Node next;
6 Node(int v, Node n) {
7 value = v; next = n;
8 }
9 }

10

11 public class Environment {
12

13 private static boolean result; // the LOW variable
14

15 private static Node list = null;
16 private static boolean listInitialized = false;
17

18 private static Node initialValue() {
19 // Unknown specification of the following form:
20 // return new Node(U1, new Node(U2, ...));
21 // where U1, U2, ...Un are constant integers.
22 return new Node(1, new Node(7,null)); // just an example
23 }
24

25 public static int untrustedInput() {
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26 if (!listInitialized) {
27 list = initialValue();
28 listInitialized = true;
29 }
30 if (list==null) return 0;
31 int tmp = list.value;
32 list = list.next;
33 return tmp;
34 }
35

36 public static void untrustedOutput(int x) {
37 if (untrustedInput()==0) {
38 result = (x==untrustedInput());
39 throw new Error(); // abort
40 }
41 }
42

43 public static byte[] untrustedInputMessage() {
44 int len = untrustedInput();
45 if (len<0) return null;
46 byte[] returnval = new byte[len];
47 for (int i = 0; i < len; i++) {
48 returnval[i] = (byte) Environment.untrustedInput();
49 }
50 return returnval;
51 }
52

53 public static void untrustedOutputMessage(byte[] t) {
54 untrustedOutput(t.length);
55 for (int i = 0; i < t.length; i++) {
56 untrustedOutput(t[i]);
57 }
58 }
59

60 public static void untrustedOutputString(String s) {
61 untrustedOutput(s.length());
62 for (int i = 0; i < s.length(); i++) {
63 untrustedOutput((int)s.charAt(i));
64 }
65 }
66 }

Package protocols.*

Class BulletinBoard

1 package de.uni.trier.infsec.protocols.smt_voting;
2

3 import de.uni.trier.infsec.functionalities.amt.ideal.AMT;
4 import de.uni.trier.infsec.functionalities.amt.ideal.AMT.AMTError;
5 import de.uni.trier.infsec.utils.MessageTools;
6

7 /*
8 * Bulletin board on which the server can post messages (the result) and
9 * everybody can retrieve the posted messages.

10 */
11 public class BulletinBoard {
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12

13 public BulletinBoard(AMT.AgentProxy proxy) {
14 content = new MessageList();
15 amt_proxy = proxy;
16 }
17

18 /*
19 * Reads a message, checks if it comes from the server, and, if this is the
20 * case, adds it to the maintained list of messages.
21 */
22 public void onPost() throws AMTError {
23 AMT.AuthenticatedMessage am =
24 amt_proxy.getMessage(Parameters.DEFAULT_LISTEN_PORT_BBOARD_AMT);
25 if (am == null) return;
26 if (am.sender_id != Identifiers.SERVER_ID) return;
27

28 byte[] message = am.message;
29 content.add(message);
30 }
31

32 /*
33 * Sends its content (that is the concatenation of all the message in the maintained
34 * list of messages) over the network.
35 */
36 public byte[] onRequestContent() {
37 byte[] contentMessage = {};
38 for( MessageList.Node node = content.first; node!=null; node = node.next ) {
39 contentMessage = MessageTools.concatenate(contentMessage, node.message);
40 }
41 return contentMessage;
42 }
43

44 /// implementation ///
45

46 class MessageList {
47 class Node {
48 byte[] message;
49 Node next;
50 Node(byte[] message, Node next) { this.message = message; this.next = next; }
51 }
52

53 Node first = null;
54

55 void add(byte[] message) {
56 first = new Node(message, first);
57 }
58 }
59

60 private MessageList content;
61 private AMT.AgentProxy amt_proxy;
62 }

Class HonestVotersSetup

1 package de.uni.trier.infsec.protocols.smt_voting;
2

3 import de.uni.trier.infsec.environment.network.NetworkError;
4 import de.uni.trier.infsec.environment.Environment;
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5 import de.uni.trier.infsec.functionalities.pki.ideal.PKIError;
6 import de.uni.trier.infsec.functionalities.smt.ideal.SMT;
7 import de.uni.trier.infsec.functionalities.smt.ideal.SMT.SMTError;
8 import de.uni.trier.infsec.functionalities.amt.ideal.AMT;
9 import de.uni.trier.infsec.functionalities.amt.ideal.AMT.AMTError;

10

11

12 /*
13 * A setup for a server and (multiple) honest clients using secure authenticated
14 * channel (secure, authenticated message transmission functionality) to send their
15 * choices to the server.
16 *
17 * The adversary determines two variants of voters’choices, one of which is picked,
18 * based on the value of the secret bit. During the voting process the adversary
19 * determines actions to be taken.
20 */
21 public class HonestVotersSetup {
22

23 static class Adversary {
24 public final SMT.Channel channel_to_server;
25 public final AMT.Channel channel_to_BB;
26

27 public Adversary() throws SMTError, PKIError, NetworkError, AMTError {
28 SMT.AgentProxy adversary_samt_proxy = SMT.register(Identifiers.ADVERSARY_ID);
29 channel_to_server = adversary_samt_proxy.channelTo(Identifiers.SERVER_ID,
30 "www.server.com", 89);
31 AMT.AgentProxy adversary_amt_proxy = AMT.register(Identifiers.ADVERSARY_ID);
32 channel_to_BB = adversary_amt_proxy.channelTo(Identifiers.BULLETIN_BOARD_ID,
33 "www.bulletinboard.com", 89);
34 }
35 }
36

37 /*
38 * Objects representing a result of the e-voting process. For now, two candidates
39 * only.
40 */
41 static class Result {
42 public int votesForA = 0;
43 public int votesForB = 0;
44 }
45

46 /*
47 * Class with static fields to store the correct result computed from the votes
48 * actually used by the voters. This class plays the role of the class M from the
49 * hybrid approach, as described in the paper.
50 */
51 static class CorrectResult {
52 static public int votesForA = 0;
53 static public int votesForB = 0;
54 }
55

56

57 static private boolean secret; // SECRET INPUT
58

59 static private Voter[] voters;
60 static private Server server;
61 static private BulletinBoard BB;
62

63
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64 /**
65 * Compute the correct result from a vector of voters’ choices
66 */
67 private static Result result(byte[] choices) {
68 Result result = new Result();
69 for( int i=0; i<choices.length; ++i ) {
70 int candidate = choices[i];
71 if (candidate==0) result.votesForA++;
72 if (candidate==1) result.votesForB++;
73 // all the remaining values as considered as invalid
74 }
75 return result;
76 }
77

78 /**
79 * Check whether two results are the same.
80 */
81 private static boolean sameResults(Result res1, Result res2 ) {
82 return res1.votesForA==res2.votesForA && res1.votesForB==res2.votesForB;
83 }
84

85

86 /**
87 * Computes the correct result, as determined by the vectors voters’ choices given
88 * as parameters, checks if these two vectors yield the same result. If not, false
89 * is returned. Otherwise, voters are registered and created.
90 */
91 private static boolean select_voters_choices_and_create_voters(byte[] voterChoices1,
92 byte[] voterChoices2) throws SMTError, PKIError, NetworkError {
93 // we check whether voterChoices1 and voterChoices2 yield the same
94 // results:
95 boolean status = computeCorrectResult(voterChoices1, voterChoices2);
96 if (!status) return false;
97

98 // now, one of the vectors of voters’ choices given by the adversary is chosen
99 // to be used by the voters, depending on the value of the secret bit:

100 byte[] voterChoices = chooseVoterChoices(voterChoices1, voterChoices2);
101

102 // Register and create the voters
103 registerAndCreateVoters(voterChoices);
104

105 return true;
106 }
107

108 /**
109 * Checks whether voterChoices1 and voterChoices2 yield the same results
110 */
111 private static boolean computeCorrectResult(byte[] voterChoices1,
112 byte[] voterChoices2) {
113 Result result1 = result(voterChoices1);
114 Result result2 = result(voterChoices2);
115 if( !sameResults(result1,result2) ) return false;
116 CorrectResult.votesForA = result1.votesForA; // hybrid approach extension
117 CorrectResult.votesForB = result1.votesForB; // hybrid approach extension
118 return true;
119 }
120

121 /**
122 * One of the vectors of voters’ choices given by the adversary is chosen
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123 * to be used by the voters, depending on the value of the secret bit:
124 */
125 private static byte[] chooseVoterChoices(byte[] voterChoices1, byte[] voterChoices2) {
126 byte[] voterChoices = new byte[Server.NumberOfVoters];
127 for (int i=0; i<Server.NumberOfVoters; ++i) {
128 final byte data1 = voterChoices1[i];
129 final byte data2 = voterChoices2[i];
130 voterChoices[i] = (secret ? data1 : data2);
131 }
132 return voterChoices;
133 }
134

135 /**
136 * Register and create the voters.
137 */
138 private static void registerAndCreateVoters(byte[] voterChoices) throws SMTError,
139 PKIError, NetworkError {
140 voters = new Voter[Server.NumberOfVoters];
141 for( int i=0; i<Server.NumberOfVoters; ++i ) {
142 SMT.AgentProxy voter_proxy = SMT.register(i);
143 voters[i] = new Voter(voterChoices[i], voter_proxy);
144 }
145 }
146

147 /**
148 * Register and create the server.
149 */
150 private static void create_server() throws SMTError, PKIError, AMTError,
151 NetworkError {
152 SMT.AgentProxy server_samt_proxy = SMT.register(Identifiers.SERVER_ID);
153 AMT.AgentProxy server_amt_proxy = AMT.register(Identifiers.SERVER_ID);
154 server = new Server(server_samt_proxy, server_amt_proxy);
155 }
156

157 /**
158 * Register and create the bulletin board.
159 */
160 private static void create_bulletin_board() throws AMTError, PKIError {
161 // Register and create the bulletin board:
162 AMT.AgentProxy BB_proxy = AMT.register(Identifiers.BULLETIN_BOARD_ID);
163 BB = new BulletinBoard(BB_proxy);
164 }
165

166 private static void onVote() throws SMTError {
167 int voter_id = Environment.untrustedInput();
168 if (voter_id>=0 && voter_id<Server.NumberOfVoters) {
169 voters[voter_id].onSendBallot();
170 }
171 }
172

173 /**
174 * Run the main loop of the setup.
175 *
176 * First, the adversary registers his SAMT and AMT functionalities. Then, in a loop,
177 * the adversary decides which actions are taken.
178 */
179 private static void run() throws SMTError, PKIError, NetworkError, AMTError {
180 Adversary adversary = new Adversary();
181 // Main loop -- the adversary decides how many times it runs and what to do in
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182 // each step:
183 while( Environment.untrustedInput() != 0 ) {
184 byte[] message;
185 int decision = Environment.untrustedInput();
186 switch (decision) {
187 case 0: // a voter (determined by the adversary) votes according to voterChoices
188 onVote();
189 break;
190

191 case 1: // server reads a message (possibly a ballot) from a secure channel
192 server.onCollectBallot();
193 break;
194

195 case 2: // server sends the result of the election (if ready) over the network
196 try {
197 server.onSendResult("", 1);
198 }
199 catch (NetworkError err) {}
200 break;
201

202 case 3: // server posts the result (if ready) on the bulletin board
203 server.onPostResult();
204 break;
205

206 case 4: // the bulletin board reads a message:
207 BB.onPost();
208 break;
209

210 case 5: // the bulletin board sends its content (over the network):
211 byte[] content = BB.onRequestContent();
212 Environment.untrustedOutputMessage(content);
213 break;
214

215 case 6: // the adversary sends a message using its channel to the server
216 message = Environment.untrustedInputMessage();
217 adversary.channel_to_server.send(message);
218 break;
219

220 case 7: // the adversary sends a message using its channel to the bulletin board
221 message = Environment.untrustedInputMessage();
222 adversary.channel_to_BB.send(message);
223 break;
224 }
225 }
226 }
227

228 public static void main(String[] args) throws SMTError, PKIError, NetworkError,
229 AMTError {
230 // the adversary determines two possible ways the voters vote:
231 byte[] voterChoices1 = new byte[Server.NumberOfVoters];
232 byte[] voterChoices2 = new byte[Server.NumberOfVoters];
233 for( int i=0; i<Server.NumberOfVoters; ++i ) {
234 voterChoices1[i] = (byte)Environment.untrustedInput();
235 voterChoices2[i] = (byte)Environment.untrustedInput();
236 }
237

238 boolean status =
239 select_voters_choices_and_create_voters(voterChoices1, voterChoices2);
240 if (!status) return;
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241 create_server();
242 create_bulletin_board();
243 run();
244 }
245 }

Class Identifiers

1 package de.uni.trier.infsec.protocols.smt_voting;
2

3 /*
4 * Agent identifiers.
5 */
6 public class Identifiers {
7 static final int SERVER_ID = -1;
8 static final int BULLETIN_BOARD_ID = -2;
9 static final int ADVERSARY_ID = -3;

10 // eligible voters get the identifiers in the range 0..Server.NumberOfVoters
11 }

Class Parameters

1 package de.uni.trier.infsec.protocols.smt_voting;
2

3 public class Parameters {
4 // Listen port for Voter requests
5 static final int DEFAULT_LISTEN_PORT_SERVER_AMT = 4088;
6 // Listen port for Voter requests
7 static final int DEFAULT_LISTEN_PORT_SERVER_SMT = 4089;
8

9 // Listen port for Server requests
10 static final int DEFAULT_LISTEN_PORT_BBOARD_AMT = 4090;
11 // Listen port for Server requests
12 static final int DEFAULT_LISTEN_PORT_BBOARD_SMT = 4091;
13 // Listen port for result requests
14 static final int DEFAULT_LISTEN_PORT_BBOARD_REQUEST = 4092;
15

16 static final String DEFAULT_HOST_SERVER = "localhost";
17 static final String DEFAULT_HOST_BBOARD = "localhost";
18 }

Class Server

1 package de.uni.trier.infsec.protocols.smt_voting;
2

3 import de.uni.trier.infsec.environment.network.NetworkClient;
4 import de.uni.trier.infsec.environment.network.NetworkError;
5 import de.uni.trier.infsec.functionalities.pki.ideal.PKIError;
6 import de.uni.trier.infsec.functionalities.smt.ideal.SMT;
7 import de.uni.trier.infsec.functionalities.smt.ideal.SMT.SMTError;
8 import de.uni.trier.infsec.functionalities.amt.ideal.AMT;
9 import de.uni.trier.infsec.functionalities.amt.ideal.AMT.AMTError;

10

11 /*
12 * The server of TrivVoting. Collects votes send to it directly (via method call).
13 *
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14 * Two-candidates case only (for now).
15 */
16 public class Server {
17

18 public static final int NumberOfVoters = 50;
19 // ballotCast[i]==true iff the i-th voter has already cast her ballot
20 private final boolean[] ballotCast;
21 private int votesForA;
22 private int votesForB;
23 private final SMT.AgentProxy samt_proxy;
24 private final AMT.Channel channel_to_BB;
25

26 public Server(SMT.AgentProxy samt_proxy, AMT.AgentProxy amt_proxy) throws AMTError,
27 PKIError, NetworkError {
28 votesForA = 0;
29 votesForB = 0;
30 this.samt_proxy = samt_proxy;
31 channel_to_BB = amt_proxy.channelTo(Identifiers.BULLETIN_BOARD_ID,
32 Parameters.DEFAULT_HOST_BBOARD, Parameters.DEFAULT_LISTEN_PORT_BBOARD_AMT);
33 // initially no voter has cast her ballot
34 ballotCast = new boolean[NumberOfVoters];
35 }
36

37 /*
38 * Collect one ballot (read from a secure channel)
39 */
40 public void onCollectBallot() throws SMTError {
41 SMT.AuthenticatedMessage am =
42 samt_proxy.getMessage(Parameters.DEFAULT_LISTEN_PORT_SERVER_SMT);
43 if (am==null) return;
44 int voterID = am.sender_id;
45 byte[] ballot = am.message;
46

47 if( voterID<0 || voterID>=NumberOfVoters ) return; // invalid voter ID
48 if( ballotCast[voterID] ) return; // the voter has already voted
49 ballotCast[voterID] = true;
50 if( ballot==null || ballot.length!=1 ) return; // malformed ballot
51 int candidate = ballot[0];
52 if (candidate==0) ++votesForA;
53 if (candidate==1) ++votesForB;
54 // all the remaining values are consider invalid
55 }
56

57 /*
58 * Returns true if the result is ready, that is if all the eligible voters have
59 * already voted.
60 */
61 public boolean resultReady() {
62 for( int i=0; i<NumberOfVoters; ++i ) {
63 if( !ballotCast[i] )
64 return false;
65 }
66 return true;
67 }
68

69 /*
70 * Send the result (if ready) of the election over the network.
71 */
72 public void onSendResult(String addr, int port) throws NetworkError {
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73 byte[] result = getResult();
74 if (result != null)
75 NetworkClient.send(result, addr, port);
76 }
77

78 /*
79 * Post the result (if ready) on the bulletin board.
80 */
81 public void onPostResult() throws AMTError {
82 byte[] result = getResult();
83 if (result != null)
84 channel_to_BB.send(result);
85 }
86

87 private byte[] getResult() {
88 // the result is only returned when all the voters have voted
89 if (!resultReady()) return null;
90

91 // PROVE THAT
92 // votesForA == HonestVotersSetup.CorrectResult.votesForA
93 // votesForB == HonestVotersSetup.CorrectResult.votesForB
94 // (this shows that the extension is conservative)
95 votesForA = HonestVotersSetup.CorrectResult.votesForA; // hybrid approach extension
96 votesForB = HonestVotersSetup.CorrectResult.votesForB; // hybrid approach extension
97

98 return formatResult(votesForA, votesForB);
99 }

100

101 /*
102 * Format the result of the election.
103 */
104 private static byte[] formatResult(int a, int b) {
105 String s = "Result of the election:";
106 s += "  Number of voters = " + NumberOfVoters + "\n";
107 s += "  Number of votes for candidate 1 =" + a + "\n";
108 s += "  Number of votes for candidate 2 =" + b + "\n";
109 return s.getBytes();
110 }
111 }

Class Voter

1 package de.uni.trier.infsec.protocols.smt_voting;
2

3 import de.uni.trier.infsec.environment.network.NetworkError;
4 import de.uni.trier.infsec.functionalities.pki.ideal.PKIError;
5 import de.uni.trier.infsec.functionalities.smt.ideal.SMT;
6 import de.uni.trier.infsec.functionalities.smt.ideal.SMT.SMTError;
7

8 /*
9 * Voter client for TrivVoting.

10 */
11 public class Voter {
12 private final byte vote;
13 private final SMT.Channel channel_to_server;
14

15 public Voter(byte vote, SMT.AgentProxy voter_proxy) throws SMTError, PKIError,
16 NetworkError {
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17 this.vote = vote;
18 // create secure channel to the server
19 this.channel_to_server = voter_proxy.channelTo(Identifiers.SERVER_ID,
20 Parameters.DEFAULT_HOST_SERVER, Parameters.DEFAULT_LISTEN_PORT_SERVER_SMT);
21 }
22

23 /*
24 * Prepare the ballot containing the vote and send it using the secure channel to
25 * the server.
26 */
27 public void onSendBallot() throws SMTError {
28 byte [] ballot = new byte[] {vote};
29 channel_to_server.send(ballot);
30 }
31 }
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