
Speeding up context-, object- and field-sensitive SDG generation

Jürgen Graf
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
graf@kit.edu

Abstract—System dependence graphs (SDGs) are an es-
tablished tool for precise interprocedural program analysis.
We present new techniques for the efficient generation of
SDGs for full Java, which are context-, field- and object-
sensitive. We show that previous approaches to the generation
of interprocedural dependencies for Java do not scale, as they
interfere with the points-to analysis. Our new algorithm is
based on the WALA framework and reduces time and memory
consumption up to 90%, while maintaining precision.

I. INTRODUCTION

System dependence graphs (SDG) have been developed
over the last 20 years and became a standard device to
model structures and dependencies in a program. They are
the basis for multiple applications in program analysis,
such as slicing [8], [10], debugging [13], testing [1] and
model-checking [5]. SDGs and precise slicing are used in
a flow-sensitive, object-sensitive and field-sensitive informa-
tion flow analysis for full Java Bytecode [4].

The precision of SDGs is crucial to the overall precision of
those applications. Many algorithms have been proposed to
improve precision of the SDG for object oriented languages
[3], [9], [10], [12]. Despite these efforts, the computation of
precise dependence graphs is still challenging for programs
exceeding a certain size. This work evaluates the scalability
of state-of-the-art precise SDG creation for object oriented
languages [3]. These precise SDGs introduce additional
method parameters to achieve context and field-sensitivity.
Liang and Harrold [10] as well as Hammer [3] suggested
using trees to model objects passed as parameters, where a
node represents an object and its children represent its fields.
We show that these object trees cause severe performance
problems, because their size is inversely proportional to the
precision (and thus to the runtime) of the points-to analysis:
An imprecise points-to analysis leads to huge object trees,
declining the performance of SDG generation. In order to get
the object tree sizes under control, one has to employ precise
points-to analyses, which do not scale for larger programs.

The main contributions of this paper are:

1) Object graphs - an extension of object trees - that
improve space and runtime of SDG generation for less
precise points-to information by merging duplicate
information in subtrees into a single representation.

2) An optimization of the interprocedural propagation for

object graphs that replaces the mutually recursive al-
gorithm of object trees with 3 non-alternating phases.

3) An evaluation that shows how the combination of
parameter passing model and points-to analysis influ-
ences runtime and precision of SDG generation.

Our SDG creation tool is based on the program analysis
framework WALA1 and supports three parameter models -
object trees, object graphs and the approach included in
the framework. We evaluated dependence graph creation
under various options in a benchmark consisting of 20 small
(100LoC) to medium (60kLoC) sized programs. Four dif-
ferent points-to analyses provide various levels of precision
for the initial parameter information. The results show that
object graphs are the best choice for imprecise points-to
analyses. In general points-to precision in most cases has
a moderate influence on the overall precision2 (around 4%,
but up to 24%) of the dependence graph while it greatly
influences the runtime.

Section II, III and IV contain the description of the
new parameter passing model and the approach included
in WALA. The evaluation of its influence on scalability and
precision of the SDG generation are in Section V and VI.
Section VII, VIII and IX conclude with a brief summary, an
outlook on future improvements and references to related
work.

II. SYSTEM DEPENDENCE GRAPHS

A system dependence graph G = (N ,E) for program
p is a directed graph, where the nodes in N represent p’s
statements and predicates, and the edges in E represent
dependences between them [6]. The SDG is partitioned
into procedure dependence graphs (PDG) that model single
procedures. In a PDG, a node n is control dependent on
node m, if m’s evaluation controls the execution of n (e.g.
m guards a conditional structure). n is data dependent on
m, if n may use a value computed at m. The PDGs are
connected at call sites, consisting of a call node c that is
connected with the entry node e of the called procedure
through a call edge c →c e. Parameter passing and result
returning, as well as side effects of the called procedure,

1IBM. T.J. Watson Libraries for Analysis (http://wala.sf.net/).
2The precision is measured through the average size of a slice in the

SDG.

http://wala.sf.net/

are modeled via synthetic parameter nodes and edges. For
every passed parameter there exists an actual-in node ai

and a formal-in node fi that are connected via a parameter-
in edge ai →pi fi. For every modified parameter and
returned value there exists an actual-out node ao and a
formal-out node fo that are connected via a parameter-
out edge fo →po ao. Formal-in and formal-out nodes are
control dependent on entry node e, actual-in and actual-out
nodes are control dependent on call node c. The parameter
passing model guarantees that all interprocedural effects
of a procedure are propagated via call sites. This well-
formedness enables computation of summary information of
interprocedural effects: So-called summary edges between
actual-in and actual-out nodes of one call site represent
transitive flow from a parameter to a return value in the
called procedure.

SDGs permit to analyze program properties via graph
traversal. Moreover, they are purpose-built for context-
sensitive analyses, which distinguish different invocations of
the same procedure.

A. SDGs for object-oriented languages

Our work focuses on the generation of SDGs for object-
oriented languages. Challenges arising from object-oriented
languages are object- and field-sensitivity, exceptions, dy-
namic dispatch and objects as parameters. These features
lead to statically undecidable problems that are commonly
approximated with the help of a points-to analysis. A points-
to analysis statically analyzes a program’s heap manipula-
tions and determines to which objects a given reference3

may point to at runtime. Based on this analysis one can
derive related properties, like may-aliasing, i.e. whether two
references may refer to the same object. One usage of
points-to information is to resolve dynamic dispatch. Once
it is known to which objects a reference may point to at
runtime, one can determine the possible target methods of
a dynamic dispatch. Points-to information is also used to
achieve object- and field-sensitivity: It is possible to model
two objects of the same type separately in the SDG if they
are not may-aliasing.

Another application of points-to information is the precise
computation of method side-effects. It is used to determine
which object fields may be read or modified during method
execution and to create the synthetic parameter nodes for
these fields in the SDG. The computation of these synthetic
nodes has a big influence on the scalability of the SDG
generation, which is investigated in the subsequent section.

III. IMPROVING SCALABILITY

SDGs are built through an intraprocedural phase that
covers local control and data dependencies for each method
in isolation and an interprocedural phase that combines the

3We use the term ‘reference’ for both references and pointers.

intraprocedural results and models their effects on the global
state of the program. The interprocedural phase consists
roughly of three steps: (1) computation of additional parame-
ter nodes arising from method side-effects, (2) computation
of data dependencies for these new parameter nodes, and
(3) summary edge computation [6], [11]. Steps (2) and (3)
depend on the results of step (1), because they have to
consider the additional nodes during their computation.

Our evaluation revealed that the intraprocedural phase has
no scalability issues, whereas the interprocedural phase is the
main reason for long runtime and huge memory consump-
tion. The first step of the interprocedural phase seems to
be crucial, because its results are used in the subsequent
two steps. Employing the object tree parameter passing
model, the SDG computation with a faster and less precise
point-to analysis often leads to greater memory consumption
and a longer overall runtime. We determined the way how
additional parameters are computed to be responsible. In
general a less precise points-to information resulted in a
larger number of additionally created parameters and this
slowed down the subsequent data dependency and summary
edge computations. A closer look at the computation of those
additional parameters will explain the observed behavior.

A. Parameters as object trees

Object trees are used as an object- and field-sensitive
representation for all object fields a method may read or
modify. A method holds an object tree for each parameter:
The parameter itself corresponds to the root node of its
object tree, while the child nodes match the accessed fields
of the parameter object. The computation is initialized with
a single root node for each parameter and subsequently adds
new child nodes through a fixed point computation that
consists of two mutually iterating steps: Step 1 examines
each instruction in the current method and adds new child
nodes to the current trees that match the accessed fields. Step
2 propagates the effects of method calls interprocedural. As
step 2 may add new nodes to the object trees that leads to
new nodes in step 1, both steps are repeated until a fixed
point is reached.

1) Unfolding recursive data structures: A problem of
this approach is that recursive data structures can lead to
trees of infinite depth. Figure 1 shows an example, where
a node contains a reference to a successor node. The size
of the resulting list of nodes is in general statically not
determinable, but an object tree has to be limited somehow.
Liang and Harrold [10] proposed to k-limit the tree depth
with an arbitrary number k. This approach prevents an
infinite expansion, but may sacrifice soundness. Hammer [3]
introduced a unfolding criterion that limits the size of object
trees and maintains soundness without the loss of precision.
It uses points-to information to decide how far an object
tree is allowed to expand. The unfolding criterion works as
follows: One only adds a child c to the tree, if no other node

1 class Node {
2 Node next;
3

4 static void append(Node node, int len) {
5 node.next = new Node();
6 node = node.next;
7 for (int i = 1; i < len; i++) {
8 node.next = new Node();
9 node = node.next;

10 }
11 }
12 }

Figure 1. Example for object trees with potential infinite depth.

n on the path from the root node to the would-be parent node
of c has the same points-to set as c.

In our example in Figure 1 any fairly precise points-
to analysis is able to distinguish between the node object
created in line 5 and the one created in line 8. Depending
on the value of parameter len, line 8 is executed multiple
times and thus may create more than one new object. The
points-to analysis is not able to distinguish them, because
the number of loop iterations is in general not decidable
for a static analysis. Only the nodes created by the first
statement can be distinguished from nodes created by the
second statement. So the unfolding criterion limits the depth
of the object tree for parameter node to two children. The
right side of Figure 1 displays how the object tree for node
looks like using the k-limiting from Liang and Harrold and
the points-to limited unfolding criterion from Hammer.

2) Problem with imprecise points-to information: Object
trees grow whenever two fields are may-aliasing. Thus a less
precise points-to analysis leads to bigger object trees. This
prevents usage of object trees in SDGs for large programs,
as they tend to contain more may-aliasing fields: First,
even the most precise points-to analysis has to approximate
certain undecidable situations leading to may-aliases. Sec-
ond, precise points-to analyses do not scale for arbitrary
programs. Despite many improvements on the scalability
of precise points-to analyses over the last years, they still
remain expensive. So certain situations demand a less precise
points-to analysis.

The upcoming example explains the computation of object
trees and shows why imprecise points-to information leads to
bigger object trees. We compare two SDGs for the program
in Figure 2, one with precise points-to information and
the other with less precise information. In this example,
method indirectMod takes two arguments x and y. The
statement in line 9 indirectly modifies a field value of
parameter x through a call to method modify and the
statement in line 10 returns a field value of parameter y.
Both statements seem to be independent from each other, but
that is not the case if x and y or their fields refer to the same
object. We assume that a precise points-to analysis is able

to distinguish the two objects passed to indirectMod in
line 14 and their a-fields. The less precise points-to analysis
distinguishes the two parameters, but not their a-fields (i.e.
they are deemed to be may-aliasing).

The SDG on the left side in Figure 3 was built with
the precise points-to information4. Without may-aliasing of
the a-fields, the call to method modify affects only field
x.a.i. Inside modify, line 6 needs to read field b.a at
first to get the location of the a base object, before the
field i can be written. So there are two input parameters:
Object tree root node 20 for parameter b and child node
21 for the field a of parameter b. The output parameter
nodes do not only consist of nodes for each modified field,
they also contain nodes for all fields that have been read
to access the base object of the modified field. These nodes
represent the access path. The access path of node 24 thus is
22→23→24. The actual-in and -out nodes 15-19 at the call
site of modify match the formal parameter nodes of the
called method. Since x is passed to modify as parameter
b, all fields of b are connected with the matching fields
of x at the call site. The formal-in and -out nodes 6, 7
and 12-14 of indirectMod capture these side-effects on
x and propagate them further to the main method. Using
the precise points-to information it can be detected that the
return statement in node 3 is independent from parameter x
and only reads field a.i of the second parameter y. The
formal-in nodes 8-10 correspond to this field accesses and
formal-out node 11 represents the return value.

Less precise points-to analysis cannot distinguish between
the a-fields and thus cannot determine exactly which field
is accessed by the statements in line 6 and 10. So the
SDG on the right side in Figure 3 takes both possibilities
into account to yield a conservative approximation of the
program behavior. The nodes that may refer to the same
object are shaded gray and the new parameter nodes that
had to be added as well as the additional dependencies are
drawn with a thicker line. This SDG has four additional
parameter nodes: One new formal-in node 25 and three

4For space reasons, the depicted SDGs exclude main.

1 class B {
2 A a = new A();
3 }
4

5 static void modify(B b) {
6 b.a.i = 42;
7 }

8 static int indirectMod(B x, B y) {
9 modify(x);

10 return y.a.i;
11 }
12

13 public static void main(String argv[]) {
14 indirectMod(new B(), new B());
15 }

Figure 2. Example for interprocedural parameter computation.

Figure 3. SDGs with object tree parameters for the program in Figure 2. Control dependencies are drawn with a dashed line and data dependencies use
a solid line. The SDG on the left side was built with a more precise points-to information than the one on the right.

formal-out nodes 26-28. Node 25 captures the possibility
that the return statement in node 3 may read the value
of x.a.i, when y.a and x.a refer to the same object.
The call to modify modifies the value of x.a.i, so the
value of y.a.i may have been changed too. The formal-out
nodes 26-28 model this new possibility. In this tiny example,
the imprecise points-to information has led to 4 additional
parameter nodes; our evaluation reveals that this effect is
much worse for larger programs.

B. Parameters as object graphs

Object graphs are an extension of object trees. They also
use the method parameters as root nodes and add child nodes
for accessed fields. Their main difference is that parameter
node subtrees are shared between nodes, when they cannot
be distinguished by the points-to analysis.

An object graph node n is identified through a set of
parent nodes, an object field and the points-to set of the field:
n := (parents, field, pts). An object tree node n′ instead
has only a single parent node together with an object field
and its points-to set: n′ = (parent, field, pts). Multiple
object tree nodes are mapped to a single object graph node

as follows.

n1, n2 ∈ Tree :

n1.parent.pts may-alias n2.parent.pts ∧ n1.field = n2.field

=⇒
∃=1n ∈ Graph : n.field = n1.field ∧ ∃p1, p2 ∈ n.parents :

p1.field = n1.parent.field ∧ p1.pts = n1.parent.pts ∧
p2.field = n2.parent.field ∧ p2.pts = n2.parent.pts

In the example from the right side of Figure 3 the nodes
7 and 9 as well as 13 and 27 are may-aliasing. Their child
nodes 10, 25 and 14, 28 are merged into a single node for
each pair. Figure 4 shows the corresponding object graph
for the example with less precise points-to information5.

Tree sharing does not affect the precision of the SDG,
because nodes are only shared when they cannot be dis-
tinguished through the points-to information and thus have
the same incoming and outgoing dependencies. It removes
the scalability conflict between the points-to analysis and

5The object graph SDG with precise points-to information is not different
from the SDG with the object tree parameter on the left side of Figure 3.

Figure 4. SDG with object graph parameters for the program in Figure 2.

the parameter computation of the object tree model. A less
precise points-to analysis leads to more shared subtrees
and a lesser number of nodes. The structural difference
to object tree parameters is smaller for precise points-to
analyses, where lesser may-aliases occur. The number of
new parameter nodes from the object graph approach is
nevertheless always smaller or equal to the number of nodes
from the object tree approach.

C. Object graph optimizations

The shared subtrees help to decrease the number of
nodes in case of imprecise points-to information, but the
computation of object graphs suffers from another problem:
It is slowed down by a fixed point solution that mutually
iterates between intraprocedural and interprocedural phases.
Thus our version of the object graph algorithm includes
further improvements aside from tree sharing. The mutual
dependencies between these phases can be removed with two
modifications to the object graph model: (1) Each node is
allowed to have multiple child nodes that refer to the same
field. This modification breaks the property that an object
graph always has a less or equal number of nodes then the
corresponding object tree. However in practice this is only
the case for very precise points-to information. (2) New
nodes are created without checking for a matching parent
node. So the graph may contain unreachable nodes with no
existing access path.

These modifications enable us to split the computation
of object graphs into 3 non-alternating phases: (1) Build
intraprocedural nodes for each field access operation in the
current method, (2) propagate the accessed fields interproce-
dural from callee to caller, (3) refine computed parameters
by removing unreachable nodes with no access path.

1) Intraprocedural field accesses: The unoptimized ob-
ject graph version inspects each field access and adds a sin-
gle child node to all nodes that qualify as parent. Whenever
a child node for the accessed field already exists, the existing
node merges the points-to information of the new one. So
existing nodes may change during the computation. We
circumvent this behavior and create immutable parameter
node candidates. A candidate contains the points-to set of
the base object, the name and type of the field as well as
the points-to set of the field itself: (ptsbase, field, ptsfield).

The program in Figure 2 contains 4 field accesses. Two in
line 10 and two in line 6. The statement in line 6 of method
modify reads the object where field b.a is pointing to
and then modifies its field i. This leads to two parameter
candidates6 - one for the read access c1 and one for the
modification c2: c1 = (pts(b), B.a, pts(b.a))ref and
c2 = (pts(b.a), A.i, pts(b.a.i))mod. Line 10 of method
indirectMod contains two subsequent read accesses. It
reads the object in field y.a and then it reads the field
i of this object. They result in two parameter candidates:
c3 = (pts(y), B.a, pts(y.a))ref and c4 = (pts(y.a), A.i,
pts(y.a.i))mod.

The points-to sets help to build the object graph structure
from these candidates. For example c2 may be accessed
through c1 and thus c2 is a child node of c1, because the
points-to set of the field of c1 is the same as the points-to set
of the base object of c2: pts(b.a). The unfolding criterion
is met automatically, as the candidates are identified through
points-to information and thus two candidates with the same
points-to sets referring to the same field cannot exist.

2) Interprocedural propagation: The interprocedural step
computes the effects of method invocations: The candidates
of each method are propagated along each call site from
callee to caller. This step does not introduce new or change
exiting candidates. So their number is constant and a fast
data flow analysis with bit vectors suffices for the prop-
agation7. In the program from Fig. 2, all candidates of
method modify are propagated to method indirectMod,
as indirectMod calls modify. The previous intraproce-
dural step created candidates c1 and c2 for method modify
and c3 and c4 for indirectMod. After the propagation
method indirectMod contains all four candidates: c1, c2,
c3 and c4.

At the end of the propagation each method holds a set
of parameter node candidates. A formal-in parameter is
created for each candidate of a read access and a formal-out
parameter for each candidate of a write access. Additional
formal-out nodes arise from candidates of read accesses that
may be used to reach a modified field. The candidates c1,
c3 and c4 from our example lead to the formal-in nodes
7, 8 and 9 of Fig. 4. Formal-out node 14 stems from the

6We refer to the points-to set of a variable or field with pts(name),
where name is the name of the field or variable.

7See our technical report 2009-14 for further details.

candidate c2 and nodes 13 and 27 have been added for c1

and c3 as they can be used to reach the modified field8.
Finally we connect all parameter nodes and build the

object graph structure. Node a is connected to node b if the
type of a contains a field with the name and type of b and
if the field points-to set of a is not disjunct from the points-
to set of the base object of b. The resulting object graph
structure can then be exploited for further refinements.

3) Refinement with access paths: The object graphs are
already usable after the interprocedural propagation, but
their precision can be improved. They may contain nodes
referring to field accesses that will never be visible outside
the scope of the method they belong to. These nodes can
be found by searching through their predecessors in order
to find a path to a node of the root set. The value of a
field node can only be reached from outside the method, if
an access path from a root node to the field node exists.
Otherwise the effects of the field access cannot escape the
current method and can be removed from the object graph.
In the example from Fig. 4 every node has at least one
access path to the method parameter x, y or b. So no nodes
are removed. This is very rarely the case in practice: Most
methods contain unreachable nodes that cannot escape the
scope of the method.

Our evaluation shows that those non-escaping nodes of-
ten introduce additional dependencies and therefore have a
negative effect on the overall precision of the SDG. They
should always be removed as far as the precision of the
points-to analysis allows. Nevertheless, this step is optional
and the object graph still remains a correct and conservative
approximation without the refinement phase.

IV. OTHER APPROACHES TO INTERPROCEDURAL DATA
DEPENDENCIES

Another way to compute additional parameter nodes for
data dependencies through fields is to create a parameter
for each distinguishable memory location. This approach
is used by the SDG generator that comes with the WALA
framework. Its main advantages are that its implementation
is straight forward and the computation scales quite well in
theory. But it does have some drawbacks when it comes to
precision and the number of additional parameters. While
the additional parameters can be computed very fast, their
number can become large and present a struggle for the
successive phases of the interprocedural SDG computation,
especially the summary edge computation. This approach
uses an interprocedural mod-ref analysis to to detect a set
of abstract location equivalence classes that may have been
read or modified. The elements of this set then are used as

8c3 only results in a new formal-out node for the less precise points-
to information. The less precise information cannot distinguish pts(x.a)
from pts(y.a) and as x is passed to modify as parameter b we also
know that pts(x.a) = pts(b.a). So b.a may refer to the same location
as field y.a and thus c2 may be reached through c3.

additional parameters. The number of distinguishable loca-
tion equivalence classes is directly related to the precision
of the underlying points-to analysis and thus a more precise
points-to analysis leads to a larger number of additional
parameter nodes. There is also no further refinement of these
additional parameters that removes unreachable nodes, like
access paths in the object tree and graph approach.

V. ANALYSIS FRAMEWORK

We implemented our precise SDG computation on top of
the publicly available WALA program analysis framework.
WALA uses an intermediate representation in static single
assignment (SSA) form that is very close to actual Java
Bytecode. It includes its own SDG implementation and
comes with multiple points-to analyses. It supports explicit
and implicit exception flow, which helps us to maintain
a sound approximation of the program. We incorporated
WALAs call graph and points-to analysis as well as its
intermediate representation into our implementation. We
choose not to extend its SDG and instead built our own
implementation with a focus on an exchangeable parame-
ter model9. Nevertheless we integrated WALAs parameter
passing scheme into our SDG generator and evaluated the
differences to the our solutions.

Another popular program analysis framework for Java is
SOOT [14]. SOOT uses also an intermediate representation
in SSA-form and comes with control flow, call graph and
points-to analyses. But it does not have its own SDG im-
plementation and -to our best knowledge- does not support
implicit exception flow. Thus we chose to use WALA.

Our tool supports a total of four different points-to anal-
yses. From least to most precise they can be characterized
as follows: A (1) context insensitive type based analysis that
disambiguates objects according to declared types, a (2) con-
text insensitive instance based analysis that disambiguates
objects according to instantiation sites, a (3) context in-
sensitive instance based analysis with context-sensitivity for
Container classes that allows unlimited context-sensitivity
for methods of objects implementing the Java Collection
interface and finally an (4) object-sensitive instance based
analysis that includes object-sensitivity for all instantiation
sites.

VI. EXPERIMENTS

We evaluated the performance and precision of SDG
creation10 on 20 Java programs with up to 4 different points-
to analyses (Section V) and three different parameter passing
models: The WALA approach using a single parameter
per abstract heap location (Section IV), the object tree

9A rewrite of the SDG generator also enables us to include other features,
like thread interference detection, into our existing tools more easily.

10We executed all tests on a computer with an AMD Opteron(tm) 8220
processors and 32GB of RAM running Ubuntu Linux 7.10 with Java 6
64-bit.

JC CorporateCard Purse Wallet Safe
LoC 485 5.066 124 577
WALA
(1) 7.757 (63.36%) 44.022 (83.42%) 9.795 (66.07%) 7.488 (63.36%)
(2) 9.080 (61.89%) 163.700 (83.45%) 10.292 (64.82%) 9.247 (61.88%)
(4) 19.541 (59.68%) 193.427 (86.30%) 26.368 (63.29%) 20.558 (59.68%)
Tree
(1) 8.463 (68.01%) 154.467 (77.74%) 9.870 (71.30%) 8.683 (66.92%)
(2) 8.311 (66.10%) 100.711 (76.63%) 10.595 (68.94%) 9.136 (66.10%)
(4) 20.115 (66.23%) 108.976 (76.55%) 22.178 (69.24%) 17.167 (66.18%)
Graph
(1) 7.105 (51.78%) 32.247 (72.22%) 9.332 (55.63%) 6.046 (51.78%)
(2) 5.913 (50.63%) 45.835 (71.89%) 8.579 (54.81%) 6.078 (50.63%)
(4) 18.454 (48.58%) 197.225 (71.62%) 26.222 (52.10%) 21.702 (48.58%)

Table I
RUNTIME AND PRECISION STATISTICS FOR THE JAVACARD EXAMPLES.

J2ME Barcode J2MESafe KeePassJ2ME
LoC 3.462 2.237 4.984
Graph
(1) 106.380 (63.13%) 160.751 (57.92%) 685.791 (66.13%)
(2) 127.610 (51.79%) 200.733 (56.66%) 953.890 (64.24%)

Table II
RUNTIME AND PRECISION STATISTICS FOR THE J2ME EXAMPLES.

(Section III-A) and the optimized version of the object graph
(Section III-B) model. All programs were analyzed including
the library methods they used. Native methods were conser-
vatively approximated through hand written method stubs.
The parts included from the runtime library tend to be big
and have an enormous impact on the runtime of the analysis.
But when left out, the result of the analysis is no longer a
conservative approximation.

The example programs vary in program size as well as
in the size of the runtime library they use: 4 programs
(Corporate Card, Purse, Wallet and Safe) are written for
the small JavaCard11 library with about 500LoC. Another
3 programs (Barcode, J2MESafe and KeePassJ2ME) use
the J2ME library12 with about 30kLoC. The remaining 13
programs (Battleship, HSQLDB and the 11 examples of
the JavaGrande suite13) use the Java 1.4 library with about
100kLoC.

We canceled the computation when the memory usage
exceeded 30GB or the runtime was longer than 2 days.
The JavaCard programs as well as the small Battleship
program could be analyzed with all available options. They
are used to compare the effects of the different parameter
models and points-to analyses. All J2ME programs and
the big HSQLDB program could only be analyzed with
the object graph model and the two least precise points-
to analyses: We could not apply a more precise points-to
analysis because the points-to computation itself was too
costly. Other parameter models did not compute with the less

11JavaCard is built for applications that run on smart cards and other
devices with very limited memory and processing capabilities.

12J2ME is a Java environment for mobile phones
13EPCC University of Edinburgh. The Java Grande benchmarking suite

(http://www.epcc.ed.ac.uk/research/activities/java-grande/).

JRE 1.4 Battleship JavaGrande(11) HSQLDB
LoC 330 4.556 63.304
WALA
(1) 11.863 (68.90%) 534.353 (65.93%) -
(2) 32.321 (68.90%) - -
(3) 43.877 (68.76%) - -
(4) 81.780 (68.90%) - -
Tree
(1) 7.619 (49.97%) 32.112.000 (61.70%) -
(2) 7.420 (43.56%) 3.294.000 (38.72%) -
(3) 9.180 (42.81%) 3.183.000 (38.10%) -
(4) 12.154 (42.48%) - -
Graph
(1) 8.835 (43.35%) 497.000 (46.28%) 3.808.000 (71.17%)
(2) 6.738 (43.08%) 1.871.000 (37.23%) 12.204.000 (68.70%)
(3) 8.209 (42.93%) 1.803.000 (36.78%) -
(4) 15.704 (40.60%) - -

Table III
RUNTIME AND PRECISION STATISTICS FOR THE JRE 1.4 EXAMPLES.

precise points-to analyses: The parameter computation of the
object tree model consumed too much time and memory and
the WALA approach created too many additional parameter
nodes for the subsequent summary edge computation. This
shows that object graphs scale better then object trees and the
WALA approach. The results of the JavaGrande programs
also support this statement. They could be analyzed with the
object tree and object graph model and all points-to analyses
except the most precise one. However the WALA approach
only finished in time with the least precise points-to analysis.

A. Runtime

Tables I, II and III show the analysis runtime including
summary edges in milliseconds for each evaluated program.
In general we observe huge differences in the runtime for
the same program under varying options. The object graph
and WALA parameter model are fast for imprecise points-to
information and slow down when the information gets more
precise, while the object graph is faster in most cases. Only
in case of the most precise points-to analysis both perform
almost equal. Object trees show the opposite behavior: They
are slow on imprecise points-to information and speed up
when precision increases. This effect is most visible on
the larger programs like Purse and the 11 programs of the
JavaGrande suite where many may-aliases slow down the
computation. This effect is still present but less visible for
the smaller programs. There the runtime of the phases pre-
ceding object tree computation, like call graph and points-to
computation, dominates the result.

Object graphs are the clear winner in combination with
the less precise points-to analyses (1), (2) and (3). They lead
to the fastest SDG computation with a margin that increases
with program size and decreasing points-to precision. For
small programs like CorporateCard object graphs are about
5% to 15% faster than trees. The speedup increases for
larger programs to about 50% and up to 98% in case of
the JavaGrande programs with the least precise points-to

http://www.epcc.ed.ac.uk/research/activities/java-grande/

0

1,75

3,50

5,25

7,00

Read-Write interferences

Number of threadinterferences per method

Type based Instance based Context for Container

0

5

10

15

20

Read-Write

Number of threadinterferences per method

Type based Instance based Context for Container
Hatcliff Type Hatcliff Escape Hatcliff Entity

0%

10%

20%

30%

40%

50%

60%

70%

Tree Graph Tree (ignoring Exc.) Graph (ignoring Exc.)

Effect of exceptional control flow on slicing precision

Type based Instance based Context for Container

0%

10%

20%

30%

40%

50%

60%

70%

Wala Tree Graph (no refine) Graph

Slicing precision of JavaGrande examples ignoring exceptions

Type based Instance based Context for Container

0%

16%

32%

48%

64%

80%

Graph

Slicing precision of HSQLDB und J2ME

Type based Instance based

0%

10%

20%

30%

40%

50%

Tree Graph (no refine) Graph

Slicing precision of Battleship

Type based Instance based
Context for Container Object sensitive

0%

10%

20%

30%

40%

50%

60%

70%

80%

Tree Graph

Slicing precision of JavaCard examples

Type based Instance based
Context for Container Object sensitive
Joana

0

375

750

1125

1500

Class-based Instance-based Context for Container Object-sensitive

Average executiontime in seconds

Tree Graph

0%

10%

20%

30%

40%

50%

60%

70%

Wala Tree Graph (no refine) Graph

Slicing precision with and without optional refinement (JavaGrande)

Type based Instance based Context for Container

0

7.500

15.000

22.500

30.000

Wala Tree Graph

Runtime of summary edge computation

Type based Instance based
Context for container Object sensitive

0

12.500

25.000

37.500

50.000

Wala Tree Graph

Runtime of SDG computation

Type based Instance based
Context for container Object sensitive

0

17.500

35.000

52.500

70.000

Wala Tree Graph

Runtime of SDG computation with summary edges

Type based Instance based
Context for container Object sensitive

0!%

10!%

20!%

30!%

40!%

50!%

60!%

70!%

80!%

Wala Tree Graph

Average size of program slices

Type based Instance based
Context for container Object sensitive

0

17.500

35.000

52.500

70.000

Runtime of SDG computation in milliseconds

SDG with parameters
Summary edge

WALA Object graphObject tree

 1 2 3 4 1 2 3 4 1 2 3 4

Points-to Analysis:

1 Type based

2 Instance based

3 Context for container

4 Object sensitive

Computation phase:

0

17.500

35.000

52.500

70.000

1 2 4 1 2 4 1 2 4

Runtime of SDG computation in ms (JavaCard)

SDG with parameters
Summary edge

Points-to Analysis:

1 Type based

2 Instance based

4 Object sensitive

Computation phase:

WALA Tree Graph

Figure 5. Average execution time of the SDG computation including
summary edges for all JavaCard examples in milliseconds.

analysis (1). This trend continues to the point at which the
object tree and WALA approaches take too much time and
space to even finish the analysis. So object graphs allow us
to analyze programs of a size that has not been possible
before.

But object graphs do not perform quite as good with the
most precise points-to analysis (4). This effect stems from
the optimizations of the interprocedural propagation phase.
In order to remove dependencies between intra- and interpro-
cedural propagation we allow the optimized graph to contain
multiple nodes for a single object field when their points-
to sets differ. Object trees merge those nodes into a single
parameter. This behavior harms precision a bit and results
in mutual dependencies between inter- and intraprocedural
propagation. But it leads to less parameters in case of a
precise points-to analysis and thus a faster runtime. Object
graphs may also use the unoptimized propagation phase to
improve their runtime for very precise points-to analyses,
but this would harm their advantage on larger programs and
less precise points-to information. It is however possible to
do so and should be considered whenever a very precise
points-to analysis is applied.

The runtime of the parameter computation has a huge
impact on the total runtime of the SDG computation, but also
the structure of its result influences the successive phases:
Especially the summary edge computation. Therefore we
measured the runtime of the SDG computation separated
from the runtime of the summary edge computation for
the JavaCard examples to see the effect of the parameter
model. Fig. 5 displays these results and explicitly depicts
the summary edge computation time. The chart is split into
3 sections, one section for each parameter passing model.
Each section shows 3 bars, and each bar denotes the result

under a particular points-to analysis14. The fastest parameter
model does not always lead to the fastest overall SDG
computation, because the structure of its result can slow
down the subsequent phases. One example for this behavior
are the object tree SDGs of the JavaCard programs. The
computation of the parameter nodes takes almost the same
time for the type based (1) as for the instance based (2)
points-to analysis. But due to the larger number of nodes
the summary edge computation for the type based points-to
analysis takes about twice as long.

B. Precision

This section focuses on the effect of the analysis options
on the precision of the resulting SDG. We measure SDG pre-
cision by counting the average number of nodes contained
in a context-sensitive program slice. The more precise the
dependency graph is, the less nodes are contained in average
in a slice. So a low average is desirable. We compute a slice
for each node that corresponds to a program statement and
display the precision as percentage of the average number
of nodes in the slice compared to the total number of nodes.
We ignore nodes that do not correspond to a statement,
like parameter nodes, because their number depends on the
parameter model and points-to precision. The results for
each program are displayed in Table I, II and III. We also
show that exception-sensitivity influences precision quite a
bit.

1) Impact of parameter passing and points-to infor-
mation: The impact of parameter passing and points-to
information varies between the evaluated programs. The
differences between the parameter models are often bigger
than between the points-to analyses. We explain this effect
through the differences in the refinement of field accesses
that are not visible outside the scope of a method. The
WALA model does not detect these field accesses at all,
while the object tree model detects them implicitly during
tree creation, and the object graph model runs a separate
phase (Section III-C2). The importance of the refinement is
especially visible at the JavaGrande examples. The chart in
Fig. 6 contains four sections: One for the WALA parameter
model, one for the object tree model and two for the object
graph model. The two object graph sections show the effect
of the optional refinement. The precision of the object
graph SDGs without refinement changes only slightly for
a more precise points-to analysis. The object graph SDGs
with refinement benefit more from an increased points-to
precision.

In case of the JavaCard programs the points-to analysis
has little effect on the precision. However a gain of up
to 4% from the imprecise type based to the more precise
object sensitive points-to analysis is still visible. As the

14The points-to analysis no. (3) is omitted, because it contains optimiza-
tions for container classes, that are not used in the JavaCard library. Thus
its results are the same as for no. (2).

0

1,75

3,50

5,25

7,00

Read-Write interferences

Number of threadinterferences per method

Type based Instance based Context for Container

0

5

10

15

20

Read-Write

Number of threadinterferences per method

Type based Instance based Context for Container
Hatcliff Type Hatcliff Escape Hatcliff Entity

0%

10%

20%

30%

40%

50%

60%

70%

Tree Graph Tree (ignoring Exc.) Graph (ignoring Exc.)

Effect of exceptional control flow on slicing precision

Type based Instance based Context for Container

0%

10%

20%

30%

40%

50%

60%

70%

Wala Tree Graph (no refine) Graph

Slicing precision of JavaGrande examples ignoring exceptions

Type based Instance based Context for Container

0%

16%

32%

48%

64%

80%

Graph

Slicing precision of HSQLDB und J2ME

Type based Instance based

0%

10%

20%

30%

40%

50%

Tree Graph (no refine) Graph

Slicing precision of Battleship

Type based Instance based
Context for Container Object sensitive

0%

10%

20%

30%

40%

50%

60%

70%

80%

Tree Graph

Slicing precision of JavaCard examples

Type based Instance based
Context for Container Object sensitive
Joana

0

375

750

1125

1500

Class-based Instance-based Context for Container Object-sensitive

Average executiontime in seconds

Tree Graph

0%

10%

20%

30%

40%

50%

60%

70%

Wala Tree Graph (no refine) Graph

Slicing precision with and without optional refinement (JavaGrande)

Type based Instance based Context for Container

0

7.500

15.000

22.500

30.000

Wala Tree Graph

Runtime of summary edge computation

Type based Instance based
Context for container Object sensitive

0

12.500

25.000

37.500

50.000

Wala Tree Graph

Runtime of SDG computation

Type based Instance based
Context for container Object sensitive

0

17.500

35.000

52.500

70.000

Wala Tree Graph

Runtime of SDG computation with summary edges

Type based Instance based
Context for container Object sensitive

0!%

10!%

20!%

30!%

40!%

50!%

60!%

70!%

80!%

Wala Tree Graph

Average size of program slices

Type based Instance based
Context for container Object sensitive

0

17.500

35.000

52.500

70.000

Runtime of SDG computation in milliseconds

SDG with parameters
Summary edge

WALA Object graphObject tree

 1 2 3 4 1 2 3 4 1 2 3 4

Points-to Analysis:

1 Type based

2 Instance based

3 Context for container

4 Object sensitive

Computation phase:

0

17.500

35.000

52.500

70.000

1 2 4 1 2 4 1 2 4

Runtime of SDG computation in ms (JavaCard)

SDG with parameters
Summary edge

Points-to Analysis:

1 Type based

2 Instance based

4 Object sensitive

Computation phase:

Figure 6. Average size of program slices of the examples from the
JavaGrande benchmark suite.

JavaCard programs are thought to run on tiny smart cards
with only limited resources, they save memory and create
new objects very rarely. With only few objects, the precision
of the points-to analysis has no huge effect. The optional
refinement of the object graph model has only little effect
for the same reason.

The influence of the points-to analysis precision varies for
the 3 JavaME programs. While J2MESafe and KeePassJ2ME
only gain about 2% between the type and instance based
analysis, Barcode gains over 11%. This shows that the
expected gain in precision is hard to foresee and depends
on program properties that have yet to be uncovered.

The largest program is HSQLDB. Its precision gained
about 2% between type and instance based points-to anal-
ysis, while the runtime of the SDG creation increased by
factor of 3.

Why does a more precise points-to analysis not always
have a bigger effect on the overall precision of a SDG? In
case of the JavaGrande examples the step from type based
to instance based points-to analysis did have an effect, but
only when we removed unreachable parameters with the
refinement phase. We explain this effect with the nature
of the programs in the JavaGrande benchmark suite. Those
programs compute mathematical problems. The computation
mostly takes place inside a particular method that creates
instances of helper classes to support the computation. The
references to those helper classes are not reachable outside
the methods scope, and our analysis is able to detect this.
The HSQLDB and J2ME examples however do not mainly
run method local computations. They have a more global
structure were data is passed and modified through larger
parts of the program, so the effect of more precise points-to
analyses and the refinement with access paths is smaller.

2) Impact of exceptional data and control flow: While
the effect of the different points-to analyses has been smaller
than expected, the influence of control flow and data flow

0

1,75

3,50

5,25

7,00

Read-Write interferences

Number of threadinterferences per method

Type based Instance based Context for Container

0

5

10

15

20

Read-Write

Number of threadinterferences per method

Type based Instance based Context for Container
Hatcliff Type Hatcliff Escape Hatcliff Entity

0%

10%

20%

30%

40%

50%

60%

70%

Tree Graph Tree (ignoring Exc.) Graph (ignoring Exc.)

Effect of exceptional control flow on slicing precision

Type based Instance based Context for Container

0%

10%

20%

30%

40%

50%

60%

70%

Wala Tree Graph (no refine) Graph

Slicing precision of JavaGrande examples ignoring exceptions

Type based Instance based Context for Container

0%

16%

32%

48%

64%

80%

Graph

Slicing precision of HSQLDB und J2ME

Type based Instance based

0%

10%

20%

30%

40%

50%

Tree Graph (no refine) Graph

Slicing precision of Battleship

Type based Instance based
Context for Container Object sensitive

0%

10%

20%

30%

40%

50%

60%

70%

80%

Tree Graph

Slicing precision of JavaCard examples

Type based Instance based
Context for Container Object sensitive
Joana

0

375

750

1125

1500

Class-based Instance-based Context for Container Object-sensitive

Average executiontime in seconds

Tree Graph

0%

10%

20%

30%

40%

50%

60%

70%

Wala Tree Graph (no refine) Graph

Slicing precision with and without optional refinement (JavaGrande)

Type based Instance based Context for Container

0

7.500

15.000

22.500

30.000

Wala Tree Graph

Runtime of summary edge computation

Type based Instance based
Context for container Object sensitive

0

12.500

25.000

37.500

50.000

Wala Tree Graph

Runtime of SDG computation

Type based Instance based
Context for container Object sensitive

0

17.500

35.000

52.500

70.000

Wala Tree Graph

Runtime of SDG computation with summary edges

Type based Instance based
Context for container Object sensitive

0!%

10!%

20!%

30!%

40!%

50!%

60!%

70!%

80!%

Wala Tree Graph

Average size of program slices

Type based Instance based
Context for container Object sensitive

0

17.500

35.000

52.500

70.000

Runtime of SDG computation in milliseconds

SDG with parameters
Summary edge

WALA Object graphObject tree

 1 2 3 4 1 2 3 4 1 2 3 4

Points-to Analysis:

1 Type based

2 Instance based

3 Context for container

4 Object sensitive

Computation phase:

0

17.500

35.000

52.500

70.000

1 2 4 1 2 4 1 2 4

Runtime of SDG computation in ms (JavaCard)

SDG with parameters
Summary edge

Points-to Analysis:

1 Type based

2 Instance based

4 Object sensitive

Computation phase:

Figure 7. Average size of program slices of JavaCard, JavaGrande and
Battleship examples with and without considering the effects of exceptions.

through exceptions is by far greater. Our SDGs safely
approximate the effect of exceptions on the behavior of
the program. Currently we assume for any statement that
theoretically could raise an exception that it may do so, even
if this is very rarely the case in practice. We compare the pre-
cision of SDGs from the same program with and without the
effects of exceptions. Fig. 7 shows the combined results of
the JavaCard, JavaGrande and Battleship examples. The left
two sections show the SDG precision including exceptions
and the two sections on the right show the precision without
control and data flow through exceptions. The average size
of the program slices is almost decreased to half of their
original size. This effect seems to be independent from the
chosen parameter model or points-to analysis. We expect a
more precise analysis of the effects of exceptions -detecting
impossible exception flow- to be very beneficial for the
overall precision of the SDG.

VII. DISCUSSION

We have shown that the parameter passing model influ-
ences the precision and has a huge impact on the scalability
of SDGs. The object graph model handles imprecise points-
to information far better than the object tree model and it
does not suffer as much from more precise information as
the WALA approach. In general the optimized object graph
approach delivered the best tradeoff between scalability and
precision, but these optimizations should be turned off when
a very precise points-to analysis is used.

The precision gained through more precise points-to anal-
yses has been smaller than expected in most cases and varied
depending on the nature and size of the program. We assume
that the programs we analyzed with a more precise points-
to analysis were too small and used too few objects to
benefit from the precise information. We expect a significant
gain through context-sensitive points-to analyses for bigger
programs. Whaley and Lam showed that context-sensitive

points-to analysis is possible for larger programs [15], but
then the current bottleneck remains the creation of the
additional parameter nodes and the subsequent summary
edge computation.

However the effects of additional control and data flow
through exceptions are very visible, as the average number
of nodes in the program slices almost doubled, when they
where not ignored. Of course an analysis ignoring those
effects is no longer sound, but this observation supports the
conclusion that the current treatment of exceptions pollutes
the precision of the overall result and should be investigated
further.

VIII. RELATED WORK

To our knowledge only the Indus slicer [7] is -besides
ours- fully implemented and can handle full Java byte
code. Indus is customizable, embedded into Eclipse, and
has a very nice GUI, but is less precise than our slicer
e.g. in terms of interprocedural data dependences of object
fields. It also computes a SDG to capture interprocedural
dependencies, but it does not use parameter passing to model
context-sensitive dependencies through fields. It propagates
an alternative approach to data dependence computation:
They essentially add data dependence between all defini-
tion statements to all matching use statements of a given
field and ignore method boundaries for that purpose. Note
that data dependences that cross method boundaries violate
a precondition for two-phase slicing, for context-sensitive
slicing in such a model one needs extra context recovery at
method boundaries each time a slice is computed. Like all
implementations based on SOOT [14], they do not include
all possible control flow based on implicit exceptions, which
may lead to unsound results.

Binkley, Harman and Krinke did an extensive evaluation
of various optimization techniques for massive slicing [2].
Their work is focused on improving an already existing SDG
to achieve a more precise and faster computation of program
slices, rather then optimizing the generation of SDGs itself.
They also did not investigate the unique features of SDGs
for object oriented languages.

IX. CONCLUSION

Today, slicing is established as an important tool for
program analyses. So it is important to improve its scal-
ability for object oriented languages. This work takes a
large step towards improved scalability of precise slicing by
introducing object graphs that allow the creation of precise
SDGs for large programs. We expect that the improved
scalability will broaden the scope of SDG-based information
flow control, and help to establish security analysis which
is based on the true semantics of programs.

REFERENCES

[1] Samuel Bates and Susan Horwitz. Incremental program
testing using program dependence graphs. In POPL ’93,
pages 384–396, New York, NY, USA, 1993. ACM.

[2] David Binkley, Mark Harman, and Jens Krinke. Empirical
study of optimization techniques for massive slicing. ACM
Trans. Program. Lang. Syst., 30(1):3, 2007.

[3] Christian Hammer and Gregor Snelting. An improved slicer
for java. In PASTE ’04, pages 17–22, New York, NY, USA,
2004. ACM.

[4] Christian Hammer and Gregor Snelting. Flow-sensitive,
context-sensitive, and object-sensitive information flow con-
trol based on program dependence graphs. International
Journal of Information Security, 8(6):399–422, December
2009.

[5] John Hatcliff, James Corbett, Matthew Dwyer, Stefan
Sokolowski, and Hongjun Zheng. A formal study of slicing
for multi-threaded programs with jvm concurrency primitives.
In SAS’99, pages 1–18, 1999.

[6] Susan Horwitz, Thomas Reps, and David Binkley. Interproce-
dural slicing using dependence graphs. ACM Trans. Program.
Lang. Syst., 12(1):26–60, 1990.

[7] Ganeshan Jayaraman, Venkatesh Prasad Ranganath, and John
Hatcliff. Kaveri: Delivering the indus java program slicer to
eclipse. In In FASE, pages 269–272. Springer-Verlag, 2005.

[8] Jens Krinke. Advanced Slicing of Sequential and Concurrent
Programs. publikation, Universität Passau, April 2003.

[9] Loren Larsen and Mary Jean Harrold. Slicing object-oriented
software. In ICSE ’96, pages 495–505, Washington, DC,
USA, 1996. IEEE Computer Society.

[10] Donglin Liang and Mary Jean Harrold. Slicing objects using
system dependence graphs. In ICSM, pages 358–367, 1998.

[11] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve
Rosay. Speeding up slicing. SIGSOFT Softw. Eng. Notes,
19(5):11–20, 1994.

[12] Neil Walkinshaw Marc Roper. The java system dependence
graph. In SCAM ’03, pages 5–5, 2003.

[13] Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. Thin
slicing. In Jeanne Ferrante and Kathryn S. McKinley, editors,
PLDI, pages 112–122. ACM, 2007.

[14] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick
Lam, Etienne Gagnon, and Phong Co. Soot - a java opti-
mization framework. In Proceedings of CASCON 1999, pages
125–135, 1999.

[15] John Whaley and Monica S. Lam. Cloning-based context-
sensitive pointer alias analysis using binary decision dia-
grams. In PLDI ’04, pages 131–144, New York, NY, USA,
2004. ACM.

