
Noname manuscript No.
(will be inserted by the editor)

Dennis Giffhorn · Gregor Snelting

A New Algorithm for Low-Deterministic Security

the date of receipt and acceptance should be inserted later

Abstract We present a new algorithm for checking prob-
abilistic noninterference in concurrent programs. The al-
gorithm, named RLSOD, is based on the Low-Security
Observational Determinism criterion. It utilizes program
dependence graphs for concurrent programs, and is flow-
sensitive, context-sensitive, object-sensitive, and option-
ally time-sensitive. Due to a new definition of low-equiva-
lency for infinite traces, the algorithm avoids restrictions
or soundness leaks of previous approaches. A soundness
proof is provided. Flow-sensitivity turns out to be the
key to precision, and avoids prohibition of useful non-
determinism. The algorithm has been implemented for
full Java bytecode with unlimited threads. Precision and
scalability have been experimentally validated.

Keywords software security, noninterference, program
dependence graph, information flow control

1 Introduction

Information flow control discovers software security leaks
by analysing the source or machine code. Information
flow control for multi-threaded programs is challenging,
as it must prevent possibilistic or probabilistic informa-
tion leaks. Both types of leaks depend on the interleaving
of concurrent threads on a processor: possibilistic leaks
may or may not occur depending on a specific interleav-
ing, while probabilistic leaks exploit the probability dis-
tribution of interleaving orders. Figure 1 presents an ex-

This work was partially supported by DFG grants Sn11/9-2
and Sn11/12-1 in the scope of the priority program “Reliably
Secure Software Systems”. It is based on [8] with additional
contributions by the second author. A preliminary version
was published as an unreviewed technical report [10].

Dennis Giffhorn
Karlsruhe Institute of Technology, Germany
E-mail: giffhorn@ipd.info.uni-karlsruhe.de

Gregor Snelting
Karlsruhe Institute of Technology, Germany
E-mail: gregor.snelting@kit.edu

1 void main () :
2 x = inputPIN () ;
3 i f (x < 1234)
4 pr in t (0) ;
5 y = x ;
6 pr in t (y) ;

1 void thread_1 () :
2 x = input () ;
3 pr in t (x) ;
4
5 void thread_2 () :
6 y = inputPIN () ;
7 x = y ;

1 void thread_1 () :
2 x = 0 ;
3 pr in t (x) ;
4
5 void thread_2 () :
6 y = inputPIN () ;
7 while (y != 0)
8 y−−;
9 x = 1 ;

Fig. 1 Examples for explicit and implicit leaks (top left),
for a possibilistic leak (bottom left), and for a probabilistic
leak (right).

ample: the bottom left program has a possibilistic leak,
e.g., for interleaving order 2, 6, 7, 3, which causes the se-
cret PIN to be printed on public output. The program to
the right has no possibilistic channel leaking PIN infor-
mation, because the printed value of x is always 0 or 1.
But the PIN’s value may alter the probabilities of these
outputs, because the running time of the loop may influ-
ence the interleaving order of the two assignments to x.
Thus a secret value changes the probability of a public
output – a probabilistic leak.

Information flow control (IFC) aims at discovering
all such security leaks. Most IFC approaches check some
form of noninterference [40], and to this end classify pro-
gram variables, input and output as high (secret) or low
(public). Probabilistic Noninterference [44,42,41,43,30]
is the established security criterion for concurrent pro-
grams. It is difficult to guarantee probabilistic noninter-
ference, as an IFC must in principle check all possible in-
terleavings and their impact on execution probabilities.
This is why some analysis algorithms for probabilistic
noninterfererence put severe restrictions on program or
scheduler behaviour.

One specific form of probabilistic noninterference (PN),
however, is scheduler-independent: Low-Security Obser-
vational Determinism demands that for a program which

2 Dennis Giffhorn, Gregor Snelting

runs on two low-equivalent inputs, all possible traces
are low-equivalent [39,53,21]. Traces log all operations
(events) and memory states for a given run and inter-
leaving; low-equivalent inputs coincide on low input val-
ues, and low-equivalent traces coincide on operations us-
ing low variables. Thus low-security observational de-
terminism (LSOD) in fact demands that execution or-
der conflicts between low events are disallowed, if they
may be influenced by high events. The following criterion
is sufficient to guarantee LSOD [53]: 1. program parts
contributing to low-observable behaviour are conflict-
free, that is, the program is low-observable determin-
istic; 2. implicit or explicit flows do not leak high data
to low-observable behaviour. Earlier research [53,21] has
shown that the LSOD criterion guarantees PN. But sev-
eral attempts to devise program analysis algorithms for
LSOD turned out to be unsound, unprecise, or very re-
strictive. In particular, simplistic LSOD will absolutely
prohibit any (even secure) low-nondeterminism. Hence
LSOD never gained popularity, and there have been no
realistic implementations.

This article aims to overcome all these previous LSOD
obstacles. It demonstrates that LSOD can be checked
naturally using Program Dependence Graphs (PDGs) for
concurrent programs. PDGs have already been devel-
oped as an IFC analysis tool for full sequential Java [16,
15,46,51], and demonstrated high precision and scala-
bility. The current work shows how to use PDGs for a
precise LSOD checker. It uses a new definition of low-
equivalent traces, which – in case of nonterminating traces
– avoids certain problems of earlier definitions. Exploit-
ing the structure of PDGs, the algorithm is flow-sensitive,
object-sensitive, and context-sensitive. It is sound and
does not impose restrictions on the thread or program
structure. It also relaxes the classical LSOD definition by
allowing secure nondeterminism, while preserving sound-
ness. It turns out that flow sensitivity is the key to elim-
inating soundness gaps and unrealistic restrictions. The
algorithm also exploits advances in the may-happen-in-
parallel (MHP) analysis of concurrent programs, which
allow even time-sensitive MHP and IFC.

Note that PDG-based IFC for sequential programs
has been described in detail in [16]; we assume some fa-
miliarity with this earlier work. The current article con-
centrates on PDG-based IFC for concurrent programs.
We present an informal overview (section 2), formally de-
velop the new RLSOD criterion and its soundness proof
(section 3), summarize PDGs for concurrent programs
(section 4), show how the criterion can be precisely and
soundly approximated by a PDG-based static RLSOD
check (section 5), explain the algorithm details (section
6), and present data about performance and precision
(section 7). Related work is discussed in section 8.

The JOANA tool. PDG-based IFC, including the
new algorithm described in this article, has been fully im-
plemented. The system, called JOANA, is available for
public download, or can be used by everybody through

1 i f (h==1)
2 l = 42
3 else
4 l = 17 ;
5 . . . // the f o l l ow ing assignment can be
6 . . . // f a r away from the IF ; as long as i t
7 . . . // postdominates the IF and there i s no
8 . . . // in te rmed ia te output o f h or l ,
9 . . . // the program i s s e cure

10 l = 0 ;
11 pr in t (l) ;

1 h = 1 ;
2 l = 2 ;
3 x = f (h) ;
4 y = f (l) ;
5 pr in t (y) ;
6
7 int f (int x)
8 {return x+42;}

1 void main () :
2 f o rk thread_1 () ;
3 f o rk thread_2 () ;
4 void thread_1 () :
5 l = 42 ;
6 h = inputPIN () ;
7 void thread_2 () :
8 pr in t (l) ;
9 l = h ;

Fig. 2 Three secure program fragments. Flow- or context-
insensitive analysis will generate false alarms.

a Java webstart GUI.1 The engineer must provide Java
sources to be analysed, where all input and output state-
ments are annotated “high” or “low” (other statements
do not need annotations). JOANA can handle full Java
bytecode with arbitrary threads, scales to ca. 50kLOC,
and empirically demonstrates high precision [16,15,46,
14]. JOANA is based on a stack of sophisticated program
analysis algorithms (pointer analysis, exception analy-
sis, PDG construction; some details are described in sec-
tion 4). JOANA minimizes false alarms through flow-,
context-, object-, and field-sensitive analysis techiques.
JOANA allows declassification along sequential informa-
tion flows. In concurrent programs, all possibilistic and
probabilistic leaks are discovered. JOANA and the un-
derlying program analysis was developed over the last 15
years, and was used in realistic case studies such as [25].
The practical application is described in detail in [12].

2 Overview of approach

Security policy. IFC analysis must discover all possi-
ble violations of confidentiality and integrity – including
probabilistic ones – for realistic programs. Our IFC anal-
ysis thus aims to provide a sound, precise, scalable and
non-restrictive noninterference criterion for programs in
full Java containing arbitrary threads; needing few an-
notations, and admitting possible declassifications.
Why LSOD? We chose LSOD as the fundamental
mechanism because it has the huge advantage of be-
ing scheduler-independent. However, attempts to define
LSOD in a termination-sensitive way led to severe re-
strictions (see below). We therefore aim for a definition
which is termination insensitive, but flow-, context-, and
object-sensitive. From a practical viewpoint, we believe
that these features are more important than termination

1 joana.ipd.kit.edu provides download, webstart appli-
cation, and other information

A New Algorithm for Low-Deterministic Security 3

sensitivity; they also overcome previous obstacles to the
use of LSOD. In particular, our new RLSOD criterion
will not prohibit secure low-nondeterminism.
Flow sensitivity. A flow sensitive analysis takes state-
ment order into account, and a context-sensitive analysis
takes procedure calling context into account. PDG-based
IFC was introduced because PDGs are naturally flow-
and context-sensitive. Studies have shown that this re-
duces false alarms considerable (e.g., [15,17]); figure 2
left presents two sequential examples (we assume h to
contain a high value and l to contain a low value). For
object-oriented programs, object- and field-sensitivity are
similarly important [16].

Now consider the multi-threaded example in Figure 2
right. A flow-insensitive IFC analysis ignores statement
order, thus assumes that lines 8 and 9 are interchange-
able, and generates a false alarm. We will return to this
example in sections 3 and 8. Note that typical security
type systems are flow- and/or context-insensitive and
will reject all programs in Figure 2. The type system
in [22] is flow-sensitive, but not context-sensitive.
Classification of statements and data. Program data
and operations are classified either low (public) or high
(secret).2 Note that in our flow-sensitive approach, clas-
sification of values and variables happens per statement
or expression in the source code – there is no global
classification of variables. Technically, PDG nodes n (in
particular nodes for (sub)expressions in statements) are
statically classified: cl(n) = L resp. cl(n) = H. It is
enough to classify inputs (sources) and outputs (sinks),
as the classification of all intermediate nodes can easily
be computed by a fixpoint iteration on the PDG [16].
Hence a variable may at one program point (PDG node)
contain a low value, and at another point a high value,
as both variable occurrences are represented by different
PDG nodes. Still, soundness is guaranteed, while flow
sensitivity (which is naturally provided by PDGs) offers
precision gains and fewer restrictions on programs.

We further assume that program input and output
consist of streams of (perhaps non-primitive) values, where
a complete stream has a security classification. In accor-
dance with flow sensitivity, high input streams are not
part of initial memory, but all streams (except stdin
and stdout) have to be explicitly opened.3 Inputs are
low-equivalent if they coincide on low input streams.
Attacker model. We assume that an attacker knows
the source code, and can observe execution of all oper-
ations (i.e. dynamically executed statements) and their
operands that are classified low. However, the attacker
cannot observe high operations or high operands. For ex-
ample, if the source statement print(stream,x) is clas-
sified low, then its dynamic execution outputs a value

2 The implementation can handle arbitrary security lat-
tices.

3 reads and writes on unopened streams are assumed to
throw an exception, and PDGs can handle exceptions pre-
cisely [16,14].

1 void main () :
2 x = inputPIN () ;
3 while (x > 0)
4 pr in t ("x") ;
5 x−−;
6 while (true)
7 sk ip ;

1 void main () :
2 x=inputPIN () ;
3 while (x>0)
4 pr in t ("x") ;
5 x−−;
6 i f (x==0)
7 {while (true)
8 sk ip ; }

1 void main () :
2 x = inputPIN () ;
3 while (x != 0)
4 x−−;
5 pr in t (1) ;

1 void main () :
2 x = inputPIN () ;
3 while (x == 0)
4 sk ip ;
5 pr in t ("x") ;
6 while (x == 1)
7 sk ip ;
8 pr in t ("x") ;
9 . . .

10 while (x == 42)
11 sk ip ;
12 pr in t ("x") ;
13 . . .

Fig. 3 Four tough nuts for termination-insensitive defini-
tions of low-equivalent traces. All programs contain termina-
tion leaks and gradually leak (part of) the PIN.

on a low output stream, which can be observed; if read(
stream,x) is classified high, the dynamically read value
of x comes from a high input stream and cannot be ob-
served.4 As explained, variables do not possess a global
classification; correspondingly, the attacker cannot see
all low values at any time.

We assume that the attacker can distinguish the rel-
ative order of reads/writes to different variables (in con-
trast to [53], see discussion in section 8). We further as-
sume the attacker cannot observe whether a program is
in an infinite loop. But the attacker may have knowledge
about the probabilities Pi(r) of input i causing a certain
low-observable behaviour r.
Low-equivalent traces. The definition of LSOD is based
on low-equivalent traces. A trace of a program execu-
tion is a (possibly infinite) list of program configurations,
where a configuration includes the executed operation,
the memory before execution, and the memory after ex-
ecution. Note that a trace is valid only with respect to a
specific interleaving of program threads. Low-observable
events are configurations from a trace which read or write
low values; only memory cells which are read or written
by a low operation are part of low-observable events. The
low-observable behaviour of an execution trace is the sub-
trace which contains only low-observable events. As the
attacker knows the source code and PDG, the attacker
can reconstruct from the low-observable behaviour which
PDG node caused a low-observable event.

Low-equivalent traces have identical low-observable
behaviour. LSOD demands that any two executions with
low-equivalent inputs have low-equivalent traces. Thus
LSOD is defined similarly to classical (sequential) non-
interference, using traces instead of program states. This
natural definition, as formalised in the literature, how-

4 If read(stream,x) is classified low, but stream is clas-
sified high, the resulting explicit illegal flow is trivially dis-
covered in the PDG [16]. Similarly if print(stream,x) is
classified high, but stream is classified low.

4 Dennis Giffhorn, Gregor Snelting

ever allows one trace to terminate and the other to not
terminate. Hence the problem of infinite traces and ter-
mination channels needs to be discussed before we for-
mally present the new definition of low-equivalent traces.
Termination leaks. Consider the top right program in
Figure 3, whose input in line 2 is high data and whose
print-statement is low-observable. If a run of the pro-
gram does not terminate, the print-statement is delayed
infinitely, which leads to the conclusion that the input
was < 0. Worse, Figure 3 bottom right exploits a termi-
nation channel that leaks the PIN completely. The two
left programs behave identically to the bottom right pro-
gram, and also contain termination channels, but contain
an additional implicit flow (the right programs do not
contain implicit flow).5 It is characteristic for termina-
tion leaks that the attacker must know that a program
loops, in order to exploit the observable behaviour. It is
known that in interactive programs, termination chan-
nels can leak arbitrary amounts of information [2].

To prevent termination channels, several variants of
LSOD and PN forbid low-observable events behind loops
guarded by high data. Such algorithms will disallow the
programs in Figure 3. However, in practice this is an un-
acceptable restriction. Sometimes, program analysis can
deduce that a loop will terminate, and the restriction
can be relaxed. But in general, no other means to always
avoid termination leaks are known. Therefore several au-
thors – including ourselves – allow termination channels
(see also section 8). Hence our attacker model assumes
that the attacker cannot observe nontermination.

We thus aim at a sound definition of LSOD which
however may allow termination leaks. This approach has
already been tried in earlier research – in particular in
[47,53]. Their LSOD definitions permit termination chan-
nels, and declare traces to be low-equivalent if their low-
observable behaviour is equal up to the length of the
shorter sequence of low-observable events. But as pointed
out in [21], this may lead to unintended leaks. Consider
the program in Figure 3 top left, whose traces always
diverge, and assume that the input PIN is high data and
that the print statement is low-observable. The program
exposes the input PIN by printing an equal number of
x’s to the screen. If low-equivalence of traces is confined
to the length of the shorter sequence of low-observable
events, this behaviour is perfectly legal, because all traces
with low-equivalent inputs are equal up to the length of
the shorter sequence.
The new approach. To solve this problem, we suggest
the following new definition of low-equivalent traces: For
finite traces, we stick to the common definition that they
are low-equivalent if their low-observable behaviours are
equal. If one trace is finite and the other is infinite,
then the finite trace must have at least as many low-
observable events as the infinite one, the low-observable
behaviours must be equal up to the length of the shorter

5 The bottom left program was proposed by an anonymous
reviewer of a previous version of this work.

sequence, and the low-observable events missing in the
infinite trace must be missing due to nontermination.
The latter constraint is new. It means that prior to the
missing events, a condition e.g., in an IF (“branching
point”) must have been evaluated which dynamically led
into an infinite loop. Thus the new constraint makes sure
that the missing events leak information only via termi-
nation channels.

Of course, for two infinite traces with infinite low-
observable subtraces, these subtraces must coincide com-
pletely. The new definition of low-equivalent traces is
soundly approximated through PDGs and slicing, result-
ing in a precise analysis for probabilistic noninterference.
Additional exploitation of the concurrent control flow
graph prevents rejection of secure low-nondeterminism.

3 Formalizing low-equivalent traces and LSOD

In the following, we will formally develop the definition
of the noninterference criterion, prove that it guarantees
LSOD, and use it as basis for an algorithm. To begin
with, let us repeat the original PN definition [44,42]:

Definition 1 (Probabilistic noninterference) A pro-
gram satisfies probabilistic noninterference if for all pairs
(t, u) of low-equivalent inputs the following holds:

Let Θ be the set of possible program runs (traces)
resulting from t and u. For each T ∈ Θ, the following
must hold: Let T be the set of program runs possibly
caused by t that are low-equivalent to T . Let U be the
analogous set for u. Then

∑
r∈T Pt(r) =

∑
r∈U Pu(r)

must hold, where Pi(r) is the probability of trace r under
input i.

Note that in practice the Pi(r) can be scheduler-
dependent and are very difficult to compute or measure;
worse, the number of summands might be infinite. For-
tunately we will later see that no values for the Pi(r) are
needed for LSOD. Note also that any possibilistic leak is
a probabilistic leak as well, but not vice versa.

To illustrate definition 1, consider the program in
Figure 10 (from [44]). It reads a PIN and employs three
threads to compute a value result, which is finally printed.
There is no explicit or implicit flow from PIN to result.
But if the input PIN is less than twice the value of vari-
able mask, then PIN’s value is copied bit-wise into result
and printed (provided that scheduling is starvation-free).
Thus for some interleavings the secret PIN influences
the probability of public output, and definition 1 is vi-
olated.6 It has been argued that the leak in Figure 10

6 Formally, definition 1 is violated as follows. There is only
high input, so all inputs are low-equivalent. Let t = 42, u =
17, which are both < 2 · mask. Then there is a trace T which
prints 42. Let T be all traces caused by t low-equivalent
to T , let U be all traces caused by u low-equivalent to T .
In particular T ∈ T, so all r ∈ T will print 42. Thus∑

r∈T Pt(r) ≥ Pt(T) > 0. But U = ∅ because all traces caused
by u print 17. Thus

∑
r∈U Pu(r) = 0 6=

∑
r∈T Pt(r).

A New Algorithm for Low-Deterministic Security 5

6 3 7 4 9 10

63 7 7’ 9 104 8

1 main():
2 fork thread_1();
3 l = 0;
4 print(l);

5 thread_1():
6 h = inputPIN();
7 while (h != 0)
8 h--;
9 l = input();
10 print(l2);

dyn. data dependence

dyn. control dependence

void

void

1 5

1 5

s 2

2s

Fig. 4 A program and two possible traces. The first trace
results from input (inputPIN() = 0, input() = 0), the sec-
ond from (inputPIN() = 1, input() = 0). The shaded nodes
represent the low-observable behaviour.

is in fact possibilistic; to make it truly probabilistic one
might e.g., add a random-based IF to thread Beta which
assigns result in only 80% of all runs.

3.1 Traces and dynamic dependences

Definition 2 (Trace) An operation is a dynamic in-
stance of a program statement (e.g., assignment exe-
cution, procedure call, thread fork). For operation o,
stmt(o) is the corresponding source program statement.

A trace is a list of events of the form (m, o,m), where
o is an operation, m is the memory before execution of
o, and m is the memory after execution of o.

The low-observable behaviour of a trace

T = (m1, o1,m1), . . . , (mk, ok,mk)

is a list of events

obs low (T) = evt low (m1, o1,m1), . . . , evt low (mk, ok,mk)

where

evt low (m, o,m) =

(m |use(o), o,m |def (o)) o reads or

writes low
values;

λ otherwise.

def (o) are the variables defined (written) in o, while
use(o) are the variables used (read) in o. m |use(o) resp.
m |def (o) are the memory cells in m resp. m which are
used resp. defined by o; λ is the empty event.

We write o ∈ T iff ∃m,m : (m, o,m) ∈ T , and LO(o)
iff for o ∈ T : evt low (m, o,m) 6= λ. For o, o′ ∈ T , we write
o < o′ if o is executed before o′: o = oi, o

′ = oj , i < j.
It is important to note that a trace includes all op-

erations of a specific program execution with specific in-
put; due to interleaving, many traces for the same in-
put may exist. Operations in (different) traces can be
uniquely identified by their calling-context and control-
flow history (see below). Operations which read or write

low values are low-observable, together with the corre-
sponding parts of the memory. Thus only m |use(o) resp.
m |def (o) are low-observable.

To better understand the latter fact, remember that
due to flow sensitivity, there is no fixed separation into
low and high memory. m |use(o) and m |def (o) are ex-
actly all the low cells touched by o; this “operation-wise
exact fit” has the effect to weaken the requirements for
low equivalence while maintaining soundness (see below),
ultimately reducing false alarms. A global low memory
Mlow would render less traces low equivalent (i.e. more
false alarms), as m |use(o),m |def (o)⊆ Mlow . This subtle
insight is another explanation why flow-sensitive IFC is
more precise.

Example. Figure 4 presents examples for traces and
their low-observable behaviour. Remember that only in-
put and output are explicitly classified as low or high,
and that memory cells are not globally classified.

For later use with the LSOD criterion, the definition
of traces is enriched with dynamic control and data de-
pendences as in Figure 4: these connect dynamic reads
and writes of variables (with no intermediate writes to
the variables), and dynamic conditions from if, while etc.
and the operations “governed” by these conditions, This
is formalised in

Definition 3 (Dynamic dependences) Let T be a
trace.

1. Operation o ∈ T is dynamically control-dependent
on operation b ∈ T , written b dcd

99K o, iff
– o is a thread entry and b is the corresponding fork

operation, or
– o is a procedure entry and b is the operation that

invoked that procedure, or
– b is the director of the innermost control region

of o.7
2. Operation o is dynamically data dependent on opera-

tion a in T , written a
v
99K o, iff there exists a variable

v ∈ use(o) ∩ def (a), a < o, and there is no operation
o′ ∈ T , v ∈ def (o′) where a < o′ < o.

3. DFST (o) = {q ∈ T | o (
v
99K ∪ dcd

99K)∗ q} denotes the
set of all operations that are (transitively) dynami-
cally control or data dependent on o.
DCDT (o) = 〈start , q2, . . . , qn−1, o | qi ∈ T, qi < qi+1,

qi
dcd
99K
∗
o〉 is the list of operations on which o is (tran-

sitively) dynamically control (but not data) depen-
dent.

If T is fixed, we just write DFS and DCD . Note that
dynamic dependencies are cycle-free. DFS (o), the op-
erations potentially influenced by o, can be seen as a
dynamic forward slice; DCD can be seen as a dynamic
backward control slice (cmp. section 4). Every operation

7 that is, b is a branching point with immediate postdomi-
nator PD(b) and b < o < PD(b) [52].

6 Dennis Giffhorn, Gregor Snelting

has exactly one predecessor on which it is dynamically
control-dependent (except the start operation, which has

no dynamic predecessor). For o 6= start and b
dcd
99K o, b

is the unique dynamic control predecessor of o, written
b = dcp(o).

Example. In Figure 4 (lower part), DFS (5) = {6, 7, 8,
7′, 9, 10}, and DCD(4) = 〈start, 1, 4〉.

3.2 Infinite delay and low-equivalency

We are now ready to tackle low-equivalency of traces.
As explained earlier, we want to define low-equivalency
of two traces T,U such that for infinite T , if T misses
a low-observable operation o executed in U , o is missing
due to an infinite delay in T . Other reasons for non-
execution of o in T are not allowed.

This idea requires a formalisation of the notions of
“infinite delay” and “an operation happens in two differ-
ent traces”. First we observe that an operation is uniquely
identified by its calling context and control flow history.
More formally, p = q holds for operations p ∈ T and
q ∈ U if stmt(p) = stmt(q), and either p = q = start,
or dcp(p) = dcp(q). This recursive definition terminates
as backward control dependency chains are finite. Thus
p = q ⇐⇒ DCD(p) = DCD(q). This definition explic-
itly includes the case that an operation occurs in two
different traces T and U , written o ∈ T ∩ U . Note that
o ∈ T ∩ U still allows that the memories (in particular
the high parts) in both traces at o are not identical.

Next we observe that the execution of a branching
point in a trace T triggers the execution of all operations
in the chosen branch which are dynamically control-de-
pendent on the branching point; up to the next branch-
ing point. For example, in the code fragment if(b){o1;
o2}, both o1 and o2 are (statically and dynamically)
control-dependent on b (but o2 is not control-dependent
on o1). If b evaluates to true and the then-branch is
executed, both o1 and o2 are executed, unless o1 does
not terminate.8

In terms of traces, if b1
dcd
99K o1, o2 . . . ok

dcd
99K b2 (where

not necessarily oi
dcd
99K oi+1), and o1 ∈ T (that is, o1 be-

longs to the branch chosen by b1 and thus is executed)
then o2, . . . ok are executed as well, unless there is non-
termination in some oi, causing oi+1 to be delayed in-
finitely. Other possibilities for the non-execution of oi+1

do not exist, because control dependency by its very def-
inition implies that b1 (and nobody else) decides about
the execution of o1 . . . ok. The same argument applies if
b occurs in two traces T and U . Hence we define

8 Note that exceptions and handlers generate additional
control dependencies in PDGs and traces [16]. Thus if o1
may throw an exception, the dependency situation is more
complex than in a “regular” if(b){o1;o2}. Still, the subse-
quent argument for traces holds.

Definition 4 (Infinite delay) Let T,U be traces and
let both execute branching point b: b ∈ T ∩U . Let o ∈ T
be an operation where b

dcd
99K o (thus o belongs to the

branch b chooses to execute in T). If o 6∈ U , U infinitely
delays o.

Thus if both T and U execute b and choose the same
branch, then either both T and U execute o, or U does
not execute o due to an infinite loop between b and
o. This definition is used for the formalization of low-
equivalent traces:

Definition 5 (Low-equivalence of traces, ∼low) Let
T and U be two traces. Let obs low (T) = (m0, o0,m0) · · ·
and obs low (U) = (n0, q0, n0) · · · be their low-observable
behaviours. Let kT be the number of events in obs low (T)
and kU be the number of events in obs low (U). T and
U are low-equivalent, written T ∼low U , if one of the
following cases holds:

1. T and U are finite, kT = kU , and ∀0 ≤ i < kT :
mi = ni ∧ oi = qi ∧mi = ni

2. T is finite and U is infinite, and
– kT ≥ kU ,
– ∀0 ≤ i < kU : mi = ni ∧ oi = qi ∧mi = ni, and
– ∀kU < j < kT : U infinitely delays an operation
o ∈ DCD(oj).

3. T is infinite and U is finite, and
– kU ≥ kT ,
– ∀0 ≤ i < kT : mi = ni ∧ oi = qi ∧mi = ni, and
– ∀kT < j < kU : T infinitely delays an operation
o ∈ DCD(qj).

4. T and U are infinite, and
– if kT = kU , then ∀0 ≤ i < kT : mi = ni ∧ oi =
qi ∧mi = ni.

– if kT > kU , then ∀0 ≤ i < kU : mi = ni ∧ oi =
qi ∧mi = ni, and ∀kU < j < kT :
U infinitely delays an operation o ∈ DCD(oj).

– if kT < kU , then ∀0 ≤ i < kT : mi = ni ∧ oi =
qi ∧mi = ni, and ∀kT < j < kU :
T infinitely delays an operation o ∈ DCD(qj).

– if kT = kU =∞, then ∀i : mi = ni∧oi = qi∧mi =
ni.

In fact the definition can be expressed in a more com-
pact form:
Observation. T ∼low U ⇐⇒

– ∀0 ≤ i ≤ min(kT , kU) : mi = ni ∧ oi = qi ∧mi = ni,
and

– if kT 6= kU , and w.l.o.g. kT > kU , then U is infinite
and ∀kU ≤ j < kT : U infinitely delays an operation
o ∈ DCD(qj).

We will however refer to cases 1 – 4 in the follow-
ing text. If all programs terminate, definition 5 reduces
to case 1, which does not rely on DCD or infinite de-
lay. In case of nontermination, i.e. infinite traces, all
low-observable oj missing in the shorter trace must be

A New Algorithm for Low-Deterministic Security 7

missing due to infinite delay. “U infinitely delays o ∈
DCD(oj)” expresses that the delayed operation o must
not necessarily be oj itself, but can be a dynamic con-
trol predecessor of oj . In any case, o is on the dynamic
control path between okU−1 and oj , and the infinite loop
in the shorter trace is before o: according to definition
4, there must be a branching point b ∈ T ∩ U , where
b

dcd
99K o, o 6∈ U .
Interestingly, the essence of definition 5 can be ex-

pressed without infinite delay.9 Imagine every program
has an additional print(’done’) as the very last state-
ment. Then the condition “U infinitely delays an oper-
ation o ∈ DCD(oj)” implies “print(’done’)6∈ U ”. Per-
haps it would be possible to re-formulate definition 5
accordingly (thus replacing “U infinitely delays ...” by
“print(’done’)6∈ U ”) and construct an alternate sound-
ness proof. In any case, DCD , DFS will be needed for
the proof.

Note that definition 5 is stronger than the low-equiva-
lency definitions in [53,21]: the latter authors demand
low equivalence not for T and U , but only for all sub-
traces of individual variables. This weaker definition re-
sults in more traces being low equivalent; it however as-
sumes that the attacker cannot distinguish between rel-
ative access order for different variables. It also assumes
that variables are globally classified, which in our flow-
sensitive setting they are not. Section 8 compares both
definitions in detail.

The following definition of LSOD is standard, but
uses the new definition of low-equivalent traces:

Definition 6 (Low-security observational determi-
nism) A program is low-security observational deter-
ministic if the following holds for every pair (t, u) of low-
equivalent inputs: Let T and U be the sets of possible
traces resulting from t and u. Then ∀ T,U ∈ T ∪ U :
T ∼low U must hold.

Note that we will later relax this definition and allow
secure low-nondeterminism while maintaining soundness.
We will now discuss definitions 5 and 6 using the exam-
ples from Figures 2 and 3.
Example 1. For a simple multi-threaded program with-
out termination leaks, consider Figure 2 right. print(l)
is explicitly classified low, and inputPIN is explicitly
classified high. Remember that l and h are not glob-
ally classified; only input/output is explicitly classified.
For all other statements the classification is computed
through a fixpoint iteration on the PDG.10 In particu-
lar, if x ∈ BS(y), cl(x) v cl(y) must hold, where Low @
High [16]. Thus h in line 6 is high, l in line 5 is low,
as inputPIN ∈ BS(h6) and l5 ∈ BS(print(l)). l=h is
however not classified low, because l=h 6∈ BS(print(l))
(see the PDG in figure 6).

9 We thank one reviewer for observing this.
10 PDGs and the backward slice BS are explained in detail
in section 4; here we rely on some preliminary understanding.

Next we observe that all inputs are low-equivalent, as
the only input is high. Now let T,U be two possible traces
for different inputPINs (in this example, several traces
exist for the same input due to interleaving). Hence l=0,
print(l) are the only low-observable operations in T
and U . The operation order may however be different for
T and U due to interleaving. Hence T 6∼low U . The ex-
ample demonstrates the central weakness of LSOD: even
secure low-determinism is prohibited. The new RLSOD
criterion however accepts the example (see below). But
RLSOD only works because flow sensitivity of BS pre-
vents l=h to be low-observable, which otherwise would
cause a false alarm.
Example 2. To understand the treatment of termination
leaks, consider the top left program in Figure 3. Again
all inputs are low-equivalent. We show that the program
does not fulfill definition 5. Obviously the program di-
verges for any inputPIN, but for different inputPINs
prints different numbers of "x"s. Let us select trace T
for one inputPIN n and trace U for a different inputPIN
m. Then we are in the infinite/infinite case of defini-
tion 5. T contains n instances of print("x"), as well
as n instances of while(x>0) and n instances of x–-;
thus kT = 3n. U contains m instances print("x") etc.
W.l.o.g., assume kT > kU . The low-observable oj are the
print("x") in T which are missing in U . DCD(oj) is
the list of operations qi ∈ T on which oj ∈ T is dynam-
ically control-dependent, namely the list of dynamically
executed loop tests:
DCD(print("x")) = 〈while(x>0), while(x>0), ...〉.

Definition 5 demands that U infinitely delays an op-
eration o from this list: there must be an infinite loop
before o. But this is not the case! According to definition
4, it would not only require o 6∈ U (which is the case
for the first while(x>0) not in U), but that there is a

branching point b ∈ T ∩U, b dcd
99K o which selects the same

branch in both traces, but never proceeds to o in U .
Such a b does not exist. Indeed the operation caus-

ing the infinite delay, namely while (true), is not be-
tween any b and o, but at the end of the program. Thus
T 6∼low U . Hence this program is not LSOD; it violates
definition 6. In this example, definition 5 discovered the
termination leak, but in general it will not discover ter-
mination leaks – as in the next example.
Example 3. The bottom left program in Figure 3 fulfills
definition 5 as follows. Let T,U, kT , kU , oj as above. Thus
the first low-observable operation oj ∈ T missing in U is
occurence no. kU +1 of print("x"). Again oj is dynam-
ically control-dependent on some o = while(x>0). But
this time, there is b ∈ T ∩ U , namely occurence kU − 1
of if(x==0), which dynamically controls the kU ’st
while(x>0) in T . But the latter is not in U any more.
Thus b

dcd
99K o, and the infinite loop indeed happens be-

tween b and o. Hence T ∼low U . That is, by definitions 5
and 6, the program is wrongfully declared secure – which
is ok, as we exclude termination leaks.

8 Dennis Giffhorn, Gregor Snelting

We see that definitions 5 and 6 may miss termination
leaks – which is a design feature. But sometimes we are
lucky, and termination leaks are discovered anyway, as
in example 2.

3.3 Soundness of LSOD criterion

Soundness means that, under the conditions of the fol-
lowing theorem, all probabilistic leaks are discovered by
definition 6. Precision means that the number of false
alarms is small. In this section we outline the soundness
proof. Precision is investigated in section 7.

Zdancewic and Myers [53] observed that probabilistic
leaks can only occur if the program contains concurrency
conflicts such as data races. LSOD is guaranteed if there
is no implicit or explicit flow, and in addition program
parts influencing low-observable behaviour are conflict
free. Their observation served as a starting point for our
own work, as we realised that not only explicit and im-
plicit flow can naturally be checked using PDGs, but
also conflicts and their impact are naturally modelled in
PDGs enriched with conflict edges. We thus provide the
following definition:

Definition 7 (Data and order conflicts) Let a and
b be two operations that may happen in parallel.

– There is a data conflict from a to b, written a
dconf
 b,

iff a defines a variable v that is used or defined by b.
– There is an order conflict between a and b, writ-

ten a
oconf
! b, iff both operations are low-observable:

LO(a) ∧ LO(b).
– An operation o is potentially influenced by a data

conflict if there exist operations a, b such that o ∈
DFS (b) and a

dconf
 b.

The following lemma states that in all possible traces
which are produced by a set of low-equivalent inputs, the
operations which are not influenced by high data or by
execution order conflicts are identical “modulo termina-
tion”. In particular, for terminating traces these opera-
tions are completely identical.

Lemma 1 Let p be a program. Let T be a trace of p
and Θ be the set of possible traces whose inputs are low-
equivalent to the one of T . Let o be an operation of p that
is not potentially influenced by a data conflict a

dconf
 b

or by an operation q reading high input: o 6∈ DFS (a) ∪
DFS (b) ∪ DFS (q). If o ∈ T , then every U ∈ Θ either
executes o or infinitely delays an operation in DCD(o).

The proof is in appendix A; the full proof can be
found in [8]. Without the dependency machinery from
definition 5, the proof would not be possible. From the
lemma it is a small step to the statement that low-
equivalent inputs generate low-equivalent traces. This
fundamental soundness theorem can now be stated:

Theorem 1 A program is low-security observational de-
terministic according to definition 6 if for all traces T
and all operations o, o′, o′′ ∈ T :

1. no low-observable operation o is potentially influenced
by an operation reading high input:

LO(o) ∧ ¬LO(o′) =⇒ o 6∈ DFST (o
′)

2. no low-observable operation o is potentially influenced
by a data conflict:

LO(o) ∧ o′ dconf o′′ =⇒ o 6∈ DFST (o
′) ∪DFST (o

′′)

3. there is no order conflict between low-observable op-
erations:

¬(o oconf
! o′)

Proof. see Appendix A; the full proof is in [8].
In the criterion, the first rule ensures that the im-

plicit and explicit flow to o does not transfer high data.
The second rule ensures that high data cannot influence
the data flowing to o via interleaving. The third rule
ensures that high data cannot influence the execution
order of low-observable operations via interleaving. Note
that the theorem is only valid if sequential consistency
in the sense of the Java memory model can be assumed.
The Java memory model was designed to guarantee se-
quential consistency for race-free programs, and formal
definitions plus machine-checked guarantees of the JMM
are available [28,27].

Theorem 2 If a program is LSOD according to defini-
tion 6, it is probabilistically noninterferent according to
definition 1.

Proof. see appendix A. The proof is in a sense trivial,
as the sum of probabilities for all traces possibly gener-
ated by two low-equivalent inputs must equal 1 (which
also explains why LSOD does not need explicit probabil-
ity values for traces). Note that for two low-equivalent
inputs more than one trace may result, because our al-
gorithm – as explained below – does not prohibit useful
nondeterminism, as long as soundness is maintained.

Corollary 1 LSOD, as defined in Definition 6, is schedu-
ler-independent.

Proof. Using the terminology of Definition 1, scheduler
behaviour will influence the probability distributions for
certain interleavings and thus the Pt(r) resp. Pu(r). The
proof of theorem 2 however demonstrated that under
LSOD, the sum of these probabilities is always 1. Only
these sums are needed to guarantee probabilistic nonin-
terference, thus the latter is invariant under the proba-
bility distribution of interleavings.

A New Algorithm for Low-Deterministic Security 9

1 a = u () ;
2 while (f ()) {
3 x = v () ;
4 i f (x>0)
5 b = a ;
6
7 else
8 c = b ;
9 }

10 z = c ;

Start

1 2

3 4

5 7

9

Fig. 5 A small program and its dependence graph

4 Dependence Graphs and Noninterference

In the following, we will present a static analysis which
soundly approximates the above LSOD criterion. This
analysis is based on program dependence graphs (PDGs).
In this section, we present the necessary facts about
PDGs for multi-threaded programs, which are then ex-
ploited in sections 5 and 6.

4.1 PDGs for Sequential Programs

Program dependence graphs are a standard tool to model
information flow through a program. In an (intraproce-
dural) PDG G = (N,→), N comprises program state-
ments or expressions. There are two kinds of edges: data
dependences and control dependences, thus→ =

D→ ∪· C→.
Dependence x D→ y means that statement x assigns a
variable which is used in statement y, without being re-
assigned on any control flow path from x to y. Depen-
dence x C→ y means that the mere execution of y depends
directly on the value of the expression x (which is typ-
ically a condition in an if- or while-statement, see e.g.,
[24] for formal definitions). A path x →∗ y means that
information can flow from x to y; if there is no path, it is
guaranteed that there is no information flow [18,38,36,
51]. Exploiting this fundamental property, all statements
possibly influencing y (the so-called backward slice) are
easily computed as BS(y) = {x | x →∗ y}. y is called
the slicing criterion of the backward slice. Similarly, the
forward slice is FS(x) = {y | x→∗ y}.

As a small example, consider the program and its de-
pendence graph in Figure 5 (from [16]). Control depen-
dences are shown as straight edges, data dependences are
shown as curved edges. There is a path from statement
1 to statement 9 (i.e. 9 ∈ FS(1)), indicating that input
variable a may eventually influence output variable z.
Since there is no path (1) →∗ (4) (1 6∈ BS(4)), there is
definitely no influence from a to x>0.

The Slicing Theorem [18,38] states that for any ter-
minating execution reaching statement x, the program
and BS(x) compute the same sequence of values for
each variable used in x. Thus a correct PDG may have
too many edges, but never too few (“soundness”). But of

course, PDGs should have as few edges as possible (“pre-
cision”). Note that due to decidability problems, “com-
plete” precision can never be achieved while maintaining
soundness. Section 5 contains formal soundness proper-
ties of slices, as exploited by our static LSOD check.

PDGs and slices for languages with procedures, ex-
ceptions, pointers, objects, arrays etc. are much more
complex. Interprocedural analysis is typically based on
the context-sensitive Horwitz-Reps-Binkley (HRB) algo-
rithm [37,19], which uses summary edges to model flow
through procedures.11 Full sequential Java requires even
more complex algorithms, in particular for pointer anal-
ysis. The pointer analysis used in JOANA is object-
sensitive, field-sensitive, and optionally flow-sensitive; it
is described in [11,16]. Precise pointer analysis is a pre-
requisite for precise treatment of dynamic dispatch in
object-oriented languages [16]. Another issue are excep-
tions, which may cause a lot of additional control flow.
Precise treatment of exceptions in PDGs is described in
[16,14]. Thus in general, computing BS(x) involves more
than just backward paths in the PDG.

In-depth descriptions of slicing techniques can be found
in [24]. Note that the slicing theorem has been shown for
all the extensions mentioned above – and the soundness
of the current work only depends on the slicing theorem,
not on the specific variant of slicing or pointer analysis.

Of course, slicing precision directly influences IFC
precision and false alarms. In the early days of PDGs and
slicing, often a backward slice comprised almost the com-
plete program. Today, PDGs have become much more
precise since they are flow-sensitive, context-sensitive,
and object-sensitive: the order of statements is taken
into account, as is the actual calling context for proce-
dures, and the actual reference object for method calls.
Thus the backward slice never indicates influences that
are in fact impossible due to the given statement exe-
cution order or call stack of the program; only so-called
“realizable” paths are considered (that is, paths dynam-
ically possible with respect to call stack and statement
order). As a consequence, slice size has dropped dramat-
ically (see e.g., [3,4]). But this precision is not for free:
interprocedural PDG construction can have complexity
O(|N |3), object-sensitive pointer analysis is similarly ex-
pensive, and flow-sensitive pointer analysis is so expen-
sive that it is activated on demand only. In practice,
PDG use is limited to programs of about 100kLOC [4].
Section 7 presents data about precision and scalability
of our PDG construction algorithm.

4.2 Noninterference and PDGs

As mentioned, a 6∈ BS(b) guarantees that there is no
information flow from a to b. This is true for all infor-
mation flow which is not caused by hidden physical side
11 HRB use so-called system dependence graphs, which in
this article are subsumed under the PDG notion.

10 Dennis Giffhorn, Gregor Snelting

thread_1

l = 0

h = inputPIN()

thread_2

print(l)

l = h

interference dependence
control dependence

Fig. 6 PDG for example in Figure 2 right. BS(print(l)) is
shaded.

channels such as timing leaks. It is therefore not surpris-
ing that slicing is a natural tool for IFC [45,1]. Illegal
flow becomes visible as a PDG path from a secret value
to a public variable. In Figure 5, assume x is secret and z
is public; the PDG path 3→∗ 9 (i.e. 3 ∈ BS(9)) exposes
the illegal (implicit) flow from x to z. In Figure 7, slicing
uncovers an illegal flow in a multi-threaded example (see
next section).

More examples for PDG-based IFC can be found in
[16,8]. In 2009, we provided a machine-checked proof
that (sequential) noninterference holds if no high vari-
able or input is in the backward slice of a low output.
This result was shown for the intraprocedural as well as
the interprocedural (HRB) case [51,49].

Let us finally mention that – due to potentially non-
local effects of any points-to, alias, or dependency rela-
tion – the PDG of a complete system cannot be obtained
by just combining PDGs of subsystems. PDGs thus re-
quire a whole-program analysis, and all library functions
have to be analysed together with the client code (or at
least “stubs” must be provided, which simulate the de-
pendencies through library functions). The consequence
is that PDG-based IFC is not compositional: security of
a program cannot be inferred just from the security of
its components. Only recently, compositional PDGs were
tackled (see section 9).

4.3 PDGs and Slicing for Multi-Threaded Programs

For multi-threaded programs operating on shared mem-
ory, PDGs are extended by so-called interference depen-
dencies12 which connect an assignment to a variable in
one thread with a read of the same variable in another
thread [23]. Figure 7 shows a small example with two in-
terference edges. The backward slice from node x = y+ 1
consists of the grey nodes.13 Now assume x and b are
public; a and y are secret. The illegal explicit flow from
y to x is captured in the PDG by (among others) the
data dependence y

D→ x = y+ 1; the illegal implicit

12 “interference dependencies” have nothing to do with “non-
interference” in the IFC sense; the naming is for historical
reasons.
13 where the light grey node is pruned by time-sensitive anal-
ysis; see below.

int x , y ;

void thread_1 () :
x = y + 1 ;
y = 0 ;

void thread_2 () :
a = y ;
x = <input >;
i f a > 0

b = 0 ;
else

y = 0 ;

thread_2

a > 0

a = y

b = 0

thread_1

control dep.

data dep.

interference dep.

x yx y y x

x = y + 1

x

y = 0

y = 0

x = <input>

y

Fig. 7 PDG for two threads with interference dependences.

flow from a to b is captured by the control dependence
a > 0

C→ b = 0.
The simplest slicer for multi-threaded programs is

the iterated two-phase slicer (I2P) [33,14]. I2P uses the
context-sensitive HRB algorithm14, but does not traverse
interference edges directly. Instead, I2P adds the start-
ing point of interference edges to a work list and thus
repeatedly applies the intra-thread HRB backward slice
algorithm for every interference edge.

I2P can be improved by using May-happen-in-parallel
(MHP) information. Often MHP analysis can prove that,
due to locks or the fork/join structure, certain state-
ments cannot happen in parallel. Such information can
be used to prune interference dependencies, drastically
improving scalability and precision. Various MHP algo-
rithms for Java have been published, e.g., [34,26,8].

I2P is useful in practice, but – even with MHP –
does not deliver maximal precision, as it ignores the is-
sue of time travel. This phenomenon can be explained as
follows. In any real information flow or leak, the infor-
mation source must be executed before (i.e. physically
earlier) than the sink. If for all possible interleavings the
source executes after the sink, flow is impossible. This
applies in particular to interference dependencies. Naive
traversal of interference dependencies however can indi-
cate “flows” where the source is executed after the sink.
No scheduler will ever generate such an execution trace.

Figure 7 presents an example: the two dashed in-
terference edges exclude each other, because flow along
the first requires thread_1 to execute before thread_2,
and flow along the second requires thread_2 to execute
before thread_1. Hence the light grey node y = 0 in
thread_1 cannot influence the node x = y+ 1. The ex-
ample also demonstrates that interference dependences
are – in contrast to data and control dependences – not
transitive. In fact, this intransitivity is the root cause
for time travel. As a consequence, summary edges in
HRB can never contain flow through interference edges,

14 HRB slicing has two phases, hence the name I2P.

A New Algorithm for Low-Deterministic Security 11

as summary edges are transitive. This explains why I2P
needs a worklist for interference edges.

A time-sensitive analysis discards impossible, “time-
travelling” flows.15 I2P is context-sensitive inside threads,
but not time-sensitive. Time-sensitive interprocedural slic-
ing algorithms are very complex, and cannot be described
in detail here; for many years, no scalable algorithm ex-
isted. Today, our new algorithms, which are based on
earlier work by Krinke and Nanda [23,33] allow analysis
of at least a few kLOC of full Java [7,9,8]. Benchmarks
have shown that I2P precision (i.e. slice size) is ca. 25%
worse than the best known time-sensitive slicer [8].

Lock-sensitivity. Most concurrent programs contain
explicit locks and synchronization. However, many MHP
algorithms ignore locks – they only analyse fork-join struc-
ture, perhaps in a context-sensitive manner. The reason
is that lock-sensitive MHP needs a precise must-alias
analysis, which is notoriously difficult and expensive [8].
Section 9 discusses approaches to lock-sensitive PDGs.
Note that a lock-sensitive MHP only improves precision,
but does not affect correctness of PDGs and IFC.

5 A slicing-based static LSOD check and the
RLSOD criterion

5.1 The static check

Let us now come back to our LSOD criterion and its
sound, static approximation through PDGs and slicing.
First we emphasize that dynamic dependencies and thus
DFS and DCD can be soundly approximated by static
slices and PDGs. In particular, the following soundness
properties for BS and FS hold [18,16]:
Observation. Let o be an operation in trace T .

1. If DFST (o) = {p1, . . . , pk, . . .} then

{stmt(p1), . . . , stmt(pk), . . .} ⊆ FS(stmt(o))

2. If stmt(o) 6∈ BS(stmt(p)), then p 6∈ DFST (o), and
it is guaranteed that o cannot influence p through
explicit or implicit flow.

Due to these properties, the three conditions of theo-
rem 1 can naturally be checked using slicing for concur-
rent programs. Furthermore, a sound and precise MHP
analysis is needed; we write MHP(s, s′) if this analysis
concludes that PDG nodes s, s′ ∈ N may be executed
in parallel. Remember that cl(s) is the classification (H
or L) of PDG node s; we assume a two-element security
lattice where L v H. def (s) are the variables defined
(written) in s, while use(s) ⊇ def (s) are the variables
used (read or written) in s.

Then the following static conditions are sufficient to
guarantee the three dynamic conditions in theorem 1:
15 “time sensitivity” has nothing to do with “timing leaks”
in the IFC sense, the naming is for historical reasons.

Static check. For all s, s′, s′′ ∈ N ,

1. cl(s) = L ∧ cl(s′) = H =⇒ s′ 6∈ BS(s)
2. MHP(s, s′) ∧

(
∃v : v ∈ def (s) ∧ v ∈ use(s′)

)
∧ cl(s′′) = L =⇒ s, s′ 6∈ BS(s′′)

3. MHP(s, s′) =⇒
(
cl(s) = H ∨ cl(s′) = H

)
The first condition is also the basis for the sequential

IFC [16], the second disallows data conflicts between low-
observable operations, and the last demands that no two
low-observable operations are in an order conflict. Thus
Zdancewic’s original idea, namely to disallow conflicts
between publicly observable effects, is naturally imple-
mented through slicing of concurrent programs.
Example 1. For the program in Figure 1 right, we have
cl(inputPIN()) = H, cl(print(x)) = cl(print(2)) = L.
There are no explicit or implicit leaks, so rule 1 does not
fire. But MHP(print(x), print(2)), so there is an order

conflict: print(x)
oconf
! print(2). Indeed rule 3 rejects

the program immediately. Furthermore, MHP(print(x),
x = 1), thus there is a data race concerning x. Since any
PDG node is in its own backward slice, rule 2 rejects the
example as well, where s′ = s′′ = print(x).
Example 2. Consider again Figure 3. The programs in the
right are accepted, as there are no explicit, implicit or
probabilistic flows. Both programs contain termination
channels which are however not discovered by the static
check. The top left program contains an additional im-
plicit flow (inputPIN() ∈ BS(print(”x”))), and thus is
rejected by the static check – even though its behaviour is
identical to Figure 3 bottom right. But the check analy-
ses program text, not program behaviour (and behaviour
equivalence is undecidable). For the program bottom left,
which again behaves identical to top left and bottom
right, the static check discovers the same implicit flow.

Now remember that for this program – in contrast to
the top left program – definition 6 is fulfilled: it does not
discover the termination leak. The static check is how-
ever a sound overapproximation of definition 6: in rare
cases, it rejects programs which are accepted by defini-
tion 6. In particular, it rejects more termination leaks
than definition 6, but it never misses non-termination
leaks. In Figure 3, the static check thus discovers 2 of
4 termination leaks, while definition 6 discovers only 1
of 4 termination leaks. The example indicates that the
static check is, after all, “only 50% termination insen-
sitive”, however this number has not been validated in
realistic experiments.

5.2 RLSOD: allowing noncritical conflicts

Often LSOD is criticised as it may prohibit useful nonde-
terminism (due to rules 2 and 3). For example, if several
threads nondeterministically write to the same public
file, LSOD as described so far will always prohibit such
nondeterministic writes due to rule 3.

12 Dennis Giffhorn, Gregor Snelting

1 class Example {
2 stat ic volat i le int [] b u f f e r = new int [1 0 0] ;
3 int y ;
4
5 stat ic c lass A extends Thread {
6 public void run () {
7 int newentry = y ;
8 . . . // code tha t enters new entry into bu f f e r
9 . . . // bu f f e r may contain high values ,

10 . . . // but these are not observab le !
11 }
12 }
13
14 stat ic c lass B extends Thread {
15 public void run () {
16 y = inputPIN () ;
17 pr in t ("debug␣ i n f o ") ;
18 . . . // code tha t consumes en t r i e s from bu f f e r
19 pr in t ("more␣debug␣ i n f o ") ;
20 } }
21 }

1 class Example {
2 stat ic int x ;
3
4 stat ic c lass A extends Thread {
5 public void run () {
6 x = 0 ;
7 pr in t (x) ;
8 }
9 }

10
11 stat ic c lass B extends Thread {
12 public void run () {
13 int y = inputLowData () ;

// low input ins tead of high PINs
14 while (y > −1)
15 y−−;
16 x = 1 ;
17 pr in t (2) ;
18 } }
19 }

Fig. 8 The RLSOD criterion does not prohibit useful non-
determinism

But note that a race or conflict is only harmful if
there is a possible control flow from a high node to the
conflicting nodes – otherwise the conflict cannot cause a
leak. In particular, programs without high sources may
contain arbitrary low determinism, and arbitrary high
nondeterminism is allowed if it cannot influence low events.
This important observation allows to prevent spurious
rejection of useful nondeterminism.

The result is a criterion which, strictly speaking, can-
not be called LSOD any more, as LSOD definition 6 ab-
solutely disallows any low-nondeterminism. We call the
new criterion RLSOD (relaxed LSOD). It is easy to im-
plement: potential control flow can be checked in the
threaded control flow graph (see section 6). Thus item 3
in the above static check now reads

3’.
(
MHP(s, s′)∧∃a : cl(a) = H∧(flow(a, s)∨flow(a, s′))

)
=⇒

(
cl(s) = H ∨ cl(s′) = H

)
Examples. In Figure 2 right, neither l=0 nor print(l)
can be reached from high events, as both are initial in
their thread. Thus the example is RLSOD even though
it is not LSOD (cmp. example 1 in section 3.2). In Fig-
ure 8 top, the inputPIN cannot influence the writes to

the public debug file, hence the nondeterminism present
in the high-influenced parts is allowed. In Figure 8 bot-
tom, there is no high input and hence all low conflicts are
allowed. Thus both examples are RLSOD. Similar anti-
LSOD examples from the literature are RLSOD likewise.
Thus the long-standing statement “LSOD prohibits use-
ful nondeterminism” has lost its foundation.

Note however that low-nondeterminism can be inse-
cure – even if the RSLOD criterion (or any PN criterion)
is satisfied – if the scheduler can be manipulated. A ma-
nipulated scheduler could, for example, read a high value
before scheduling (e.g., h=0 or h=1), and then schedule
low-determinism (e.g., in l = 0 || l = 1;) in a way
such that the high value is copied to a low variable.
This is the reason why some authors disallow schedulers
which read high data [42], while others favor scheduler-
specific IFC and PN [20,35] (see also section 8). In the
current work, the possibility of manipulated schedulers
is ignored, and low nondeterminism is considered secure
if in the program code it is not influenced by high events.
We consider this approach consistent with the notion of
“language-based” security.

6 Implementation

We assume that all PDG nodes n ∈ N , as well as in-
put/output streams, are annotated (classified) with a se-
curity level cl(n). It is enough to annotate inputs I ⊆ N
and outputsO ⊆ N (also called sources and sinks), as the
security level for intermediate nodes n ∈ N \ (I ∪O) can
be determined by a fix-point iteration similar to data flow
analysis on the PDG [16]. The analysis can handle arbi-
trary lattices of security levels, not just the two-element
lattice L v H.

For the implementation, the PDG is enriched with
data and order conflict edges. The result is called a CPDG
(conflict-enriched program dependency graph).

Definition 8 (Data and order conflict edges) Let
G = (N,→) be a PDG. Letm,n ∈ N where MHP(m,n).
There is a data conflict edge m →dconf n to G if m
defines a variable v that is used or defined by n: ∃v :
v ∈ def (m)∧ v ∈ use(n). There is an order conflict edge
m ↔oconf n to G if both nodes are classified as sources
or sinks: m,n ∈ I ∪O.

Example. Figure 9 shows the CPDG of the program
on the right hand side of Figure 1. The example as-
sumes that y = inputPIN() is classified as a source of
high data and print(x) and print(2) are classified as
sinks of low data. The CPDG contains two order con-
flict edges, one between print(x) and print(2) and one
between print(x) and y = inputPIN(), and three data
conflict edges, from x = 0 to x = 1, from x = 1 to x = 0
and from x = 1 to print(x).

A New Algorithm for Low-Deterministic Security 13

control dependence

data dependence

data confl ict

interference dependence

order confl ict

thread_2thread_1

x = 0

print(x)

y=inputPIN()

whi le(y !=0)

y--

x = 1

print(2)

Fig. 9 PDG of the program on the right side of Fig. 1,
enriched with data and order conflict edges. The grey nodes
denote the slice for node print(x). Note that the slice ignores
conflict edges.

Definition 9 (TCFG) A Threaded Control Flow Graph
(TCFG) consists of the interprocedural CFGs for the in-
dividual threads, connected by fork and join edges.

A formal definition of TCFGs can be found in [8]. A
path in the TCFG is written a→∗TCFG b (or flow(a, b) for
short16). Once CPDG and TCFG have been constructed,
the IFC checker proceeds as follows:

1. Compute BS(s) for every sink s ∈ O.
2. If the backward traversal encounters a source i ∈ I

where cl(i) 6v cl(s), then the program may leak data
of level cl(i) via explicit or implicit flow and is re-
jected. This criterion is also used in our sequential
IFC [16].

3. If the traversal encounters an incoming data conflict
m→dconf n, the program may contain a probabilistic
data channel and is rejected.

4. If the traversal encounters an order conflictm↔oconf

n, check if the order conflict is low-observable, i.e.
cl(m) = cl(n) = L. If so, the program may contain a
probabilistic order channel and is rejected.

Example. Consider Figure 9. The backward slice for
print(2) encounters the order conflict edge between print(2)
and print(x), so the program may contain a probabilistic
order channel. The slice for print(x), highlighted grey in
Figure 9, encounters all data conflict edges, so the pro-
gram may contain a probabilistic data channel as well,
whereas its implicit and explicit flow is secure.

In order to allow noncritical conflicts (RLSOD crite-
rion, see section 5.2), we change item 4 in the algorithm
as follows:

4’. If the traversal encounters an order conflictm↔oconf

n, check if cl(m) = cl(n) = L. If so, check in the
TCFG if any node that can be executed before both
conflicting nodes is a high source: ∃ a ∈ N : cl(a) =
H∧a→∗TCFG m∧a→∗TCFG n. If so, the program may
contain a probabilistic order channel and is rejected.
If not, the conflict is not critical.

In the implementation, rules 2. - 4. are integrated
into a backward I2P slicer. A time-sensitive slicer would
be more precise, but would make the algorithm much
16 The latter notation was already used in section 5.2

Algorithm 1 Information flow control for concurrent
programs.
Input: A classified CPDG G = (N,E), its TCFG C,
a security lattice L.
Output: ‘true’ if the program is LSOD (up to declas-
sification and harmless conflicts), ‘false’ otherwise.
Let src(n) be the source level of node n (= ⊥ if n is
not a source)
Let sink(n) be the the sink level of node n (= > if n
is not a sink)

/* Check implicit and explicit flow: */
Let flow(G,C,L) be a function that returns false if
G contains illicit implicit or explicit flow.
if flow(G,C,L) == false then
return false

/* Scan the program for probabilistic channels. */
/* Check sources: */
for all n ∈ N : src(n) 6= ⊥ do
if prob(G,C, n, src(n),L) == false then
return false

/* Check sinks: */
for all n ∈ N : sink(n) 6= > do
if prob(G,C, n, sink(n),L) == false then
return false

return true

more complex and expensive. In practice, I2P precision
is often sufficient; time-sensitive slicing can have expo-
nential runtime and thus should only be applied if the
I2P approach produces false alarms.

Algorithms 1, 2 and 3 present detailed pseudocode.
Algorithm 1 receives a CPDG in which sources and sinks
are already classified and which already contains the or-
der conflict edges, the corresponding TCFG and the se-
curity lattice in charge. It then runs a slicing-based check
of the implicit and explicit flow (that is, it checks rule 2;
in fact the algorithm from [16] is used). If the program
passes that check, it is scanned for probabilistic channels
by checking rules 3 and 4. This is done by Algorithm 2.

Algorithm 2 receives the CPDG, the TCFG, the se-
curity lattice and a source or sink s of a certain security
level l. The algorithm first checks whether s is involved
in a low-observable order conflict that can be preceded
by a source of high data. This task is delegated to the
auxiliary procedure benign in Alg. 3. After that, it exe-
cutes an extended I2P slicer which additionally checks if
s is potentially influenced by a data conflict whose nodes
can be preceded by a source of high data. This check is
again delegated to procedure benign. The “phase 1” and
“phase 2” in the I2P loop are just the two phases of the
HRB slicer, which is inlined into the I2P algorithm.

Procedure benign implements rule 4. First it checks
whether the given conflict is an order conflict and whether
it is low-observable, which it is if both conflicting nodes
are visible to the attacker. To allow noncritical conflicts,

14 Dennis Giffhorn, Gregor Snelting

Algorithm 2 Procedure prob detects probabilistic chan-
nels.
Input: An CPDG G = (V,E), its TCFG C, a node s,
its security level l, the security lattice L.
Output: ‘false’ if s leaks information through a prob-
abilistic channel, ‘true’ otherwise.
/* Check G for probabilistic order channels. */
/* inspect order conflicts: */
for all m↔oconf s do
if benign(C,m, n, oconf ,L, x) == false then
return false

/* Check G for probabilistic data channels. */
/* initialize the modified I2P-slicer*/
W = {s} /* a worklist */
M = {s 7→ true} /* maps visited nodes to true (phase
1) or false (phase 2) */
repeat
remove first node n from W
/* look for data conflicts */
for all m→dconf n do
if benign(C,m, n, dconf ,L, l) == false then
/* conflict is harmful */
return false

/* proceed with standard I2P slicing */
for all e = m → n where e is not a conflict edge
do
/* if m hasn’t been visited yet or we are in phase
1 and m has been visited in phase 2 */
if m 6∈ dom M ∨ (¬M(m) ∧ (M(n) ∨ e is a con-
currency edge)) then
/* concurrency edges comprise interference
edges, fork-in, fork-out and join-out edges */

if M(n) /* we are in phase 1 */ ∨e is not a
parameter-in or call edge then
append m to worklist W

/* determine how to mark m: */
if M(n) ∧ e is a parameter-out edge then
/* we are in phase 1 and e is a parameter-out
edge: mark m with phase 2 */
M =M ∪ {m 7→ false}

else if ¬M(n)∧ e is a concurrency edge then
/* we are in phase 2 and e is a concurrency
edge: mark m with phase 1 */
M =M ∪ {m 7→ true}

else
/* mark m with the same phase as n */
M =M ∪ {m 7→M(n)}

until W = ∅
return true /* no probabilistic channels */

Algorithm 3 Procedure benign identifies benign con-
flicts.
Input: A TCFG C = (N,E), two conflicting nodes a
and b, the kind e of the conflict, a security lattice L, a
security level l ∈ L.
Output: ‘true’ if the conflict is harmless, ‘false’ oth-
erwise.
Let reaches(m,n,C) return ‘true’ if there exists a re-
alizable path from node m to node n in C.

/* Check visibility of order conflicts. */
if e == oconf then
x = (src(a) 6= ⊥ ∧ src(a) v l) ∨ (sink(a) 6= > ∧
sink(a) v l) /* is ‘a’ visible? */
y = (src(b) 6= ⊥ ∧ src(b) v l) ∨ (sink(b) 6= > ∧
sink(b) v l) /* is ‘b’ visible? */
if ¬x ∨ ¬y then
return true /* the order conflict is not visible
*/

/* Check if a source of high data may execute before
the conflicting nodes. */
for all n ∈ N do
if src(n) 6v l then
if (reaches(n, a) ∨MHP(n, a)) ∧ (reaches(n, b) ∨
MHP(n, b)) then
return false /* the conflict is harmful */

return true /* the outcome of the conflict cannot be
influenced by high data */

it additionally checks if the conflicting nodes are pre-
ceded by a high source n. This is the case if n reaches
them on realisable paths in the TCFG or if it may hap-
pen in parallel to them.

Example 1. The sequential programs in Figure 3 right
are accepted by algorithm 1, as there are no explicit,
implicit or probabilistic flows. Both programs contain
termination channels which, however, are not discovered
by algorithm 1. On the other hand, the left programs
contain additional implicit flow and thus are rejected by
algorithm 1 – even though their behaviour is identical to
the bottom right program. This seeming inconsistency is
a deliberate consequence of allowing termination leaks,
as discussed at length in section 2.

Example 2. Consider Figure 9. Algorithm 1 passes the
flow call successfully (no implicit or explicit flows, as
checked by sequential IFC for every thread). It then calls
algorithm 2 for the high source y = inputPIN() and for
the two low sinks print(x) and print(2). Tracing the last
call, algorithm 2 sees the order conflict between print(2)
and print(x), hence it calls algorithm 3. The latter dis-
covers visibility of the conflict in the second main phrase
of the first if, which prevents the conflict to be benign
– algorithm 2 immediately returns false. If we never-
theless trace the algorithm a little further, the worklist

A New Algorithm for Low-Deterministic Security 15

for the I2P slicer is initialized with print(x). In the first
iteration, the for loop discovers m =x=0; and m =x=1;
to be in immediate data conflict with n =print(x). Al-
gorithm 3 discovers that a source of high data, namely
y=inputPIN(); can reach print(x); hence the data con-
flict is harmful. The example shows that the RLSOD
check is terminated as soon as a leak is found; it can also
be modified to return a list of all leaks, where a PDG
path is given for every leak.

7 Evaluation

The above algorithms have been implemented for full
Java, and integrated into JOANA. To our knowledge, no
other evaluations of LSOD or PN precision or scalabil-
ity have been published, hence we cannot compare our
implementation to other algorithms.

7.1 Precision

To assess precision, we analysed examples from the lit-
erature. Our first example is from [44] (Figure 10); it
was explained in section 3. Using JOANA, we classified
PIN = Integer.parseInt(args[0]) as a high source and
System.out.println(result) as a low sink. No other clas-
sifications were necessary. Algorithm 1 detected an order
conflict which depends on high data: the assignments to
result in threads Alpha and Beta are conflicting, and
the outcome of the conflict is influenced by the values of
trigger0 and trigger1, which in turn are changed depen-
dent on PIN’s value in thread Gamma. Thus, this program
contains a probabilistic data channel which leaks infor-
mation about PIN to result and is rejected by RLSOD.

Our second example in Figure 11 is from [32]. The
program is probabilistic noninterferent, which is how-
ever difficult to discover. The program manages a stock
portfolio of Euro Stoxx 50 entries. The portfolio data,
pfNames and pfNums, is secret, hence neither the Euro
Stoxx request by EuroStoxx50, nor the final message sent
to a commercials provider may contain any information
about the portfolio. Indeed Portfolio and EuroStoxx50
do not interfere, thus the Euro Stoxx request does not
leak information about the portfolio. The message sent
to the commercials provider is not influenced by the val-
ues of the portfolio, either, because there is no explicit or
implicit flow from the secret portfolio values to the sent
message. Furthermore, the two outputs have a fixed rel-
ative ordering, as EuroStoxx50 is joined before Output is
started. Hence, the program should be considered secure.

We classified the two statements reading the port-
folio from storage, pfNames = getPFNames() and pfNums
= getPFNums(), as high sources and the output flushes
nwOutBuf in EuroStoxx50 and at the end of main as low
sinks; other classifications were not necessary. The chal-
lenge of this program is to detect that EuroStoxx50 is

class Alpha extends Thread {
public void run () {

while (mask != 0) {
while (t r i g g e r 0 == 0) ; /∗ busy wait ∗/
r e s u l t = r e s u l t | mask ;
t r i g g e r 0 = 0 ;
ma int r i gge r++;
i f (ma int r i gge r == 1) t r i g g e r 1 = 1 ;

}
}

}
class Beta extends Thread {

public void run () {
while (mask != 0) {

while (t r i g g e r 1 == 0) ; /∗ busy wait ∗/
r e s u l t = r e s u l t & ~mask ;
t r i g g e r 1 = 0 ;
ma int r i gge r++;
i f (ma int r i gge r == 1) t r i g g e r 0 = 1 ;

}
}

}
class Gamma extends Thread {

public void run () {
while (mask != 0) {

maint r i gge r = 0 ;
i f ((PIN & mask) == 0) t r i g g e r 0 = 1 ;
else t r i g g e r 1 = 1 ;
while (ma int r i gge r < 2) ; /∗ busy wait ∗/
mask = mask / 2 ;

}
}

}

class SmithVolpano {
stat ic int maintr igger , t r i g g e r 0 ,

t r i g g e r 1 = 0 , PIN , r e s u l t = 0 ;
stat ic int mask = 2048 ; // a power of 2

public stat ic void main (St r ing [] a rgs)
throws Exception {

PIN = Int ege r . pa r s e In t (args [0]) ;
Thread a=new Alpha () ;
Thread b=new Beta () ;
Thread g=new Gamma() ;
g . s t a r t () ; a . s t a r t () ; b . s t a r t () ;

// s t a r t a l l threads
g . j o i n () ; a . j o i n () ; b . j o i n () ;

// jo in a l l threads
System . out . p r i n t l n (r e s u l t) ;

}
}

Fig. 10 Example from Smith and Volpano [44]

joined before nwOutBuf is flushed in the main procedure,
because otherwise it cannot be determined that the two
flushes of nwOutBuf have a fixed execution order. And
then the program would have to be rejected because the
resulting order conflict is influenced by both sources.

Our MHP analysis, together with context-sensitive
points-to analysis, was able to detect that the joins of
the threads are must-joins, which enabled the RLSOD
algorithm to identify that there is no order conflict be-
tween the two flushes of nwOutBuf (cmp. definitions 7,
8), which in turn avoided false alarms in the “benign”
check. Therefore no probabilistic channel was reported.
To our knowledge, algorithm 1 is the first implementa-
tion of LSOD or PN, which was precise enough to verify
that this example is noninterferent.

More case studies can be found in [8].

16 Dennis Giffhorn, Gregor Snelting

class Mantel {
// to a l low mutual access , threads are g l o b a l v a r i a b l e s
stat ic Po r t f o l i o p = new Po r t f o l i o () ;
stat ic EuroStoxx50 e = new EuroStoxx50 () ;
stat ic S t a t i s t i c s s = new S t a t i s t i c s () ;
stat ic Output o = new Output () ;

stat ic Buf feredWriter nwOutBuf =
new Buf feredWriter (new

OutputStreamWriter (System . out)) ;
stat ic BufferedReader nwInBuf =

new BufferedReader (new
InputStreamReader (System . in)) ;

stat ic St r ing [] output = new St r ing [5 0] ;

public stat ic void main (St r ing [] a rgs)
throws Exception {

// get p o r t f o l i o and eurostoxx50
p . s t a r t () ; e . s t a r t () ;
p . j o i n () ; e . j o i n () ;
// compute s t a t i s t i c s and generate output
s . s t a r t () ; o . s t a r t () ;
s . j o i n () ; o . j o i n () ;
// d i sp lay output
stTabPrint ("No. \ t ␣ | ␣Name\ t ␣ | ␣ Pr i ce \ t ␣ | ␣ P r o f i t ") ;
for (int n = 0 ; n < 50 ; n++)

stTabPrint (output [n]) ;
// show commercials
stTabPrint (e . coShort+

"Press ␣#␣ to ␣ get ␣more␣ in fo rmat ion ") ;
char key = (char) System . in . read () ;
i f (key == ’#’) {

System . out . p r i n t l n (e . coFu l l) ;
nwOutBuf . append ("shownComm: "+e . coOld) ;
nwOutBuf . f l u s h () ;

// pub l i c output
}

}
}

class Po r t f o l i o extends Thread {
int [] e sOldPr ices , pfNums ;
S t r ing [] pfNames ; S t r ing pfTabPrint ;

public void run () {
pfNames = getPFNames () ;

// secre t input
pfNums = getPFNums () ;

// secre t input
for (int i = 0 ; i < pfNames . l ength ; i++)

pfTabPrint += pfNames [i] + " | " + pfNums [i] ;
}

int locPF (St r ing name) {
for (int i = 0 ; i < pfNames . l ength ; i++)

i f (pfNames [i] . equa l s (name)) return i ;
return −1;

}
}

class EuroStoxx50 extends Thread {
St r ing [] esName = new St r ing [5 0] ;
int [] e sP r i c e = new int [5 0] ;
S t r ing coShort ;
S t r ing coFu l l ;
S t r ing coOld ;

public void run () {
try {

nwOutBuf . append ("getES50") ;
nwOutBuf . f l u s h () ;

// pub l i c output
St r ing nwIn = nwInBuf . readLine () ;
S t r ing [] s t rArr = nwIn . s p l i t (" : ") ;
for (int j = 0 ; j < 50 ; j++) {

esName [j] = st rArr [2∗ j] ;
e sP r i c e [j] = In t eg e r . pa r s e In t (s t rArr [2∗ j +1]) ;

}
// commercials
coShort = st rArr [1 0 0] ;
coFu l l = st rArr [1 0 1] ;
coOld = st rArr [1 0 2] ;

} catch (IOException ex) {}
}

}

class S t a t i s t i c s extends Thread {
int [] s t = new int [5 0] ;
int k = 0 ;

public void run () {
k = 0 ;
while (k < 50) {

int i p f = p . locPF (e . esName [k]) ;
i f (i p f > 0)

s t [k] = (p . e sOldPr i ce s [k] −
e . e sP r i c e [k]) ∗ p . pfNums [i p f] ;

else
s t [k] = 0 ;

k++;
}

}
}

class Output extends Thread {
public void run () {

for (int m = 0; m < 50 ; m++) {
while (s . k <= m) ; /∗ busy wait ∗/
output [m] = m+" | "+e . esName [m]+" | " +

e . e sPr i c e [m]+" | "+s . s t [m] ;
}

}
}

Fig. 11 Example from Mantel et al [32], converted to Java. For brevity, some methods are not shown.

7.2 Runtime Behaviour

We applied our algorithm to a benchmark of 8 programs
between 200 and 3000 LOC (taken from the Bandera
benchmark and the JavaGrande benchmark). We used
three different security lattices, called A, B, C; with 3,
resp. 22, resp. 254 elements. For each program and lat-
tice, we randomly chose 10 sources and 10 sinks, then
33 sources and 33 sinks, and finally 100 sources and 100
sinks of random security levels, and analysed the classi-
fied programs. We measured the total execution times,

and separate execution times of the scan for probabilis-
tic channels and of the scan for explicit or implicit flow.
Every test was run ten times.

Table 1 shows the average execution times (measured
on a rather old standard PC). It contains one row for
each combination of program and lattice, i.e. row ‘LG +
A’ contains the results for program “LaplaceGrid” and
lattice A. The numbers reveal that the most important
factor influencing the runtime behaviour is, besides the
sheer size of the program, the number of sources and
sinks. With an increasing number of sources and sinks

A New Algorithm for Low-Deterministic Security 17

Table 1 Average execution times of algorithm 1 for differ-
ent programs, lattices and numbers of sources and sinks (in
seconds).

Name + sources x sinks
Lattice 10 x 10 33 x 33 100x 100
LG + A 1.6 4.8 21.2
LG + B 1.6 5.8 29.7
LG + C 2.0 9.5 170.7
(200 LOC)
SQ + A 5.9 17.2 54.0
SQ + B 5.5 17.3 68.0
SQ + C 5.8 21.1 162.5
(350 LOC)
KK + A 25.7 58.5 170.0
KK + B 22.1 57.5 187.8
KK + C 25.2 64.9 256.2
(600 LOC)
RT + A 8.9 25.3 99.3
RT + B 7.3 23.9 116.1
RT + C 8.4 27.2 175.1
(950 LOC)
MC + A 17.1 53.3 224.2
MC + B 18.7 53.3 173.6
MC + C 17.5 54.8 205.0
(1400 LOC)
JS + A 2.2 5.2 18.8
JS + B 2.4 5.6 20.3
JS + C 2.4 5.8 40.7
(500 LOC)
PO + A 6.4 18.1 54.6
PO + B 7.4 19.1 66.8
PO + C 7.0 20.4 89.8
(2000 LOC)
CS + A 19.4 52.5 153.3
CS + B 21.5 52.1 160.2
CS + C 21.0 53.6 177.3
(3000 LOC)

the size of lattice C eventually became the dominating
cost factor. A more detailed analysis reveals that the se-
quential IFC check in algorithm 1 needs about the same
execution time as the additional probabilistic checks.

Table 2 shows the percentage share of the probabilis-
tic channel detection among the overall execution times.
The remaining time was consumed by the algorithm of
Hammer et al. [16], which is employed for verifying the
explicit and implicit flow. The results show that the
two checks were similarly fast. However, the probabilistic
check seems to decline in performance for large lattices,
compared to Hammer et al.’s algorithm; which is consis-
tent with the above-mentioned performance sensitivity
for very large lattices.

8 Discussion and Related Work

In the following, we compare our definition of LSOD with
PN and LSOD definitions from the literature.

8.1 Weak Probabilistic Noninterference

Smith and Volpano’s weak probabilistic noninterference
(WPN) property [43,48] enforces probabilistic noninter-
ference via weak probabilistic bisimulation. A program is

Table 2 The percentage share of the probabilistic channel
detection among the overall execution times.

Name + sources x sinks
Lattice 10 x 10 33 x 33 100x 100
LG + A 53 48 62
LG + B 56 54 73
LG + C 58 73 94
SQ + A 44 39 44
SQ + B 43 40 55
SQ + C 43 50 80
KK + A 57 45 43
KK + B 58 46 45
KK + C 58 48 58
RT + A 44 40 44
RT + B 49 41 50
RT + C 47 46 67
MC + A 45 38 38
MC + B 43 38 39
MC + C 44 40 47
JS + A 52 46 41
JS + B 46 46 46
JS + C 53 54 71
PO + A 46 38 35
PO + B 45 37 36
PO + C 43 39 46
CS + A 38 29 28
CS + B 34 30 28
CS + C 32 31 34

void thread_1 () :
h = inputPIN () ;
i f (h < 0)

h = h ∗ (−1);
l = 0 ;

void thread_2 () :
x = 1 ;

void thread_1 () :
h = inputPIN () ;
i f (h == 0)

h = h + 2 ;
else

h = h − 2 ;
l = 0 ;

void thread_2 () :
l = 1 ;

Fig. 12 Two examples comparing LSOD and WPN. We as-
sume that Smith and Volpano’s technique classifies variables
h and x as high and l as low, and that our technique classifies
h = inputPIN() as a high input and l = 0 and l = 1 as low
output. The left program is accepted by our condition and
rejected by theirs, the right program is rejected by ours and
accepted by theirs.

WPN if for each pair of low-equivalent inputs, each se-
quence of low-observable events caused by one input can
be caused by the other input with the same probability.

WPN addresses explicit and implicit flow and prob-
abilistic channels. Like in our analysis, timing channels
and termination channels are excluded (which permits
the probabilistic bisimulation to be weak). This renders
their interpretation of low-observable behaviour very sim-
ilar to ours: It consists of a sequence of low-observable
events, but lacks information about the time at which
such an event occurs. The major difference concerning
low-equivalent behaviour is that their definition disallows
low-observable events to be delayed infinitely in one low-
observable behaviour and to be executed in the other.
Thus, WPN is stricter with respect to termination chan-
nels and only permits the sheer termination of the pro-
gram to differ.

18 Dennis Giffhorn, Gregor Snelting

WPN globally partitions the program variables into
high and low, and the attacker is able to see all low var-
iables at any time. In contrast, our attacker can only see
low operations once they are executed. In particular, in
our flow-sensitive approach the same variable can be low
at one program point or high at another, dependent on
the context.

Thus the WPN attacker is generally more power-
ful than ours, because we assume that only low oper-
ations/events and their low operands are visible to the
attacker. The price to be paid is flow insensitivity, re-
sulting in strange false alarms, as we saw in e.g., Figure
2. It depends on the application context which attacker
model is more realistic.

Smith and Volpano’s security-type system lacks a de-
tection of conflicts. Probabilistic channels are prevented
by forbidding assignments to low variables sequentially
behind conditional structures, which is very restrictive.
The program on the left side of Fig. 12 is rejected by
WPN, because the running time of the if-structure de-
pends on high data and is followed sequentially by l =
0. However, it does not contain a probabilistic channel
because l = 0 is not involved in an order conflict or in-
fluenced by a data conflict. It therefore satisfies RLSOD.

WPN assumes that a single statement has a fixed
running time. Thus programs like in Figure 12 (right)
are accepted by WPN, because the branches of the if-
structure have equal length and thus different values of
h do not alter the probabilities of the possible ways of in-
terleaving of l = 0 and l = 1. We explicitly aim to reject
such programs, arguing that different running times of
h = inputPIN() could already cause a probabilistic chan-
nel, and our security constraint rejects the program be-
cause of the data conflict between l = 0 and l = 1.

Smith and Volpano’s security-type system is restricted
to probabilistic schedulers and breaks, for example, in
the presence of a round-robin scheduler [43]. (R)LSOD
holds for every scheduler.

8.2 Strong Security

Sabelfeld and Sands’ security property strong security [42]
addresses implicit and explicit flow, probabilistic chan-
nels and termination channels. It enforces probabilistic
noninterference for all schedulers whose decisions are not
influenced by high data. It makes the following require-
ments to a program p and all possible pairs (t, u) of low-
equivalent inputs: Let T and U be the set of possible
program runs resulting from t and u. For every T ∈ T,
there must exist a low-equivalent program run U ∈ U.

Even though it looks like a possibilistic property, strong
security is capable of preventing probabilistic channels,
the trick being the definition of low-equivalent program
runs: Two program runs are low-equivalent if they have
the same number of threads and they produce the same
low-observable events and create or kill the same num-
ber of threads at each step under any scheduler whose

decisions are not influenced by high data. This ‘lock-
step execution’ requirement allows ignoring the concrete
scheduling strategy.

The attacker sees all low variables at all times and is
aware of program termination. The values of the low vari-
ables, their changes over time and the termination behav-
ior constitute the low-observable behaviour. Strong secu-
rity assumes that the attacker is not able to see which
statement is responsible for a low-observable event, and
is designed to identify whether two syntactically differ-
ent subprograms have equivalent low-observable effects.
This makes it possible to identify programs like Figure
13 (left) as secure. Even though the assignments to the
low variable l are influenced by high data via implicit
flow, strong security states that the low-observable be-
haviour is not, because both branches lead to 0 being
assigned to l. Our algorithm is not able to recognize this
program as secure, the same holds for WPN.

Smith/Volpano and we assume that the attacker can-
not exploit termination channels and is able to identify
statements responsible for low-observable events, which
is seen contrarily by Sabelfeld and Sands.

The requirement of lock-step execution implies that
strongly secure programs can be combined sequentially
or in parallel to a new strongly secure program (composi-
tionality). Sabelfeld [41] has proven that strong security
is the least restrictive security property that provides this
degree of compositionality and scheduler-independence.
Its compositionality is its outstanding property and an
advantage over our LSOD. However, lockstep execution
imposes serious restrictions to programs.

Furthermore, the restriction to schedulers which do
not touch high data means that any information possi-
bly used by the scheduler, for example the mere number
of existing threads, must be classified as low. This in
turn means that the classification of a program becomes
scheduler-dependent, so the scheduler-independence of
strong security is bought by making the classification
scheduler-dependent. This allows breaking strong secu-
rity, by running the program under a scheduler for which
the attacker knows the classification of the program to
be inappropriate ([42], sec. 4.1).

8.3 LSOD by Zdancewic and Myers

Inspired by Roscoe’s earlier work [39], Zdancewic and
Myers [53] pointed out that conflicts are a necessary con-
dition of probabilistic channels. They suggested combin-
ing a security-type system for implicit and explicit flow
with a conflict analysis, arguing that programs without
conflicts have no probabilistic channels.

The authors exclude termination channels and prob-
abilistic order channels and justify that by confining the
attacker to be a program itself (e.g., a thread). Such an
attacker is not able to observe the relative order of low-
observable events, because such an observation requires a

A New Algorithm for Low-Deterministic Security 19

void main () :
h = inputPIN () ;
i f (h < 0)

l = 0 ;
else

l = 0 ;

void thread_1 () :
h = inputPIN () ;
i f (h < 0)

h = h ∗ (−1);
else

sk ip ;
l = 0 ;

void thread_2 () :
x = 1 ;

Fig. 13 Two examples demonstrating the capabilities of
strong security. We assume that h and x are classified as high
and l as low. The left program is strongly secure, because
both branches assign the same value to l. The right program
is a transformation of the program on the left of Fig. 12, where
the additional skip statement removes the probabilistic data
channel.

probabilistic data channel in which the differing relative
orders manifest.

The authors apply the approach to languages with
message passing and shared memory. The language pro-
vides linear communication channels that are used for
transmitting exactly one message and thus guarantee
conflict-free communication. They present a security-type
system for a concurrent calculus λPAR

SEC , that verifies con-
fidentiality of implicit and explicit flow, and verifies that
linear channels are used exactly once. The type system
guarantees that well-typed programs are LSOD if they
are additionally free of data conflicts. Later, Terauchi
provided an improved type system for LSOD [47] which
does not require confluence of the checked program.

It is interesting to compare their notion of low equiv-
alent traces with ours. Technically, they use a weaker
notion of low-equivalence. They do not demand that
two traces are low equivalent as in our definition 5 (fi-
nite case); they only demand that the projections of the
traces onto all individual variables (“location traces”) are
low equivalent. This implies that low variables undergo
the same changes in low-equivalent traces, but not nec-
essarily at the same time. That is, more traces are low
equivalent than in our definition – which should also re-
duce false alarms. Unfortunately, this approach is not
flow sensitive. Consider again Figure 2 right: l is globally
classified low, thus any location trace for l has the form
〈l = 0, l = 0, l = 0, l = h〉. As h depends on inputPIN,
these location traces are not low equivalent for differ-
ent high inputs, causing a false alarm. In general, the
“projection trick” and global variable classification may
abstract away from statement order, implying flow in-
sensitivity. In our analysis, l=h in Figure 2 is not low
observable (see discussion in section 3.2), hence the ex-
ample is RLSOD even though our definition 5 demands
more than Zdancewic’s.

Zdancewic and Myers’ attacker is weaker than ours,
as probabilistic order channels are excluded. It is explic-
itly designed to tackle malicious threads spying out con-
fidential information. Their requirement that programs
are completely free of data conflicts (which is much stricter

than ours) in practice prevents an application to lan-
guages with shared memory, because many programs
contain data conflicts, but many such conflicts do not
influence low-observable behaviour. We have provided
examples of such programs in Figure 8.

8.4 LSOD by Huisman et al.

Huisman et al. [21] pointed out that Zdancewic and My-
ers’ method contains a leak, because its definition of low-
equivalent program runs is restricted to the length of the
shorter run. They close that leak by strengthening the
definition of low-equivalent program runs: assignments
to low variables sequentially behind loops iterating over
high data are forbidden.

Closing termination channels additionally requires that
either both program runs terminate or none of them.
They also discover probabilistic order channels, by ex-
tending location traces to the set L of low variables: In
that case two program runs T and U are low-equivalent
if the set of low variables in T and U undergoes the same
sequence of changes in both runs up to stuttering.

The authors formalized their different security prop-
erties via temporal logics, for which the model-checking
problem is decidable if the program in question can be
expressed by a finite state machine. This permits a very
precise detection of relevant data conflicts, such that
total freedom of data conflicts is not required. Hence,
their approach can be applied to languages with shared-
memory communication.

Closing termination channels has the effect that Huis-
man’s approach is more restrictive than ours. It forbids
low-observable events sequentially behind loops iterating
over high data. Furthermore, the optional treatment of
probabilistic order channels imposes severe restrictions
on the analysed programs. As in WPN, each assignment
to a low variable is regarded as a low-observable event.
Huisman thus requires that two low-equivalent program
runs must make the same sequence of changes to low
variables. Even if two threads work on completely un-
related low variables, the assignments to these variables
must have a fixed interleaving order.

In more recent work, Huisman et al. [20,35] intro-
duced δ-specific observational determinism. Since the then-
known LSOD criteria all turned out to be either too
restrictive or unsound, [20] explicitly reintroduces the
scheduling policy δ into the definition, and demands low-
equivalency of traces only for traces under the same sche-
duling policy. Thereby, some restrictions on the original
approach can be relaxed, while the model checking ap-
proach can be maintained. δ-specific observational deter-
minism is explicitly scheduler dependent; like WPN it is
flow insensitive and assumes that variables are globally
classified.

Thus Huisman et al. depart again from scheduler in-
dependence, because they consider it to be too prob-
lematic. In contrast, we consider flow insensitivity to be

20 Dennis Giffhorn, Gregor Snelting

the troublemaker, as our flow-sensitive LSOD is sched-
uler independent, sound, precise, and has demonstrated
practical applicability. It remains to be seen how the dis-
cussion about PN and LSOD will eventually evolve.

8.5 Low-Distinguishability by Mantel, Sands, and
Sudbrock

In a recent approach to compositional noninterference
for concurrent programs, Mantel, Sands and Sudbrock
[29] employ a flow-sensitive security type system [22] and
MHP to establish SIFUM-security. Threads are dynami-
cally annotated with “modes”, i.e. assumptions and guar-
antees about variable read and write behaviour in pro-
gram threads. SIFUM then defines low-distinguishability
(which is similar to noninterference) via strong low bisim-
ulation modulo modes. A soundness proof is provided.

Mantel, Sands and Sudbrock certainly improve earlier
definitions by exploiting mode information for variables,
and by being flow-sensitive. Furthermore, compositional-
ity is an asset not yet provided by PDGs. However [29] is
restricted to a fixed number of threads, and does not con-
sider context-, object-, or time-sensitivity; evaluations of
an implementation have not yet been reported.

Recently, Sudbrock has shown that for intraprocedural
IFC, PDGs and flow-sensitive type systems such as [22]
have exactly the same precision [31]. But note that all
known type systems for interprocedural IFC are – in
contrast to PDGs – not context- or object-sensitive.

9 Future Work

Let us briefly mention some topics in ongoing and future
work.

Time sensitivity. Recently, an optional time-sensitive
slicer was integrated. We also added an experimental au-
totuning facility, which automatically switches between
variants of pointer analysis (flow-sensitive, context-sensi-
tive) and slicer (time-sensitive and I2P variants). Auto-
tuning is applied to a benchmark of secure programs,
until a setup without false alarms has been found. How-
ever, more algorithm engineering is needed to balance
precision against scalability.

Lock sensitivity. As described in section 2, MHP analy-
sis is crucial for PDG precision and hence for overall IFC
precision. The current MHP analysis however does not
analyse explicit locks in the program. The latter prop-
erty is called lock sensitivity and has been explored in [5,
6] in the scope of Dynamic Pushdown Networks. We re-
cently integrated this analysis. Preliminary experiments
indicate that MHP indeed becomes more precise, as more
interference edges are pruned [13].

Declassification. We currently do not provide a declas-
sification mechanism for probabilistic channels, only for
sequential channels (see [16] for details). Instead of de-
classifying probabilistic channels, we consider Zdancewic
and Myers’ idea of using linear channels for determinis-
tic communication between threads [53] more promising.
Linear channels can be integrated in form of a library
into languages with shared memory. We have recently
added a preliminary implementation of such a library.

Compositionality. As explained in section 4.2, the PDG
of a complete system cannot be obtained by just combin-
ing PDGs of subsystems. We recently investigated mech-
anisms to overcome this drawback: subsystems can be
analysed in isolation, and later plugged into larger sys-
tems. However, plug-in of local PDGs is a nontrivial op-
eration, which may require secondary fix-point iteration
until global dependencies stabilize.

Machine-checked proofs. It is our long-term goal to for-
malize our RLSOD check in Isabelle and provide a machine-
checked proof for Theorem 1; just as we have provided
machine-checked soundness proofs for the sequential (in-
terprocedural) PDG-based IFC [51,50].

Evaluation and comparison. JOANA’s RLSOD imple-
mentation needs to be applied in larger case studies, and
will be compared to other IFC tools.

10 Conclusion

We presented a new method for information flow control
in concurrent programs. The method guarantees prob-
abilistic noninterference, and is based on a new variant
– named RLSOD – of low-security observational deter-
minism. It turns out that RLSOD can be naturally im-
plemented through slicing algorithms for concurrent pro-
grams, which are flow-sensitive, object-sensitive, context-
sensitive, and time-sensitive. We also demonstrated how
RLSOD fixes some weaknesses of earlier LSOD defini-
tions. In particular, secure low-nondeterminism is allowed
by RLSOD. In essence, we demonstrated that flow sensi-
tivity is the key to maintain soundness and precision in
IFC for multi-threaded programs.

Our implementation can handle full Java with an ar-
bitrary number of threads. It was applied to examples
from the literature and a small benchmark; preliminary
experience indicates high precision and scalability for
medium-sized programs. Future work will explore de-
classification for probabilistic channels; we also aim at
a machine-checked version of the soundness proof.

Our current work is part of a long-standing project
which exploits modern program analysis for software se-
curity. The current work demonstrates that IFC analysis
of concurrent programs can indeed be improved by ap-
plying PDGs and MHP analysis; resulting in algorithms
with considerably enhanced precision and scalability.

A New Algorithm for Low-Deterministic Security 21

Acknowledgements We thank the reviewers for their very
insightful observations and suggestions. Joachim Breitner and
Martin Hecker provided valuable comments.

References

1. Martín Abadi, Anindya Banerjee, Nevin Heintze, and
Jon G. Riecke. A core calculus of dependency. In
POPL ’99: Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 147–160, New York, NY, USA, 1999. ACM.

2. Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and
David Sands. Termination-insensitive noninterference
leaks more than just a bit. In Proc. ESORICS, volume
5283 of LNCS, pages 333–348, 2008.

3. David Binkley and Mark Harman. A survey of empiri-
cal results on program slicing. Advances in Computers,
62:105–178, 2004.

4. David Binkley, Mark Harman, and Jens Krinke. Empir-
ical study of optimization techniques for massive slicing.
ACM Trans. Program. Lang. Syst., 30(1):3, 2007.

5. Ahmed Bouajjani, Markus Müller-Olm, and Tayssir
Touili. Regular symbolic analysis of dynamic networks of
pushdown systems. In Concurrency Theory (CONCUR
2005), pages 473–487. Springer Verlag, LNCS 3653, 2005.

6. Thomas Martin Gawlitza, Peter Lammich, Markus
Müller-Olm, Helmut Seidl, and Alexander Wenner. Join-
lock-sensitive forward reachability analysis for concurrent
programs with dynamic process creation. In VMCAI,
pages 199–213, 2011.

7. Dennis Giffhorn. Advanced chopping of sequential
and concurrent programs. Software Quality Journal,
19(2):239–294, 2011.

8. Dennis Giffhorn. Slicing of Concurrent Programs
and its Application to Information Flow Control.
PhD thesis, Karlsruher Institut für Technologie,
Fakultät für Informatik, May 2012. http://pp.info.uni-
karlsruhe.de/uploads/publikationen/giffhorn12thesis.pdf.

9. Dennis Giffhorn and Christian Hammer. Precise slicing
of concurrent programs – an evaluation of precise slicing
algorithms for concurrent programs. Journal of Auto-
mated Software Engineering, 16(2):197–234, June 2009.

10. Dennis Giffhorn and Gregor Snelting. Prob-
abilistic noninterference based on program de-
pendence graphs. Karlsruhe Reports in In-
formatics, 6, April 2012. http://pp.info.uni-
karlsruhe.de/uploads/publikationen/giffhorn12kri.pdf.

11. Jürgen Graf. Speeding up context-, object- and field-
sensitive sdg generation. In Proc. 9th SCAM, pages 105–
114, September 2010.

12. Jürgen Graf, Martin Hecker, and Martin Mohr. Using
joana for information flow control in java programs - a
practical guide. In Proc. 6th Working Conference on Pro-
gramming Languages (ATPS’13), Lecture Notes in Infor-
matics (LNI) 215. Springer Berlin / Heidelberg, February
2013.

13. Jürgen Graf, Martin Hecker, Martin Mohr, and Benedikt
Nordhoff. Lock-sensitive interference analysis for java:
Combining program dependence graphs with dynamic
pushdown networks. In Proc. 1st International Workshop
on Interference and Dependence, January 2013.

14. Christian Hammer. Information Flow Control for Java.
PhD thesis, Universität Karlsruhe (TH), 2009.

15. Christian Hammer. Experiences with PDG-based IFC. In
F. Massacci, D. Wallach, and N. Zannone, editors, Proc.
ESSoS’10, volume 5965 of LNCS, pages 44–60. Springer-
Verlag, February 2010.

16. Christian Hammer and Gregor Snelting. Flow-sensitive,
context-sensitive, and object-sensitive information flow
control based on program dependence graphs. Interna-
tional Journal of Information Security, 8(6), December
2009.

17. Ben Hardekopf and Calvin Lin. Semi-sparse flow sensitive
pointer analysis. In POPL ’09: Proceedings of the 36th
annual ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 226–238, New
York, NY, USA, 2009. ACM.

18. S. Horwitz, J. Prins, and T. Reps. On the adequacy of
program dependence graphs for representing programs.
In Proc. POPL ’88, pages 146–157, New York, NY, USA,
1988. ACM.

19. Susan Horwitz, Thomas Reps, and David Binkley. Inter-
procedural slicing using dependence graphs. ACM Trans.
Program. Lang. Syst., 12(1):26–60, 1990.

20. M. Huisman and T.M. Ngo. Scheduler-specific confiden-
tiality for multi-threaded programs and its logic-based
verification. In Proc. Formal Verification of Object-
Oriented Systems, 2011.

21. Marieke Huisman, Pratik Worah, and Kim Sunesen. A
temporal logic characterisation of observational deter-
minism. In Proc. 19th CSFW, page 3. IEEE, 2006.

22. Sebastian Hunt and David Sands. On flow-sensitive se-
curity types. In POPL ’06, pages 79–90. ACM, 2006.

23. Jens Krinke. Context-sensitive slicing of concurrent pro-
grams. In Proc. ESEC/FSE-11, pages 178–187, New
York, NY, USA, 2003. ACM.

24. Jens Krinke. Program slicing. In Handbook of Software
Engineering and Knowledge Engineering, volume 3: Re-
cent Advances. World Scientific Publishing, 2005.

25. Ralf Küsters, Tomasz Truderung, and Jürgen Graf. A
framework for the cryptographic verification of java-like
programs. In Computer Security Foundations Symposium
(CSF), 2012 IEEE 25th. IEEE Computer Society, June
2012.

26. Lin Li and Clark Verbrugge. A practical MHP in-
formation analysis for concurrent Java programs. In
Proc. LCPC’04, volume 3602 of LNCS, pages 194–208.
Springer, 2004.

27. Andreas Lochbihler. Java and the Java memory model
– a unified, machine-checked formalisation. In Helmut
Seidl, editor, Proc. ESOP ’12, volume 7211 of LNCS,
pages 497–517, March 2012.

28. Jeremy Manson, William Pugh, and Sarita V. Adve. The
Java memory model. In POPL, pages 378–391, 2005.

29. Heiko Mantel, David Sands, and Henning Sudbrock. As-
sumptions and guarantees for compositional noninterfer-
ence. In CSF, pages 218–232, 2011.

30. Heiko Mantel and Henning Sudbrock. Flexible scheduler-
independent security. In Proc. ESORICS, volume 6345
of LNCS, pages 116–133, 2010.

31. Heiko Mantel and Henning Sudbrock. Types vs. pdgs in
information flow analysis. In LOPSTR, pages 106–121,
2012.

32. Heiko Mantel, Henning Sudbrock, and Tina Kraußer.
Combining different proof techniques for verifying infor-
mation flow security. In Proc. LOPSTR, volume 4407 of
LNCS, pages 94–110, 2006.

33. Mangala Gowri Nanda and S. Ramesh. Interprocedural
slicing of multithreaded programs with applications to
Java. ACM Trans. Program. Lang. Syst., 28(6):1088–
1144, 2006.

34. Gleb Naumovich, George S. Avrunin, and Lori A. Clarke.
An efficient algorithm for computing MHP information
for concurrent Java programs. In Proc. ESEC/FSE-7,
volume 1687 of LNCS, pages 338–354, London, UK, 1999.

35. Tri Minh Ngo, Mariëlle Stoelinga, and Marieke Huisman.
Confidentiality for probabilistic multi-threaded programs
and its verification. In ESSoS, pages 107–122, 2013.

22 Dennis Giffhorn, Gregor Snelting

36. Venkatesh Prasad Ranganath, Torben Amtoft, Anindya
Banerjee, John Hatcliff, and Matthew B. Dwyer. A new
foundation for control dependence and slicing for modern
program structures. ACM Trans. Program. Lang. Syst.,
29(5):27, 2007.

37. Thomas Reps, Susan Horwitz, Mooly Sagiv, and
Genevieve Rosay. Speeding up slicing. In Proc. FSE
’94, pages 11–20, New York, NY, USA, 1994. ACM.

38. Thomas Reps and Wuu Yang. The semantics of pro-
gram slicing. Technical Report 777, Computer Sciences
Department, University of Wisconsin-Madison, 1988.

39. A. W. Roscoe, Jim Woodcock, and L. Wulf. Non-
interference through determinism. In ESORICS, volume
875 of LNCS, pages 33–53, 1994.

40. A. Sabelfeld and A. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Com-
munications, 21(1):5–19, January 2003.

41. Andrei Sabelfeld. Confidentiality for multithreaded pro-
grams via bisimulation. In Proc. 5th International An-
drei Ershov Memorial Conference, volume 2890 of LNCS,
Akademgorodok, Novosibirsk, Russia, July 2003.

42. Andrei Sabelfeld and David Sands. Probabilistic nonin-
terference for multi-threaded programs. In Proc. CSFW
’00, page 200, Washington, DC, USA, 2000. IEEE Com-
puter Society.

43. Geoffrey Smith. Improved typings for probabilistic nonin-
terference in a multi-threaded language. Journal of Com-
puter Security, 14(6):591–623, 2006.

44. Geoffrey Smith and Dennis Volpano. Secure information
flow in a multi-threaded imperative language. In Proc.
POPL ’98, pages 355–364. ACM, January 1998.

45. Gregor Snelting. Combining slicing and constraint solv-
ing for validation of measurement software. In SAS
’96: Proceedings of the Third International Symposium
on Static Analysis, pages 332–348, London, UK, 1996.
Springer-Verlag.

46. Gregor Snelting, Torsten Robschink, and Jens Krinke.
Efficient path conditions in dependence graphs for soft-
ware safety analysis. ACM Trans. Softw. Eng. Methodol.,
15(4):410–457, 2006.

47. Tachio Terauchi. A type system for observational deter-
minism. In CSF, pages 287–300, 2008.

48. Dennis M. Volpano and Geoffrey Smith. Probabilistic
noninterference in a concurrent language. Journal of
Computer Security, 7(1), 1999.

49. Daniel Wasserrab. From Formal Semantics to Verified
Slicing - A Modular Framework with Applications in Lan-
guage Based Security. PhD thesis, Karlsruher Institut für
Technologie, Fakultät für Informatik, October 2010.

50. Daniel Wasserrab. Information flow noninterference via
slicing. Archive of Formal Proofs, 2010, 2010.

51. Daniel Wasserrab, Denis Lohner, and Gregor Snelting.
On PDG-based noninterference and its modular proof.
In Proc. PLAS ’09. ACM, June 2009.

52. Bin Xin and Xiangyu Zhang. Efficient online detection
of dynamic control dependence. In Proc. ISSTA, pages
185–195. ACM, 2007.

53. Steve Zdancewic and Andrew C. Myers. Observational
determinism for concurrent program security. In Proc.
CSFW, pages 29–43. IEEE, 2003.

Appendix A: Proof Sketch for Theorem 1 and 2

In the following, we describe the central steps in the sound-
ness proof. All details can be found in [8].

Theorem 1. A program is low-security observational de-
terministic if
1. no low-observable operation o is potentially influenced by

an operation reading high input,

2. no low-observable operation o is potentially influenced by
a data conflict, and

3. there is no order conflict between any two low-observable
operations.
Proof. Let two low-equivalent inputs be given. We have

to demonstrate that, under conditions 1. – 3., all possible
traces resulting from these inputs are low equivalent. The
proof proceeds in a sequence of steps.

1. Definition. For a trace T and operation o, the trace slice
S(o, T) consists of all operations and dependences in T which
form a path from start to o (see Figure 4). S(o, T) is thus
similar to a dynamic backward slice for o. Similarly the data
slice D(o, T) is the dynamic backward slice which considers
only dynamic data dependencies, but not control dependen-
cies. Trace and data slices are cycle free. Note that every
operation in S(o, T) has exactly one predecessor on which it
is control-dependent, the start operation being the only ex-
ception. Note also that S(o, T) can be soundly approximated
by a static slice on stmt(o), the source code statement con-
taining o.

2. Lemma. Let q and r be two different operations of
the same thread, and let T and U be two traces which both
execute q and r. Further, let T execute q before r. Then
U also executes q before r. This is a consequence of the fact
that any dynamic branching point b imposes a total execution
order on all operations ∈ DCD(b), because according to 1.,
all operations have at most one control predecessor.

3. Lemma. Let q, r be operations which cannot happen in
parallel, and let T and U be traces which both execute q and
r. Further, let T execute q before r. Then U also executes q
before r. Indeed if q, r are in the same thread, this is just the
last lemma. Otherwise, MHP guarantees q executes before
r’s thread is forked, or r executes after q’s thread has joined.
Hence U executes q before r.

4. Lemma. Let (m, o,m) be a configuration in trace T .
To = m|use(o) denotes the part of memory m that contains
the variables used by o, and To = m|def (o) denotes the part of
memory m that contains the variables defined by o. Now let
T and U be two traces with low-equivalent inputs. Let o be
an operation. If D(o, T) = D(o, U) and no operation in these
data slices reads high input, then To = Uo and To = Uo. This
lemma is proved by induction on the structure of D(o, T)
(remember D(o, T) is acyclic).

5. Corollary. Let T,U be two traces with low-equivalent
inputs. Let o be an operation. If S(o, T) = S(o, U) and no
operation in these trace-slices reads high values, then To = Uo

and To = Uo. That is, the low memory parts in both traces
are identical for low-equivalent inputs, if all operations do not
depend on high values.

6. Lemma. Let T and U be two finite traces of p with low-
equivalent inputs. T and U are low-equivalent if for every low-
observable operation o, S(o, T) = S(o, U) holds and no oper-
ation in the trace-slices depends on high values, and T and U
execute the same low-observable operations in the same rel-
ative order. This lemma, which seems quite natural, gives us
an instrument for finite traces to prove the low-equivalence
of traces resulting from low-equivalent input, which is nece-
sasary for theorem 1. The infinite cases are treated in the
next two lemmata.

7. Lemma. Let T and U be two infinite traces of p with
low-equivalent inputs such that obs low (T) is of equal length
or longer than obs low (U) (switch the names if necessary). T
and U are low-equivalent if
– they execute the shared low-observable operations in the

same relative order,
– for every low-observable operation o ∈ U S(o, T) = S(o, U)

holds and no operation in the trace-slices reads high input
– and for every low-observable operation o ∈ T and o /∈ U
U infinitely delays an operation b ∈ DCD(o).

A New Algorithm for Low-Deterministic Security 23

8. Lemma. Let T and U be two traces of p with low-
equivalent inputs, such that T is finite and U is infinite. T
and U are low-equivalent if
– obs low (T) is of equal length or longer than obs low (U),
– T and U execute the shared low-observable operations in

the same relative order,
– for every low-observable operation o ∈ U S(o, T) = S(o, U)

holds and no operation in the trace-slices reads high input
– and for every low-observable operation o ∈ T and o /∈ U
U infinitely delays an operation b ∈ DCD(o).
9. Corollary. Traces T,U are low-equivalent if one of the

last three lemmata can be applied. What remains to be shown
is that the preconditions of the lemmata are a consequence
of the conditions 1. – 3. in theorem 1.

10. Lemma. If operation o is not potentially influenced
by a data conflict, then S(o, T) = S(o, U) holds for all traces
T and U which execute o. Note that only at this point, data
or order conflicts are exploited. This lemma needs an induc-
tion over the length of T . The base case is trivial, because
both T,U consist only of the start operation, and trivially
S(start , T) = S(start , U). For the induction step, let q be the
next operation in T . If o 6∈ DFS(q), then q 6∈ S(o, T), and
the induction step trivially holds. Otherwise, one can show
that every dynamic data or control dependence r

v
99K q and

r
dcd
99K q in S(q, T) is also in S(q, U). Furthermore, q does not

depend on additional operations in U . Thus q has the same
incoming dependences in T and U . By induction hypothesis,
S(r, T) = S(r, U) for every r on which q is dependent in T
and U . Hence S(q, T) = S(r, T).

11. Lemma (see section 4.3, lemma 1). Let o be an oper-
ation that is not potentially influenced by a data conflict or
an operation reading high input. Let T be a trace and Θ be
the set of possible traces whose inputs are low-equivalent to
the one of T . If o ∈ T , then every U ∈ Θ either executes o or
infinitely delays an operation in DCD(o).

12. Lemma. Let T and U be two traces with low-equivalent
inputs. If there are no order conflicts between any two low-
observable operations, then all low-observable operations ex-
ecuted by both T and U are executed in the same relative
order.

13. Theorem 1 holds. Lemma 12 guarantees that T and U
execute the shared low-observable operations in the same rel-
ative order. Lemma 11 can be applied to all low-observable
operations o executed by both T and U , hence S(o, T) =
S(o, U). Since the potential influence of a low-observable op-
eration o does not contain operations reading high input, this
also holds for the operations in S(o, T) and S(o, U). To prove
low-equivalence of T and U , we apply one of the lemmata 6,7,
or 8, depending whether T resp. U are finite or infinite.

Remember that the three conditions for theorem 1 can
naturally be checked using PDGs and slicing. This fact jus-
tifies our definition of low-equivalent traces, and our PDG-
based approach.

Theorem 2. If a program is LSOD according to defini-
tion 6, it is probabilistically noninterferent.

Proof.We write Θi for the set of possible traces for input
i; for a trace r ∈ Θi, Pi(r) is its execution probability. Now
let two low-equivalent inputs t, u be given. Let Θ = Θt ∪Θu.
Let T ∈ Θ. Let T = {r ∈ Θt | r ∼low T}, U = {r ∈ Θu |
r ∼low T}. We have to show that

∑
r∈T Pt(r) =

∑
r∈U Pu(r)

if LSOD holds.
Due to LSOD, all traces in Θ and thus in T ∪ U are low-

equivalent, and ∀r ∈ Θ : T ∼low r. Therefore, under LSOD,
T = Θt, because the condition T ∼low r in the definition of T
always holds. That is, T contains all possible traces for inputs
t, u. Therefore

∑
r∈T Pt(r) = 1. Similarly,

∑
r∈U Pu(r) = 1,

and the required equality holds. QED.

	Introduction
	Overview of approach
	Formalizing low-equivalent traces and LSOD
	Dependence Graphs and Noninterference
	A slicing-based static LSOD check and the RLSOD criterion
	Implementation
	Evaluation
	Discussion and Related Work
	Future Work
	Conclusion

